Particle-resolved simulations of catalytic fixed bed reactors: Comparison of turbulence models, LES and PIV measurements

Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are perfor...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 361; pp. 474 - 489
Main Authors Karthik, G.M., Thaker, Abhijeet H., Buwa, Vivek V.
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.02.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are performed to understand the influence of different turbulence models (standard k − ε (KE), SST k − ω (SST), SSG Reynolds-stress (SSG), BSL Reynolds-stress (BSL) and LES WALE (LES)) on the particle-scale predictions of the flow, heat transfer and reactions. A comparison of the PIV measurements and particle-resolved simulations of a square column containing 72 spherical particles with a tube-to-particle diameter ratio (TPDR) of ∼3.6 and Rebed of 9765 was performed. The ε−based models (KE and SSG) under-predicted the velocity (Vx and Vy) profiles due to the over-estimation of the turbulence parameters (k and ε) and an opposite behaviour was observed for the ω−based models (SST and BSL). The LES model showed a better agreement with the measurements. In addition, numerical investigations of methane steam reforming reactions were performed in a packed bed containing 30 randomly packed 7-hole cylindrical particles with a TPDR of 5, and Ret of 50,000. The ε−based models predicted lower values of velocities, temperature and species concentration in the bulk region (and higher values on the particle surfaces) resulting into higher CH4 conversion compared to the ω−based models, whereas the LES model showed the highest ΔP and CH4 conversion. Overall, the predictions of the LES model were found to be closer to the experiments. The predictions of the RSM (SSG and BSL) models did not show any improvements over the eddy-viscosity (KE and SST) models. [Display omitted] •Particle Image Velocimetry (PIV) measurements of turbulent flow in packed bed.•Validation of particle-resolved CFD simulations of turbulent flow•Effect of different turbulence models on particle-resolved flow predictions analyzed.•Influence of different turbulence models on heat transfer and reactions predictions quantified.
AbstractList Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are performed to understand the influence of different turbulence models (standard k − ε (KE), SST k − ω (SST), SSG Reynolds-stress (SSG), BSL Reynolds-stress (BSL) and LES WALE (LES)) on the particle-scale predictions of the flow, heat transfer and reactions. A comparison of the PIV measurements and particle-resolved simulations of a square column containing 72 spherical particles with a tube-to-particle diameter ratio (TPDR) of ∼3.6 and Rebₑd of 9765 was performed. The ε−based models (KE and SSG) under-predicted the velocity (Vₓ and Vy) profiles due to the over-estimation of the turbulence parameters (k and ε) and an opposite behaviour was observed for the ω−based models (SST and BSL). The LES model showed a better agreement with the measurements. In addition, numerical investigations of methane steam reforming reactions were performed in a packed bed containing 30 randomly packed 7-hole cylindrical particles with a TPDR of 5, and Reₜ of 50,000. The ε−based models predicted lower values of velocities, temperature and species concentration in the bulk region (and higher values on the particle surfaces) resulting into higher CH₄ conversion compared to the ω−based models, whereas the LES model showed the highest ΔP and CH₄ conversion. Overall, the predictions of the LES model were found to be closer to the experiments. The predictions of the RSM (SSG and BSL) models did not show any improvements over the eddy-viscosity (KE and SST) models.
Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are performed to understand the influence of different turbulence models (standard k − ε (KE), SST k − ω (SST), SSG Reynolds-stress (SSG), BSL Reynolds-stress (BSL) and LES WALE (LES)) on the particle-scale predictions of the flow, heat transfer and reactions. A comparison of the PIV measurements and particle-resolved simulations of a square column containing 72 spherical particles with a tube-to-particle diameter ratio (TPDR) of ∼3.6 and Rebed of 9765 was performed. The ε−based models (KE and SSG) under-predicted the velocity (Vx and Vy) profiles due to the over-estimation of the turbulence parameters (k and ε) and an opposite behaviour was observed for the ω−based models (SST and BSL). The LES model showed a better agreement with the measurements. In addition, numerical investigations of methane steam reforming reactions were performed in a packed bed containing 30 randomly packed 7-hole cylindrical particles with a TPDR of 5, and Ret of 50,000. The ε−based models predicted lower values of velocities, temperature and species concentration in the bulk region (and higher values on the particle surfaces) resulting into higher CH4 conversion compared to the ω−based models, whereas the LES model showed the highest ΔP and CH4 conversion. Overall, the predictions of the LES model were found to be closer to the experiments. The predictions of the RSM (SSG and BSL) models did not show any improvements over the eddy-viscosity (KE and SST) models.
Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are performed to understand the influence of different turbulence models (standard k − ε (KE), SST k − ω (SST), SSG Reynolds-stress (SSG), BSL Reynolds-stress (BSL) and LES WALE (LES)) on the particle-scale predictions of the flow, heat transfer and reactions. A comparison of the PIV measurements and particle-resolved simulations of a square column containing 72 spherical particles with a tube-to-particle diameter ratio (TPDR) of ∼3.6 and Rebed of 9765 was performed. The ε−based models (KE and SSG) under-predicted the velocity (Vx and Vy) profiles due to the over-estimation of the turbulence parameters (k and ε) and an opposite behaviour was observed for the ω−based models (SST and BSL). The LES model showed a better agreement with the measurements. In addition, numerical investigations of methane steam reforming reactions were performed in a packed bed containing 30 randomly packed 7-hole cylindrical particles with a TPDR of 5, and Ret of 50,000. The ε−based models predicted lower values of velocities, temperature and species concentration in the bulk region (and higher values on the particle surfaces) resulting into higher CH4 conversion compared to the ω−based models, whereas the LES model showed the highest ΔP and CH4 conversion. Overall, the predictions of the LES model were found to be closer to the experiments. The predictions of the RSM (SSG and BSL) models did not show any improvements over the eddy-viscosity (KE and SST) models. [Display omitted] •Particle Image Velocimetry (PIV) measurements of turbulent flow in packed bed.•Validation of particle-resolved CFD simulations of turbulent flow•Effect of different turbulence models on particle-resolved flow predictions analyzed.•Influence of different turbulence models on heat transfer and reactions predictions quantified.
Author Buwa, Vivek V.
Karthik, G.M.
Thaker, Abhijeet H.
Author_xml – sequence: 1
  givenname: G.M.
  surname: Karthik
  fullname: Karthik, G.M.
– sequence: 2
  givenname: Abhijeet H.
  surname: Thaker
  fullname: Thaker, Abhijeet H.
– sequence: 3
  givenname: Vivek V.
  orcidid: 0000-0003-2335-6379
  surname: Buwa
  fullname: Buwa, Vivek V.
  email: vvbuwa@iitd.ac.in
BookMark eNqFkc1rFTEUxYNU8LX6H7gIuHHhjPmaSaYLQR7VFh5Y8AN3IZO5gTwyk2eSqe1_b56vqy50cbmL-zuHyznn6GyJCyD0mpKWEtq_37eH-LuAbRmhQ0u6llD2DG2okrzhTP08QxtCOGu6gZIX6DznPSGk55Rs0P2tScXbAE2CHMMdTDj7eQ2m-LhkHB22ppjwUBns_H09j3USGFtiypd4G-eDST7H5ciWNY1rgMUCnuMEIb_Du6uv2CwTvr35gWcweU0ww1LyS_TcmZDh1eO-QN8_XX3bXje7L59vth93jWWKlUYZGKQUnAzg6CjV6IxTchpG4SyBsTNskoKJYTRUCTE6JWzHRa8YZZ1llPAL9Pbke0jx1wq56NlnCyGYBeKaNWOy5jSIrq_omyfoPq5pqd9pxmUvmeq4rNTlibIp5pzAaevL37hKMj5oSvSxFL3Xp1L0sRRNOl1LqWLxRHxIfjbp4X-yDydZjRTuPCSdrT_GPPkEtugp-n8b_AEiHavx
CitedBy_id crossref_primary_10_1016_j_cej_2023_145445
crossref_primary_10_1016_j_rineng_2024_102877
crossref_primary_10_1016_j_fuel_2023_129205
crossref_primary_10_1016_j_cej_2021_132061
crossref_primary_10_1039_C9RE00240E
crossref_primary_10_1146_annurev_chembioeng_092319_075328
crossref_primary_10_3390_pr12010141
crossref_primary_10_1016_j_powtec_2020_10_052
crossref_primary_10_1016_j_cherd_2024_08_011
crossref_primary_10_1016_j_csite_2023_102986
crossref_primary_10_1021_acs_iecr_5c00009
crossref_primary_10_1016_j_ces_2020_116305
crossref_primary_10_1016_j_cej_2024_149133
crossref_primary_10_1016_j_cep_2024_109720
crossref_primary_10_1016_j_tsep_2023_101868
Cites_doi 10.1016/j.ces.2017.04.039
10.1016/j.cherd.2016.09.007
10.1021/ie100298q
10.1016/j.euromechflu.2013.11.006
10.1016/j.partic.2009.04.010
10.1021/ie00055a004
10.1016/j.advwatres.2013.01.009
10.1016/j.ces.2014.09.007
10.1016/j.compchemeng.2012.08.011
10.1016/j.cej.2012.07.038
10.1002/aic.13767
10.1016/0255-2701(88)80012-6
10.1002/aic.16386
10.1205/cherd06226
10.1002/aic.15542
10.1016/j.advwatres.2015.08.013
10.1002/aic.15520
10.1016/S0009-2509(00)00400-0
10.1016/S0065-2377(06)31005-8
10.1016/j.cej.2016.12.124
10.1016/j.cherd.2010.01.001
10.1016/j.cej.2012.06.065
10.1007/s11814-010-0507-x
10.1016/j.cej.2019.05.053
10.1021/ie801548h
10.1021/ie202694m
10.1016/j.ces.2004.10.034
10.1016/j.cej.2010.10.053
10.1016/S1385-8947(00)00360-0
10.1016/j.jiec.2012.05.003
10.1016/j.apm.2009.12.018
10.1016/S1385-8947(00)00367-3
10.1016/j.expthermflusci.2003.04.001
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Feb 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 1, 2020
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
JG9
SOI
7S9
L.6
DOI 10.1016/j.powtec.2019.05.012
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-328X
EndPage 489
ExternalDocumentID 10_1016_j_powtec_2019_05_012
S0032591019303523
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~02
~G-
29O
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCB
SCE
SEW
SSH
T9H
WUQ
XPP
ZY4
7SR
7ST
8BQ
8FD
C1K
EFKBS
JG9
SOI
7S9
L.6
ID FETCH-LOGICAL-c282t-8ae9774309ef1b78bfaf87d9b4fc0eb5a2d74249ba1844bf84c534682125c2103
IEDL.DBID .~1
ISSN 0032-5910
IngestDate Thu Jul 10 18:36:18 EDT 2025
Wed Aug 13 02:58:38 EDT 2025
Tue Jul 01 01:21:51 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
Fri Feb 23 02:48:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Particle image velocimetry
Large eddy simulations
Packed bed
Particle-resolved CFD simulations
Turbulence models
Methane steam reforming reactions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-8ae9774309ef1b78bfaf87d9b4fc0eb5a2d74249ba1844bf84c534682125c2103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2335-6379
PQID 2376728537
PQPubID 2045415
PageCount 16
ParticipantIDs proquest_miscellaneous_2271879456
proquest_journals_2376728537
crossref_citationtrail_10_1016_j_powtec_2019_05_012
crossref_primary_10_1016_j_powtec_2019_05_012
elsevier_sciencedirect_doi_10_1016_j_powtec_2019_05_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Powder technology
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Eppinger, Wehinger, Jurtz, Aglave, Kraume (bb0095) 2016; 115
Dixon, Taskin, Nijemeisland, Stitt (bb0105) 2010; 49
(bb0140) 2013
Kolaczkowski, Chao, Awdry, Smith (bb0145) 2007; 85
Sharma, Cresswell, Newson, Newson (bb0150) 1991; 30
Escue, Cui (bb0165) 2010; 34
Dixon, Nijemeisland, Stitt (bb0155) 2006; 31
Dixon (bb0060) 2017; 168
Wood, Apte, Liburdy, Ziazi, He, Finn, Patil (bb0090) 2015; 85
Karthik, Buwa (bb0020) 2017; 63
Dixon, Nijemeisland, Stitt (bb0130) 2013; 48
Reddy, Joshi (bb0035) 2010; 8
Robbins, El-Bachir, Gladden, Cant, von Harbou (bb0080) 2012; 58
Nijemeisland, Dixon (bb0125) 2001; 82
Ziólkowska (bb0120) 1988; 23
Dixon, Boudreau, Rocheleau, Troupel, Taskin, Nijemeisland, Stitt (bb0100) 2012; 51
Bai, Theuerkauf, Pa, Article (bb0030) 2009; 48
Aubin, Fletcher, Xuereb (bb0160) 2004; 28
Singhal, Cloete, Radl, Quinta-Ferreira, Amini (bb0015) 2017; 314
Calis, Nijenhuis, Paikert, Dautzenberg, CMVD (bb0070) 2001; 56
Dumas, Lesage, Latifi (bb0075) 2010; 88
Karthik, Buwa (bb0025) 2018; 64
Yang, Scheibe, Richmond, Perkins, Vogt, Codd, Seymour, McKinley (bb0085) 2013; 54
Behnam, Dixon, Wright, Nijemeisland, Stitt (bb0055) 2012; 207-208
Thaker, Karthik, Buwa (bb0110) 2019
Miroliaei, Shahraki, Atashi (bb0045) 2011; 28
Guardo, Coussirat, Larrayoz, Recasens, Egusquiza (bb0065) 2005; 60
Hou, Hughes (bb0135) 2001; 82
Miroliaei, Shahraki, Atashi, Karimzadeh (bb0050) 2012; 18
Dixon, Walls, Stanness, Nijemeisland, Stitt (bb0005) 2012; 200-202
Eppinger, Seidler, Kraume (bb0040) 2011; 166
Meslem, Bode, Croitoru, Nastase (bb0170) 2014; 44
Wehinger, Kraume, Berg, Korup, Mette, Schlögl, Behrens, Horn (bb0010) 2016; 62
Wehinger, Eppinger, Kraume (bb0115) 2015; 122
Dixon (10.1016/j.powtec.2019.05.012_bb0005) 2012; 200-202
Miroliaei (10.1016/j.powtec.2019.05.012_bb0045) 2011; 28
Dixon (10.1016/j.powtec.2019.05.012_bb0060) 2017; 168
Nijemeisland (10.1016/j.powtec.2019.05.012_bb0125) 2001; 82
Eppinger (10.1016/j.powtec.2019.05.012_bb0040) 2011; 166
Karthik (10.1016/j.powtec.2019.05.012_bb0025) 2018; 64
Wood (10.1016/j.powtec.2019.05.012_bb0090) 2015; 85
Bai (10.1016/j.powtec.2019.05.012_bb0030) 2009; 48
Dumas (10.1016/j.powtec.2019.05.012_bb0075) 2010; 88
Wehinger (10.1016/j.powtec.2019.05.012_bb0115) 2015; 122
Robbins (10.1016/j.powtec.2019.05.012_bb0080) 2012; 58
Thaker (10.1016/j.powtec.2019.05.012_bb0110) 2019
Ziólkowska (10.1016/j.powtec.2019.05.012_bb0120) 1988; 23
Miroliaei (10.1016/j.powtec.2019.05.012_bb0050) 2012; 18
Sharma (10.1016/j.powtec.2019.05.012_bb0150) 1991; 30
Calis (10.1016/j.powtec.2019.05.012_bb0070) 2001; 56
Dixon (10.1016/j.powtec.2019.05.012_bb0130) 2013; 48
Guardo (10.1016/j.powtec.2019.05.012_bb0065) 2005; 60
Reddy (10.1016/j.powtec.2019.05.012_bb0035) 2010; 8
Hou (10.1016/j.powtec.2019.05.012_bb0135) 2001; 82
Dixon (10.1016/j.powtec.2019.05.012_bb0155) 2006; 31
Escue (10.1016/j.powtec.2019.05.012_bb0165) 2010; 34
Wehinger (10.1016/j.powtec.2019.05.012_bb0010) 2016; 62
Behnam (10.1016/j.powtec.2019.05.012_bb0055) 2012; 207-208
Yang (10.1016/j.powtec.2019.05.012_bb0085) 2013; 54
(10.1016/j.powtec.2019.05.012_bb0140) 2013
Meslem (10.1016/j.powtec.2019.05.012_bb0170) 2014; 44
Aubin (10.1016/j.powtec.2019.05.012_bb0160) 2004; 28
Dixon (10.1016/j.powtec.2019.05.012_bb0100) 2012; 51
Singhal (10.1016/j.powtec.2019.05.012_bb0015) 2017; 314
Eppinger (10.1016/j.powtec.2019.05.012_bb0095) 2016; 115
Kolaczkowski (10.1016/j.powtec.2019.05.012_bb0145) 2007; 85
Karthik (10.1016/j.powtec.2019.05.012_bb0020) 2017; 63
Dixon (10.1016/j.powtec.2019.05.012_bb0105) 2010; 49
References_xml – volume: 85
  start-page: 1539
  year: 2007
  end-page: 1552
  ident: bb0145
  article-title: Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets
  publication-title: Chem. Eng. Res. Des.
– volume: 49
  start-page: 9012
  year: 2010
  end-page: 9025
  ident: bb0105
  article-title: CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field
  publication-title: Ind. Eng. Chem. Res.
– volume: 48
  start-page: 135
  year: 2013
  end-page: 153
  ident: bb0130
  article-title: Systematic mesh development for 3D CFD simulation of fixed beds: contact points study
  publication-title: Comput. Chem. Eng.
– volume: 48
  start-page: 4060
  year: 2009
  end-page: 4074
  ident: bb0030
  article-title: A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles
  publication-title: Ind. Eng. Chem. Res.
– volume: 122
  start-page: 197
  year: 2015
  end-page: 209
  ident: bb0115
  article-title: Detailed numerical simulations of catalytic fixed-bed reactors: heterogeneous dry reforming of methane
  publication-title: Chem. Eng. Sci.
– year: 2013
  ident: bb0140
  publication-title: ANSYS CFX-Solver Modeling Guide
– volume: 54
  start-page: 228
  year: 2013
  end-page: 241
  ident: bb0085
  article-title: Direct numerical simulation of pore-scale flow in a bead pack: comparison with magnetic resonance imaging observations
  publication-title: Adv. Water Resour.
– volume: 44
  start-page: 100
  year: 2014
  end-page: 120
  ident: bb0170
  article-title: Comparison of turbulence models in simulating jet flow from a cross-shaped orifice
  publication-title: Eur. J. Mech. B Fluids
– year: 2019
  ident: bb0110
  article-title: PIV measurements and CFD simulations of particle-scale flow distribution in a packed bed
  publication-title: Chem. Eng. J.
– volume: 63
  start-page: 366
  year: 2017
  end-page: 377
  ident: bb0020
  article-title: Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed
  publication-title: AICHE J.
– volume: 51
  start-page: 15839
  year: 2012
  end-page: 15854
  ident: bb0100
  article-title: Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming
  publication-title: Ind. Eng. Chem. Res.
– volume: 314
  year: 2017
  ident: bb0015
  article-title: Heat transfer to a gas from densely packed beds of monodisperse spherical particles
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 1912
  year: 2012
  end-page: 1920
  ident: bb0050
  article-title: Comparison of CFD results and experimental data in a fixed bed Fischer-Tropsch synthesis reactor
  publication-title: J. Ind. Eng. Chem.
– volume: 31
  start-page: 307
  year: 2006
  end-page: 389
  ident: bb0155
  article-title: Packed tubular reactor modeling and catalyst design using computational fluid dynamics
  publication-title: Adv. Chem. Eng.
– volume: 8
  start-page: 37
  year: 2010
  end-page: 43
  ident: bb0035
  article-title: CFD modeling of pressure drop and drag coefficient in fixed beds: wall effects
  publication-title: Particuology
– volume: 168
  start-page: 156
  year: 2017
  end-page: 177
  ident: bb0060
  article-title: Local transport and reaction rates in a fixed bed reactor tube: endothermic steam methane reforming
  publication-title: Chem. Eng. Sci.
– volume: 60
  start-page: 1733
  year: 2005
  end-page: 1742
  ident: bb0065
  article-title: Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds
  publication-title: Chem. Eng. Sci.
– volume: 82
  start-page: 311
  year: 2001
  end-page: 328
  ident: bb0135
  article-title: The kinetics of methane steam reforming over a
  publication-title: Chem. Eng. J.
– volume: 88
  start-page: 379
  year: 2010
  end-page: 384
  ident: bb0075
  article-title: Modelling and measurements of the velocity gradient and local flow direction at the pore scale of a packed bed
  publication-title: Chem. Eng. Res. Des.
– volume: 207-208
  start-page: 690
  year: 2012
  end-page: 700
  ident: bb0055
  article-title: Comparison of CFD simulations to experiment under methane steam reforming reacting conditions
  publication-title: Chem. Eng. J.
– volume: 166
  start-page: 324
  year: 2011
  end-page: 331
  ident: bb0040
  article-title: DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 431
  year: 2004
  end-page: 445
  ident: bb0160
  article-title: Modeling turbulent flow in stirred tanks with CFD : the influence of the modeling approach , turbulence model and numerical scheme
  publication-title: Exp. Thermal Fluid Sci.
– volume: 34
  start-page: 2840
  year: 2010
  end-page: 2849
  ident: bb0165
  article-title: Comparison of turbulence models in simulating swirling pipe flows
  publication-title: Appl. Math. Model.
– volume: 23
  start-page: 137
  year: 1988
  end-page: 164
  ident: bb0120
  article-title: Zi´ o lkowski D. fluid flow inside packed beds
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 64
  start-page: 4162
  year: 2018
  end-page: 4176
  ident: bb0025
  article-title: Particle-resolved simulations of methane steam reforming in multilayered packed beds
  publication-title: AICHE J.
– volume: 200-202
  start-page: 344
  year: 2012
  end-page: 356
  ident: bb0005
  article-title: Experimental validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube
  publication-title: Chem. Eng. J.
– volume: 62
  year: 2016
  ident: bb0010
  article-title: Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations
  publication-title: AICHE J.
– volume: 115
  start-page: 374
  year: 2016
  end-page: 381
  ident: bb0095
  article-title: A numerical optimization study on the catalytic dry reforming of methane in a spatially resolved fixed-bed reactor
  publication-title: Chem. Eng. Res. Des.
– volume: 30
  start-page: 1428
  year: 1991
  end-page: 1433
  ident: bb0150
  article-title: Effective diffusion coefficients and tortuosity factors for commercial catalysts
  publication-title: Ind. Eng. Chem. Res.
– volume: 85
  start-page: 45
  year: 2015
  end-page: 63
  ident: bb0090
  article-title: A comparison of measured and modeled velocity fields for a laminar flow in a porous medium
  publication-title: Adv. Water Resour.
– volume: 58
  start-page: 3904
  year: 2012
  end-page: 3915
  ident: bb0080
  article-title: CFD modeling of single-phase flow in a packed bed with MRI validation
  publication-title: AICHE J.
– volume: 28
  start-page: 1474
  year: 2011
  end-page: 1479
  ident: bb0045
  article-title: Computational fluid dynamics simulations of pressure drop and heat transfer in fixed bed reactor with spherical particles
  publication-title: Korean J. Chem. Eng.
– volume: 82
  start-page: 231
  year: 2001
  end-page: 246
  ident: bb0125
  article-title: Comparison of CFD simulations to experiment for convective heat transfer in a gas solid fixed bed
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 1713
  year: 2001
  end-page: 1720
  ident: bb0070
  article-title: CFD modelling and experimental validation of pressure drop and low profile in a novel structured catalytic reactor packing
  publication-title: Chem. Eng. Sci.
– volume: 168
  start-page: 156
  year: 2017
  ident: 10.1016/j.powtec.2019.05.012_bb0060
  article-title: Local transport and reaction rates in a fixed bed reactor tube: endothermic steam methane reforming
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2017.04.039
– volume: 115
  start-page: 374
  year: 2016
  ident: 10.1016/j.powtec.2019.05.012_bb0095
  article-title: A numerical optimization study on the catalytic dry reforming of methane in a spatially resolved fixed-bed reactor
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.09.007
– volume: 49
  start-page: 9012
  issue: 19
  year: 2010
  ident: 10.1016/j.powtec.2019.05.012_bb0105
  article-title: CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie100298q
– volume: 44
  start-page: 100
  year: 2014
  ident: 10.1016/j.powtec.2019.05.012_bb0170
  article-title: Comparison of turbulence models in simulating jet flow from a cross-shaped orifice
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2013.11.006
– volume: 8
  start-page: 37
  issue: 1
  year: 2010
  ident: 10.1016/j.powtec.2019.05.012_bb0035
  article-title: CFD modeling of pressure drop and drag coefficient in fixed beds: wall effects
  publication-title: Particuology
  doi: 10.1016/j.partic.2009.04.010
– volume: 30
  start-page: 1428
  issue: 7
  year: 1991
  ident: 10.1016/j.powtec.2019.05.012_bb0150
  article-title: Effective diffusion coefficients and tortuosity factors for commercial catalysts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00055a004
– volume: 54
  start-page: 228
  year: 2013
  ident: 10.1016/j.powtec.2019.05.012_bb0085
  article-title: Direct numerical simulation of pore-scale flow in a bead pack: comparison with magnetic resonance imaging observations
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.01.009
– volume: 122
  start-page: 197
  year: 2015
  ident: 10.1016/j.powtec.2019.05.012_bb0115
  article-title: Detailed numerical simulations of catalytic fixed-bed reactors: heterogeneous dry reforming of methane
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.09.007
– volume: 48
  start-page: 135
  year: 2013
  ident: 10.1016/j.powtec.2019.05.012_bb0130
  article-title: Systematic mesh development for 3D CFD simulation of fixed beds: contact points study
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2012.08.011
– volume: 207-208
  start-page: 690
  year: 2012
  ident: 10.1016/j.powtec.2019.05.012_bb0055
  article-title: Comparison of CFD simulations to experiment under methane steam reforming reacting conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.07.038
– volume: 58
  start-page: 3904
  issue: 12
  year: 2012
  ident: 10.1016/j.powtec.2019.05.012_bb0080
  article-title: CFD modeling of single-phase flow in a packed bed with MRI validation
  publication-title: AICHE J.
  doi: 10.1002/aic.13767
– volume: 23
  start-page: 137
  issue: 3
  year: 1988
  ident: 10.1016/j.powtec.2019.05.012_bb0120
  article-title: Zi´ o lkowski D. fluid flow inside packed beds
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/0255-2701(88)80012-6
– volume: 64
  start-page: 4162
  issue: 11
  year: 2018
  ident: 10.1016/j.powtec.2019.05.012_bb0025
  article-title: Particle-resolved simulations of methane steam reforming in multilayered packed beds
  publication-title: AICHE J.
  doi: 10.1002/aic.16386
– volume: 85
  start-page: 1539
  issue: 11
  year: 2007
  ident: 10.1016/j.powtec.2019.05.012_bb0145
  article-title: Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/cherd06226
– volume: 63
  start-page: 366
  issue: 1
  year: 2017
  ident: 10.1016/j.powtec.2019.05.012_bb0020
  article-title: Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed
  publication-title: AICHE J.
  doi: 10.1002/aic.15542
– volume: 85
  start-page: 45
  year: 2015
  ident: 10.1016/j.powtec.2019.05.012_bb0090
  article-title: A comparison of measured and modeled velocity fields for a laminar flow in a porous medium
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.08.013
– volume: 62
  issue: 12
  year: 2016
  ident: 10.1016/j.powtec.2019.05.012_bb0010
  article-title: Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations
  publication-title: AICHE J.
  doi: 10.1002/aic.15520
– volume: 56
  start-page: 1713
  year: 2001
  ident: 10.1016/j.powtec.2019.05.012_bb0070
  article-title: CFD modelling and experimental validation of pressure drop and low profile in a novel structured catalytic reactor packing
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(00)00400-0
– volume: 31
  start-page: 307
  year: 2006
  ident: 10.1016/j.powtec.2019.05.012_bb0155
  article-title: Packed tubular reactor modeling and catalyst design using computational fluid dynamics
  publication-title: Adv. Chem. Eng.
  doi: 10.1016/S0065-2377(06)31005-8
– volume: 314
  year: 2017
  ident: 10.1016/j.powtec.2019.05.012_bb0015
  article-title: Heat transfer to a gas from densely packed beds of monodisperse spherical particles
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.124
– volume: 88
  start-page: 379
  issue: 3
  year: 2010
  ident: 10.1016/j.powtec.2019.05.012_bb0075
  article-title: Modelling and measurements of the velocity gradient and local flow direction at the pore scale of a packed bed
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2010.01.001
– volume: 200-202
  start-page: 344
  issue: 49
  year: 2012
  ident: 10.1016/j.powtec.2019.05.012_bb0005
  article-title: Experimental validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.06.065
– volume: 28
  start-page: 1474
  issue: 6
  year: 2011
  ident: 10.1016/j.powtec.2019.05.012_bb0045
  article-title: Computational fluid dynamics simulations of pressure drop and heat transfer in fixed bed reactor with spherical particles
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-010-0507-x
– year: 2019
  ident: 10.1016/j.powtec.2019.05.012_bb0110
  article-title: PIV measurements and CFD simulations of particle-scale flow distribution in a packed bed
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.053
– year: 2013
  ident: 10.1016/j.powtec.2019.05.012_bb0140
– volume: 48
  start-page: 4060
  issue: 8
  year: 2009
  ident: 10.1016/j.powtec.2019.05.012_bb0030
  article-title: A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie801548h
– volume: 51
  start-page: 15839
  issue: 49
  year: 2012
  ident: 10.1016/j.powtec.2019.05.012_bb0100
  article-title: Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie202694m
– volume: 60
  start-page: 1733
  issue: 6
  year: 2005
  ident: 10.1016/j.powtec.2019.05.012_bb0065
  article-title: Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.10.034
– volume: 166
  start-page: 324
  issue: 1
  year: 2011
  ident: 10.1016/j.powtec.2019.05.012_bb0040
  article-title: DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.10.053
– volume: 82
  start-page: 231
  year: 2001
  ident: 10.1016/j.powtec.2019.05.012_bb0125
  article-title: Comparison of CFD simulations to experiment for convective heat transfer in a gas solid fixed bed
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(00)00360-0
– volume: 18
  start-page: 1912
  issue: 6
  year: 2012
  ident: 10.1016/j.powtec.2019.05.012_bb0050
  article-title: Comparison of CFD results and experimental data in a fixed bed Fischer-Tropsch synthesis reactor
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2012.05.003
– volume: 34
  start-page: 2840
  issue: 10
  year: 2010
  ident: 10.1016/j.powtec.2019.05.012_bb0165
  article-title: Comparison of turbulence models in simulating swirling pipe flows
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2009.12.018
– volume: 82
  start-page: 311
  issue: 1–3
  year: 2001
  ident: 10.1016/j.powtec.2019.05.012_bb0135
  article-title: The kinetics of methane steam reforming over a Ni/αAl2O catalyst
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(00)00367-3
– volume: 28
  start-page: 431
  issue: 5
  year: 2004
  ident: 10.1016/j.powtec.2019.05.012_bb0160
  article-title: Modeling turbulent flow in stirred tanks with CFD : the influence of the modeling approach , turbulence model and numerical scheme
  publication-title: Exp. Thermal Fluid Sci.
  doi: 10.1016/j.expthermflusci.2003.04.001
SSID ssj0006310
Score 2.31142
Snippet Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 474
SubjectTerms Chemical reactions
Computational fluid dynamics
Computer simulation
Conversion
Diameters
Fixed bed reactors
Fixed beds
Heat transfer
Large eddy simulations
Methane
Methane steam reforming reactions
Packed bed
Packed beds
Parameter estimation
Particle image velocimetry
Particle size
Particle-resolved CFD simulations
powders
prediction
Predictions
Reforming
Simulation
steam
temperature
Transport processes
Turbulence models
turbulent flow
Viscosity
Title Particle-resolved simulations of catalytic fixed bed reactors: Comparison of turbulence models, LES and PIV measurements
URI https://dx.doi.org/10.1016/j.powtec.2019.05.012
https://www.proquest.com/docview/2376728537
https://www.proquest.com/docview/2271879456
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXNpDBZSqy0uu1GMDm9iJbW6r1aKlD4RUQNws27GlRZCsyC6PC7-dseMsD6lC6iGXeKxYnvHMfM48EPquKbHcAAc4y4oE8AZJNCMsSQktmXG8L0Iw5p_jYnxGf17kF0to2OXC-LDKqPtbnR60dXyzH3dzfzqZ-BxfAr47iJQgvqinr_hJKfNSvvf4HOZRkDSWZgTQBdRd-lyI8ZrWdzPrCxmmoq3fmf3LPL1R1MH6HK6iT9FtxIN2ZWtoyVbr6OOLYoKf0f1JXHcCCLq-urUlbibXsTtXg2uHw1XNA9BgN7mHYQ0P-Iyh4c4BHi46EnpasER6HhKScGiW0_zAv0d_sapKfHJ0jq-frxabDXR2ODodjpPYVyExALBmCVfWe32kL6xLNePaKcdZKTR1pm91rrISADMVWgH8o9pxanJCCw5WLjcAEckXtFzVlf2KsGWGpLnSVhhOBRfKGQYaSylBC-pU2UOk205pYtFx3_viSnbRZZeyZYL0TJD9XAITeihZzJq2RTfeoWcdp-Qr4ZFgF96Zud0xVsbD20gfKMQy8GNYD31bDMOx8_9SVGXrOdBkzPdpB_dz878_voU-ZB69hxjwbbQ8u5nbHXBxZno3yPAuWhkc_RofPwHAzvyD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaHNofRJN01bFXqsydqSLam3sCTsNpsl0KTkJiRZgi2JvcS7efz7jmx5-4AS6MEXa4SFRpqZTx59A_DJMOqERQ0InhUJ4g2aGE55klJWcuvFSLbJmCfzYnLOvl7kF1sw7u_ChLTKaPs7m95a6_hmP87m_nKxCHd8KcbuuKQkDaSe9BFsB3aqfADbB9PjyXxjkAuaRnZGxF3Yob9B16Z5LevblQtchqnsKDyzf3mov2x164COnsHTGDmSg25wz2HLVS9g5zc-wZdwdxqHniCIri9vXEmaxVUs0NWQ2pP2tOYeZYhf3GGzwQfDxrbmzhcy3hQlDLLojMy6vZNE2no5zWcyO_xGdFWS0-l3cvXrdLF5BedHh2fjSRJLKyQWMdYqEdqFwI-OpPOp4cJ47QUvpWHejpzJdVYiZmbSaESAzHjBbE5ZIdDR5RZRIn0Ng6qu3Bsgjlua5to4aQWTQmpvORotrSUrmNflEGg_ncpG3vFQ_uJS9QlmP1SnBBWUoEa5QiUMIdn0Wna8Gw_I815T6o_1o9A1PNBzr1esivu3USFXiGcYyvAhfNw0484Lv1N05eo1ymQ8lGrHCHT3vz_-AR5Pzk5majadH7-FJ1kA821K-B4MVtdr9w4jnpV5H1f0T18F_zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle-resolved+simulations+of+catalytic+fixed+bed+reactors%3A+Comparison+of+turbulence+models%2C+LES+and+PIV+measurements&rft.jtitle=Powder+technology&rft.au=Karthik%2C+G.M.&rft.au=Thaker%2C+Abhijeet+H.&rft.au=Buwa%2C+Vivek+V.&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0032-5910&rft.eissn=1873-328X&rft.volume=361&rft.spage=474&rft.epage=489&rft_id=info:doi/10.1016%2Fj.powtec.2019.05.012&rft.externalDocID=S0032591019303523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon