Pedo-transfer functions of the soil water characteristic curves of the vadose zone in a typical alluvial plain area in the lower reaches of the Yellow River using machine learning methods

The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil mechanics. However, it is difficult to effectively obtain a large number of SWCCs because of the cumbersome and expensive determination experim...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental monitoring and assessment Vol. 194; no. 12; p. 850
Main Authors Zhan, Jiang, Li, Zhiping, Yu, Xiaopeng, Zhao, Guizhang, Yuan, Qiaoling
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil mechanics. However, it is difficult to effectively obtain a large number of SWCCs because of the cumbersome and expensive determination experiments for SWCCs. Pedo-transfer functions (PTFs) established using soil physicochemical properties have become an effective method for solving this problem. However, due to the limitations of the establishment methods and the wide spatial variability of soil properties, it is still difficult to establish PTFs in a specific region. In order to establish the PTFs of SWCCs for the alluvial plain area of the lower reaches of the Yellow River, 233 soil samples were collected from the vadose zone in a typical area. These data were used as the data sources, and eight variables including clay, silt content, fractal dimension, bulk density, total porosity, pH value, organic matter content, and electrical conductivity were used as the influencing factors. By applying and comparing three machine learning algorithms, the PTFs of the SWCCs based on the random forest algorithm were obtained. Based on the Gini index of the random forest, the insensitive factors were eliminated and the optimal variable input mode was constructed. Based on the verification, there was little difference between the predicted water content and the measured water content. The determination coefficient R 2 is 0.9308; the root mean square error ( RMSE ) is 0.0447; and the mean relative error ( MRE ) is 22.40%.
AbstractList The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil mechanics. However, it is difficult to effectively obtain a large number of SWCCs because of the cumbersome and expensive determination experiments for SWCCs. Pedo-transfer functions (PTFs) established using soil physicochemical properties have become an effective method for solving this problem. However, due to the limitations of the establishment methods and the wide spatial variability of soil properties, it is still difficult to establish PTFs in a specific region. In order to establish the PTFs of SWCCs for the alluvial plain area of the lower reaches of the Yellow River, 233 soil samples were collected from the vadose zone in a typical area. These data were used as the data sources, and eight variables including clay, silt content, fractal dimension, bulk density, total porosity, pH value, organic matter content, and electrical conductivity were used as the influencing factors. By applying and comparing three machine learning algorithms, the PTFs of the SWCCs based on the random forest algorithm were obtained. Based on the Gini index of the random forest, the insensitive factors were eliminated and the optimal variable input mode was constructed. Based on the verification, there was little difference between the predicted water content and the measured water content. The determination coefficient R 2 is 0.9308; the root mean square error ( RMSE ) is 0.0447; and the mean relative error ( MRE ) is 22.40%.
The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil mechanics. However, it is difficult to effectively obtain a large number of SWCCs because of the cumbersome and expensive determination experiments for SWCCs. Pedo-transfer functions (PTFs) established using soil physicochemical properties have become an effective method for solving this problem. However, due to the limitations of the establishment methods and the wide spatial variability of soil properties, it is still difficult to establish PTFs in a specific region. In order to establish the PTFs of SWCCs for the alluvial plain area of the lower reaches of the Yellow River, 233 soil samples were collected from the vadose zone in a typical area. These data were used as the data sources, and eight variables including clay, silt content, fractal dimension, bulk density, total porosity, pH value, organic matter content, and electrical conductivity were used as the influencing factors. By applying and comparing three machine learning algorithms, the PTFs of the SWCCs based on the random forest algorithm were obtained. Based on the Gini index of the random forest, the insensitive factors were eliminated and the optimal variable input mode was constructed. Based on the verification, there was little difference between the predicted water content and the measured water content. The determination coefficient R2 is 0.9308; the root mean square error (RMSE) is 0.0447; and the mean relative error (MRE) is 22.40%.
ArticleNumber 850
Author Yuan, Qiaoling
Zhan, Jiang
Zhao, Guizhang
Yu, Xiaopeng
Li, Zhiping
Author_xml – sequence: 1
  givenname: Jiang
  surname: Zhan
  fullname: Zhan, Jiang
  organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Yellow River Engineering Consulting Co
– sequence: 2
  givenname: Zhiping
  orcidid: 0000-0002-1588-5919
  surname: Li
  fullname: Li, Zhiping
  email: lizhiping@ncwu.edu.cn
  organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Collaborative Innovation Center for Efficient Utilization of Water Resources in Henan Province
– sequence: 3
  givenname: Xiaopeng
  surname: Yu
  fullname: Yu, Xiaopeng
  organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power
– sequence: 4
  givenname: Guizhang
  surname: Zhao
  fullname: Zhao, Guizhang
  organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power
– sequence: 5
  givenname: Qiaoling
  surname: Yuan
  fullname: Yuan, Qiaoling
  organization: College of Geosciences and Engineering, North China University of Water Resources and Electric Power
BookMark eNp9kctqHDEQRUWwIWM7P5CVIJtsFOvR6m4tg8nDYEgIySIroVFXe2Q00kTqHj9-LT_nak-IIYusqqg693LhnpCjlBMQ8lrwd4Lz7rwK3raCcSmZ4Mp07O4FWQndKSaNNkdkxUXbsVa15iU5qfWGc266xqzI768wZDYVl-oIhY5z8lPIqdI80mkDtOYQ6a2b8Oc3rjiPW6hT8NTPZQ9_ub0bcgX6gLFoSNTR6X4XvIvUxTjvAy676JZHAbcAiybmW7TFg988G_2EiHf6LezxN9eQrukWgYC-EVxJTweYNnmoZ-R4dLHCqz_zlPz4-OH7xWd29eXT5cX7K-ZlLyfWctCN8Y3welRSSz22jeESnIB133MjTN97NcBa-_Wg1npQQvlejS30jdOdUafk7cF3V_KvGepkt6F6zOkS5Lla2UmJGs57RN_8g97kuSRMt1DCGIPlICUPlC-51gKj3ZWwdeXeCm6XPu2hT4t92qc-7R2K1EFUEU7XUJ6t_6N6BJ4LqMQ
CitedBy_id crossref_primary_10_1016_j_jobe_2023_108335
Cites_doi 10.1016/S0016-7061(02)00105-2
10.1097/00010694-198912000-00001
10.1007/978-1-4419-0213-9_54
10.11841/j.issn.1007-4333.2010.06.017
10.11821/dlxb201501004
10.1134/S106422931603008X
10.1007/s11269-006-9125-0
10.7679/j.issn.2095-1353.2013.163
10.1002/2016WR019533
10.1002/hyp.13216
10.1016/j.advwatres.2019.05.005
10.3390/rs70607029
10.1023/A:1010933404324
10.1016/0167-1987(96)81397-3
10.1134/S106422931930001X
10.7540/j.ynu.20150781
10.1016/j.geoderma.2006.11.018
10.2136/sssaj1980.03615995004400050002x
10.13243/j.cnki.slxb.2012.03.011
10.1007/s12145-020-00503-3
10.3969/j.issn.1002-6819.2014.20.013
10.3321/j.issn:0559-9350.2004.02.012
10.3969/j.issn.1007-4929.2019.01.022
10.11766/trxb200408030403
10.1016/j.cageo.2019.104320
10.13448/j.cnki.jalre.2020.30
10.1007/978-1-4612-3144-8_5
10.3321/j.issn:0375-5444.2003.02.012
10.13758/j.cnki.tr.2010.03.017
10.3969/j.issn.1007-3116.2011.03.006
10.11975/j.issn.1002-6819.2019.10.008
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7QH
7QL
7SN
7ST
7T7
7TG
7TN
7U7
7UA
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
H97
HCIFZ
K60
K6~
K9.
KL.
L.-
L.G
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7X8
DOI 10.1007/s10661-022-10397-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Toxicology Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ABI/INFORM Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
Aqualine
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
Oceanic Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Environmental Sciences
EISSN 1573-2959
EndPage 850
ExternalDocumentID 10_1007_s10661_022_10397_x
GeographicLocations Yellow River
GeographicLocations_xml – name: Yellow River
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41972261
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-XX
-Y2
-~C
..I
.86
.VR
06D
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5QI
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMB
EMOBN
ESBYG
ESTFP
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L8X
LAK
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PF0
PQBIZ
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZCA
ZMTXR
~02
~A9
~EX
~KM
0R~
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
CITATION
H13
PQBZA
7QH
7QL
7SN
7ST
7T7
7TG
7TN
7U7
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
K9.
KL.
L.-
L.G
M7N
P64
PQEST
PQUKI
Q9U
SOI
7X8
AAYZH
ID FETCH-LOGICAL-c282t-60e549c41c5f32525f64902ea1eb88091988c3deb5cbd3b5d313c83f6e84a5793
IEDL.DBID BENPR
ISSN 0167-6369
IngestDate Fri Oct 25 00:50:01 EDT 2024
Thu Oct 10 21:00:00 EDT 2024
Thu Sep 12 19:08:19 EDT 2024
Sat Dec 16 12:06:02 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Lower reaches of the Yellow River
Soil water characteristic curve
Random forest
Pedo-transfer function
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-60e549c41c5f32525f64902ea1eb88091988c3deb5cbd3b5d313c83f6e84a5793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1588-5919
PQID 2721999397
PQPubID 54151
PageCount 1
ParticipantIDs proquest_miscellaneous_2722313008
proquest_journals_2721999397
crossref_primary_10_1007_s10661_022_10397_x
springer_journals_10_1007_s10661_022_10397_x
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Humans and the Environment
PublicationTitle Environmental monitoring and assessment
PublicationTitleAbbrev Environ Monit Assess
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Zhou, Z. (2016). Machine learning. Tsinghua University Press
Ma, Y., Li, S., Pan, X. (2015). A review on development of the Yellow River alluvial fan. Acta Geograph Sin, 70(1):49-62. https://doi.org/10.11821/dlxb201501004
HodnettMTomasellaJMarked differences between van Genuchten soil water-retention parameters for temperate and tropical soils a new water-retention pedo-transfer functions developed for tropical soilsGeoderma20021081551801:CAS:528:DC%2BD38XkvFGqt74%3D10.1016/S0016-7061(02)00105-2
Tong, C., Jin, M., Wang, X., Yang, X., & Liu, H. (2011). Chemical characteristics of groundwater in Lankao section along abandoned area of Yellow River. Geotechnical Investigation & Surveying,39(12), 36–41. https://d.wanfangdata.com.cn/periodical/gckc201112009
YangSHuangYApplication of support vector machine based on time series for soil moisture and nitratenitrogen content predictionInternational Conference on Computer and Computing Technologies in Agriculture200810.1007/978-1-4419-0213-9_54
LiHXLiuJLZhuANZhangJHComparison study of soil pedo-transfer functions in estimating saturated soil hydraulic conductivity at Tianranwenyanqu BasinSoils20104243844510.13758/j.cnki.tr.2010.03.017
Wang, G., Zhou, S., & Zhao, Q. (2005). Volume fractal dimension of soil particles and its applications to land use. Acta Pedologica Sinica, 42(4), 19–24. https://doi.org/10.11766/trxb200408030403
Achieng, K. O. (2019). Modelling of soil moisture retention curve using machine learning techniques: Artificial and deep neural networks vs support vector regression models. Computers & Geosciences, 133, 104320. https://doi.org/10.1016/j.cageo.2019.104320
SedaghatABayatHSineganiASEstimation of soil saturated hydraulic conductivity by artificial neural networks ensemble in smectitic soilsEurasian Soil Science20164933473571:CAS:528:DC%2BC28XotVyqsL4%3D10.1134/S106422931603008X
WangZLChangGYJiangQXFuQChenWJConstructing pedo-transfer functions based on grey relational and nonlinear programming to estimate hydraulic parameters in black soilTransactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE)20193510606810.11975/j.issn.1002-6819.2019.10.008
LiuJXuSLiuHA review of development in estimating soil water retention characteristics from soil dataJournal of Hydraulic Engineering20042687610.3321/j.issn:0559-9350.2004.02.012
LiSJiWChenSPengJZhouYShiZPotential of VIS-NIR-SWIR spectroscopy from the Chinese soil spectral library for assessment of nitrogen fertilization rates in the paddy-rice region ChinaRemote Sensor201577029704310.3390/rs70607029
BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324
Zhou, A., Yin, C., & Yuan, Y. (2016). A permeability coefficient prediction model of sand soil based on principal component analysis and support vector machine. Journal of Yunnan University-Natural Sciences Edition, 38(5), 742-749. https://doi.org/10.7540/j.ynu.20150781
LiXUsing “random forest” for classification and regressionChinese Journal of Entomology20135041190119710.7679/j.issn.2095-1353.2013.163
LiuZShuQWangZApplying pedo-transfer functions to simulate spatial heterogeneity of cinnamon soil water retention characteristics in western Liaoning ProvinceWater Resources Management2007211751176210.1007/s11269-006-9125-0
Qin, W., & Fan, G. (2020a). Estimating parameters for the van Genuchten model from soil physical-chemical properties of undisturbed loess-soil. Earth Science Information. https://doi.org/10.1007/s12145-020-00503-3
Li, B., & Fan, G. (2019). Prediction model of soil moisture characteristic curve based on support vector machine. Water Saving Irrigation, (1), 108–117. https://doi.org/10.3969/j.issn.1007-4929.2019.01.022
QinWFanGSPedo-transfer functions of undisturbed loess Van Genuchten model based on particle swarm optimization algorithm and support vector machineJournal of Arid Land Resources and Environment2020341113313710.13448/j.cnki.jalre.2020.30
van GenuchtenMA closed-form equation for predicting the hydraulic conductivity of unsaturated soilsSoil Science Society of America Journal198044589289810.2136/sssaj1980.03615995004400050002x
Qiao, J., Zhu, Y., Jia, X., Huang, L., & Shao, M. A. (2018). Development of pedotransfer functions for soil hydraulic properties in the critical zone on the Loess Plateau, China. Hydrological Processes, 32(18), 2915–2921. https://doi.org/10.1002/hyp.13216
Vapnik, V. N. (1998). Statistical learning theory. Wiley-interscience
LamorskiKŠimůnekJSławińskiCLamorskaJAn estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning methodWater Resources Research20175321539155210.1002/2016WR019533
Ministry of Agriculture of the People's Republic of China. (2006). Agricultural Industry Standard (NY/T1121-2006).
NieCHuKShaoYChenWComparison of predicting results of soil hydraulic parameters by SVR and rosetta modelsJournal of China Agricultural University201015610210710.11841/j.issn.1007-4333.2010.06.017
YaoJLiuTWangTT X,Development and evaluation of pedo-transfer functions of soil water characteristic curves in Horqin sandy landTransations of the Chinese Society of Agricultural Engineering201430209810810.3969/j.issn.1002-6819.2014.20.013
Li, Y., Chen, D., White, R. E., Zhu, A., & Zhang, J. (2007). Estimating soil hydraulic properties of Fengqiu County soils in the North China Plain using pedo-transfer functions. Geoderma, 138(3-4), 261-271. https://doi.org/10.1016/j.geoderma.2006.11.018
GalvezJFPollaccoJ-A-PLassabatereLAngulo-JaramilloRCarrickSA general Beerkan estimation of soil transfer parameters method predicting hydraulic parameters of any unimodal water retention and hydraulic conductivity curves: Application to the Kosugi soil hydraulic model without using particle size distribution dataAdvance Water Resources201912911813010.1016/j.advwatres.2019.05.005
Ministry of Water Resources of the People's Republic of China. (2019). Standards for Geotechnical Testing Methods (GB/T 50123-2019).
RawlsWJGishTJBrakensiekDLEstimating soil water retention from soil physical properties and characteristicsAdvances in Soil Science1991171621322510.1007/978-1-4612-3144-8_5
PerfectEKayBDApplications of fractals in soil and tillage research: a reviewSoil and Tillage Research1995361-212010.1016/0167-1987(96)81397-3
AmanabadiSVaziriniaMVereeckenHVakilianKAMohammadiMHComparative study of statistical, numerical and machine learning-based pedotransfer functions of water retention curve with particle size distribution dataEurasian Soil Science201952121555157110.1134/S106422931930001X
XuJSunJSedimentation rate change in the Lower Yellow River in the past 2300 yearsActa Geograph Sins200358224725410.3321/j.issn:0375-5444.2003.02.012
VereeckenHMaesJFeyenJDariusPEstimating the soil moisture retention characteristic from texture, bulk density and carbon contentSoil Science1989148638940310.1097/00010694-198912000-00001
FangKWuJZhuJXieBA review of technologies on random forestsStatistics & Information Forum2011263323810.3969/j.issn.1007-3116.2011.03.006
LiaoKHXuSHWuJCShiXQA method based on principal component analysis and artificial neural network for estimating soil hydraulic propertiesJournal of Hydraulic Engineering201243333333810.13243/j.cnki.slxb.2012.03.011
E Perfect (10397_CR20) 1995; 36
10397_CR22
K Lamorski (10397_CR7) 2017; 53
10397_CR21
HX Li (10397_CR9) 2010; 42
J Xu (10397_CR32) 2003; 58
H Vereecken (10397_CR29) 1989; 148
10397_CR1
10397_CR18
C Nie (10397_CR19) 2010; 15
10397_CR17
10397_CR16
10397_CR8
W Qin (10397_CR23) 2020; 34
S Yang (10397_CR34) 2008
L Breiman (10397_CR3) 2001; 45
J Yao (10397_CR33) 2014; 30
Z Liu (10397_CR15) 2007; 21
X Li (10397_CR11) 2013; 50
JF Galvez (10397_CR5) 2019; 129
ZL Wang (10397_CR31) 2019; 35
10397_CR36
10397_CR35
10397_CR12
J Liu (10397_CR14) 2004; 2
10397_CR30
A Sedaghat (10397_CR25) 2016; 49
S Amanabadi (10397_CR2) 2019; 52
10397_CR28
M Hodnett (10397_CR6) 2002; 108
10397_CR26
S Li (10397_CR10) 2015; 7
K Fang (10397_CR4) 2011; 26
KH Liao (10397_CR13) 2012; 43
M van Genuchten (10397_CR27) 1980; 44
WJ Rawls (10397_CR24) 1991; 17
References_xml – volume: 108
  start-page: 155
  year: 2002
  ident: 10397_CR6
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(02)00105-2
  contributor:
    fullname: M Hodnett
– volume: 148
  start-page: 389
  issue: 6
  year: 1989
  ident: 10397_CR29
  publication-title: Soil Science
  doi: 10.1097/00010694-198912000-00001
  contributor:
    fullname: H Vereecken
– year: 2008
  ident: 10397_CR34
  publication-title: International Conference on Computer and Computing Technologies in Agriculture
  doi: 10.1007/978-1-4419-0213-9_54
  contributor:
    fullname: S Yang
– ident: 10397_CR18
– volume: 15
  start-page: 102
  issue: 6
  year: 2010
  ident: 10397_CR19
  publication-title: Journal of China Agricultural University
  doi: 10.11841/j.issn.1007-4333.2010.06.017
  contributor:
    fullname: C Nie
– ident: 10397_CR16
  doi: 10.11821/dlxb201501004
– volume: 49
  start-page: 347
  issue: 3
  year: 2016
  ident: 10397_CR25
  publication-title: Eurasian Soil Science
  doi: 10.1134/S106422931603008X
  contributor:
    fullname: A Sedaghat
– volume: 21
  start-page: 1751
  year: 2007
  ident: 10397_CR15
  publication-title: Water Resources Management
  doi: 10.1007/s11269-006-9125-0
  contributor:
    fullname: Z Liu
– volume: 50
  start-page: 1190
  issue: 4
  year: 2013
  ident: 10397_CR11
  publication-title: Chinese Journal of Entomology
  doi: 10.7679/j.issn.2095-1353.2013.163
  contributor:
    fullname: X Li
– volume: 53
  start-page: 1539
  issue: 2
  year: 2017
  ident: 10397_CR7
  publication-title: Water Resources Research
  doi: 10.1002/2016WR019533
  contributor:
    fullname: K Lamorski
– ident: 10397_CR21
  doi: 10.1002/hyp.13216
– ident: 10397_CR26
– ident: 10397_CR28
– volume: 129
  start-page: 118
  year: 2019
  ident: 10397_CR5
  publication-title: Advance Water Resources
  doi: 10.1016/j.advwatres.2019.05.005
  contributor:
    fullname: JF Galvez
– volume: 7
  start-page: 7029
  year: 2015
  ident: 10397_CR10
  publication-title: Remote Sensor
  doi: 10.3390/rs70607029
  contributor:
    fullname: S Li
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10397_CR3
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– volume: 36
  start-page: 1
  issue: 1-2
  year: 1995
  ident: 10397_CR20
  publication-title: Soil and Tillage Research
  doi: 10.1016/0167-1987(96)81397-3
  contributor:
    fullname: E Perfect
– volume: 52
  start-page: 1555
  issue: 12
  year: 2019
  ident: 10397_CR2
  publication-title: Eurasian Soil Science
  doi: 10.1134/S106422931930001X
  contributor:
    fullname: S Amanabadi
– ident: 10397_CR35
  doi: 10.7540/j.ynu.20150781
– ident: 10397_CR12
  doi: 10.1016/j.geoderma.2006.11.018
– ident: 10397_CR17
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10397_CR27
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj1980.03615995004400050002x
  contributor:
    fullname: M van Genuchten
– volume: 43
  start-page: 333
  issue: 3
  year: 2012
  ident: 10397_CR13
  publication-title: Journal of Hydraulic Engineering
  doi: 10.13243/j.cnki.slxb.2012.03.011
  contributor:
    fullname: KH Liao
– ident: 10397_CR22
  doi: 10.1007/s12145-020-00503-3
– volume: 30
  start-page: 98
  issue: 20
  year: 2014
  ident: 10397_CR33
  publication-title: Transations of the Chinese Society of Agricultural Engineering
  doi: 10.3969/j.issn.1002-6819.2014.20.013
  contributor:
    fullname: J Yao
– ident: 10397_CR36
– volume: 2
  start-page: 68
  year: 2004
  ident: 10397_CR14
  publication-title: Journal of Hydraulic Engineering
  doi: 10.3321/j.issn:0559-9350.2004.02.012
  contributor:
    fullname: J Liu
– ident: 10397_CR8
  doi: 10.3969/j.issn.1007-4929.2019.01.022
– ident: 10397_CR30
  doi: 10.11766/trxb200408030403
– ident: 10397_CR1
  doi: 10.1016/j.cageo.2019.104320
– volume: 34
  start-page: 133
  issue: 11
  year: 2020
  ident: 10397_CR23
  publication-title: Journal of Arid Land Resources and Environment
  doi: 10.13448/j.cnki.jalre.2020.30
  contributor:
    fullname: W Qin
– volume: 17
  start-page: 213
  issue: 16
  year: 1991
  ident: 10397_CR24
  publication-title: Advances in Soil Science
  doi: 10.1007/978-1-4612-3144-8_5
  contributor:
    fullname: WJ Rawls
– volume: 58
  start-page: 247
  issue: 2
  year: 2003
  ident: 10397_CR32
  publication-title: Acta Geograph Sins
  doi: 10.3321/j.issn:0375-5444.2003.02.012
  contributor:
    fullname: J Xu
– volume: 42
  start-page: 438
  year: 2010
  ident: 10397_CR9
  publication-title: Soils
  doi: 10.13758/j.cnki.tr.2010.03.017
  contributor:
    fullname: HX Li
– volume: 26
  start-page: 32
  issue: 3
  year: 2011
  ident: 10397_CR4
  publication-title: Statistics & Information Forum
  doi: 10.3969/j.issn.1007-3116.2011.03.006
  contributor:
    fullname: K Fang
– volume: 35
  start-page: 60
  issue: 10
  year: 2019
  ident: 10397_CR31
  publication-title: Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE)
  doi: 10.11975/j.issn.1002-6819.2019.10.008
  contributor:
    fullname: ZL Wang
SSID ssj0009749
Score 2.4064262
Snippet The soil water characteristic curve (SWCC) is of great significance for studying the hydrological cycle, agricultural water management, and unsaturated soil...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 850
SubjectTerms Accuracy
Agricultural management
Agricultural production
Algorithms
Alluvial deposits
Alluvial plains
Artificial intelligence
Atmospheric Protection/Air Quality Control/Air Pollution
Bulk density
Dimensions
Earth and Environmental Science
Ecology
Ecotoxicology
Electrical conductivity
Electrical resistivity
Environment
Environmental Management
Environmental monitoring
Environmental science
Floods
Fractal geometry
Hydraulics
Hydrologic cycle
Hydrological cycle
Hydrology
Learning algorithms
Machine learning
Methods
Moisture content
Monitoring/Environmental Analysis
Organic matter
Physicochemical processes
Physicochemical properties
Porosity
Rivers
Root-mean-square errors
Soil mechanics
Soil porosity
Soil properties
Soil water
Spatial variability
Spatial variations
Transfer functions
Unsaturated soils
Vadose water
Water content
Water management
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEF6kItSHotcWT6uM4JtduGQ3vx6LXCk-lCIe1Kewu5lIISZHkrva_mv-c87s5S6t6IPPO9kQZnbn28w33wrxoUClWfhcJsag1C7VMpuhktY6a3WgEZ1n-V7GFwv9-Tq6Hvu4Pdl9W5H0G_WDXjdKJZLJ51y9TCQBx6cEHjTzuBbh2ai0m2wwLwt6xyrOhk6Zv8_xOBuNEPOPqqhPNucvxMGAEuFs49aX4gnWE_Fs7hWm7ybi-QMVwYk4no_NavTQsFq7Q_HrCotG9h6aYgucwnyUQVMC4T7ompsKbglstuAe6TaDW7Vr3NmtTdF0CPdNjXBTg4H-bsm-BVNVqzUFMCwrwwMEQNmAn6n49jVovV70bqJvXOm5hS_MBQFm3H-HH57MSfbDLxrYXGndHYnF-fzrpws5XNYgHZ3aehnPkI6aTgcuKlUYhVEZ62wWognQ0h6RBVmaOlWgjZwtlI0KFSiXqjLGVJuIdoljsVfTd7wSkBTczmtSQ2BMO5NaOifa0mUENcq0TOxUfNw6LV9uNDnyUX2ZXZyTi3Pv4vznVJxs_ZoP67PLQzr4EjQmg6l4vxumlcXlElNjs_I2BH4VgaSpON3GwzjFv9_4-v_M34j90Ickc2ROxF7frvAtIZ3evvOR_Rs8U_mn
  priority: 102
  providerName: Springer Nature
Title Pedo-transfer functions of the soil water characteristic curves of the vadose zone in a typical alluvial plain area in the lower reaches of the Yellow River using machine learning methods
URI https://link.springer.com/article/10.1007/s10661-022-10397-x
https://www.proquest.com/docview/2721999397
https://search.proquest.com/docview/2722313008
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY-wIPCAYThVEdEm9g0cTO1xMqU8cE0jRNVOqeIttx0KTQlCTtBv8a_xx3rtswJHjJQ3yxFd3Z9zvfF2OvCyskFT7niVKWS5NKnk2s4FobrWUgrTUuyvc8PpvLT4to4S_cWh9WuTsT3UFd1IbuyN-FaKogmEH1-X71nVPXKPKu-hYaB2wYoqUQDtjww-z84rIvu5tsATBV945FnPm0GZ88h7qJUzQ7uUMTfntXNfV48y8XqdM8p4_YQw8ZYbrl8WN2zy4P2YM_CgkesqNZn6-GpH7Dtk_Yrwtb1Lxz6NQ2QFrMCRrUJSD0g7a-ruAG8WYD5k7pZjDrZmP3dBtV1K2Fn_XSwvUSFHQ_VsReUFW13qAMw6pSNIAYlAjom4oasEHjSkbvJ7oiZ88NXFI4CFDQ_Vf45uI5kd7f0sC2q3X7lM1PZ19Ozrjv18ANGm4djycWrU0jAxOVIozCqIxlNgmtCqzGYyILsjQ1orA6MroQOipEIEwqytimUkV4UByxwRL_4xmDpKCMXpUqxGPSqFSjqahLkyHaKNMy0SP2ZseqfLUty5H3BZiJsTkyNneMzW9H7HjHzdxv0TbvBWrEXu2HcXORx0Qtbb12NIh_BeKkEXu7k4J-in-v-Pz_K75g90MneBQWc8wGXbO2LxHcdHrMDpJFgs_0JBiz4fTj1efZ2Es1vp2H098hi_9p
link.rule.ids 315,783,787,12070,12237,21402,27938,27939,31733,31734,33280,33281,33758,33759,41095,41537,42164,42606,43324,43593,43819,52125,52248,74081,74350,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgPQAHRAsVC4VOpd7AYhM7XyeEUKstlKqqWmk5RbbjVJVCsiTZbeGv8eeY8Xo3FAnOntiKZux59sy8YeygsEIS8TlPlLJcmlTybGwF19poLQNprXFZvqfx5FJ-mkZT_-DW-bTK1ZnoDuqiMfRG_i7EqwqCGXSf72ffOXWNouiqb6Fxn20SDxdx5yfTZCDdTZbwl7i9YxFnvmjGl86hZ-KUy07B0ITf3nVMA9r8K0Dq_M7RE_bYA0b4sNTwFrtn62326A8awW22czhUq6Go367dU_brzBYN7x02tS2QD3NmBk0JCPyga64ruEG02YK5Q9wMZt4u7FpuoYqms_CzqS1c16Cg_zEj5YKqqvkCLRhmlaIBRKAkQN9U1H4NWkcYvZ7oK4V6buCckkGAUu6v4JvL5kR5_0YDy57W3TN2eXR48XHCfbcGbvDa1vN4bPGuaWRgolKEURiVsczGoVWB1XhIZEGWpkYUVkdGF0JHhQiESUUZ21SqCI-JHbZR4388Z5AUVM-rUoVoTBqVarwo6tJkiDXKtEz0iL1ZqSqfLUk58oF-mRSbo2Jzp9j8dsR2V9rM_Qbt8sGcRmx_PYxbi-IlqrbN3Mkg-hWIkkbs7coKhin-veKL_6-4xx5MLr6c5CfHp59fsoehM0JKkNllG307t68Q5vT6tbPl3y1E_MM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKKyE4IChULJQylXoDq5vYeZ0Qol2Vh6oKUWk5RbbjVJVCsiTZbeGv8eeY8Xo3bSU4e2IrmrHns-ebGcYOCiskFT7niVKWS5NKno2t4FobrWUgrTWO5Xsan5zLT9No6vlPnadVrs5Ed1AXjaE38sMQryoIZtB9HpaeFnF2NHk3-8mpgxRFWn07jXtsK5Ho6NC2k2kyFOBNllCY6nzHIs58Ao1Po0MvxYnXToHRhF_fdlID8rwTLHU-aPKYPfLgEd4vtf2Ebdh6mz28UVJwm-0cD5lrKOq3bveU_TmzRcN7h1NtC-TPnMlBUwKCQOiaywquEHm2YG4VcQYzbxd2LbdQRdNZ-N3UFi5rUND_mpGiQVXVfIHWDLNK0QCiURKgbypqxQatKx69nug7hX2u4CsRQ4Do9xfwwzE7Ud6_18Cyv3X3jJ1Pjr99OOG-cwM3eIXreTy2eO80MjBRKcIojMpYZuPQqsBqPDCyIEtTIwqrI6MLoaNCBMKkooxtKlWER8YO26zxP54zSArK7VWpQmQmjUo1Xhp1aTLEHWVaJnrE3qxUlc-WBTryoRQzKTZHxeZOsfn1iO2utJn7zdrlg2mN2P56GLcZxU5UbZu5k0EkLBAxjdjblRUMU_x7xRf_X_E1u49mnH_5ePr5JXsQOhskrswu2-zbuX2FiKfXe86U_wLypAEH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pedo-transfer+functions+of+the+soil+water+characteristic+curves+of+the+vadose+zone+in+a+typical+alluvial+plain+area+in+the+lower+reaches+of+the+Yellow+River+using+machine+learning+methods&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Zhan%2C+Jiang&rft.au=Li%2C+Zhiping&rft.au=Yu%2C+Xiaopeng&rft.au=Zhao%2C+Guizhang&rft.date=2022-12-01&rft.eissn=1573-2959&rft.volume=194&rft.issue=12&rft.spage=850&rft.epage=850&rft_id=info:doi/10.1007%2Fs10661-022-10397-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon