Electrospun gelatin/methylcellulose hybrid nanofibers promoted the maturation of human cutaneous tissue progenitor cells toward keratinocyte-like cells
Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed regenerative properties of electrospun silk fibroin (SF), poly (ɛ-caprolactone) (PCL), and soluble eggshell membrane (SESM) nanofibers on huma...
Saved in:
Published in | Cellulose (London) Vol. 29; no. 14; pp. 7837 - 7848 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed regenerative properties of electrospun silk fibroin (SF), poly (ɛ-caprolactone) (PCL), and soluble eggshell membrane (SESM) nanofibers on human skin progenitor cells in vitro. Here, we aimed to assess the potency of electrospun PCL/SF/SESM/gelatin (Gel) and PCL/SF/SESM/methylcellulose (MC) hybrid scaffolds on skin progenitor cells in vitro. To this end, PCL/SF/SESM electrospun nanofibers containing Gel and MC were used to measure the differentiation of skin basal cells (BCCs) into keratinocyte-like cells. Physicochemical characterization of prepared nanofibers was studied using SEM, FT-IR, tensile, and water contact angle assays. BCCs viability, attachment, survival, and differentiation capacity were monitored using MTT, immunofluorescence (IF), and real-time PCR analyses. Data indicated the addition of Gel and MC into electrospun PCL/SF/SESM nanofibers increased mean diameter size and surface wettability. In contrast to MC, the addition of Gel caused a slight decrease in tensile strength value. In vitro data exhibited improved cell viability coincided with cell-to-cell connection (
p
< 0.05). IF showed the increase of keratinocyte specific marker, cytokeratin-19, in BCCs plated on PCL/SF/SESM/Gel and PCL/SF/SESM/MC scaffolds related to control cells cultured on the plastic surface. Real-time PCR analysis of the up-regulation of involucrin, keratin-14, and -5 in PCL/SF/SESM/Gel and PCL/SF/SESM/MC groups compared to matched control groups. Based on our data, these effects were significantly more in PCL/SF/SESM/MC groups compared to other groups (
p
< 0.0001). It is suggested that PCL/SF/SESM scaffold blended with Gel and MC can be used as supporting substrates for the regeneration of injured cutaneous tissue. |
---|---|
AbstractList | Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed regenerative properties of electrospun silk fibroin (SF), poly (ɛ-caprolactone) (PCL), and soluble eggshell membrane (SESM) nanofibers on human skin progenitor cells in vitro. Here, we aimed to assess the potency of electrospun PCL/SF/SESM/gelatin (Gel) and PCL/SF/SESM/methylcellulose (MC) hybrid scaffolds on skin progenitor cells in vitro. To this end, PCL/SF/SESM electrospun nanofibers containing Gel and MC were used to measure the differentiation of skin basal cells (BCCs) into keratinocyte-like cells. Physicochemical characterization of prepared nanofibers was studied using SEM, FT-IR, tensile, and water contact angle assays. BCCs viability, attachment, survival, and differentiation capacity were monitored using MTT, immunofluorescence (IF), and real-time PCR analyses. Data indicated the addition of Gel and MC into electrospun PCL/SF/SESM nanofibers increased mean diameter size and surface wettability. In contrast to MC, the addition of Gel caused a slight decrease in tensile strength value. In vitro data exhibited improved cell viability coincided with cell-to-cell connection (
p
< 0.05). IF showed the increase of keratinocyte specific marker, cytokeratin-19, in BCCs plated on PCL/SF/SESM/Gel and PCL/SF/SESM/MC scaffolds related to control cells cultured on the plastic surface. Real-time PCR analysis of the up-regulation of involucrin, keratin-14, and -5 in PCL/SF/SESM/Gel and PCL/SF/SESM/MC groups compared to matched control groups. Based on our data, these effects were significantly more in PCL/SF/SESM/MC groups compared to other groups (
p
< 0.0001). It is suggested that PCL/SF/SESM scaffold blended with Gel and MC can be used as supporting substrates for the regeneration of injured cutaneous tissue. Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed regenerative properties of electrospun silk fibroin (SF), poly (ɛ-caprolactone) (PCL), and soluble eggshell membrane (SESM) nanofibers on human skin progenitor cells in vitro. Here, we aimed to assess the potency of electrospun PCL/SF/SESM/gelatin (Gel) and PCL/SF/SESM/methylcellulose (MC) hybrid scaffolds on skin progenitor cells in vitro. To this end, PCL/SF/SESM electrospun nanofibers containing Gel and MC were used to measure the differentiation of skin basal cells (BCCs) into keratinocyte-like cells. Physicochemical characterization of prepared nanofibers was studied using SEM, FT-IR, tensile, and water contact angle assays. BCCs viability, attachment, survival, and differentiation capacity were monitored using MTT, immunofluorescence (IF), and real-time PCR analyses. Data indicated the addition of Gel and MC into electrospun PCL/SF/SESM nanofibers increased mean diameter size and surface wettability. In contrast to MC, the addition of Gel caused a slight decrease in tensile strength value. In vitro data exhibited improved cell viability coincided with cell-to-cell connection (p < 0.05). IF showed the increase of keratinocyte specific marker, cytokeratin-19, in BCCs plated on PCL/SF/SESM/Gel and PCL/SF/SESM/MC scaffolds related to control cells cultured on the plastic surface. Real-time PCR analysis of the up-regulation of involucrin, keratin-14, and -5 in PCL/SF/SESM/Gel and PCL/SF/SESM/MC groups compared to matched control groups. Based on our data, these effects were significantly more in PCL/SF/SESM/MC groups compared to other groups (p < 0.0001). It is suggested that PCL/SF/SESM scaffold blended with Gel and MC can be used as supporting substrates for the regeneration of injured cutaneous tissue. |
Author | Salehi, Roya Mohammadzadeh, Leila Rahbarghazi, Reza Mahkam, Mehrdad Jafarizad, Abbas |
Author_xml | – sequence: 1 givenname: Roya surname: Salehi fullname: Salehi, Roya organization: Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences – sequence: 2 givenname: Leila surname: Mohammadzadeh fullname: Mohammadzadeh, Leila organization: Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University – sequence: 3 givenname: Mehrdad surname: Mahkam fullname: Mahkam, Mehrdad organization: Chemistry Department, Faculty of Science, Azarbaijan Shahid Madani University – sequence: 4 givenname: Abbas surname: Jafarizad fullname: Jafarizad, Abbas organization: Department of Chemical Engineering, Sahand University of Technology – sequence: 5 givenname: Reza orcidid: 0000-0003-3864-9166 surname: Rahbarghazi fullname: Rahbarghazi, Reza email: Rezarahbardvm@gmail.com, rahbarghazir@tbzmed.ac.ir organization: Stem Cell Research Center, Tabriz University of Medical Sciences, Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences |
BookMark | eNp9kcFq3DAQhkVIIZu0L9CToJdenIwk25KOJaRNIdBLC70J2R7vKrGlrSRT9kn6upXjQiGHnAZm_m_mZ_5Lcu6DR0LeM7hmAPImMWgkVMB5BbUUqtJnZMcaySul-M9zsgPd6jIW-oJcpvQIAFpytiN_7ibscwzpuHi6x8lm529mzIfT1OM0LVNISA-nLrqBeuvD6DqMiR5jmEPGgeYD0tnmJRYweBpGelhm62m_ZOsxLIlml9KCK7FH73KIdF1c-uG3jQN9whX1oT9lrCb3hNv4LXkz2inhu3_1ivz4fPf99r56-Pbl6-2nh6rniudK1VbpQbRqEHVbD4JxIWTDNLRgFYyyg0421o6yRT2yRkPdjlwOrZAKUDeduCIft73F368FUzazS6uDzb3hkinRqFrJIv3wQvoYluiLu6IC3ipQsi0qvqn68tQUcTTH6GYbT4aBWbMyW1amZGWeszK6QOoF1Lv8_NEcrZteR8WGpnLH7zH-d_UK9Rd2065u |
CitedBy_id | crossref_primary_10_1007_s10570_024_06241_9 crossref_primary_10_3390_biomimetics8020205 |
Cites_doi | 10.1007/s13770-018-0140-z 10.1097/mat.0000000000000611 10.3144/expresspolymlett.2017.94 10.1016/j.msec.2017.07.029 10.1016/j.carbpol.2016.05.088 10.1007/s13577-021-00588-y 10.1016/j.msec.2017.08.022 10.1038/sj.jid.5700715 10.1007/s12221-017-6954-9 10.1002/jbm.b.34079 10.1039/C6TB03223K 10.1080/15583724.2014.881374 10.3390/cells2030460 10.1039/C6RA05092A 10.1016/j.msec.2015.09.102 10.1002/app.34655 10.1295/polymj.35.185 10.1016/j.jestch.2021.05.002 10.1016/j.msec.2016.05.005 10.1016/j.actbio.2007.01.002 10.1016/j.nanoen.2017.04.028 10.1089/ten.tea.2013.0645 10.1007/s12221-016-6595-4 10.1007/s13233-014-2078-x 10.1186/s13287-017-0588-0 10.1186/s41038-017-0103-y 10.1021/bm050314k 10.1007/s12257-017-0329-3 10.1002/jbm.a.36303 10.1016/j.polymdegradstab.2016.05.022 10.1007/s13233-016-4028-2 10.3233/bme-141007 10.1016/j.jiec.2016.11.014 10.1002/9781119242628.ch1 10.3389/fmats.2019.00091 10.4028/www.scientific.net/AMM.695.332 10.1134/S0965545X10040097 10.1016/j.msec.2017.04.084 10.1002/jbm.a.32504 10.1186/s13036-019-0208-x 10.1109/EMBC.2018.8513549 10.1155/2018/8973643 10.1155/2012/282736 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
DOI | 10.1007/s10570-022-04738-9 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | ProQuest Materials Science Collection AGRICOLA |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1572-882X |
EndPage | 7848 |
ExternalDocumentID | 10_1007_s10570_022_04738_9 |
GrantInformation_xml | – fundername: Tabriz University of Medical Sciences funderid: http://dx.doi.org/10.13039/501100004366 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29B 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIZAD AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 N~3 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P9N PDBOC PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TTC TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 Y6R YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z87 Z8N Z8P Z8Q ZMTXR ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7S9 L.6 |
ID | FETCH-LOGICAL-c282t-84a89d368d3464d312337519060a80f7b0b75aaf76e9f159046f27d63780e95b3 |
IEDL.DBID | BENPR |
ISSN | 0969-0239 |
IngestDate | Tue Aug 05 11:28:26 EDT 2025 Fri Jul 25 11:02:33 EDT 2025 Tue Jul 01 02:10:57 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Fri Feb 21 02:46:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Electrospun nanofibrous scaffold Skin progenitor cells Methylcellulose Maturation Gelatin Tissue engineering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c282t-84a89d368d3464d312337519060a80f7b0b75aaf76e9f159046f27d63780e95b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3864-9166 |
PQID | 2702680876 |
PQPubID | 2043866 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2718358487 proquest_journals_2702680876 crossref_primary_10_1007_s10570_022_04738_9 crossref_citationtrail_10_1007_s10570_022_04738_9 springer_journals_10_1007_s10570_022_04738_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220900 2022-09-00 20220901 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 9 year: 2022 text: 20220900 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Cellulose (London) |
PublicationTitleAbbrev | Cellulose |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Sah, Rath (CR34) 2016; 67 Chong, Phan (CR10) 2007; 3 Amiraliyan, Nouri, Kish (CR2) 2010; 52 Sundaramurthi, Krishnan, Sethuraman (CR36) 2014; 54 CR16 Clark, Ghosh, Tonnesen (CR12) 2007; 127 CR14 Lee, Kwak, Yun, Kim, Lee (CR25) 2016; 24 Isfahani, Tavanai, Morshed (CR19) 2017; 18 Levengood, Erickson, Chang, Zhang (CR26) 2017; 5 Ranjbarvan, Mahmoudifard, Kehtari, Babaie, Hamedi, Mirzaei, Soleimani, Hosseinzadeh (CR32) 2018; 64 Chen, Kang, Sukigara (CR7) 2014; 24 Bhullar, Rana, Lekesiz, Bedeloglu, Ko, Cho, Aytac, Uyar, Jun, Ramalingam (CR4) 2017; 81 Dulnik, Denis, Sajkiewicz, Kołbuk, Choińska (CR15) 2016; 130 Ghosh, Adhikary, Jana, Biswas, Sencadas, Gupta, Tudu, Mandal (CR17) 2017; 36 Thirumala, Gimble, Devireddy (CR37) 2013; 2 Wang, Jiang, He, Kang (CR40) 2017; 11 Boyce, Lalley (CR6) 2018; 6 Li, Wang, Williams, Wu, Sun, Lv, Zhu (CR27) 2016; 6 Chong, Phan, Lim, Zhang, Bay, Ramakrishna, Lim (CR11) 2015; 554 Zhuo, Liu, Gao, Wang, Hu, Cai (CR44) 2017; 81 Choi, Pant, Lee, Park, Park, Kim (CR8) 2017; 47 Hokmabad, Davaran, Aghazadeh, Alizadeh, Salehi, Ramazani (CR18) 2018; 15 CR28 Mohammadzadehmoghadam, Dong (CR31) 2019; 6 Choi, Kim, Chung, Shin (CR9) 2017; 22 Kinikoglu (CR23) 2016; 2 Ren, Wang, Sun, Yue, Zhang (CR33) 2017; 78 Khan, Salmieri, Dussault, Sharmin, Lacroix (CR21) 2012; 123 Türkkan, Atila, Akdağ, Tezcaner (CR38) 2018; 106 CR20 Baker, Banerjee, Bonin, Guthold (CR3) 2016; 59 Singh, Panda, Mund, Pramanik (CR35) 2016; 151 Mohammadzadeh, Rahbarghazi, Salehi, Mahkam (CR29) 2019; 13 Zhang, Venugopal, Huang, Lim, Ramakrishna (CR42) 2005; 6 Zhang, Wang, Huang, Su, Mo, Ikada (CR43) 2010; 93 Ali, Khatri, Oh, Kim, Kim (CR1) 2014; 22 Bonvallet, Culpepper, Bain, Schultz, Thomas, Bellis (CR5) 2014; 20 Dadras Chomachayi, Solouk, Akbari, Sadeghi, Mirahmadi, Mirzadeh (CR13) 2018; 106 Kostic, Miljojkovic, Simunovic, Vukelic, Tadic (CR24) 2022; 25 Wahab, Xu, Lee, Nam, Wei, Kim, Kim (CR39) 2016; 17 Mohammadzadeh, Mahkam, Barzegari, Karimi, Kafil, Salehi, Rahbarghazi (CR30) 2021; 34 Kim, Nam, Lee, Park (CR22) 2003; 35 Xue, Qian, Li, Yao, Yang, Sun (CR41) 2017; 8 ST Boyce (4738_CR6) 2018; 6 N Amiraliyan (4738_CR2) 2010; 52 S Kostic (4738_CR24) 2022; 25 RA Khan (4738_CR21) 2012; 123 MK Sah (4738_CR34) 2016; 67 4738_CR16 K Zhang (4738_CR43) 2010; 93 4738_CR14 L Chen (4738_CR7) 2014; 24 K Ren (4738_CR33) 2017; 78 B Singh (4738_CR35) 2016; 151 S Thirumala (4738_CR37) 2013; 2 RA Clark (4738_CR12) 2007; 127 SL Levengood (4738_CR26) 2017; 5 R Xue (4738_CR41) 2017; 8 JI Choi (4738_CR9) 2017; 22 SH Kim (4738_CR22) 2003; 35 S Mohammadzadehmoghadam (4738_CR31) 2019; 6 H Li (4738_CR27) 2016; 6 L Mohammadzadeh (4738_CR29) 2019; 13 SR Baker (4738_CR3) 2016; 59 P Ranjbarvan (4738_CR32) 2018; 64 SK Bhullar (4738_CR4) 2017; 81 B Kinikoglu (4738_CR23) 2016; 2 K Wang (4738_CR40) 2017; 11 4738_CR28 M Dadras Chomachayi (4738_CR13) 2018; 106 E Chong (4738_CR10) 2007; 3 4738_CR20 PP Bonvallet (4738_CR5) 2014; 20 JA Wahab (4738_CR39) 2016; 17 J Dulnik (4738_CR15) 2016; 130 E Chong (4738_CR11) 2015; 554 Y Zhang (4738_CR42) 2005; 6 F Zhuo (4738_CR44) 2017; 81 S Ali (4738_CR1) 2014; 22 SK Ghosh (4738_CR17) 2017; 36 L Mohammadzadeh (4738_CR30) 2021; 34 JY Lee (4738_CR25) 2016; 24 D Sundaramurthi (4738_CR36) 2014; 54 FR Isfahani (4738_CR19) 2017; 18 J Choi (4738_CR8) 2017; 47 VR Hokmabad (4738_CR18) 2018; 15 S Türkkan (4738_CR38) 2018; 106 |
References_xml | – volume: 15 start-page: 735 issue: 6 year: 2018 end-page: 750 ident: CR18 article-title: A comparison of the effects of silica and hydroxyapatite nanoparticles on poly (ε-caprolactone)-poly (ethylene glycol)-poly (ε-caprolactone)/chitosan nanofibrous scaffolds for bone tissue engineering publication-title: Tissue Eng Regen Med doi: 10.1007/s13770-018-0140-z – volume: 64 start-page: 261 issue: 2 year: 2018 end-page: 269 ident: CR32 article-title: Natural compounds for skin tissue engineering by electrospinning of nylon- publication-title: Asaio J doi: 10.1097/mat.0000000000000611 – volume: 11 start-page: 991 issue: 12 year: 2017 end-page: 1002 ident: CR40 article-title: Regiocontroll synthesis cellulose-graft-polycaprolactone copolymer (2, 3-di-O-PCL-cellulose) by a new route publication-title: Express Polym Lett doi: 10.3144/expresspolymlett.2017.94 – volume: 81 start-page: 1 year: 2017 end-page: 7 ident: CR44 article-title: Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.07.029 – volume: 151 start-page: 335 year: 2016 end-page: 347 ident: CR35 article-title: Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.05.088 – ident: CR14 – volume: 34 start-page: 1682 issue: 6 year: 2021 end-page: 1696 ident: CR30 article-title: Preparation, characterization, and antibacterial properties of hybrid nanofibrous scaffolds for cutaneous tissue engineering publication-title: Hum Cell doi: 10.1007/s13577-021-00588-y – volume: 81 start-page: 334 year: 2017 end-page: 340 ident: CR4 article-title: Design and fabrication of auxetic PCL nanofiber membranes for biomedical applications publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.08.022 – volume: 127 start-page: 1018 issue: 5 year: 2007 end-page: 1029 ident: CR12 article-title: Tissue engineering for cutaneous wounds publication-title: J Invest Dermatol doi: 10.1038/sj.jid.5700715 – ident: CR16 – volume: 18 start-page: 264 issue: 2 year: 2017 end-page: 271 ident: CR19 article-title: Release of aloe vera from electrospun aloe vera-PVA nanofibrous pad publication-title: Fibers Polym doi: 10.1007/s12221-017-6954-9 – volume: 106 start-page: 2625 issue: 7 year: 2018 end-page: 2635 ident: CR38 article-title: Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.34079 – volume: 5 start-page: 1822 issue: 9 year: 2017 end-page: 1833 ident: CR26 article-title: Chitosan–poly (caprolactone) nanofibers for skin repair publication-title: J Mater Chem B doi: 10.1039/C6TB03223K – volume: 54 start-page: 348 issue: 2 year: 2014 end-page: 376 ident: CR36 article-title: Electrospun nanofibers as scaffolds for skin tissue engineering publication-title: Polym Rev doi: 10.1080/15583724.2014.881374 – volume: 2 start-page: 460 issue: 3 year: 2013 end-page: 475 ident: CR37 article-title: Methylcellulose based thermally reversible hydrogel system for tissue engineering applications publication-title: Cells doi: 10.3390/cells2030460 – volume: 6 start-page: 50267 issue: 55 year: 2016 end-page: 50277 ident: CR27 article-title: Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials publication-title: RSC Adv doi: 10.1039/C6RA05092A – volume: 59 start-page: 203 year: 2016 end-page: 212 ident: CR3 article-title: Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2015.09.102 – volume: 123 start-page: 1690 issue: 3 year: 2012 end-page: 1697 ident: CR21 article-title: Mechanical, barrier, and interfacial properties of biodegradable composite films made of methylcellulose and poly (caprolactone) publication-title: J Appl Polym Sci doi: 10.1002/app.34655 – volume: 35 start-page: 185 issue: 2 year: 2003 ident: CR22 article-title: Silk fibroin nanofiber. Electrospinning, properties, and structure publication-title: Polym J doi: 10.1295/polymj.35.185 – volume: 25 start-page: 100998 year: 2022 ident: CR24 article-title: Uncertainty in the determination of elastic modulus by tensile testing publication-title: Eng Sci Technol Int J doi: 10.1016/j.jestch.2021.05.002 – volume: 67 start-page: 807 year: 2016 end-page: 821 ident: CR34 article-title: Soluble eggshell membrane: a natural protein to improve the properties of biomaterials used for tissue engineering applications publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2016.05.005 – volume: 3 start-page: 321 issue: 3 year: 2007 end-page: 330 ident: CR10 article-title: Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution publication-title: Acta Biomater doi: 10.1016/j.actbio.2007.01.002 – volume: 36 start-page: 166 year: 2017 end-page: 175 ident: CR17 article-title: Electrospun gelatin nanofiber based self-powered bio-e-skin for health care monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.028 – volume: 20 start-page: 2434 issue: 17–18 year: 2014 end-page: 2445 ident: CR5 article-title: Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2013.0645 – volume: 17 start-page: 1776 issue: 11 year: 2016 end-page: 1781 ident: CR39 article-title: Fabrication of silk fibroin/eggshell nanofiber membranes for facemasks publication-title: Fibers Polym doi: 10.1007/s12221-016-6595-4 – volume: 22 start-page: 562 issue: 5 year: 2014 end-page: 568 ident: CR1 article-title: Preparation and characterization of hybrid polycaprolactone/cellulose ultrafine fibers via electrospinning publication-title: Macromol Res doi: 10.1007/s13233-014-2078-x – volume: 8 start-page: 148 issue: 1 year: 2017 ident: CR41 article-title: Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells publication-title: Stem Cell Res Ther doi: 10.1186/s13287-017-0588-0 – volume: 6 start-page: 4 issue: 1 year: 2018 ident: CR6 article-title: Tissue engineering of skin and regenerative medicine for wound care publication-title: Burns Trauma doi: 10.1186/s41038-017-0103-y – volume: 6 start-page: 2583 issue: 5 year: 2005 end-page: 2589 ident: CR42 article-title: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts publication-title: Biomacromolecules doi: 10.1021/bm050314k – volume: 22 start-page: 679 issue: 6 year: 2017 end-page: 685 ident: CR9 article-title: Spirulina extract-impregnated alginate-PCL nanofiber wound dressing for skin regeneration publication-title: Biotechnol Bioprocess Eng doi: 10.1007/s12257-017-0329-3 – volume: 106 start-page: 1092 issue: 4 year: 2018 end-page: 1103 ident: CR13 article-title: Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.36303 – volume: 130 start-page: 10 year: 2016 end-page: 21 ident: CR15 article-title: Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2016.05.022 – volume: 24 start-page: 218 issue: 3 year: 2016 end-page: 225 ident: CR25 article-title: Methyl cellulose nanofibrous mat for lipase immobilization via cross-linked enzyme aggregates publication-title: Macromol Res doi: 10.1007/s13233-016-4028-2 – volume: 24 start-page: 1979 issue: 6 year: 2014 end-page: 1989 ident: CR7 article-title: Preparation and characterization of polyurethane/soluble eggshell membrane nanofibers publication-title: Biomed Mater Eng doi: 10.3233/bme-141007 – volume: 47 start-page: 41 year: 2017 end-page: 45 ident: CR8 article-title: Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2016.11.014 – volume: 2 start-page: 1 year: 2016 end-page: 20 ident: CR23 article-title: Electrospinning materials for skin tissue engineering publication-title: Int J Smart Nano Mater doi: 10.1002/9781119242628.ch1 – volume: 6 start-page: 91 year: 2019 ident: CR31 article-title: Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor publication-title: Front Mater doi: 10.3389/fmats.2019.00091 – volume: 554 start-page: 57 year: 2015 end-page: 61 ident: CR11 article-title: Evaluation of PCL/GE-based electrospun nanofibers for tissue engineering and drug delivery application publication-title: Appl Mech Mater Trans doi: 10.4028/www.scientific.net/AMM.695.332 – volume: 52 start-page: 407 issue: 4 year: 2010 end-page: 412 ident: CR2 article-title: Structural characterization and mechanical properties of electrospun silk fibroin nanofiber mats publication-title: Polym Sci A doi: 10.1134/S0965545X10040097 – volume: 78 start-page: 324 year: 2017 end-page: 332 ident: CR33 article-title: Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.04.084 – volume: 93 start-page: 984 issue: 3 year: 2010 end-page: 993 ident: CR43 article-title: Fabrication of silk fibroin blended P (LLA-CL) nanofibrous scaffolds for tissue engineering publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.32504 – ident: CR28 – volume: 13 start-page: 79 issue: 1 year: 2019 ident: CR29 article-title: A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering publication-title: J Biol Eng doi: 10.1186/s13036-019-0208-x – ident: CR20 – volume: 47 start-page: 41 year: 2017 ident: 4738_CR8 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2016.11.014 – volume: 24 start-page: 218 issue: 3 year: 2016 ident: 4738_CR25 publication-title: Macromol Res doi: 10.1007/s13233-016-4028-2 – volume: 54 start-page: 348 issue: 2 year: 2014 ident: 4738_CR36 publication-title: Polym Rev doi: 10.1080/15583724.2014.881374 – volume: 81 start-page: 1 year: 2017 ident: 4738_CR44 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.07.029 – volume: 11 start-page: 991 issue: 12 year: 2017 ident: 4738_CR40 publication-title: Express Polym Lett doi: 10.3144/expresspolymlett.2017.94 – volume: 34 start-page: 1682 issue: 6 year: 2021 ident: 4738_CR30 publication-title: Hum Cell doi: 10.1007/s13577-021-00588-y – volume: 6 start-page: 2583 issue: 5 year: 2005 ident: 4738_CR42 publication-title: Biomacromolecules doi: 10.1021/bm050314k – volume: 2 start-page: 1 year: 2016 ident: 4738_CR23 publication-title: Int J Smart Nano Mater doi: 10.1002/9781119242628.ch1 – volume: 13 start-page: 79 issue: 1 year: 2019 ident: 4738_CR29 publication-title: J Biol Eng doi: 10.1186/s13036-019-0208-x – volume: 5 start-page: 1822 issue: 9 year: 2017 ident: 4738_CR26 publication-title: J Mater Chem B doi: 10.1039/C6TB03223K – volume: 3 start-page: 321 issue: 3 year: 2007 ident: 4738_CR10 publication-title: Acta Biomater doi: 10.1016/j.actbio.2007.01.002 – volume: 25 start-page: 100998 year: 2022 ident: 4738_CR24 publication-title: Eng Sci Technol Int J doi: 10.1016/j.jestch.2021.05.002 – ident: 4738_CR16 doi: 10.1109/EMBC.2018.8513549 – volume: 130 start-page: 10 year: 2016 ident: 4738_CR15 publication-title: Polym Degrad Stab doi: 10.1016/j.polymdegradstab.2016.05.022 – volume: 22 start-page: 562 issue: 5 year: 2014 ident: 4738_CR1 publication-title: Macromol Res doi: 10.1007/s13233-014-2078-x – volume: 36 start-page: 166 year: 2017 ident: 4738_CR17 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.028 – volume: 64 start-page: 261 issue: 2 year: 2018 ident: 4738_CR32 publication-title: Asaio J doi: 10.1097/mat.0000000000000611 – volume: 17 start-page: 1776 issue: 11 year: 2016 ident: 4738_CR39 publication-title: Fibers Polym doi: 10.1007/s12221-016-6595-4 – volume: 18 start-page: 264 issue: 2 year: 2017 ident: 4738_CR19 publication-title: Fibers Polym doi: 10.1007/s12221-017-6954-9 – volume: 22 start-page: 679 issue: 6 year: 2017 ident: 4738_CR9 publication-title: Biotechnol Bioprocess Eng doi: 10.1007/s12257-017-0329-3 – volume: 127 start-page: 1018 issue: 5 year: 2007 ident: 4738_CR12 publication-title: J Invest Dermatol doi: 10.1038/sj.jid.5700715 – volume: 151 start-page: 335 year: 2016 ident: 4738_CR35 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.05.088 – volume: 93 start-page: 984 issue: 3 year: 2010 ident: 4738_CR43 publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.32504 – volume: 81 start-page: 334 year: 2017 ident: 4738_CR4 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.08.022 – volume: 78 start-page: 324 year: 2017 ident: 4738_CR33 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.04.084 – volume: 67 start-page: 807 year: 2016 ident: 4738_CR34 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2016.05.005 – volume: 20 start-page: 2434 issue: 17–18 year: 2014 ident: 4738_CR5 publication-title: Tissue Eng Part A doi: 10.1089/ten.tea.2013.0645 – ident: 4738_CR14 – volume: 2 start-page: 460 issue: 3 year: 2013 ident: 4738_CR37 publication-title: Cells doi: 10.3390/cells2030460 – volume: 6 start-page: 50267 issue: 55 year: 2016 ident: 4738_CR27 publication-title: RSC Adv doi: 10.1039/C6RA05092A – volume: 24 start-page: 1979 issue: 6 year: 2014 ident: 4738_CR7 publication-title: Biomed Mater Eng doi: 10.3233/bme-141007 – volume: 106 start-page: 1092 issue: 4 year: 2018 ident: 4738_CR13 publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.36303 – volume: 554 start-page: 57 year: 2015 ident: 4738_CR11 publication-title: Appl Mech Mater Trans doi: 10.4028/www.scientific.net/AMM.695.332 – volume: 52 start-page: 407 issue: 4 year: 2010 ident: 4738_CR2 publication-title: Polym Sci A doi: 10.1134/S0965545X10040097 – volume: 123 start-page: 1690 issue: 3 year: 2012 ident: 4738_CR21 publication-title: J Appl Polym Sci doi: 10.1002/app.34655 – ident: 4738_CR28 doi: 10.1155/2018/8973643 – volume: 8 start-page: 148 issue: 1 year: 2017 ident: 4738_CR41 publication-title: Stem Cell Res Ther doi: 10.1186/s13287-017-0588-0 – volume: 6 start-page: 4 issue: 1 year: 2018 ident: 4738_CR6 publication-title: Burns Trauma doi: 10.1186/s41038-017-0103-y – volume: 59 start-page: 203 year: 2016 ident: 4738_CR3 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2015.09.102 – ident: 4738_CR20 doi: 10.1155/2012/282736 – volume: 35 start-page: 185 issue: 2 year: 2003 ident: 4738_CR22 publication-title: Polym J doi: 10.1295/polymj.35.185 – volume: 15 start-page: 735 issue: 6 year: 2018 ident: 4738_CR18 publication-title: Tissue Eng Regen Med doi: 10.1007/s13770-018-0140-z – volume: 106 start-page: 2625 issue: 7 year: 2018 ident: 4738_CR38 publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.34079 – volume: 6 start-page: 91 year: 2019 ident: 4738_CR31 publication-title: Front Mater doi: 10.3389/fmats.2019.00091 |
SSID | ssj0009721 |
Score | 2.359332 |
Snippet | Until the present time, the development and fabrication of ideal engineered grafts for cutaneous regeneration is the subject of debate. Previously, we showed... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7837 |
SubjectTerms | Bioorganic Chemistry cell viability Cells (biology) Ceramics Chemistry Chemistry and Materials Science Composites Contact angle Diameters Differentiation egg shell fibroins fluorescent antibody technique Gelatin Glass humans Immunofluorescence Keratin keratinocytes methylcellulose Nanofibers Natural Materials Organic Chemistry Original Research Physical Chemistry Polymer Sciences quantitative polymerase chain reaction Real time Regeneration Scaffolds Silk fibroin skin (animal) Substrates Sustainable Development Tensile strength Wettability |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0Veig9VC2lYum2MhI3iOpNHNs5IgRCldpTV-IW2bFDEdtktUkO-0v6d5lxkl2KSqVe449InvH4jT3zBuDE4BFtbJZGRtiSbqt4ZExmo5m2KTfS6yIw8H37Lq_n4utNejMkhTVjtPv4JBks9aNkt5SKpKDzxIWibboDL1Py3VGL5_H5lmpXhWwrxOZZRKmbQ6rM3-f48zjaYswnz6LhtLl6C28GmMjOe7m-gxe-2odXF2N1tn14_YhI8D38vuyr2TTLrmK3Ib6t-kLFodcLupnvFnXj2c81ZWexylSoUBZhH1uGWDzvGKJA9osoPoOcWF2yULuPFR1iR193DWuDgGgEahxagRWjifF7CLtl98TNfFfVxbr10eLu3vfNBzC_uvxxcR0NJReiAn2vNtLC6MwlUrtESOESPNcShSCPS240L5XlVqXGlEr6rEQkhN51GSsnE6W5z1KbfIDdqq78IbAssbFFeKAUd0I4h66StmhOzCwuhZZuArNx5fNi4COnshiLfMukTNLKUVp5kFaeTeB0M2bZs3H8s_d0FGg-7Mwmp_w7Kjei5ASON80oPFqWfkmxDxo6RGZaTeBsVITtFM__8ej_un-EvTjoIoWsTWG3XXX-E2Kc1n4OKv0AZlr0ew priority: 102 providerName: Springer Nature |
Title | Electrospun gelatin/methylcellulose hybrid nanofibers promoted the maturation of human cutaneous tissue progenitor cells toward keratinocyte-like cells |
URI | https://link.springer.com/article/10.1007/s10570-022-04738-9 https://www.proquest.com/docview/2702680876 https://www.proquest.com/docview/2718358487 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7gE4ICggFsrKSNwgqjdfdk5oqXZbgagQYqVyiuzYKVWXZGmSw_4S_i4zjtMAEr0msSN5xjNv7Jl5AK8VumilsyRQsS7ptIoHSmU6mEudcJVaWbgOfJ_O0tN1_OE8OfcHbo1PqxxsojPUpi7ojPyI6qaIJkKk77Y_A2KNottVT6GxBxM0wRKDr8n75dnnL2PbXeEqrxCnZwGVcfqyGV88lxDpCgZjPBa07f92TSPe_OeK1Hme1UN44CEjW_QyfgR3bHUAd48HprYDuP9HU8HH8GvZM9s0265iFy7XrToioujdhk7pu03dWPZ9R5VarFIVKpdGCMi2Li_PGoaIkP2gdp9OZqwumePxY0WHONLWXcNaJywagdqHFuGa0cT43KXgsivq03xZ1cWutcHm8sr2r5_AerX8enwaePqFoMA4rA1krGRmolSaKE5jE6GPiwQCPp5yJXkpNNciUaoUqc1KREUYaZehMGkkJLdZoqOnsF_VlX0GLIt0qBEqCMFNHBuDYZPUaFrUPCxjmZopzIeVzwvfm5woMjb52FWZpJWjtHInrTybwpubMdu-M8etXx8OAs39Lm3yUaem8OrmNQqPlqVfUvwGjR6iNCmm8HZQhHGK___x-e1_fAH3Qqd7lK52CPvtdWdfIr5p9Qz25OpkBpPFybePy5lXaXy6Dhe_AdVr_Fs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcigcEBQQCwWMBCeI6k2c2DkghEqXLf04tVJvwY4dqLokS5MI7S_hX_AbmXGSBpDordckdiTPy_hNPDMP4KXGLVqbNA60MAX9reKB1qkJpsrEXCdO5b4D3-FRMj8Rn07j0zX4NdTCUFrl4BO9o7ZVTv_It6luimQiZPJu-T0g1Sg6XR0kNDpY7LvVDwzZ6rd7H9C-r8Jwtnu8Mw96VYEgx_CiCZTQKrVRomwkEmEjdN2RRB7DE64VL6ThRsZaFzJxaYGbPQaQRShtEknFXRqbCOe9ATdFFKX0RanZx7HJr_R1XhgVpAEVjfZFOn2pXkwSLxj6cSHJyfy9EY7s9p8DWb_Pze7CnZ6gsvcdou7Bmis3YWNn0IXbhNt_tDC8Dz93Ox2detmW7IvPrCu3SZZ6taAzgXZR1Y59XVFdGCt1iVA2SDjZ0mcBOsuQf7Jv1FzUI4RVBfOqgSxvkbW6qq1Z46FBIxDr6H8uGE2M133CLzunrtBnZZWvGhcszs5dd_sBnFyLWR7CelmV7hGwNDKhQWIiJbdCWItBmjLoyPQ0LIRK7ASmw8pned8JnQQ5FtnYw5mslaG1Mm-tLJ3A68sxy64PyJVPbw0GzXqfUGcjgifw4vI2Go-WpVtSfAZdLHJCJSfwZgDCOMX_3_j46jc-h4358eFBdrB3tP8EboUeh5QotwXrzUXrniKzaswzD2cGn6_7-_kNF40x2w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkXgcEBQQCwWMxA2i9SaO7Ryr0lV5VRxYqbfIjh2oujirbnLYX8LfZcZJugsCJK7xI5JnPPPZnvkG4JVBF21skSdG2Jpuq3hiTGGTmbY5N9LrKjLwfTqVJwvx_iw_28nij9Hu45Nkn9NALE2hna5cPd1JfMupYAoepLhQtGWvww00xzPS60V6uKXdVTHzCnF6kVAa55A28-c5fnVNW7z52xNp9Dzze3B3gIzssJfxfbjmwz7cOhorte3DnR1SwQfw47ivbLNedYF9jbFuYUqFojdLuqXvls3as28bytRiwQRULosQkK1iXJ53DBEh-050n1FmrKlZrOPHqg5xpG-6NWujsGgEah9ahEtGE-P3GILLLoin-Tw01ab1yfL8wvfND2ExP_5ydJIM5ReSCs9hbaKF0YXLpHaZkMJl6OMyhYCPS240r5XlVuXG1Er6okZUhCftOlVOZkpzX-Q2ewR7oQn-MbAis6lFqKAUd0I4h8cmbdG0mFlaCy3dBGbjypfVwE1OJTKW5ZZVmaRVorTKKK2ymMDrqzGrnpnjn70PRoGWwy5dl5SLR6VHlJzAy6tmFB4tS7-k2AeNHqI0rSbwZlSE7RR__-OT_-v-Am5-fjsvP747_fAUbqdRLSmS7QD22svOP0Po09rnUbt_AjAV-6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrospun+gelatin%2Fmethylcellulose+hybrid+nanofibers+promoted+the+maturation+of+human+cutaneous+tissue+progenitor+cells+toward+keratinocyte-like+cells&rft.jtitle=Cellulose+%28London%29&rft.au=Salehi%2C+Roya&rft.au=Mohammadzadeh%2C+Leila&rft.au=Mahkam%2C+Mehrdad&rft.au=Jafarizad%2C+Abbas&rft.date=2022-09-01&rft.issn=0969-0239&rft.eissn=1572-882X&rft.volume=29&rft.issue=14&rft.spage=7837&rft.epage=7848&rft_id=info:doi/10.1007%2Fs10570-022-04738-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10570_022_04738_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-0239&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-0239&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-0239&client=summon |