Particle-resolved simulations of catalytic fixed bed reactors: Comparison of turbulence models, LES and PIV measurements
Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are perfor...
Saved in:
Published in | Powder technology Vol. 361; pp. 474 - 489 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are performed to understand the influence of different turbulence models (standard k − ε (KE), SST k − ω (SST), SSG Reynolds-stress (SSG), BSL Reynolds-stress (BSL) and LES WALE (LES)) on the particle-scale predictions of the flow, heat transfer and reactions. A comparison of the PIV measurements and particle-resolved simulations of a square column containing 72 spherical particles with a tube-to-particle diameter ratio (TPDR) of ∼3.6 and Rebed of 9765 was performed. The ε−based models (KE and SSG) under-predicted the velocity (Vx and Vy) profiles due to the over-estimation of the turbulence parameters (k and ε) and an opposite behaviour was observed for the ω−based models (SST and BSL). The LES model showed a better agreement with the measurements. In addition, numerical investigations of methane steam reforming reactions were performed in a packed bed containing 30 randomly packed 7-hole cylindrical particles with a TPDR of 5, and Ret of 50,000. The ε−based models predicted lower values of velocities, temperature and species concentration in the bulk region (and higher values on the particle surfaces) resulting into higher CH4 conversion compared to the ω−based models, whereas the LES model showed the highest ΔP and CH4 conversion. Overall, the predictions of the LES model were found to be closer to the experiments. The predictions of the RSM (SSG and BSL) models did not show any improvements over the eddy-viscosity (KE and SST) models.
[Display omitted]
•Particle Image Velocimetry (PIV) measurements of turbulent flow in packed bed.•Validation of particle-resolved CFD simulations of turbulent flow•Effect of different turbulence models on particle-resolved flow predictions analyzed.•Influence of different turbulence models on heat transfer and reactions predictions quantified. |
---|---|
AbstractList | Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are performed to understand the influence of different turbulence models (standard k − ε (KE), SST k − ω (SST), SSG Reynolds-stress (SSG), BSL Reynolds-stress (BSL) and LES WALE (LES)) on the particle-scale predictions of the flow, heat transfer and reactions. A comparison of the PIV measurements and particle-resolved simulations of a square column containing 72 spherical particles with a tube-to-particle diameter ratio (TPDR) of ∼3.6 and Rebₑd of 9765 was performed. The ε−based models (KE and SSG) under-predicted the velocity (Vₓ and Vy) profiles due to the over-estimation of the turbulence parameters (k and ε) and an opposite behaviour was observed for the ω−based models (SST and BSL). The LES model showed a better agreement with the measurements. In addition, numerical investigations of methane steam reforming reactions were performed in a packed bed containing 30 randomly packed 7-hole cylindrical particles with a TPDR of 5, and Reₜ of 50,000. The ε−based models predicted lower values of velocities, temperature and species concentration in the bulk region (and higher values on the particle surfaces) resulting into higher CH₄ conversion compared to the ω−based models, whereas the LES model showed the highest ΔP and CH₄ conversion. Overall, the predictions of the LES model were found to be closer to the experiments. The predictions of the RSM (SSG and BSL) models did not show any improvements over the eddy-viscosity (KE and SST) models. Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are performed to understand the influence of different turbulence models (standard k − ε (KE), SST k − ω (SST), SSG Reynolds-stress (SSG), BSL Reynolds-stress (BSL) and LES WALE (LES)) on the particle-scale predictions of the flow, heat transfer and reactions. A comparison of the PIV measurements and particle-resolved simulations of a square column containing 72 spherical particles with a tube-to-particle diameter ratio (TPDR) of ∼3.6 and Rebed of 9765 was performed. The ε−based models (KE and SSG) under-predicted the velocity (Vx and Vy) profiles due to the over-estimation of the turbulence parameters (k and ε) and an opposite behaviour was observed for the ω−based models (SST and BSL). The LES model showed a better agreement with the measurements. In addition, numerical investigations of methane steam reforming reactions were performed in a packed bed containing 30 randomly packed 7-hole cylindrical particles with a TPDR of 5, and Ret of 50,000. The ε−based models predicted lower values of velocities, temperature and species concentration in the bulk region (and higher values on the particle surfaces) resulting into higher CH4 conversion compared to the ω−based models, whereas the LES model showed the highest ΔP and CH4 conversion. Overall, the predictions of the LES model were found to be closer to the experiments. The predictions of the RSM (SSG and BSL) models did not show any improvements over the eddy-viscosity (KE and SST) models. Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect of turbulence models used in such simulations is not quantitatively established. In the present work, particle-resolved simulations are performed to understand the influence of different turbulence models (standard k − ε (KE), SST k − ω (SST), SSG Reynolds-stress (SSG), BSL Reynolds-stress (BSL) and LES WALE (LES)) on the particle-scale predictions of the flow, heat transfer and reactions. A comparison of the PIV measurements and particle-resolved simulations of a square column containing 72 spherical particles with a tube-to-particle diameter ratio (TPDR) of ∼3.6 and Rebed of 9765 was performed. The ε−based models (KE and SSG) under-predicted the velocity (Vx and Vy) profiles due to the over-estimation of the turbulence parameters (k and ε) and an opposite behaviour was observed for the ω−based models (SST and BSL). The LES model showed a better agreement with the measurements. In addition, numerical investigations of methane steam reforming reactions were performed in a packed bed containing 30 randomly packed 7-hole cylindrical particles with a TPDR of 5, and Ret of 50,000. The ε−based models predicted lower values of velocities, temperature and species concentration in the bulk region (and higher values on the particle surfaces) resulting into higher CH4 conversion compared to the ω−based models, whereas the LES model showed the highest ΔP and CH4 conversion. Overall, the predictions of the LES model were found to be closer to the experiments. The predictions of the RSM (SSG and BSL) models did not show any improvements over the eddy-viscosity (KE and SST) models. [Display omitted] •Particle Image Velocimetry (PIV) measurements of turbulent flow in packed bed.•Validation of particle-resolved CFD simulations of turbulent flow•Effect of different turbulence models on particle-resolved flow predictions analyzed.•Influence of different turbulence models on heat transfer and reactions predictions quantified. |
Author | Buwa, Vivek V. Karthik, G.M. Thaker, Abhijeet H. |
Author_xml | – sequence: 1 givenname: G.M. surname: Karthik fullname: Karthik, G.M. – sequence: 2 givenname: Abhijeet H. surname: Thaker fullname: Thaker, Abhijeet H. – sequence: 3 givenname: Vivek V. orcidid: 0000-0003-2335-6379 surname: Buwa fullname: Buwa, Vivek V. email: vvbuwa@iitd.ac.in |
BookMark | eNqFkc1rFTEUxYNU8LX6H7gIuHHhjPmaSaYLQR7VFh5Y8AN3IZO5gTwyk2eSqe1_b56vqy50cbmL-zuHyznn6GyJCyD0mpKWEtq_37eH-LuAbRmhQ0u6llD2DG2okrzhTP08QxtCOGu6gZIX6DznPSGk55Rs0P2tScXbAE2CHMMdTDj7eQ2m-LhkHB22ppjwUBns_H09j3USGFtiypd4G-eDST7H5ciWNY1rgMUCnuMEIb_Du6uv2CwTvr35gWcweU0ww1LyS_TcmZDh1eO-QN8_XX3bXje7L59vth93jWWKlUYZGKQUnAzg6CjV6IxTchpG4SyBsTNskoKJYTRUCTE6JWzHRa8YZZ1llPAL9Pbke0jx1wq56NlnCyGYBeKaNWOy5jSIrq_omyfoPq5pqd9pxmUvmeq4rNTlibIp5pzAaevL37hKMj5oSvSxFL3Xp1L0sRRNOl1LqWLxRHxIfjbp4X-yDydZjRTuPCSdrT_GPPkEtugp-n8b_AEiHavx |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_145445 crossref_primary_10_1016_j_rineng_2024_102877 crossref_primary_10_1016_j_fuel_2023_129205 crossref_primary_10_1016_j_cej_2021_132061 crossref_primary_10_1039_C9RE00240E crossref_primary_10_1146_annurev_chembioeng_092319_075328 crossref_primary_10_3390_pr12010141 crossref_primary_10_1016_j_powtec_2020_10_052 crossref_primary_10_1016_j_cherd_2024_08_011 crossref_primary_10_1016_j_csite_2023_102986 crossref_primary_10_1021_acs_iecr_5c00009 crossref_primary_10_1016_j_ces_2020_116305 crossref_primary_10_1016_j_cej_2024_149133 crossref_primary_10_1016_j_cep_2024_109720 crossref_primary_10_1016_j_tsep_2023_101868 |
Cites_doi | 10.1016/j.ces.2017.04.039 10.1016/j.cherd.2016.09.007 10.1021/ie100298q 10.1016/j.euromechflu.2013.11.006 10.1016/j.partic.2009.04.010 10.1021/ie00055a004 10.1016/j.advwatres.2013.01.009 10.1016/j.ces.2014.09.007 10.1016/j.compchemeng.2012.08.011 10.1016/j.cej.2012.07.038 10.1002/aic.13767 10.1016/0255-2701(88)80012-6 10.1002/aic.16386 10.1205/cherd06226 10.1002/aic.15542 10.1016/j.advwatres.2015.08.013 10.1002/aic.15520 10.1016/S0009-2509(00)00400-0 10.1016/S0065-2377(06)31005-8 10.1016/j.cej.2016.12.124 10.1016/j.cherd.2010.01.001 10.1016/j.cej.2012.06.065 10.1007/s11814-010-0507-x 10.1016/j.cej.2019.05.053 10.1021/ie801548h 10.1021/ie202694m 10.1016/j.ces.2004.10.034 10.1016/j.cej.2010.10.053 10.1016/S1385-8947(00)00360-0 10.1016/j.jiec.2012.05.003 10.1016/j.apm.2009.12.018 10.1016/S1385-8947(00)00367-3 10.1016/j.expthermflusci.2003.04.001 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Feb 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Feb 1, 2020 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K JG9 SOI 7S9 L.6 |
DOI | 10.1016/j.powtec.2019.05.012 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-328X |
EndPage | 489 |
ExternalDocumentID | 10_1016_j_powtec_2019_05_012 S0032591019303523 |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K ~02 ~G- 29O 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCB SCE SEW SSH T9H WUQ XPP ZY4 7SR 7ST 8BQ 8FD C1K EFKBS JG9 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c282t-8ae9774309ef1b78bfaf87d9b4fc0eb5a2d74249ba1844bf84c534682125c2103 |
IEDL.DBID | .~1 |
ISSN | 0032-5910 |
IngestDate | Thu Jul 10 18:36:18 EDT 2025 Wed Aug 13 02:58:38 EDT 2025 Tue Jul 01 01:21:51 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Fri Feb 23 02:48:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Particle image velocimetry Large eddy simulations Packed bed Particle-resolved CFD simulations Turbulence models Methane steam reforming reactions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c282t-8ae9774309ef1b78bfaf87d9b4fc0eb5a2d74249ba1844bf84c534682125c2103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2335-6379 |
PQID | 2376728537 |
PQPubID | 2045415 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2271879456 proquest_journals_2376728537 crossref_citationtrail_10_1016_j_powtec_2019_05_012 crossref_primary_10_1016_j_powtec_2019_05_012 elsevier_sciencedirect_doi_10_1016_j_powtec_2019_05_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Powder technology |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Eppinger, Wehinger, Jurtz, Aglave, Kraume (bb0095) 2016; 115 Dixon, Taskin, Nijemeisland, Stitt (bb0105) 2010; 49 (bb0140) 2013 Kolaczkowski, Chao, Awdry, Smith (bb0145) 2007; 85 Sharma, Cresswell, Newson, Newson (bb0150) 1991; 30 Escue, Cui (bb0165) 2010; 34 Dixon, Nijemeisland, Stitt (bb0155) 2006; 31 Dixon (bb0060) 2017; 168 Wood, Apte, Liburdy, Ziazi, He, Finn, Patil (bb0090) 2015; 85 Karthik, Buwa (bb0020) 2017; 63 Dixon, Nijemeisland, Stitt (bb0130) 2013; 48 Reddy, Joshi (bb0035) 2010; 8 Robbins, El-Bachir, Gladden, Cant, von Harbou (bb0080) 2012; 58 Nijemeisland, Dixon (bb0125) 2001; 82 Ziólkowska (bb0120) 1988; 23 Dixon, Boudreau, Rocheleau, Troupel, Taskin, Nijemeisland, Stitt (bb0100) 2012; 51 Bai, Theuerkauf, Pa, Article (bb0030) 2009; 48 Aubin, Fletcher, Xuereb (bb0160) 2004; 28 Singhal, Cloete, Radl, Quinta-Ferreira, Amini (bb0015) 2017; 314 Calis, Nijenhuis, Paikert, Dautzenberg, CMVD (bb0070) 2001; 56 Dumas, Lesage, Latifi (bb0075) 2010; 88 Karthik, Buwa (bb0025) 2018; 64 Yang, Scheibe, Richmond, Perkins, Vogt, Codd, Seymour, McKinley (bb0085) 2013; 54 Behnam, Dixon, Wright, Nijemeisland, Stitt (bb0055) 2012; 207-208 Thaker, Karthik, Buwa (bb0110) 2019 Miroliaei, Shahraki, Atashi (bb0045) 2011; 28 Guardo, Coussirat, Larrayoz, Recasens, Egusquiza (bb0065) 2005; 60 Hou, Hughes (bb0135) 2001; 82 Miroliaei, Shahraki, Atashi, Karimzadeh (bb0050) 2012; 18 Dixon, Walls, Stanness, Nijemeisland, Stitt (bb0005) 2012; 200-202 Eppinger, Seidler, Kraume (bb0040) 2011; 166 Meslem, Bode, Croitoru, Nastase (bb0170) 2014; 44 Wehinger, Kraume, Berg, Korup, Mette, Schlögl, Behrens, Horn (bb0010) 2016; 62 Wehinger, Eppinger, Kraume (bb0115) 2015; 122 Dixon (10.1016/j.powtec.2019.05.012_bb0005) 2012; 200-202 Miroliaei (10.1016/j.powtec.2019.05.012_bb0045) 2011; 28 Dixon (10.1016/j.powtec.2019.05.012_bb0060) 2017; 168 Nijemeisland (10.1016/j.powtec.2019.05.012_bb0125) 2001; 82 Eppinger (10.1016/j.powtec.2019.05.012_bb0040) 2011; 166 Karthik (10.1016/j.powtec.2019.05.012_bb0025) 2018; 64 Wood (10.1016/j.powtec.2019.05.012_bb0090) 2015; 85 Bai (10.1016/j.powtec.2019.05.012_bb0030) 2009; 48 Dumas (10.1016/j.powtec.2019.05.012_bb0075) 2010; 88 Wehinger (10.1016/j.powtec.2019.05.012_bb0115) 2015; 122 Robbins (10.1016/j.powtec.2019.05.012_bb0080) 2012; 58 Thaker (10.1016/j.powtec.2019.05.012_bb0110) 2019 Ziólkowska (10.1016/j.powtec.2019.05.012_bb0120) 1988; 23 Miroliaei (10.1016/j.powtec.2019.05.012_bb0050) 2012; 18 Sharma (10.1016/j.powtec.2019.05.012_bb0150) 1991; 30 Calis (10.1016/j.powtec.2019.05.012_bb0070) 2001; 56 Dixon (10.1016/j.powtec.2019.05.012_bb0130) 2013; 48 Guardo (10.1016/j.powtec.2019.05.012_bb0065) 2005; 60 Reddy (10.1016/j.powtec.2019.05.012_bb0035) 2010; 8 Hou (10.1016/j.powtec.2019.05.012_bb0135) 2001; 82 Dixon (10.1016/j.powtec.2019.05.012_bb0155) 2006; 31 Escue (10.1016/j.powtec.2019.05.012_bb0165) 2010; 34 Wehinger (10.1016/j.powtec.2019.05.012_bb0010) 2016; 62 Behnam (10.1016/j.powtec.2019.05.012_bb0055) 2012; 207-208 Yang (10.1016/j.powtec.2019.05.012_bb0085) 2013; 54 (10.1016/j.powtec.2019.05.012_bb0140) 2013 Meslem (10.1016/j.powtec.2019.05.012_bb0170) 2014; 44 Aubin (10.1016/j.powtec.2019.05.012_bb0160) 2004; 28 Dixon (10.1016/j.powtec.2019.05.012_bb0100) 2012; 51 Singhal (10.1016/j.powtec.2019.05.012_bb0015) 2017; 314 Eppinger (10.1016/j.powtec.2019.05.012_bb0095) 2016; 115 Kolaczkowski (10.1016/j.powtec.2019.05.012_bb0145) 2007; 85 Karthik (10.1016/j.powtec.2019.05.012_bb0020) 2017; 63 Dixon (10.1016/j.powtec.2019.05.012_bb0105) 2010; 49 |
References_xml | – volume: 85 start-page: 1539 year: 2007 end-page: 1552 ident: bb0145 article-title: Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets publication-title: Chem. Eng. Res. Des. – volume: 49 start-page: 9012 year: 2010 end-page: 9025 ident: bb0105 article-title: CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field publication-title: Ind. Eng. Chem. Res. – volume: 48 start-page: 135 year: 2013 end-page: 153 ident: bb0130 article-title: Systematic mesh development for 3D CFD simulation of fixed beds: contact points study publication-title: Comput. Chem. Eng. – volume: 48 start-page: 4060 year: 2009 end-page: 4074 ident: bb0030 article-title: A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles publication-title: Ind. Eng. Chem. Res. – volume: 122 start-page: 197 year: 2015 end-page: 209 ident: bb0115 article-title: Detailed numerical simulations of catalytic fixed-bed reactors: heterogeneous dry reforming of methane publication-title: Chem. Eng. Sci. – year: 2013 ident: bb0140 publication-title: ANSYS CFX-Solver Modeling Guide – volume: 54 start-page: 228 year: 2013 end-page: 241 ident: bb0085 article-title: Direct numerical simulation of pore-scale flow in a bead pack: comparison with magnetic resonance imaging observations publication-title: Adv. Water Resour. – volume: 44 start-page: 100 year: 2014 end-page: 120 ident: bb0170 article-title: Comparison of turbulence models in simulating jet flow from a cross-shaped orifice publication-title: Eur. J. Mech. B Fluids – year: 2019 ident: bb0110 article-title: PIV measurements and CFD simulations of particle-scale flow distribution in a packed bed publication-title: Chem. Eng. J. – volume: 63 start-page: 366 year: 2017 end-page: 377 ident: bb0020 article-title: Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed publication-title: AICHE J. – volume: 51 start-page: 15839 year: 2012 end-page: 15854 ident: bb0100 article-title: Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming publication-title: Ind. Eng. Chem. Res. – volume: 314 year: 2017 ident: bb0015 article-title: Heat transfer to a gas from densely packed beds of monodisperse spherical particles publication-title: Chem. Eng. J. – volume: 18 start-page: 1912 year: 2012 end-page: 1920 ident: bb0050 article-title: Comparison of CFD results and experimental data in a fixed bed Fischer-Tropsch synthesis reactor publication-title: J. Ind. Eng. Chem. – volume: 31 start-page: 307 year: 2006 end-page: 389 ident: bb0155 article-title: Packed tubular reactor modeling and catalyst design using computational fluid dynamics publication-title: Adv. Chem. Eng. – volume: 8 start-page: 37 year: 2010 end-page: 43 ident: bb0035 article-title: CFD modeling of pressure drop and drag coefficient in fixed beds: wall effects publication-title: Particuology – volume: 168 start-page: 156 year: 2017 end-page: 177 ident: bb0060 article-title: Local transport and reaction rates in a fixed bed reactor tube: endothermic steam methane reforming publication-title: Chem. Eng. Sci. – volume: 60 start-page: 1733 year: 2005 end-page: 1742 ident: bb0065 article-title: Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds publication-title: Chem. Eng. Sci. – volume: 82 start-page: 311 year: 2001 end-page: 328 ident: bb0135 article-title: The kinetics of methane steam reforming over a publication-title: Chem. Eng. J. – volume: 88 start-page: 379 year: 2010 end-page: 384 ident: bb0075 article-title: Modelling and measurements of the velocity gradient and local flow direction at the pore scale of a packed bed publication-title: Chem. Eng. Res. Des. – volume: 207-208 start-page: 690 year: 2012 end-page: 700 ident: bb0055 article-title: Comparison of CFD simulations to experiment under methane steam reforming reacting conditions publication-title: Chem. Eng. J. – volume: 166 start-page: 324 year: 2011 end-page: 331 ident: bb0040 article-title: DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios publication-title: Chem. Eng. J. – volume: 28 start-page: 431 year: 2004 end-page: 445 ident: bb0160 article-title: Modeling turbulent flow in stirred tanks with CFD : the influence of the modeling approach , turbulence model and numerical scheme publication-title: Exp. Thermal Fluid Sci. – volume: 34 start-page: 2840 year: 2010 end-page: 2849 ident: bb0165 article-title: Comparison of turbulence models in simulating swirling pipe flows publication-title: Appl. Math. Model. – volume: 23 start-page: 137 year: 1988 end-page: 164 ident: bb0120 article-title: Zi´ o lkowski D. fluid flow inside packed beds publication-title: Chem. Eng. Process. Process Intensif. – volume: 64 start-page: 4162 year: 2018 end-page: 4176 ident: bb0025 article-title: Particle-resolved simulations of methane steam reforming in multilayered packed beds publication-title: AICHE J. – volume: 200-202 start-page: 344 year: 2012 end-page: 356 ident: bb0005 article-title: Experimental validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube publication-title: Chem. Eng. J. – volume: 62 year: 2016 ident: bb0010 article-title: Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations publication-title: AICHE J. – volume: 115 start-page: 374 year: 2016 end-page: 381 ident: bb0095 article-title: A numerical optimization study on the catalytic dry reforming of methane in a spatially resolved fixed-bed reactor publication-title: Chem. Eng. Res. Des. – volume: 30 start-page: 1428 year: 1991 end-page: 1433 ident: bb0150 article-title: Effective diffusion coefficients and tortuosity factors for commercial catalysts publication-title: Ind. Eng. Chem. Res. – volume: 85 start-page: 45 year: 2015 end-page: 63 ident: bb0090 article-title: A comparison of measured and modeled velocity fields for a laminar flow in a porous medium publication-title: Adv. Water Resour. – volume: 58 start-page: 3904 year: 2012 end-page: 3915 ident: bb0080 article-title: CFD modeling of single-phase flow in a packed bed with MRI validation publication-title: AICHE J. – volume: 28 start-page: 1474 year: 2011 end-page: 1479 ident: bb0045 article-title: Computational fluid dynamics simulations of pressure drop and heat transfer in fixed bed reactor with spherical particles publication-title: Korean J. Chem. Eng. – volume: 82 start-page: 231 year: 2001 end-page: 246 ident: bb0125 article-title: Comparison of CFD simulations to experiment for convective heat transfer in a gas solid fixed bed publication-title: Chem. Eng. J. – volume: 56 start-page: 1713 year: 2001 end-page: 1720 ident: bb0070 article-title: CFD modelling and experimental validation of pressure drop and low profile in a novel structured catalytic reactor packing publication-title: Chem. Eng. Sci. – volume: 168 start-page: 156 year: 2017 ident: 10.1016/j.powtec.2019.05.012_bb0060 article-title: Local transport and reaction rates in a fixed bed reactor tube: endothermic steam methane reforming publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2017.04.039 – volume: 115 start-page: 374 year: 2016 ident: 10.1016/j.powtec.2019.05.012_bb0095 article-title: A numerical optimization study on the catalytic dry reforming of methane in a spatially resolved fixed-bed reactor publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.09.007 – volume: 49 start-page: 9012 issue: 19 year: 2010 ident: 10.1016/j.powtec.2019.05.012_bb0105 article-title: CFD method to couple three-dimensional transport and reaction inside catalyst particles to the fixed bed flow field publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie100298q – volume: 44 start-page: 100 year: 2014 ident: 10.1016/j.powtec.2019.05.012_bb0170 article-title: Comparison of turbulence models in simulating jet flow from a cross-shaped orifice publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2013.11.006 – volume: 8 start-page: 37 issue: 1 year: 2010 ident: 10.1016/j.powtec.2019.05.012_bb0035 article-title: CFD modeling of pressure drop and drag coefficient in fixed beds: wall effects publication-title: Particuology doi: 10.1016/j.partic.2009.04.010 – volume: 30 start-page: 1428 issue: 7 year: 1991 ident: 10.1016/j.powtec.2019.05.012_bb0150 article-title: Effective diffusion coefficients and tortuosity factors for commercial catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00055a004 – volume: 54 start-page: 228 year: 2013 ident: 10.1016/j.powtec.2019.05.012_bb0085 article-title: Direct numerical simulation of pore-scale flow in a bead pack: comparison with magnetic resonance imaging observations publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.01.009 – volume: 122 start-page: 197 year: 2015 ident: 10.1016/j.powtec.2019.05.012_bb0115 article-title: Detailed numerical simulations of catalytic fixed-bed reactors: heterogeneous dry reforming of methane publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.09.007 – volume: 48 start-page: 135 year: 2013 ident: 10.1016/j.powtec.2019.05.012_bb0130 article-title: Systematic mesh development for 3D CFD simulation of fixed beds: contact points study publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2012.08.011 – volume: 207-208 start-page: 690 year: 2012 ident: 10.1016/j.powtec.2019.05.012_bb0055 article-title: Comparison of CFD simulations to experiment under methane steam reforming reacting conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.07.038 – volume: 58 start-page: 3904 issue: 12 year: 2012 ident: 10.1016/j.powtec.2019.05.012_bb0080 article-title: CFD modeling of single-phase flow in a packed bed with MRI validation publication-title: AICHE J. doi: 10.1002/aic.13767 – volume: 23 start-page: 137 issue: 3 year: 1988 ident: 10.1016/j.powtec.2019.05.012_bb0120 article-title: Zi´ o lkowski D. fluid flow inside packed beds publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/0255-2701(88)80012-6 – volume: 64 start-page: 4162 issue: 11 year: 2018 ident: 10.1016/j.powtec.2019.05.012_bb0025 article-title: Particle-resolved simulations of methane steam reforming in multilayered packed beds publication-title: AICHE J. doi: 10.1002/aic.16386 – volume: 85 start-page: 1539 issue: 11 year: 2007 ident: 10.1016/j.powtec.2019.05.012_bb0145 article-title: Application of a CFD code (FLUENT) to formulate models of catalytic gas phase reactions in porous catalyst pellets publication-title: Chem. Eng. Res. Des. doi: 10.1205/cherd06226 – volume: 63 start-page: 366 issue: 1 year: 2017 ident: 10.1016/j.powtec.2019.05.012_bb0020 article-title: Effect of particle shape on fluid flow and heat transfer for methane steam reforming reactions in a packed bed publication-title: AICHE J. doi: 10.1002/aic.15542 – volume: 85 start-page: 45 year: 2015 ident: 10.1016/j.powtec.2019.05.012_bb0090 article-title: A comparison of measured and modeled velocity fields for a laminar flow in a porous medium publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2015.08.013 – volume: 62 issue: 12 year: 2016 ident: 10.1016/j.powtec.2019.05.012_bb0010 article-title: Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations publication-title: AICHE J. doi: 10.1002/aic.15520 – volume: 56 start-page: 1713 year: 2001 ident: 10.1016/j.powtec.2019.05.012_bb0070 article-title: CFD modelling and experimental validation of pressure drop and low profile in a novel structured catalytic reactor packing publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(00)00400-0 – volume: 31 start-page: 307 year: 2006 ident: 10.1016/j.powtec.2019.05.012_bb0155 article-title: Packed tubular reactor modeling and catalyst design using computational fluid dynamics publication-title: Adv. Chem. Eng. doi: 10.1016/S0065-2377(06)31005-8 – volume: 314 year: 2017 ident: 10.1016/j.powtec.2019.05.012_bb0015 article-title: Heat transfer to a gas from densely packed beds of monodisperse spherical particles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.124 – volume: 88 start-page: 379 issue: 3 year: 2010 ident: 10.1016/j.powtec.2019.05.012_bb0075 article-title: Modelling and measurements of the velocity gradient and local flow direction at the pore scale of a packed bed publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.01.001 – volume: 200-202 start-page: 344 issue: 49 year: 2012 ident: 10.1016/j.powtec.2019.05.012_bb0005 article-title: Experimental validation of high Reynolds number CFD simulations of heat transfer in a pilot-scale fixed bed tube publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.065 – volume: 28 start-page: 1474 issue: 6 year: 2011 ident: 10.1016/j.powtec.2019.05.012_bb0045 article-title: Computational fluid dynamics simulations of pressure drop and heat transfer in fixed bed reactor with spherical particles publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-010-0507-x – year: 2019 ident: 10.1016/j.powtec.2019.05.012_bb0110 article-title: PIV measurements and CFD simulations of particle-scale flow distribution in a packed bed publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.053 – year: 2013 ident: 10.1016/j.powtec.2019.05.012_bb0140 – volume: 48 start-page: 4060 issue: 8 year: 2009 ident: 10.1016/j.powtec.2019.05.012_bb0030 article-title: A coupled DEM and CFD simulation of flow field and pressure drop in fixed bed reactor with randomly packed catalyst particles publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie801548h – volume: 51 start-page: 15839 issue: 49 year: 2012 ident: 10.1016/j.powtec.2019.05.012_bb0100 article-title: Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie202694m – volume: 60 start-page: 1733 issue: 6 year: 2005 ident: 10.1016/j.powtec.2019.05.012_bb0065 article-title: Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.10.034 – volume: 166 start-page: 324 issue: 1 year: 2011 ident: 10.1016/j.powtec.2019.05.012_bb0040 article-title: DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.10.053 – volume: 82 start-page: 231 year: 2001 ident: 10.1016/j.powtec.2019.05.012_bb0125 article-title: Comparison of CFD simulations to experiment for convective heat transfer in a gas solid fixed bed publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(00)00360-0 – volume: 18 start-page: 1912 issue: 6 year: 2012 ident: 10.1016/j.powtec.2019.05.012_bb0050 article-title: Comparison of CFD results and experimental data in a fixed bed Fischer-Tropsch synthesis reactor publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2012.05.003 – volume: 34 start-page: 2840 issue: 10 year: 2010 ident: 10.1016/j.powtec.2019.05.012_bb0165 article-title: Comparison of turbulence models in simulating swirling pipe flows publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2009.12.018 – volume: 82 start-page: 311 issue: 1–3 year: 2001 ident: 10.1016/j.powtec.2019.05.012_bb0135 article-title: The kinetics of methane steam reforming over a Ni/αAl2O catalyst publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(00)00367-3 – volume: 28 start-page: 431 issue: 5 year: 2004 ident: 10.1016/j.powtec.2019.05.012_bb0160 article-title: Modeling turbulent flow in stirred tanks with CFD : the influence of the modeling approach , turbulence model and numerical scheme publication-title: Exp. Thermal Fluid Sci. doi: 10.1016/j.expthermflusci.2003.04.001 |
SSID | ssj0006310 |
Score | 2.31142 |
Snippet | Particle-resolved CFD simulations are widely used for the predictions of particle-scale flow, transport processes and chemical reactions. However, the effect... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 474 |
SubjectTerms | Chemical reactions Computational fluid dynamics Computer simulation Conversion Diameters Fixed bed reactors Fixed beds Heat transfer Large eddy simulations Methane Methane steam reforming reactions Packed bed Packed beds Parameter estimation Particle image velocimetry Particle size Particle-resolved CFD simulations powders prediction Predictions Reforming Simulation steam temperature Transport processes Turbulence models turbulent flow Viscosity |
Title | Particle-resolved simulations of catalytic fixed bed reactors: Comparison of turbulence models, LES and PIV measurements |
URI | https://dx.doi.org/10.1016/j.powtec.2019.05.012 https://www.proquest.com/docview/2376728537 https://www.proquest.com/docview/2271879456 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXNpDBZSqy0uu1GMDm9iJbW6r1aKlD4RUQNws27GlRZCsyC6PC7-dseMsD6lC6iGXeKxYnvHMfM48EPquKbHcAAc4y4oE8AZJNCMsSQktmXG8L0Iw5p_jYnxGf17kF0to2OXC-LDKqPtbnR60dXyzH3dzfzqZ-BxfAr47iJQgvqinr_hJKfNSvvf4HOZRkDSWZgTQBdRd-lyI8ZrWdzPrCxmmoq3fmf3LPL1R1MH6HK6iT9FtxIN2ZWtoyVbr6OOLYoKf0f1JXHcCCLq-urUlbibXsTtXg2uHw1XNA9BgN7mHYQ0P-Iyh4c4BHi46EnpasER6HhKScGiW0_zAv0d_sapKfHJ0jq-frxabDXR2ODodjpPYVyExALBmCVfWe32kL6xLNePaKcdZKTR1pm91rrISADMVWgH8o9pxanJCCw5WLjcAEckXtFzVlf2KsGWGpLnSVhhOBRfKGQYaSylBC-pU2UOk205pYtFx3_viSnbRZZeyZYL0TJD9XAITeihZzJq2RTfeoWcdp-Qr4ZFgF96Zud0xVsbD20gfKMQy8GNYD31bDMOx8_9SVGXrOdBkzPdpB_dz878_voU-ZB69hxjwbbQ8u5nbHXBxZno3yPAuWhkc_RofPwHAzvyD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaHNofRJN01bFXqsydqSLam3sCTsNpsl0KTkJiRZgi2JvcS7efz7jmx5-4AS6MEXa4SFRpqZTx59A_DJMOqERQ0InhUJ4g2aGE55klJWcuvFSLbJmCfzYnLOvl7kF1sw7u_ChLTKaPs7m95a6_hmP87m_nKxCHd8KcbuuKQkDaSe9BFsB3aqfADbB9PjyXxjkAuaRnZGxF3Yob9B16Z5LevblQtchqnsKDyzf3mov2x164COnsHTGDmSg25wz2HLVS9g5zc-wZdwdxqHniCIri9vXEmaxVUs0NWQ2pP2tOYeZYhf3GGzwQfDxrbmzhcy3hQlDLLojMy6vZNE2no5zWcyO_xGdFWS0-l3cvXrdLF5BedHh2fjSRJLKyQWMdYqEdqFwI-OpPOp4cJ47QUvpWHejpzJdVYiZmbSaESAzHjBbE5ZIdDR5RZRIn0Ng6qu3Bsgjlua5to4aQWTQmpvORotrSUrmNflEGg_ncpG3vFQ_uJS9QlmP1SnBBWUoEa5QiUMIdn0Wna8Gw_I815T6o_1o9A1PNBzr1esivu3USFXiGcYyvAhfNw0484Lv1N05eo1ymQ8lGrHCHT3vz_-AR5Pzk5majadH7-FJ1kA821K-B4MVtdr9w4jnpV5H1f0T18F_zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle-resolved+simulations+of+catalytic+fixed+bed+reactors%3A+Comparison+of+turbulence+models%2C+LES+and+PIV+measurements&rft.jtitle=Powder+technology&rft.au=Karthik%2C+G.M.&rft.au=Thaker%2C+Abhijeet+H.&rft.au=Buwa%2C+Vivek+V.&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0032-5910&rft.eissn=1873-328X&rft.volume=361&rft.spage=474&rft.epage=489&rft_id=info:doi/10.1016%2Fj.powtec.2019.05.012&rft.externalDocID=S0032591019303523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon |