Pedo-transfer functions of the soil water characteristic curves of the vadose zone in a typical alluvial plain area in the lower reaches of the Yellow River using machine learning methods
The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil mechanics. However, it is difficult to effectively obtain a large number of SWCCs because of the cumbersome and expensive determination experim...
Saved in:
Published in | Environmental monitoring and assessment Vol. 194; no. 12; p. 850 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil mechanics. However, it is difficult to effectively obtain a large number of SWCCs because of the cumbersome and expensive determination experiments for SWCCs. Pedo-transfer functions (PTFs) established using soil physicochemical properties have become an effective method for solving this problem. However, due to the limitations of the establishment methods and the wide spatial variability of soil properties, it is still difficult to establish PTFs in a specific region. In order to establish the PTFs of SWCCs for the alluvial plain area of the lower reaches of the Yellow River, 233 soil samples were collected from the vadose zone in a typical area. These data were used as the data sources, and eight variables including clay, silt content, fractal dimension, bulk density, total porosity, pH value, organic matter content, and electrical conductivity were used as the influencing factors. By applying and comparing three machine learning algorithms, the PTFs of the SWCCs based on the random forest algorithm were obtained. Based on the Gini index of the random forest, the insensitive factors were eliminated and the optimal variable input mode was constructed. Based on the verification, there was little difference between the predicted water content and the measured water content. The determination coefficient
R
2
is 0.9308; the root mean square error (
RMSE
) is 0.0447; and the mean relative error (
MRE
) is 22.40%. |
---|---|
AbstractList | The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil mechanics. However, it is difficult to effectively obtain a large number of SWCCs because of the cumbersome and expensive determination experiments for SWCCs. Pedo-transfer functions (PTFs) established using soil physicochemical properties have become an effective method for solving this problem. However, due to the limitations of the establishment methods and the wide spatial variability of soil properties, it is still difficult to establish PTFs in a specific region. In order to establish the PTFs of SWCCs for the alluvial plain area of the lower reaches of the Yellow River, 233 soil samples were collected from the vadose zone in a typical area. These data were used as the data sources, and eight variables including clay, silt content, fractal dimension, bulk density, total porosity, pH value, organic matter content, and electrical conductivity were used as the influencing factors. By applying and comparing three machine learning algorithms, the PTFs of the SWCCs based on the random forest algorithm were obtained. Based on the Gini index of the random forest, the insensitive factors were eliminated and the optimal variable input mode was constructed. Based on the verification, there was little difference between the predicted water content and the measured water content. The determination coefficient
R
2
is 0.9308; the root mean square error (
RMSE
) is 0.0447; and the mean relative error (
MRE
) is 22.40%. The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil mechanics. However, it is difficult to effectively obtain a large number of SWCCs because of the cumbersome and expensive determination experiments for SWCCs. Pedo-transfer functions (PTFs) established using soil physicochemical properties have become an effective method for solving this problem. However, due to the limitations of the establishment methods and the wide spatial variability of soil properties, it is still difficult to establish PTFs in a specific region. In order to establish the PTFs of SWCCs for the alluvial plain area of the lower reaches of the Yellow River, 233 soil samples were collected from the vadose zone in a typical area. These data were used as the data sources, and eight variables including clay, silt content, fractal dimension, bulk density, total porosity, pH value, organic matter content, and electrical conductivity were used as the influencing factors. By applying and comparing three machine learning algorithms, the PTFs of the SWCCs based on the random forest algorithm were obtained. Based on the Gini index of the random forest, the insensitive factors were eliminated and the optimal variable input mode was constructed. Based on the verification, there was little difference between the predicted water content and the measured water content. The determination coefficient R2 is 0.9308; the root mean square error (RMSE) is 0.0447; and the mean relative error (MRE) is 22.40%. |
ArticleNumber | 850 |
Author | Yuan, Qiaoling Zhan, Jiang Zhao, Guizhang Yu, Xiaopeng Li, Zhiping |
Author_xml | – sequence: 1 givenname: Jiang surname: Zhan fullname: Zhan, Jiang organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Yellow River Engineering Consulting Co – sequence: 2 givenname: Zhiping orcidid: 0000-0002-1588-5919 surname: Li fullname: Li, Zhiping email: lizhiping@ncwu.edu.cn organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Collaborative Innovation Center for Efficient Utilization of Water Resources in Henan Province – sequence: 3 givenname: Xiaopeng surname: Yu fullname: Yu, Xiaopeng organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power – sequence: 4 givenname: Guizhang surname: Zhao fullname: Zhao, Guizhang organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power – sequence: 5 givenname: Qiaoling surname: Yuan fullname: Yuan, Qiaoling organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power |
BookMark | eNp9kctqHDEQRUWwIWM7P5CVIJtsFOvR6m4tg8nDYEgIySIroVFXe2Q00kTqHj9-LT_nak-IIYusqqg693LhnpCjlBMQ8lrwd4Lz7rwK3raCcSmZ4Mp07O4FWQndKSaNNkdkxUXbsVa15iU5qfWGc266xqzI768wZDYVl-oIhY5z8lPIqdI80mkDtOYQ6a2b8Oc3rjiPW6hT8NTPZQ9_ub0bcgX6gLFoSNTR6X4XvIvUxTjvAy676JZHAbcAiybmW7TFg988G_2EiHf6LezxN9eQrukWgYC-EVxJTweYNnmoZ-R4dLHCqz_zlPz4-OH7xWd29eXT5cX7K-ZlLyfWctCN8Y3welRSSz22jeESnIB133MjTN97NcBa-_Wg1npQQvlejS30jdOdUafk7cF3V_KvGepkt6F6zOkS5Lla2UmJGs57RN_8g97kuSRMt1DCGIPlICUPlC-51gKj3ZWwdeXeCm6XPu2hT4t92qc-7R2K1EFUEU7XUJ6t_6N6BJ4LqMQ |
CitedBy_id | crossref_primary_10_1016_j_jobe_2023_108335 |
Cites_doi | 10.1016/S0016-7061(02)00105-2 10.1097/00010694-198912000-00001 10.1007/978-1-4419-0213-9_54 10.11841/j.issn.1007-4333.2010.06.017 10.11821/dlxb201501004 10.1134/S106422931603008X 10.1007/s11269-006-9125-0 10.7679/j.issn.2095-1353.2013.163 10.1002/2016WR019533 10.1002/hyp.13216 10.1016/j.advwatres.2019.05.005 10.3390/rs70607029 10.1023/A:1010933404324 10.1016/0167-1987(96)81397-3 10.1134/S106422931930001X 10.7540/j.ynu.20150781 10.1016/j.geoderma.2006.11.018 10.2136/sssaj1980.03615995004400050002x 10.13243/j.cnki.slxb.2012.03.011 10.1007/s12145-020-00503-3 10.3969/j.issn.1002-6819.2014.20.013 10.3321/j.issn:0559-9350.2004.02.012 10.3969/j.issn.1007-4929.2019.01.022 10.11766/trxb200408030403 10.1016/j.cageo.2019.104320 10.13448/j.cnki.jalre.2020.30 10.1007/978-1-4612-3144-8_5 10.3321/j.issn:0375-5444.2003.02.012 10.13758/j.cnki.tr.2010.03.017 10.3969/j.issn.1007-3116.2011.03.006 10.11975/j.issn.1002-6819.2019.10.008 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 3V. 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO F1W FR3 FRNLG FYUFA F~G GHDGH GNUQQ H97 HCIFZ K60 K6~ K9. KL. L.- L.G M0C M0S M1P M2P M7N P64 PATMY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7X8 |
DOI | 10.1007/s10661-022-10397-x |
DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Business Premium Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ABI/INFORM Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts Aqualine ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced Oceanic Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Environmental Sciences |
EISSN | 1573-2959 |
EndPage | 850 |
ExternalDocumentID | 10_1007_s10661_022_10397_x |
GeographicLocations | Yellow River |
GeographicLocations_xml | – name: Yellow River |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41972261 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --- -5A -5G -5~ -BR -EM -XX -Y2 -~C ..I .86 .VR 06D 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABBXA ABDZT ABECU ABEOS ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG ESTFP F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M1P M2P M4Y MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P PATMY PF0 PQBIZ PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZCA ZMTXR ~02 ~A9 ~EX ~KM 0R~ AACDK AAEOY AAHBH AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU ALIPV CITATION H13 PQBZA 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7XB 8FD 8FK C1K F1W FR3 H97 K9. KL. L.- L.G M7N P64 PQEST PQUKI Q9U SOI 7X8 AAYZH |
ID | FETCH-LOGICAL-c282t-60e549c41c5f32525f64902ea1eb88091988c3deb5cbd3b5d313c83f6e84a5793 |
IEDL.DBID | BENPR |
ISSN | 0167-6369 |
IngestDate | Fri Oct 25 00:50:01 EDT 2024 Thu Oct 10 21:00:00 EDT 2024 Thu Sep 12 19:08:19 EDT 2024 Sat Dec 16 12:06:02 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Lower reaches of the Yellow River Soil water characteristic curve Random forest Pedo-transfer function Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c282t-60e549c41c5f32525f64902ea1eb88091988c3deb5cbd3b5d313c83f6e84a5793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1588-5919 |
PQID | 2721999397 |
PQPubID | 54151 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2722313008 proquest_journals_2721999397 crossref_primary_10_1007_s10661_022_10397_x springer_journals_10_1007_s10661_022_10397_x |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Humans and the Environment |
PublicationTitle | Environmental monitoring and assessment |
PublicationTitleAbbrev | Environ Monit Assess |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Zhou, Z. (2016). Machine learning. Tsinghua University Press Ma, Y., Li, S., Pan, X. (2015). A review on development of the Yellow River alluvial fan. Acta Geograph Sin, 70(1):49-62. https://doi.org/10.11821/dlxb201501004 HodnettMTomasellaJMarked differences between van Genuchten soil water-retention parameters for temperate and tropical soils a new water-retention pedo-transfer functions developed for tropical soilsGeoderma20021081551801:CAS:528:DC%2BD38XkvFGqt74%3D10.1016/S0016-7061(02)00105-2 Tong, C., Jin, M., Wang, X., Yang, X., & Liu, H. (2011). Chemical characteristics of groundwater in Lankao section along abandoned area of Yellow River. Geotechnical Investigation & Surveying,39(12), 36–41. https://d.wanfangdata.com.cn/periodical/gckc201112009 YangSHuangYApplication of support vector machine based on time series for soil moisture and nitratenitrogen content predictionInternational Conference on Computer and Computing Technologies in Agriculture200810.1007/978-1-4419-0213-9_54 LiHXLiuJLZhuANZhangJHComparison study of soil pedo-transfer functions in estimating saturated soil hydraulic conductivity at Tianranwenyanqu BasinSoils20104243844510.13758/j.cnki.tr.2010.03.017 Wang, G., Zhou, S., & Zhao, Q. (2005). Volume fractal dimension of soil particles and its applications to land use. Acta Pedologica Sinica, 42(4), 19–24. https://doi.org/10.11766/trxb200408030403 Achieng, K. O. (2019). Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models. Computers & Geosciences, 133, 104320. https://doi.org/10.1016/j.cageo.2019.104320 SedaghatABayatHSineganiASEstimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soilsEurasian Soil Science20164933473571:CAS:528:DC%2BC28XotVyqsL4%3D10.1134/S106422931603008X WangZLChangGYJiangQXFuQChenWJConstructing pedo-transfer functions based on grey relational and nonlinear programming to estimate hydraulic parameters in black soilTransactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE)20193510606810.11975/j.issn.1002-6819.2019.10.008 LiuJXuSLiuHA review of development in estimating soil water retention characteristics from soil dataJournal of Hydraulic Engineering20042687610.3321/j.issn:0559-9350.2004.02.012 LiSJiWChenSPengJZhouYShiZPotential of VIS-NIR-SWIR spectroscopy from the Chinese soil spectral library for assessment of nitrogen fertilization rates in the paddy-rice region ChinaRemote Sensor201577029704310.3390/rs70607029 BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324 Zhou, A., Yin, C., & Yuan, Y. (2016). A permeability coefficient prediction model of sand soil based on principal component analysis and support vector machine. Journal of Yunnan University-Natural Sciences Edition, 38(5), 742-749. https://doi.org/10.7540/j.ynu.20150781 LiXUsing “random forest” for classification and regressionChinese Journal of Entomology20135041190119710.7679/j.issn.2095-1353.2013.163 LiuZShuQWangZApplying pedo-transfer functions to simulate spatial heterogeneity of cinnamon soil water retention characteristics in western Liaoning ProvinceWater Resources Management2007211751176210.1007/s11269-006-9125-0 Qin, W., & Fan, G. (2020a). Estimating parameters for the van Genuchten model from soil physical-chemical properties of undisturbed loess-soil. Earth Science Information. https://doi.org/10.1007/s12145-020-00503-3 Li, B., & Fan, G. (2019). Prediction model of soil moisture characteristic curve based on support vector machine. Water Saving Irrigation, (1), 108–117. https://doi.org/10.3969/j.issn.1007-4929.2019.01.022 QinWFanGSPedo-transfer functions of undisturbed loess Van Genuchten model based on particle swarm optimization algorithm and support vector machineJournal of Arid Land Resources and Environment2020341113313710.13448/j.cnki.jalre.2020.30 van GenuchtenMA closed-form equation for predicting the hydraulic conductivity of unsaturated soilsSoil Science Society of America Journal198044589289810.2136/sssaj1980.03615995004400050002x Qiao, J., Zhu, Y., Jia, X., Huang, L., & Shao, M. A. (2018). Development of pedotransfer functions for soil hydraulic properties in the critical zone on the Loess Plateau, China. Hydrological Processes, 32(18), 2915–2921. https://doi.org/10.1002/hyp.13216 Vapnik, V. N. (1998). Statistical learning theory. Wiley-interscience LamorskiKŠimůnekJSławińskiCLamorskaJAn estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning methodWater Resources Research20175321539155210.1002/2016WR019533 Ministry of Agriculture of the People's Republic of China. (2006). Agricultural Industry Standard (NY/T1121-2006). NieCHuKShaoYChenWComparison of predicting results of soil hydraulic parameters by SVR and rosetta modelsJournal of China Agricultural University201015610210710.11841/j.issn.1007-4333.2010.06.017 YaoJLiuTWangTT X,Development and evaluation of pedo-transfer functions of soil water characteristic curves in Horqin sandy landTransations of the Chinese Society of Agricultural Engineering201430209810810.3969/j.issn.1002-6819.2014.20.013 Li, Y., Chen, D., White, R. E., Zhu, A., & Zhang, J. (2007). Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions. Geoderma, 138(3-4), 261-271. https://doi.org/10.1016/j.geoderma.2006.11.018 GalvezJFPollaccoJ-A-PLassabatereLAngulo-JaramilloRCarrickSA general Beerkan estimation of soil transfer parameters method predicting hydraulic parameters of any unimodal water retention and hydraulic conductivity curves: Application to the Kosugi soil hydraulic model without using particle size distribution dataAdvance Water Resources201912911813010.1016/j.advwatres.2019.05.005 Ministry of Water Resources of the People's Republic of China. (2019). Standards for Geotechnical Testing Methods (GB/T 50123-2019). RawlsWJGishTJBrakensiekDLEstimating soil water retention from soil physical properties and characteristicsAdvances in Soil Science1991171621322510.1007/978-1-4612-3144-8_5 PerfectEKayBDApplications of fractals in soil and tillage research: a reviewSoil and Tillage Research1995361-212010.1016/0167-1987(96)81397-3 AmanabadiSVaziriniaMVereeckenHVakilianKAMohammadiMHComparative study of statistical, numerical and machine learning-based pedotransfer functions of water retention curve with particle size distribution dataEurasian Soil Science201952121555157110.1134/S106422931930001X XuJSunJSedimentation rate change in the Lower Yellow River in the past 2300 yearsActa Geograph Sins200358224725410.3321/j.issn:0375-5444.2003.02.012 VereeckenHMaesJFeyenJDariusPEstimating the soil moisture retention characteristic from texture, bulk density and carbon contentSoil Science1989148638940310.1097/00010694-198912000-00001 FangKWuJZhuJXieBA review of technologies on random forestsStatistics & Information Forum2011263323810.3969/j.issn.1007-3116.2011.03.006 LiaoKHXuSHWuJCShiXQA method based on principal component analysis and artificial neural network for estimating soil hydraulic propertiesJournal of Hydraulic Engineering201243333333810.13243/j.cnki.slxb.2012.03.011 E Perfect (10397_CR20) 1995; 36 10397_CR22 K Lamorski (10397_CR7) 2017; 53 10397_CR21 HX Li (10397_CR9) 2010; 42 J Xu (10397_CR32) 2003; 58 H Vereecken (10397_CR29) 1989; 148 10397_CR1 10397_CR18 C Nie (10397_CR19) 2010; 15 10397_CR17 10397_CR16 10397_CR8 W Qin (10397_CR23) 2020; 34 S Yang (10397_CR34) 2008 L Breiman (10397_CR3) 2001; 45 J Yao (10397_CR33) 2014; 30 Z Liu (10397_CR15) 2007; 21 X Li (10397_CR11) 2013; 50 JF Galvez (10397_CR5) 2019; 129 ZL Wang (10397_CR31) 2019; 35 10397_CR36 10397_CR35 10397_CR12 J Liu (10397_CR14) 2004; 2 10397_CR30 A Sedaghat (10397_CR25) 2016; 49 S Amanabadi (10397_CR2) 2019; 52 10397_CR28 M Hodnett (10397_CR6) 2002; 108 10397_CR26 S Li (10397_CR10) 2015; 7 K Fang (10397_CR4) 2011; 26 KH Liao (10397_CR13) 2012; 43 M van Genuchten (10397_CR27) 1980; 44 WJ Rawls (10397_CR24) 1991; 17 |
References_xml | – volume: 108 start-page: 155 year: 2002 ident: 10397_CR6 publication-title: Geoderma doi: 10.1016/S0016-7061(02)00105-2 contributor: fullname: M Hodnett – volume: 148 start-page: 389 issue: 6 year: 1989 ident: 10397_CR29 publication-title: Soil Science doi: 10.1097/00010694-198912000-00001 contributor: fullname: H Vereecken – year: 2008 ident: 10397_CR34 publication-title: International Conference on Computer and Computing Technologies in Agriculture doi: 10.1007/978-1-4419-0213-9_54 contributor: fullname: S Yang – ident: 10397_CR18 – volume: 15 start-page: 102 issue: 6 year: 2010 ident: 10397_CR19 publication-title: Journal of China Agricultural University doi: 10.11841/j.issn.1007-4333.2010.06.017 contributor: fullname: C Nie – ident: 10397_CR16 doi: 10.11821/dlxb201501004 – volume: 49 start-page: 347 issue: 3 year: 2016 ident: 10397_CR25 publication-title: Eurasian Soil Science doi: 10.1134/S106422931603008X contributor: fullname: A Sedaghat – volume: 21 start-page: 1751 year: 2007 ident: 10397_CR15 publication-title: Water Resources Management doi: 10.1007/s11269-006-9125-0 contributor: fullname: Z Liu – volume: 50 start-page: 1190 issue: 4 year: 2013 ident: 10397_CR11 publication-title: Chinese Journal of Entomology doi: 10.7679/j.issn.2095-1353.2013.163 contributor: fullname: X Li – volume: 53 start-page: 1539 issue: 2 year: 2017 ident: 10397_CR7 publication-title: Water Resources Research doi: 10.1002/2016WR019533 contributor: fullname: K Lamorski – ident: 10397_CR21 doi: 10.1002/hyp.13216 – ident: 10397_CR26 – ident: 10397_CR28 – volume: 129 start-page: 118 year: 2019 ident: 10397_CR5 publication-title: Advance Water Resources doi: 10.1016/j.advwatres.2019.05.005 contributor: fullname: JF Galvez – volume: 7 start-page: 7029 year: 2015 ident: 10397_CR10 publication-title: Remote Sensor doi: 10.3390/rs70607029 contributor: fullname: S Li – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10397_CR3 publication-title: Machine Learning doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – volume: 36 start-page: 1 issue: 1-2 year: 1995 ident: 10397_CR20 publication-title: Soil and Tillage Research doi: 10.1016/0167-1987(96)81397-3 contributor: fullname: E Perfect – volume: 52 start-page: 1555 issue: 12 year: 2019 ident: 10397_CR2 publication-title: Eurasian Soil Science doi: 10.1134/S106422931930001X contributor: fullname: S Amanabadi – ident: 10397_CR35 doi: 10.7540/j.ynu.20150781 – ident: 10397_CR12 doi: 10.1016/j.geoderma.2006.11.018 – ident: 10397_CR17 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 10397_CR27 publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj1980.03615995004400050002x contributor: fullname: M van Genuchten – volume: 43 start-page: 333 issue: 3 year: 2012 ident: 10397_CR13 publication-title: Journal of Hydraulic Engineering doi: 10.13243/j.cnki.slxb.2012.03.011 contributor: fullname: KH Liao – ident: 10397_CR22 doi: 10.1007/s12145-020-00503-3 – volume: 30 start-page: 98 issue: 20 year: 2014 ident: 10397_CR33 publication-title: Transations of the Chinese Society of Agricultural Engineering doi: 10.3969/j.issn.1002-6819.2014.20.013 contributor: fullname: J Yao – ident: 10397_CR36 – volume: 2 start-page: 68 year: 2004 ident: 10397_CR14 publication-title: Journal of Hydraulic Engineering doi: 10.3321/j.issn:0559-9350.2004.02.012 contributor: fullname: J Liu – ident: 10397_CR8 doi: 10.3969/j.issn.1007-4929.2019.01.022 – ident: 10397_CR30 doi: 10.11766/trxb200408030403 – ident: 10397_CR1 doi: 10.1016/j.cageo.2019.104320 – volume: 34 start-page: 133 issue: 11 year: 2020 ident: 10397_CR23 publication-title: Journal of Arid Land Resources and Environment doi: 10.13448/j.cnki.jalre.2020.30 contributor: fullname: W Qin – volume: 17 start-page: 213 issue: 16 year: 1991 ident: 10397_CR24 publication-title: Advances in Soil Science doi: 10.1007/978-1-4612-3144-8_5 contributor: fullname: WJ Rawls – volume: 58 start-page: 247 issue: 2 year: 2003 ident: 10397_CR32 publication-title: Acta Geograph Sins doi: 10.3321/j.issn:0375-5444.2003.02.012 contributor: fullname: J Xu – volume: 42 start-page: 438 year: 2010 ident: 10397_CR9 publication-title: Soils doi: 10.13758/j.cnki.tr.2010.03.017 contributor: fullname: HX Li – volume: 26 start-page: 32 issue: 3 year: 2011 ident: 10397_CR4 publication-title: Statistics & Information Forum doi: 10.3969/j.issn.1007-3116.2011.03.006 contributor: fullname: K Fang – volume: 35 start-page: 60 issue: 10 year: 2019 ident: 10397_CR31 publication-title: Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) doi: 10.11975/j.issn.1002-6819.2019.10.008 contributor: fullname: ZL Wang |
SSID | ssj0009749 |
Score | 2.4064262 |
Snippet | The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 850 |
SubjectTerms | Accuracy Agricultural management Agricultural production Algorithms Alluvial deposits Alluvial plains Artificial intelligence Atmospheric Protection/Air Quality Control/Air Pollution Bulk density Dimensions Earth and Environmental Science Ecology Ecotoxicology Electrical conductivity Electrical resistivity Environment Environmental Management Environmental monitoring Environmental science Floods Fractal geometry Hydraulics Hydrologic cycle Hydrological cycle Hydrology Learning algorithms Machine learning Methods Moisture content Monitoring/Environmental Analysis Organic matter Physicochemical processes Physicochemical properties Porosity Rivers Root-mean-square errors Soil mechanics Soil porosity Soil properties Soil water Spatial variability Spatial variations Transfer functions Unsaturated soils Vadose water Water content Water management |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEF6kItSHotcWT6uM4JtduGQ3vx6LXCk-lCIe1Kewu5lIISZHkrva_mv-c87s5S6t6IPPO9kQZnbn28w33wrxoUClWfhcJsag1C7VMpuhktY6a3WgEZ1n-V7GFwv9-Tq6Hvu4Pdl9W5H0G_WDXjdKJZLJ51y9TCQBx6cEHjTzuBbh2ai0m2wwLwt6xyrOhk6Zv8_xOBuNEPOPqqhPNucvxMGAEuFs49aX4gnWE_Fs7hWm7ybi-QMVwYk4no_NavTQsFq7Q_HrCotG9h6aYgucwnyUQVMC4T7ompsKbglstuAe6TaDW7Vr3NmtTdF0CPdNjXBTg4H-bsm-BVNVqzUFMCwrwwMEQNmAn6n49jVovV70bqJvXOm5hS_MBQFm3H-HH57MSfbDLxrYXGndHYnF-fzrpws5XNYgHZ3aehnPkI6aTgcuKlUYhVEZ62wWognQ0h6RBVmaOlWgjZwtlI0KFSiXqjLGVJuIdoljsVfTd7wSkBTczmtSQ2BMO5NaOifa0mUENcq0TOxUfNw6LV9uNDnyUX2ZXZyTi3Pv4vznVJxs_ZoP67PLQzr4EjQmg6l4vxumlcXlElNjs_I2BH4VgaSpON3GwzjFv9_4-v_M34j90Ickc2ROxF7frvAtIZ3evvOR_Rs8U_mn priority: 102 providerName: Springer Nature |
Title | Pedo-transfer functions of the soil water characteristic curves of the vadose zone in a typical alluvial plain area in the lower reaches of the Yellow River using machine learning methods |
URI | https://link.springer.com/article/10.1007/s10661-022-10397-x https://www.proquest.com/docview/2721999397 https://search.proquest.com/docview/2722313008 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY-wIPCAYThVEdEm9g0cTO1xMqU8cE0jRNVOqeIttx0KTQlCTtBv8a_xx3rtswJHjJQ3yxFd3Z9zvfF2OvCyskFT7niVKWS5NKnk2s4FobrWUgrTUuyvc8PpvLT4to4S_cWh9WuTsT3UFd1IbuyN-FaKogmEH1-X71nVPXKPKu-hYaB2wYoqUQDtjww-z84rIvu5tsATBV945FnPm0GZ88h7qJUzQ7uUMTfntXNfV48y8XqdM8p4_YQw8ZYbrl8WN2zy4P2YM_CgkesqNZn6-GpH7Dtk_Yrwtb1Lxz6NQ2QFrMCRrUJSD0g7a-ruAG8WYD5k7pZjDrZmP3dBtV1K2Fn_XSwvUSFHQ_VsReUFW13qAMw6pSNIAYlAjom4oasEHjSkbvJ7oiZ88NXFI4CFDQ_Vf45uI5kd7f0sC2q3X7lM1PZ19Ozrjv18ANGm4djycWrU0jAxOVIozCqIxlNgmtCqzGYyILsjQ1orA6MroQOipEIEwqytimUkV4UByxwRL_4xmDpKCMXpUqxGPSqFSjqahLkyHaKNMy0SP2ZseqfLUty5H3BZiJsTkyNneMzW9H7HjHzdxv0TbvBWrEXu2HcXORx0Qtbb12NIh_BeKkEXu7k4J-in-v-Pz_K75g90MneBQWc8wGXbO2LxHcdHrMDpJFgs_0JBiz4fTj1efZ2Es1vp2H098hi_9p |
link.rule.ids | 315,783,787,12070,12237,21402,27938,27939,31733,31734,33280,33281,33758,33759,41095,41537,42164,42606,43324,43593,43819,52125,52248,74081,74350,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgPQAHRAsVC4VOpd7AYhM7XyeEUKstlKqqWmk5RbbjVJVCsiTZbeGv8eeY8Xo3FAnOntiKZux59sy8YeygsEIS8TlPlLJcmlTybGwF19poLQNprXFZvqfx5FJ-mkZT_-DW-bTK1ZnoDuqiMfRG_i7EqwqCGXSf72ffOXWNouiqb6Fxn20SDxdx5yfTZCDdTZbwl7i9YxFnvmjGl86hZ-KUy07B0ITf3nVMA9r8K0Dq_M7RE_bYA0b4sNTwFrtn62326A8awW22czhUq6Go367dU_brzBYN7x02tS2QD3NmBk0JCPyga64ruEG02YK5Q9wMZt4u7FpuoYqms_CzqS1c16Cg_zEj5YKqqvkCLRhmlaIBRKAkQN9U1H4NWkcYvZ7oK4V6buCckkGAUu6v4JvL5kR5_0YDy57W3TN2eXR48XHCfbcGbvDa1vN4bPGuaWRgolKEURiVsczGoVWB1XhIZEGWpkYUVkdGF0JHhQiESUUZ21SqCI-JHbZR4388Z5AUVM-rUoVoTBqVarwo6tJkiDXKtEz0iL1ZqSqfLUk58oF-mRSbo2Jzp9j8dsR2V9rM_Qbt8sGcRmx_PYxbi-IlqrbN3Mkg-hWIkkbs7coKhin-veKL_6-4xx5MLr6c5CfHp59fsoehM0JKkNllG307t68Q5vT6tbPl3y1E_MM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKKyE4IChULJQylXoDq5vYeZ0Qol2Vh6oKUWk5RbbjVJVCsiTZbeGv8eeY8Xo3bSU4e2IrmrHns-ebGcYOCiskFT7niVKWS5NKno2t4FobrWUgrTWO5Xsan5zLT9No6vlPnadVrs5Ed1AXjaE38sMQryoIZtB9HpaeFnF2NHk3-8mpgxRFWn07jXtsK5Ho6NC2k2kyFOBNllCY6nzHIs58Ao1Po0MvxYnXToHRhF_fdlID8rwTLHU-aPKYPfLgEd4vtf2Ebdh6mz28UVJwm-0cD5lrKOq3bveU_TmzRcN7h1NtC-TPnMlBUwKCQOiaywquEHm2YG4VcQYzbxd2LbdQRdNZ-N3UFi5rUND_mpGiQVXVfIHWDLNK0QCiURKgbypqxQatKx69nug7hX2u4CsRQ4Do9xfwwzE7Ud6_18Cyv3X3jJ1Pjr99OOG-cwM3eIXreTy2eO80MjBRKcIojMpYZuPQqsBqPDCyIEtTIwqrI6MLoaNCBMKkooxtKlWER8YO26zxP54zSArK7VWpQmQmjUo1Xhp1aTLEHWVaJnrE3qxUlc-WBTryoRQzKTZHxeZOsfn1iO2utJn7zdrlg2mN2P56GLcZxU5UbZu5k0EkLBAxjdjblRUMU_x7xRf_X_E1u49mnH_5ePr5JXsQOhskrswu2-zbuX2FiKfXe86U_wLypAEH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pedo-transfer+functions+of+the+soil+water+characteristic+curves+of+the+vadose+zone+in+a+typical+alluvial+plain+area+in+the+lower+reaches+of+the+Yellow+River+using+machine+learning+methods&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Zhan%2C+Jiang&rft.au=Li%2C+Zhiping&rft.au=Yu%2C+Xiaopeng&rft.au=Zhao%2C+Guizhang&rft.date=2022-12-01&rft.eissn=1573-2959&rft.volume=194&rft.issue=12&rft.spage=850&rft.epage=850&rft_id=info:doi/10.1007%2Fs10661-022-10397-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon |