Electrospun gelatin/methylcellulose hybrid nanofibers promoted the maturation of human cutaneous tissue progenitor cells toward keratinocyte-like cells

Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed regenerative properties of electrospun silk fibroin (SF), poly (ɛ-caprolactone) (PCL), and soluble eggshell membrane (SESM) nanofibers on huma...

Full description

Saved in:
Bibliographic Details
Published inCellulose (London) Vol. 29; no. 14; pp. 7837 - 7848
Main Authors Salehi, Roya, Mohammadzadeh, Leila, Mahkam, Mehrdad, Jafarizad, Abbas, Rahbarghazi, Reza
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed regenerative properties of electrospun silk fibroin (SF), poly (ɛ-caprolactone) (PCL), and soluble eggshell membrane (SESM) nanofibers on human skin progenitor cells in vitro. Here, we aimed to assess the potency of electrospun PCL/SF/SESM/gelatin (Gel) and PCL/SF/SESM/methylcellulose (MC) hybrid scaffolds on skin progenitor cells in vitro. To this end, PCL/SF/SESM electrospun nanofibers containing Gel and MC were used to measure the differentiation of skin basal cells (BCCs) into keratinocyte-like cells. Physicochemical characterization of prepared nanofibers was studied using SEM, FT-IR, tensile, and water contact angle assays. BCCs viability, attachment, survival, and differentiation capacity were monitored using MTT, immunofluorescence (IF), and real-time PCR analyses. Data indicated the addition of Gel and MC into electrospun PCL/SF/SESM nanofibers increased mean diameter size and surface wettability. In contrast to MC, the addition of Gel caused a slight decrease in tensile strength value. In vitro data exhibited improved cell viability coincided with cell-to-cell connection ( p  < 0.05). IF showed the increase of keratinocyte specific marker, cytokeratin-19, in BCCs plated on PCL/SF/SESM/Gel and PCL/SF/SESM/MC scaffolds related to control cells cultured on the plastic surface. Real-time PCR analysis of the up-regulation of involucrin, keratin-14, and -5 in PCL/SF/SESM/Gel and PCL/SF/SESM/MC groups compared to matched control groups. Based on our data, these effects were significantly more in PCL/SF/SESM/MC groups compared to other groups ( p  < 0.0001). It is suggested that PCL/SF/SESM scaffold blended with Gel and MC can be used as supporting substrates for the regeneration of injured cutaneous tissue.
AbstractList Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed regenerative properties of electrospun silk fibroin (SF), poly (ɛ-caprolactone) (PCL), and soluble eggshell membrane (SESM) nanofibers on human skin progenitor cells in vitro. Here, we aimed to assess the potency of electrospun PCL/SF/SESM/gelatin (Gel) and PCL/SF/SESM/methylcellulose (MC) hybrid scaffolds on skin progenitor cells in vitro. To this end, PCL/SF/SESM electrospun nanofibers containing Gel and MC were used to measure the differentiation of skin basal cells (BCCs) into keratinocyte-like cells. Physicochemical characterization of prepared nanofibers was studied using SEM, FT-IR, tensile, and water contact angle assays. BCCs viability, attachment, survival, and differentiation capacity were monitored using MTT, immunofluorescence (IF), and real-time PCR analyses. Data indicated the addition of Gel and MC into electrospun PCL/SF/SESM nanofibers increased mean diameter size and surface wettability. In contrast to MC, the addition of Gel caused a slight decrease in tensile strength value. In vitro data exhibited improved cell viability coincided with cell-to-cell connection ( p  < 0.05). IF showed the increase of keratinocyte specific marker, cytokeratin-19, in BCCs plated on PCL/SF/SESM/Gel and PCL/SF/SESM/MC scaffolds related to control cells cultured on the plastic surface. Real-time PCR analysis of the up-regulation of involucrin, keratin-14, and -5 in PCL/SF/SESM/Gel and PCL/SF/SESM/MC groups compared to matched control groups. Based on our data, these effects were significantly more in PCL/SF/SESM/MC groups compared to other groups ( p  < 0.0001). It is suggested that PCL/SF/SESM scaffold blended with Gel and MC can be used as supporting substrates for the regeneration of injured cutaneous tissue.
Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed regenerative properties of electrospun silk fibroin (SF), poly (ɛ-caprolactone) (PCL), and soluble eggshell membrane (SESM) nanofibers on human skin progenitor cells in vitro. Here, we aimed to assess the potency of electrospun PCL/SF/SESM/gelatin (Gel) and PCL/SF/SESM/methylcellulose (MC) hybrid scaffolds on skin progenitor cells in vitro. To this end, PCL/SF/SESM electrospun nanofibers containing Gel and MC were used to measure the differentiation of skin basal cells (BCCs) into keratinocyte-like cells. Physicochemical characterization of prepared nanofibers was studied using SEM, FT-IR, tensile, and water contact angle assays. BCCs viability, attachment, survival, and differentiation capacity were monitored using MTT, immunofluorescence (IF), and real-time PCR analyses. Data indicated the addition of Gel and MC into electrospun PCL/SF/SESM nanofibers increased mean diameter size and surface wettability. In contrast to MC, the addition of Gel caused a slight decrease in tensile strength value. In vitro data exhibited improved cell viability coincided with cell-to-cell connection (p < 0.05). IF showed the increase of keratinocyte specific marker, cytokeratin-19, in BCCs plated on PCL/SF/SESM/Gel and PCL/SF/SESM/MC scaffolds related to control cells cultured on the plastic surface. Real-time PCR analysis of the up-regulation of involucrin, keratin-14, and -5 in PCL/SF/SESM/Gel and PCL/SF/SESM/MC groups compared to matched control groups. Based on our data, these effects were significantly more in PCL/SF/SESM/MC groups compared to other groups (p < 0.0001). It is suggested that PCL/SF/SESM scaffold blended with Gel and MC can be used as supporting substrates for the regeneration of injured cutaneous tissue.
Author Salehi, Roya
Mohammadzadeh, Leila
Rahbarghazi, Reza
Mahkam, Mehrdad
Jafarizad, Abbas
Author_xml – sequence: 1
  givenname: Roya
  surname: Salehi
  fullname: Salehi, Roya
  organization: Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences
– sequence: 2
  givenname: Leila
  surname: Mohammadzadeh
  fullname: Mohammadzadeh, Leila
  organization: Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University
– sequence: 3
  givenname: Mehrdad
  surname: Mahkam
  fullname: Mahkam, Mehrdad
  organization: Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University
– sequence: 4
  givenname: Abbas
  surname: Jafarizad
  fullname: Jafarizad, Abbas
  organization: Department of Chemical Engineering, Sahand University of Technology
– sequence: 5
  givenname: Reza
  orcidid: 0000-0003-3864-9166
  surname: Rahbarghazi
  fullname: Rahbarghazi, Reza
  email: Rezarahbardvm@gmail.com, rahbarghazir@tbzmed.ac.ir
  organization: Stem Cell Research Center, Tabriz University of Medical Sciences, Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences
BookMark eNp9kcFq3DAQhkVIIZu0L9CToJdenIwk25KOJaRNIdBLC70J2R7vKrGlrSRT9kn6upXjQiGHnAZm_m_mZ_5Lcu6DR0LeM7hmAPImMWgkVMB5BbUUqtJnZMcaySul-M9zsgPd6jIW-oJcpvQIAFpytiN_7ibscwzpuHi6x8lm529mzIfT1OM0LVNISA-nLrqBeuvD6DqMiR5jmEPGgeYD0tnmJRYweBpGelhm62m_ZOsxLIlml9KCK7FH73KIdF1c-uG3jQN9whX1oT9lrCb3hNv4LXkz2inhu3_1ivz4fPf99r56-Pbl6-2nh6rniudK1VbpQbRqEHVbD4JxIWTDNLRgFYyyg0421o6yRT2yRkPdjlwOrZAKUDeduCIft73F368FUzazS6uDzb3hkinRqFrJIv3wQvoYluiLu6IC3ipQsi0qvqn68tQUcTTH6GYbT4aBWbMyW1amZGWeszK6QOoF1Lv8_NEcrZteR8WGpnLH7zH-d_UK9Rd2065u
CitedBy_id crossref_primary_10_1007_s10570_024_06241_9
crossref_primary_10_3390_biomimetics8020205
Cites_doi 10.1007/s13770-018-0140-z
10.1097/mat.0000000000000611
10.3144/expresspolymlett.2017.94
10.1016/j.msec.2017.07.029
10.1016/j.carbpol.2016.05.088
10.1007/s13577-021-00588-y
10.1016/j.msec.2017.08.022
10.1038/sj.jid.5700715
10.1007/s12221-017-6954-9
10.1002/jbm.b.34079
10.1039/C6TB03223K
10.1080/15583724.2014.881374
10.3390/cells2030460
10.1039/C6RA05092A
10.1016/j.msec.2015.09.102
10.1002/app.34655
10.1295/polymj.35.185
10.1016/j.jestch.2021.05.002
10.1016/j.msec.2016.05.005
10.1016/j.actbio.2007.01.002
10.1016/j.nanoen.2017.04.028
10.1089/ten.tea.2013.0645
10.1007/s12221-016-6595-4
10.1007/s13233-014-2078-x
10.1186/s13287-017-0588-0
10.1186/s41038-017-0103-y
10.1021/bm050314k
10.1007/s12257-017-0329-3
10.1002/jbm.a.36303
10.1016/j.polymdegradstab.2016.05.022
10.1007/s13233-016-4028-2
10.3233/bme-141007
10.1016/j.jiec.2016.11.014
10.1002/9781119242628.ch1
10.3389/fmats.2019.00091
10.4028/www.scientific.net/AMM.695.332
10.1134/S0965545X10040097
10.1016/j.msec.2017.04.084
10.1002/jbm.a.32504
10.1186/s13036-019-0208-x
10.1109/EMBC.2018.8513549
10.1155/2018/8973643
10.1155/2012/282736
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
DOI 10.1007/s10570-022-04738-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Materials Science Collection
AGRICOLA
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1572-882X
EndPage 7848
ExternalDocumentID 10_1007_s10570_022_04738_9
GrantInformation_xml – fundername: Tabriz University of Medical Sciences
  funderid: http://dx.doi.org/10.13039/501100004366
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIZAD
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
N~3
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TTC
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
Y6R
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z87
Z8N
Z8P
Z8Q
ZMTXR
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c282t-84a89d368d3464d312337519060a80f7b0b75aaf76e9f159046f27d63780e95b3
IEDL.DBID BENPR
ISSN 0969-0239
IngestDate Tue Aug 05 11:28:26 EDT 2025
Fri Jul 25 11:02:33 EDT 2025
Tue Jul 01 02:10:57 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Fri Feb 21 02:46:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Electrospun nanofibrous scaffold
Skin progenitor cells
Methylcellulose
Maturation
Gelatin
Tissue engineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-84a89d368d3464d312337519060a80f7b0b75aaf76e9f159046f27d63780e95b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3864-9166
PQID 2702680876
PQPubID 2043866
PageCount 12
ParticipantIDs proquest_miscellaneous_2718358487
proquest_journals_2702680876
crossref_primary_10_1007_s10570_022_04738_9
crossref_citationtrail_10_1007_s10570_022_04738_9
springer_journals_10_1007_s10570_022_04738_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Cellulose (London)
PublicationTitleAbbrev Cellulose
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Sah, Rath (CR34) 2016; 67
Chong, Phan (CR10) 2007; 3
Amiraliyan, Nouri, Kish (CR2) 2010; 52
Sundaramurthi, Krishnan, Sethuraman (CR36) 2014; 54
CR16
Clark, Ghosh, Tonnesen (CR12) 2007; 127
CR14
Lee, Kwak, Yun, Kim, Lee (CR25) 2016; 24
Isfahani, Tavanai, Morshed (CR19) 2017; 18
Levengood, Erickson, Chang, Zhang (CR26) 2017; 5
Ranjbarvan, Mahmoudifard, Kehtari, Babaie, Hamedi, Mirzaei, Soleimani, Hosseinzadeh (CR32) 2018; 64
Chen, Kang, Sukigara (CR7) 2014; 24
Bhullar, Rana, Lekesiz, Bedeloglu, Ko, Cho, Aytac, Uyar, Jun, Ramalingam (CR4) 2017; 81
Dulnik, Denis, Sajkiewicz, Kołbuk, Choińska (CR15) 2016; 130
Ghosh, Adhikary, Jana, Biswas, Sencadas, Gupta, Tudu, Mandal (CR17) 2017; 36
Thirumala, Gimble, Devireddy (CR37) 2013; 2
Wang, Jiang, He, Kang (CR40) 2017; 11
Boyce, Lalley (CR6) 2018; 6
Li, Wang, Williams, Wu, Sun, Lv, Zhu (CR27) 2016; 6
Chong, Phan, Lim, Zhang, Bay, Ramakrishna, Lim (CR11) 2015; 554
Zhuo, Liu, Gao, Wang, Hu, Cai (CR44) 2017; 81
Choi, Pant, Lee, Park, Park, Kim (CR8) 2017; 47
Hokmabad, Davaran, Aghazadeh, Alizadeh, Salehi, Ramazani (CR18) 2018; 15
CR28
Mohammadzadehmoghadam, Dong (CR31) 2019; 6
Choi, Kim, Chung, Shin (CR9) 2017; 22
Kinikoglu (CR23) 2016; 2
Ren, Wang, Sun, Yue, Zhang (CR33) 2017; 78
Khan, Salmieri, Dussault, Sharmin, Lacroix (CR21) 2012; 123
Türkkan, Atila, Akdağ, Tezcaner (CR38) 2018; 106
CR20
Baker, Banerjee, Bonin, Guthold (CR3) 2016; 59
Singh, Panda, Mund, Pramanik (CR35) 2016; 151
Mohammadzadeh, Rahbarghazi, Salehi, Mahkam (CR29) 2019; 13
Zhang, Venugopal, Huang, Lim, Ramakrishna (CR42) 2005; 6
Zhang, Wang, Huang, Su, Mo, Ikada (CR43) 2010; 93
Ali, Khatri, Oh, Kim, Kim (CR1) 2014; 22
Bonvallet, Culpepper, Bain, Schultz, Thomas, Bellis (CR5) 2014; 20
Dadras Chomachayi, Solouk, Akbari, Sadeghi, Mirahmadi, Mirzadeh (CR13) 2018; 106
Kostic, Miljojkovic, Simunovic, Vukelic, Tadic (CR24) 2022; 25
Wahab, Xu, Lee, Nam, Wei, Kim, Kim (CR39) 2016; 17
Mohammadzadeh, Mahkam, Barzegari, Karimi, Kafil, Salehi, Rahbarghazi (CR30) 2021; 34
Kim, Nam, Lee, Park (CR22) 2003; 35
Xue, Qian, Li, Yao, Yang, Sun (CR41) 2017; 8
ST Boyce (4738_CR6) 2018; 6
N Amiraliyan (4738_CR2) 2010; 52
S Kostic (4738_CR24) 2022; 25
RA Khan (4738_CR21) 2012; 123
MK Sah (4738_CR34) 2016; 67
4738_CR16
K Zhang (4738_CR43) 2010; 93
4738_CR14
L Chen (4738_CR7) 2014; 24
K Ren (4738_CR33) 2017; 78
B Singh (4738_CR35) 2016; 151
S Thirumala (4738_CR37) 2013; 2
RA Clark (4738_CR12) 2007; 127
SL Levengood (4738_CR26) 2017; 5
R Xue (4738_CR41) 2017; 8
JI Choi (4738_CR9) 2017; 22
SH Kim (4738_CR22) 2003; 35
S Mohammadzadehmoghadam (4738_CR31) 2019; 6
H Li (4738_CR27) 2016; 6
L Mohammadzadeh (4738_CR29) 2019; 13
SR Baker (4738_CR3) 2016; 59
P Ranjbarvan (4738_CR32) 2018; 64
SK Bhullar (4738_CR4) 2017; 81
B Kinikoglu (4738_CR23) 2016; 2
K Wang (4738_CR40) 2017; 11
4738_CR28
M Dadras Chomachayi (4738_CR13) 2018; 106
E Chong (4738_CR10) 2007; 3
4738_CR20
PP Bonvallet (4738_CR5) 2014; 20
JA Wahab (4738_CR39) 2016; 17
J Dulnik (4738_CR15) 2016; 130
E Chong (4738_CR11) 2015; 554
Y Zhang (4738_CR42) 2005; 6
F Zhuo (4738_CR44) 2017; 81
S Ali (4738_CR1) 2014; 22
SK Ghosh (4738_CR17) 2017; 36
L Mohammadzadeh (4738_CR30) 2021; 34
JY Lee (4738_CR25) 2016; 24
D Sundaramurthi (4738_CR36) 2014; 54
FR Isfahani (4738_CR19) 2017; 18
J Choi (4738_CR8) 2017; 47
VR Hokmabad (4738_CR18) 2018; 15
S Türkkan (4738_CR38) 2018; 106
References_xml – volume: 15
  start-page: 735
  issue: 6
  year: 2018
  end-page: 750
  ident: CR18
  article-title: A comparison of the effects of silica and hydroxyapatite nanoparticles on poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone)/chitosan nanofibrous scaffolds for bone tissue engineering
  publication-title: Tissue Eng Regen Med
  doi: 10.1007/s13770-018-0140-z
– volume: 64
  start-page: 261
  issue: 2
  year: 2018
  end-page: 269
  ident: CR32
  article-title: Natural compounds for skin tissue engineering by electrospinning of nylon-
  publication-title: Asaio J
  doi: 10.1097/mat.0000000000000611
– volume: 11
  start-page: 991
  issue: 12
  year: 2017
  end-page: 1002
  ident: CR40
  article-title: Regiocontroll synthesis cellulose-graft-polycaprolactone copolymer (2, 3-di-O-PCL-cellulose) by a new route
  publication-title: Express Polym Lett
  doi: 10.3144/expresspolymlett.2017.94
– volume: 81
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR44
  article-title: Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.07.029
– volume: 151
  start-page: 335
  year: 2016
  end-page: 347
  ident: CR35
  article-title: Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.05.088
– ident: CR14
– volume: 34
  start-page: 1682
  issue: 6
  year: 2021
  end-page: 1696
  ident: CR30
  article-title: Preparation, characterization, and antibacterial properties of hybrid nanofibrous scaffolds for cutaneous tissue engineering
  publication-title: Hum Cell
  doi: 10.1007/s13577-021-00588-y
– volume: 81
  start-page: 334
  year: 2017
  end-page: 340
  ident: CR4
  article-title: Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.08.022
– volume: 127
  start-page: 1018
  issue: 5
  year: 2007
  end-page: 1029
  ident: CR12
  article-title: Tissue engineering for cutaneous wounds
  publication-title: J Invest Dermatol
  doi: 10.1038/sj.jid.5700715
– ident: CR16
– volume: 18
  start-page: 264
  issue: 2
  year: 2017
  end-page: 271
  ident: CR19
  article-title: Release of aloe vera from electrospun aloe vera-PVA nanofibrous pad
  publication-title: Fibers Polym
  doi: 10.1007/s12221-017-6954-9
– volume: 106
  start-page: 2625
  issue: 7
  year: 2018
  end-page: 2635
  ident: CR38
  article-title: Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering
  publication-title: J Biomed Mater Res B Appl Biomater
  doi: 10.1002/jbm.b.34079
– volume: 5
  start-page: 1822
  issue: 9
  year: 2017
  end-page: 1833
  ident: CR26
  article-title: Chitosan–poly (caprolactone) nanofibers for skin repair
  publication-title: J Mater Chem B
  doi: 10.1039/C6TB03223K
– volume: 54
  start-page: 348
  issue: 2
  year: 2014
  end-page: 376
  ident: CR36
  article-title: Electrospun nanofibers as scaffolds for skin tissue engineering
  publication-title: Polym Rev
  doi: 10.1080/15583724.2014.881374
– volume: 2
  start-page: 460
  issue: 3
  year: 2013
  end-page: 475
  ident: CR37
  article-title: Methylcellulose based thermally reversible hydrogel system for tissue engineering applications
  publication-title: Cells
  doi: 10.3390/cells2030460
– volume: 6
  start-page: 50267
  issue: 55
  year: 2016
  end-page: 50277
  ident: CR27
  article-title: Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials
  publication-title: RSC Adv
  doi: 10.1039/C6RA05092A
– volume: 59
  start-page: 203
  year: 2016
  end-page: 212
  ident: CR3
  article-title: Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2015.09.102
– volume: 123
  start-page: 1690
  issue: 3
  year: 2012
  end-page: 1697
  ident: CR21
  article-title: Mechanical, barrier, and interfacial properties of biodegradable composite films made of methylcellulose and poly (caprolactone)
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.34655
– volume: 35
  start-page: 185
  issue: 2
  year: 2003
  ident: CR22
  article-title: Silk fibroin nanofiber. Electrospinning, properties, and structure
  publication-title: Polym J
  doi: 10.1295/polymj.35.185
– volume: 25
  start-page: 100998
  year: 2022
  ident: CR24
  article-title: Uncertainty in the determination of elastic modulus by tensile testing
  publication-title: Eng Sci Technol Int J
  doi: 10.1016/j.jestch.2021.05.002
– volume: 67
  start-page: 807
  year: 2016
  end-page: 821
  ident: CR34
  article-title: Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2016.05.005
– volume: 3
  start-page: 321
  issue: 3
  year: 2007
  end-page: 330
  ident: CR10
  article-title: Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2007.01.002
– volume: 36
  start-page: 166
  year: 2017
  end-page: 175
  ident: CR17
  article-title: Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.028
– volume: 20
  start-page: 2434
  issue: 17–18
  year: 2014
  end-page: 2445
  ident: CR5
  article-title: Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2013.0645
– volume: 17
  start-page: 1776
  issue: 11
  year: 2016
  end-page: 1781
  ident: CR39
  article-title: Fabrication of silk fibroin/eggshell nanofiber membranes for facemasks
  publication-title: Fibers Polym
  doi: 10.1007/s12221-016-6595-4
– volume: 22
  start-page: 562
  issue: 5
  year: 2014
  end-page: 568
  ident: CR1
  article-title: Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning
  publication-title: Macromol Res
  doi: 10.1007/s13233-014-2078-x
– volume: 8
  start-page: 148
  issue: 1
  year: 2017
  ident: CR41
  article-title: Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-017-0588-0
– volume: 6
  start-page: 4
  issue: 1
  year: 2018
  ident: CR6
  article-title: Tissue engineering of skin and regenerative medicine for wound care
  publication-title: Burns Trauma
  doi: 10.1186/s41038-017-0103-y
– volume: 6
  start-page: 2583
  issue: 5
  year: 2005
  end-page: 2589
  ident: CR42
  article-title: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts
  publication-title: Biomacromolecules
  doi: 10.1021/bm050314k
– volume: 22
  start-page: 679
  issue: 6
  year: 2017
  end-page: 685
  ident: CR9
  article-title: Spirulina extract-impregnated alginate-PCL nanofiber wound dressing for skin regeneration
  publication-title: Biotechnol Bioprocess Eng
  doi: 10.1007/s12257-017-0329-3
– volume: 106
  start-page: 1092
  issue: 4
  year: 2018
  end-page: 1103
  ident: CR13
  article-title: Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.36303
– volume: 130
  start-page: 10
  year: 2016
  end-page: 21
  ident: CR15
  article-title: Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2016.05.022
– volume: 24
  start-page: 218
  issue: 3
  year: 2016
  end-page: 225
  ident: CR25
  article-title: Methyl cellulose nanofibrous mat for lipase immobilization via cross-linked enzyme aggregates
  publication-title: Macromol Res
  doi: 10.1007/s13233-016-4028-2
– volume: 24
  start-page: 1979
  issue: 6
  year: 2014
  end-page: 1989
  ident: CR7
  article-title: Preparation and characterization of polyurethane/soluble eggshell membrane nanofibers
  publication-title: Biomed Mater Eng
  doi: 10.3233/bme-141007
– volume: 47
  start-page: 41
  year: 2017
  end-page: 45
  ident: CR8
  article-title: Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2016.11.014
– volume: 2
  start-page: 1
  year: 2016
  end-page: 20
  ident: CR23
  article-title: Electrospinning materials for skin tissue engineering
  publication-title: Int J Smart Nano Mater
  doi: 10.1002/9781119242628.ch1
– volume: 6
  start-page: 91
  year: 2019
  ident: CR31
  article-title: Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor
  publication-title: Front Mater
  doi: 10.3389/fmats.2019.00091
– volume: 554
  start-page: 57
  year: 2015
  end-page: 61
  ident: CR11
  article-title: Evaluation of PCL/GE-based electrospun nanofibers for tissue engineering and drug delivery application
  publication-title: Appl Mech Mater Trans
  doi: 10.4028/www.scientific.net/AMM.695.332
– volume: 52
  start-page: 407
  issue: 4
  year: 2010
  end-page: 412
  ident: CR2
  article-title: Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats
  publication-title: Polym Sci A
  doi: 10.1134/S0965545X10040097
– volume: 78
  start-page: 324
  year: 2017
  end-page: 332
  ident: CR33
  article-title: Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.04.084
– volume: 93
  start-page: 984
  issue: 3
  year: 2010
  end-page: 993
  ident: CR43
  article-title: Fabrication of silk fibroin blended P (LLA-CL) nanofibrous scaffolds for tissue engineering
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.32504
– ident: CR28
– volume: 13
  start-page: 79
  issue: 1
  year: 2019
  ident: CR29
  article-title: A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering
  publication-title: J Biol Eng
  doi: 10.1186/s13036-019-0208-x
– ident: CR20
– volume: 47
  start-page: 41
  year: 2017
  ident: 4738_CR8
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2016.11.014
– volume: 24
  start-page: 218
  issue: 3
  year: 2016
  ident: 4738_CR25
  publication-title: Macromol Res
  doi: 10.1007/s13233-016-4028-2
– volume: 54
  start-page: 348
  issue: 2
  year: 2014
  ident: 4738_CR36
  publication-title: Polym Rev
  doi: 10.1080/15583724.2014.881374
– volume: 81
  start-page: 1
  year: 2017
  ident: 4738_CR44
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.07.029
– volume: 11
  start-page: 991
  issue: 12
  year: 2017
  ident: 4738_CR40
  publication-title: Express Polym Lett
  doi: 10.3144/expresspolymlett.2017.94
– volume: 34
  start-page: 1682
  issue: 6
  year: 2021
  ident: 4738_CR30
  publication-title: Hum Cell
  doi: 10.1007/s13577-021-00588-y
– volume: 6
  start-page: 2583
  issue: 5
  year: 2005
  ident: 4738_CR42
  publication-title: Biomacromolecules
  doi: 10.1021/bm050314k
– volume: 2
  start-page: 1
  year: 2016
  ident: 4738_CR23
  publication-title: Int J Smart Nano Mater
  doi: 10.1002/9781119242628.ch1
– volume: 13
  start-page: 79
  issue: 1
  year: 2019
  ident: 4738_CR29
  publication-title: J Biol Eng
  doi: 10.1186/s13036-019-0208-x
– volume: 5
  start-page: 1822
  issue: 9
  year: 2017
  ident: 4738_CR26
  publication-title: J Mater Chem B
  doi: 10.1039/C6TB03223K
– volume: 3
  start-page: 321
  issue: 3
  year: 2007
  ident: 4738_CR10
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2007.01.002
– volume: 25
  start-page: 100998
  year: 2022
  ident: 4738_CR24
  publication-title: Eng Sci Technol Int J
  doi: 10.1016/j.jestch.2021.05.002
– ident: 4738_CR16
  doi: 10.1109/EMBC.2018.8513549
– volume: 130
  start-page: 10
  year: 2016
  ident: 4738_CR15
  publication-title: Polym Degrad Stab
  doi: 10.1016/j.polymdegradstab.2016.05.022
– volume: 22
  start-page: 562
  issue: 5
  year: 2014
  ident: 4738_CR1
  publication-title: Macromol Res
  doi: 10.1007/s13233-014-2078-x
– volume: 36
  start-page: 166
  year: 2017
  ident: 4738_CR17
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.028
– volume: 64
  start-page: 261
  issue: 2
  year: 2018
  ident: 4738_CR32
  publication-title: Asaio J
  doi: 10.1097/mat.0000000000000611
– volume: 17
  start-page: 1776
  issue: 11
  year: 2016
  ident: 4738_CR39
  publication-title: Fibers Polym
  doi: 10.1007/s12221-016-6595-4
– volume: 18
  start-page: 264
  issue: 2
  year: 2017
  ident: 4738_CR19
  publication-title: Fibers Polym
  doi: 10.1007/s12221-017-6954-9
– volume: 22
  start-page: 679
  issue: 6
  year: 2017
  ident: 4738_CR9
  publication-title: Biotechnol Bioprocess Eng
  doi: 10.1007/s12257-017-0329-3
– volume: 127
  start-page: 1018
  issue: 5
  year: 2007
  ident: 4738_CR12
  publication-title: J Invest Dermatol
  doi: 10.1038/sj.jid.5700715
– volume: 151
  start-page: 335
  year: 2016
  ident: 4738_CR35
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.05.088
– volume: 93
  start-page: 984
  issue: 3
  year: 2010
  ident: 4738_CR43
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.32504
– volume: 81
  start-page: 334
  year: 2017
  ident: 4738_CR4
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.08.022
– volume: 78
  start-page: 324
  year: 2017
  ident: 4738_CR33
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.04.084
– volume: 67
  start-page: 807
  year: 2016
  ident: 4738_CR34
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2016.05.005
– volume: 20
  start-page: 2434
  issue: 17–18
  year: 2014
  ident: 4738_CR5
  publication-title: Tissue Eng Part A
  doi: 10.1089/ten.tea.2013.0645
– ident: 4738_CR14
– volume: 2
  start-page: 460
  issue: 3
  year: 2013
  ident: 4738_CR37
  publication-title: Cells
  doi: 10.3390/cells2030460
– volume: 6
  start-page: 50267
  issue: 55
  year: 2016
  ident: 4738_CR27
  publication-title: RSC Adv
  doi: 10.1039/C6RA05092A
– volume: 24
  start-page: 1979
  issue: 6
  year: 2014
  ident: 4738_CR7
  publication-title: Biomed Mater Eng
  doi: 10.3233/bme-141007
– volume: 106
  start-page: 1092
  issue: 4
  year: 2018
  ident: 4738_CR13
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.36303
– volume: 554
  start-page: 57
  year: 2015
  ident: 4738_CR11
  publication-title: Appl Mech Mater Trans
  doi: 10.4028/www.scientific.net/AMM.695.332
– volume: 52
  start-page: 407
  issue: 4
  year: 2010
  ident: 4738_CR2
  publication-title: Polym Sci A
  doi: 10.1134/S0965545X10040097
– volume: 123
  start-page: 1690
  issue: 3
  year: 2012
  ident: 4738_CR21
  publication-title: J Appl Polym Sci
  doi: 10.1002/app.34655
– ident: 4738_CR28
  doi: 10.1155/2018/8973643
– volume: 8
  start-page: 148
  issue: 1
  year: 2017
  ident: 4738_CR41
  publication-title: Stem Cell Res Ther
  doi: 10.1186/s13287-017-0588-0
– volume: 6
  start-page: 4
  issue: 1
  year: 2018
  ident: 4738_CR6
  publication-title: Burns Trauma
  doi: 10.1186/s41038-017-0103-y
– volume: 59
  start-page: 203
  year: 2016
  ident: 4738_CR3
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2015.09.102
– ident: 4738_CR20
  doi: 10.1155/2012/282736
– volume: 35
  start-page: 185
  issue: 2
  year: 2003
  ident: 4738_CR22
  publication-title: Polym J
  doi: 10.1295/polymj.35.185
– volume: 15
  start-page: 735
  issue: 6
  year: 2018
  ident: 4738_CR18
  publication-title: Tissue Eng Regen Med
  doi: 10.1007/s13770-018-0140-z
– volume: 106
  start-page: 2625
  issue: 7
  year: 2018
  ident: 4738_CR38
  publication-title: J Biomed Mater Res B Appl Biomater
  doi: 10.1002/jbm.b.34079
– volume: 6
  start-page: 91
  year: 2019
  ident: 4738_CR31
  publication-title: Front Mater
  doi: 10.3389/fmats.2019.00091
SSID ssj0009721
Score 2.359332
Snippet Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7837
SubjectTerms Bioorganic Chemistry
cell viability
Cells (biology)
Ceramics
Chemistry
Chemistry and Materials Science
Composites
Contact angle
Diameters
Differentiation
egg shell
fibroins
fluorescent antibody technique
Gelatin
Glass
humans
Immunofluorescence
Keratin
keratinocytes
methylcellulose
Nanofibers
Natural Materials
Organic Chemistry
Original Research
Physical Chemistry
Polymer Sciences
quantitative polymerase chain reaction
Real time
Regeneration
Scaffolds
Silk fibroin
skin (animal)
Substrates
Sustainable Development
Tensile strength
Wettability
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0Veig9VC2lYum2MhI3iOpNHNs5IgRCldpTV-IW2bFDEdtktUkO-0v6d5lxkl2KSqVe449InvH4jT3zBuDE4BFtbJZGRtiSbqt4ZExmo5m2KTfS6yIw8H37Lq_n4utNejMkhTVjtPv4JBks9aNkt5SKpKDzxIWibboDL1Py3VGL5_H5lmpXhWwrxOZZRKmbQ6rM3-f48zjaYswnz6LhtLl6C28GmMjOe7m-gxe-2odXF2N1tn14_YhI8D38vuyr2TTLrmK3Ib6t-kLFodcLupnvFnXj2c81ZWexylSoUBZhH1uGWDzvGKJA9osoPoOcWF2yULuPFR1iR193DWuDgGgEahxagRWjifF7CLtl98TNfFfVxbr10eLu3vfNBzC_uvxxcR0NJReiAn2vNtLC6MwlUrtESOESPNcShSCPS240L5XlVqXGlEr6rEQkhN51GSsnE6W5z1KbfIDdqq78IbAssbFFeKAUd0I4h66StmhOzCwuhZZuArNx5fNi4COnshiLfMukTNLKUVp5kFaeTeB0M2bZs3H8s_d0FGg-7Mwmp_w7Kjei5ASON80oPFqWfkmxDxo6RGZaTeBsVITtFM__8ej_un-EvTjoIoWsTWG3XXX-E2Kc1n4OKv0AZlr0ew
  priority: 102
  providerName: Springer Nature
Title Electrospun gelatin/methylcellulose hybrid nanofibers promoted the maturation of human cutaneous tissue progenitor cells toward keratinocyte-like cells
URI https://link.springer.com/article/10.1007/s10570-022-04738-9
https://www.proquest.com/docview/2702680876
https://www.proquest.com/docview/2718358487
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7gE4ICggFsrKSNwgqjdfdk5oqXZbgagQYqVyiuzYKVWXZGmSw_4S_i4zjtMAEr0msSN5xjNv7Jl5AK8VumilsyRQsS7ptIoHSmU6mEudcJVaWbgOfJ_O0tN1_OE8OfcHbo1PqxxsojPUpi7ojPyI6qaIJkKk77Y_A2KNottVT6GxBxM0wRKDr8n75dnnL2PbXeEqrxCnZwGVcfqyGV88lxDpCgZjPBa07f92TSPe_OeK1Hme1UN44CEjW_QyfgR3bHUAd48HprYDuP9HU8HH8GvZM9s0265iFy7XrToioujdhk7pu03dWPZ9R5VarFIVKpdGCMi2Li_PGoaIkP2gdp9OZqwumePxY0WHONLWXcNaJywagdqHFuGa0cT43KXgsivq03xZ1cWutcHm8sr2r5_AerX8enwaePqFoMA4rA1krGRmolSaKE5jE6GPiwQCPp5yJXkpNNciUaoUqc1KREUYaZehMGkkJLdZoqOnsF_VlX0GLIt0qBEqCMFNHBuDYZPUaFrUPCxjmZopzIeVzwvfm5woMjb52FWZpJWjtHInrTybwpubMdu-M8etXx8OAs39Lm3yUaem8OrmNQqPlqVfUvwGjR6iNCmm8HZQhHGK___x-e1_fAH3Qqd7lK52CPvtdWdfIr5p9Qz25OpkBpPFybePy5lXaXy6Dhe_AdVr_Fs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigcEBQQCwWMBCeI6k2c2DkghEqXLf04tVJvwY4dqLokS5MI7S_hX_AbmXGSBpDordckdiTPy_hNPDMP4KXGLVqbNA60MAX9reKB1qkJpsrEXCdO5b4D3-FRMj8Rn07j0zX4NdTCUFrl4BO9o7ZVTv_It6luimQiZPJu-T0g1Sg6XR0kNDpY7LvVDwzZ6rd7H9C-r8Jwtnu8Mw96VYEgx_CiCZTQKrVRomwkEmEjdN2RRB7DE64VL6ThRsZaFzJxaYGbPQaQRShtEknFXRqbCOe9ATdFFKX0RanZx7HJr_R1XhgVpAEVjfZFOn2pXkwSLxj6cSHJyfy9EY7s9p8DWb_Pze7CnZ6gsvcdou7Bmis3YWNn0IXbhNt_tDC8Dz93Ox2detmW7IvPrCu3SZZ6taAzgXZR1Y59XVFdGCt1iVA2SDjZ0mcBOsuQf7Jv1FzUI4RVBfOqgSxvkbW6qq1Z46FBIxDr6H8uGE2M133CLzunrtBnZZWvGhcszs5dd_sBnFyLWR7CelmV7hGwNDKhQWIiJbdCWItBmjLoyPQ0LIRK7ASmw8pned8JnQQ5FtnYw5mslaG1Mm-tLJ3A68sxy64PyJVPbw0GzXqfUGcjgifw4vI2Go-WpVtSfAZdLHJCJSfwZgDCOMX_3_j46jc-h4358eFBdrB3tP8EboUeh5QotwXrzUXrniKzaswzD2cGn6_7-_kNF40x2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEBQQCwWMxA2i9SaO7Ryr0lV5VRxYqbfIjh2oujirbnLYX8LfZcZJugsCJK7xI5JnPPPZnvkG4JVBF21skSdG2Jpuq3hiTGGTmbY5N9LrKjLwfTqVJwvx_iw_28nij9Hu45Nkn9NALE2hna5cPd1JfMupYAoepLhQtGWvww00xzPS60V6uKXdVTHzCnF6kVAa55A28-c5fnVNW7z52xNp9Dzze3B3gIzssJfxfbjmwz7cOhorte3DnR1SwQfw47ivbLNedYF9jbFuYUqFojdLuqXvls3as28bytRiwQRULosQkK1iXJ53DBEh-050n1FmrKlZrOPHqg5xpG-6NWujsGgEah9ahEtGE-P3GILLLoin-Tw01ab1yfL8wvfND2ExP_5ydJIM5ReSCs9hbaKF0YXLpHaZkMJl6OMyhYCPS240r5XlVuXG1Er6okZUhCftOlVOZkpzX-Q2ewR7oQn-MbAis6lFqKAUd0I4h8cmbdG0mFlaCy3dBGbjypfVwE1OJTKW5ZZVmaRVorTKKK2ymMDrqzGrnpnjn70PRoGWwy5dl5SLR6VHlJzAy6tmFB4tS7-k2AeNHqI0rSbwZlSE7RR__-OT_-v-Am5-fjsvP747_fAUbqdRLSmS7QD22svOP0Po09rnUbt_AjAV-6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+gelatin%2Fmethylcellulose+hybrid+nanofibers+promoted+the+maturation+of+human+cutaneous+tissue+progenitor+cells+toward+keratinocyte-like+cells&rft.jtitle=Cellulose+%28London%29&rft.au=Salehi%2C+Roya&rft.au=Mohammadzadeh%2C+Leila&rft.au=Mahkam%2C+Mehrdad&rft.au=Jafarizad%2C+Abbas&rft.date=2022-09-01&rft.issn=0969-0239&rft.eissn=1572-882X&rft.volume=29&rft.issue=14&rft.spage=7837&rft.epage=7848&rft_id=info:doi/10.1007%2Fs10570-022-04738-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10570_022_04738_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-0239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-0239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-0239&client=summon