A deep neural network approach to solve the Dirac equation

We extend the method from [Naito, Naito, and Hashimoto, Phys. Rev. Research 5 , 033189 (2023)] to solve the Dirac equation not only for the ground state but also for low-lying excited states using a deep neural network and the unsupervised machine learning technique. The variational method fails bec...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. A, Hadrons and nuclei Vol. 61; no. 7
Main Authors Wang, Chuanxin, Naito, Tomoya, Li, Jian, Liang, Haozhao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 15.07.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We extend the method from [Naito, Naito, and Hashimoto, Phys. Rev. Research 5 , 033189 (2023)] to solve the Dirac equation not only for the ground state but also for low-lying excited states using a deep neural network and the unsupervised machine learning technique. The variational method fails because of the Dirac sea, which is avoided by introducing the inverse Hamiltonian method. For low-lying excited states, two methods are proposed, which have different performances and advantages. The validity of this method is verified by the calculations with the Coulomb and Woods-Saxon potentials.
AbstractList We extend the method from [Naito, Naito, and Hashimoto, Phys. Rev. Research 5, 033189 (2023)] to solve the Dirac equation not only for the ground state but also for low-lying excited states using a deep neural network and the unsupervised machine learning technique. The variational method fails because of the Dirac sea, which is avoided by introducing the inverse Hamiltonian method. For low-lying excited states, two methods are proposed, which have different performances and advantages. The validity of this method is verified by the calculations with the Coulomb and Woods-Saxon potentials.
We extend the method from [Naito, Naito, and Hashimoto, Phys. Rev. Research 5 , 033189 (2023)] to solve the Dirac equation not only for the ground state but also for low-lying excited states using a deep neural network and the unsupervised machine learning technique. The variational method fails because of the Dirac sea, which is avoided by introducing the inverse Hamiltonian method. For low-lying excited states, two methods are proposed, which have different performances and advantages. The validity of this method is verified by the calculations with the Coulomb and Woods-Saxon potentials.
ArticleNumber 162
Author Liang, Haozhao
Wang, Chuanxin
Li, Jian
Naito, Tomoya
Author_xml – sequence: 1
  givenname: Chuanxin
  surname: Wang
  fullname: Wang, Chuanxin
  organization: College of Physics, Jilin University, RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS)
– sequence: 2
  givenname: Tomoya
  orcidid: 0000-0002-0010-3558
  surname: Naito
  fullname: Naito, Tomoya
  email: tnaito@ribf.riken.jp
  organization: RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Department of Physics, Graduate School of Science, The University of Tokyo
– sequence: 3
  givenname: Jian
  surname: Li
  fullname: Li, Jian
  email: jianli@jlu.edu.cn
  organization: College of Physics, Jilin University
– sequence: 4
  givenname: Haozhao
  surname: Liang
  fullname: Liang, Haozhao
  email: haozhao.liang@phys.s.u-tokyo.ac.jp
  organization: RIKEN Center for Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Department of Physics, Graduate School of Science, The University of Tokyo
BookMark eNqFkMtOwzAQRS0EEm3hG7DEOnT8TMOuKk-pEhuQ2FmOM6EtJU7tBMTf4xIk2LG6s5hzZ3TG5LDxDRJyxuCCMQlTbDd2GhmAggy4yoBpAZk6ICMmhcw0sOfDP_MxGce4AQDJCz0il3NaIba0wT7YbYruw4dXats2eOtWtPM0-u070m6F9GodrKO462239s0JOartNuLpT07I08314-IuWz7c3i_my8zxGe8y5ZCXunJVBQXwvMCUymqVz3RZahB1Ubnc5iAZy0uUpSqdkgXjpRC1VpKJCTkfetNLux5jZza-D006aQQXoBgU-X4rH7Zc8DEGrE0b1m82fBoGZi_K7EWZQZRJosy3KKMSORvImIjmBcNv_3_oFy71b6g
Cites_doi 10.1038/s42005-025-02015-2
10.1103/PhysRevLett.120.205302
10.7566/JPSJ.87.074002
10.1038/s41467-018-07520-3
10.1142/S0217751X04018634
10.1038/41467-020-15724-9
10.1126/science.aag2302
10.1103/PhysRevC.82.057301
10.1021/ct1000044
10.1103/PhysRevB.107.235139
10.1016/j.physletb.2022.137587
10.1103/PhysRevB.102.205122
10.1007/s00601-021-01706-0
10.1103/PhysRevC.107.034320
10.1103/PhysRevLett.130.036401
10.1016/0003-4916(83)90330-5
10.1038/s41557-020-0544-y
10.1103/PhysRevResearch.4.023138
10.1103/PhysRevResearch.5.033062
10.1073/pnas.2122059119
10.1103/PhysRevX.14.021030
10.1007/BF01282936
10.1103/PhysRevLett.121.167204
10.1103/RevModPhys.91.045002
10.1103/PhysRevB.96.205152
10.1038/s41570-023-00516-8
10.1016/j.cpc.2022.108474
10.1007/978-0-387-35069-1
10.1103/PhysRevResearch.4.043178
10.1103/PhysRevResearch.5.033068
10.1103/PhysRevResearch.2.033429
10.1103/PhysRevLett.127.022502
10.1063/1.1704839
10.1016/0009-2614(93)90025-V
10.1103/PhysRevA.104.022801
10.7566/JPSJ.89.054706
10.1103/PhysRevResearch.5.033189
10.1038/s41467-022-35627-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1140/epja/s10050-025-01630-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-601X
ExternalDocumentID 10_1140_epja_s10050_025_01630_5
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: JP25H01558; JP25K01003; JP25KJ0405
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Natural Science Foundation of Jilin Province
  grantid: 20220101017JC
  funderid: http://dx.doi.org/10.13039/100007847
– fundername: RIKEN Pioneering Project
  grantid: Evolution of Matter in the Universe
– fundername: National Natural Science Foundation of China
  grantid: 11675063; 12475119
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Japan Society for the Promotion of Science
  grantid: JP20H05648; JP22K20372; JP23H01845; JP23H04526
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Japan Society for the Promotion of Science
  grantid: JP23K03426; JP23K26538; JP24K17057; JP25H00402
  funderid: http://dx.doi.org/10.13039/501100001691
– fundername: Scientific Research Project of Education Department of Jilin Province
  grantid: JJKH20241242KJ
GroupedDBID -~X
.VR
06D
0R~
199
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFNX
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHPBZ
AHWEU
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
CITATION
ID FETCH-LOGICAL-c282t-5ce2b6dcdd090279ed095a65786bb603f9dc7a704117be4b5bc54912b33f65413
IEDL.DBID U2A
ISSN 1434-601X
1434-6001
IngestDate Sat Jul 26 16:11:26 EDT 2025
Thu Jul 31 00:47:27 EDT 2025
Sat Jul 26 01:16:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-5ce2b6dcdd090279ed095a65786bb603f9dc7a704117be4b5bc54912b33f65413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0010-3558
PQID 3230510971
PQPubID 2043701
ParticipantIDs proquest_journals_3230510971
crossref_primary_10_1140_epja_s10050_025_01630_5
springer_journals_10_1140_epja_s10050_025_01630_5
PublicationCentury 2000
PublicationDate 2025-07-15
PublicationDateYYYYMMDD 2025-07-15
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Hadrons and Nuclei
PublicationTitle The European physical journal. A, Hadrons and nuclei
PublicationTitleAbbrev Eur. Phys. J. A
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References G Carleo (1630_CR1) 2019; 91
IP Grant (1630_CR35) 2007
G Carleo (1630_CR4) 2018; 9
1630_CR16
1630_CR38
1630_CR37
Y Nomura (1630_CR3) 2017; 96
WT Lou (1630_CR14) 2024; 14
1630_CR18
Y Nomura (1630_CR6) 2020; 89
1630_CR17
1630_CR39
A Lovato (1630_CR24) 2022; 4
1630_CR19
M Wilson (1630_CR25) 2023; 107
K Choo (1630_CR5) 2018; 121
JR Moreno (1630_CR8) 2022; 119
LG Jiao (1630_CR41) 2021; 104
E Lorin (1630_CR30) 2022; 280
G Pescia (1630_CR11) 2022; 4
M Ruggeri (1630_CR15) 2018; 120
1630_CR33
1630_CR36
H Saito (1630_CR10) 2018; 87
G Yao (1630_CR40) 1993; 204
H Yoshino (1630_CR9) 2023; 5
K Hagino (1630_CR34) 2010; 82
G Carleo (1630_CR2) 2017; 355
J Stokes (1630_CR7) 2020; 102
J Armstrong (1630_CR31) 1966; 7
G Cassella (1630_CR13) 2023; 130
1630_CR27
1630_CR26
1630_CR29
1630_CR28
YL Yang (1630_CR20) 2022; 835
M Ernzerhof (1630_CR32) 2010; 6
D Pfau (1630_CR12) 2020; 2
YL Yang (1630_CR21) 2023; 107
1630_CR43
1630_CR42
1630_CR23
B Fore (1630_CR22) 2023; 5
References_xml – ident: 1630_CR23
  doi: 10.1038/s42005-025-02015-2
– volume: 120
  year: 2018
  ident: 1630_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.205302
– volume: 87
  year: 2018
  ident: 1630_CR10
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.87.074002
– volume: 9
  start-page: 5322
  year: 2018
  ident: 1630_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07520-3
– ident: 1630_CR33
  doi: 10.1142/S0217751X04018634
– ident: 1630_CR38
– ident: 1630_CR27
  doi: 10.1038/41467-020-15724-9
– ident: 1630_CR36
– volume: 355
  start-page: 602
  year: 2017
  ident: 1630_CR2
  publication-title: Science
  doi: 10.1126/science.aag2302
– volume: 82
  year: 2010
  ident: 1630_CR34
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.82.057301
– volume: 6
  start-page: 1818
  year: 2010
  ident: 1630_CR32
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct1000044
– volume: 107
  year: 2023
  ident: 1630_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.235139
– volume: 835
  year: 2022
  ident: 1630_CR20
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137587
– ident: 1630_CR29
– volume: 102
  year: 2020
  ident: 1630_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.205122
– ident: 1630_CR19
  doi: 10.1007/s00601-021-01706-0
– volume: 107
  year: 2023
  ident: 1630_CR21
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.107.034320
– volume: 130
  year: 2023
  ident: 1630_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.130.036401
– ident: 1630_CR42
  doi: 10.1016/0003-4916(83)90330-5
– ident: 1630_CR16
  doi: 10.1038/s41557-020-0544-y
– volume: 4
  year: 2022
  ident: 1630_CR11
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.023138
– volume: 5
  year: 2023
  ident: 1630_CR22
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.033062
– volume: 119
  year: 2022
  ident: 1630_CR8
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2122059119
– volume: 14
  year: 2024
  ident: 1630_CR14
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.14.021030
– ident: 1630_CR37
– ident: 1630_CR39
  doi: 10.1007/BF01282936
– ident: 1630_CR43
– volume: 121
  year: 2018
  ident: 1630_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.167204
– volume: 91
  year: 2019
  ident: 1630_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 96
  year: 2017
  ident: 1630_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.205152
– ident: 1630_CR26
  doi: 10.1038/s41570-023-00516-8
– volume: 280
  year: 2022
  ident: 1630_CR30
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2022.108474
– volume-title: Relativistic quantum theory of atoms and molecules: theory and computation
  year: 2007
  ident: 1630_CR35
  doi: 10.1007/978-0-387-35069-1
– volume: 4
  year: 2022
  ident: 1630_CR24
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.043178
– volume: 5
  year: 2023
  ident: 1630_CR9
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.033068
– volume: 2
  year: 2020
  ident: 1630_CR12
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033429
– ident: 1630_CR18
  doi: 10.1103/PhysRevLett.127.022502
– volume: 7
  start-page: 1891
  year: 1966
  ident: 1630_CR31
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1704839
– volume: 204
  start-page: 381
  year: 1993
  ident: 1630_CR40
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)90025-V
– volume: 104
  year: 2021
  ident: 1630_CR41
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.104.022801
– volume: 89
  year: 2020
  ident: 1630_CR6
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.89.054706
– ident: 1630_CR28
  doi: 10.1103/PhysRevResearch.5.033189
– ident: 1630_CR17
  doi: 10.1038/s41467-022-35627-1
SSID ssj0004296
Score 2.4272006
Snippet We extend the method from [Naito, Naito, and Hashimoto, Phys. Rev. Research 5 , 033189 (2023)] to solve the Dirac equation not only for the ground state but...
We extend the method from [Naito, Naito, and Hashimoto, Phys. Rev. Research 5, 033189 (2023)] to solve the Dirac equation not only for the ground state but...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Artificial neural networks
Dirac equation
Excitation
Hadrons
Heavy Ions
Machine learning
Nuclear Fusion
Nuclear Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Regular Article - Theoretical Physics
Unsupervised learning
Title A deep neural network approach to solve the Dirac equation
URI https://link.springer.com/article/10.1140/epja/s10050-025-01630-5
https://www.proquest.com/docview/3230510971
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagFRIL4ikKpfLAauFHbDdsKWqpQHSiUpks27kMDKXQwO_HzkMFBpCYPMTO8Pls3-m--w6hS8YE8EQVxOeSkyQVlgwBNCkSB5pbodIiFgo_zNR0ntwt5OJrq6_Idm9TktVNXevZ0itYPdtY8UYlJbEHa_BVBCVyG3VlCOAjm2vOs01JJE9VQ-f6ZfH3x2jjYf5IilZvzWQf7TVOIs7qXT1AW7A8RDsVWdOvj9B1hnOAFY5alGHasmZy41YeHJcvOFjUB-Dg3OFwp1mP4bWW9D5G88n48WZKmh4IxIdgqCTSA3cq93keCZQ6hTBKq8I5U84pKoo099pqmjCmHSROOh8iPsadEEVs8S1OUGf5soRThFUItaQG5nmYYnNhQ2ShhkXUaJQ-Bd9DtAXDrGqpC1OXLVMT8TM1fibgZyr8jOyhfguaaWx_bUSIamRMbLMeYi2Qm89__PLsH2vO0S6vdlUTJvuoU769w0XwFUo3QN1sMhrN4nj7dD8eVFbyCQPUuWY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xEIIF8RTl6QFGi9iOnQaJoQKqltdEJTYTO5eBoS20gPhJ_EvOSaMKBpCQmDLEsaLPZ_tO9913AIdCKJSxKbjPteRxqjLeREx4ETtMZKZMWoRC4Ztb0-nFl_f6fgY-6lqYku1epyTLk7rSs42OcfiYhYq3SEc89GAlX0VFvOZTXuH7G0Vro9PuOS3tkZTti7uzDp80FOCeIosx1x6lM7nP88BGTFKkp84MGa1xzkSqSHOfZEkUC5E4jJ12nsInIZ1SReiXrWjeWZgnD6QZNlBPtqYlmDI1E_rYDz_79fKberTfkrDl3dZegeWJU8palRWtwgz212ChJIf60TqctFiOOGRB-5KG9SvmOKvlyNl4wMiCX5GRM8noDM08w6dKQnwDev8C0SbM9Qd93AJmKLTTCQovaUiWq4wiGdMsgiak9in6BkQ1GHZYSWvYqkw6sgE_W-FnCT9b4md1A3Zr0Oxkr42soihKh0S6aICogZy-_mXK7T98cwCLnbuba3vdvb3agSVZrnDChd6FufHzC-6RnzJ2-6WFMHj4b5P8BIob8rs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BFYhLRQuIhaX1gR4tYjt2Nkg9rEpX0C2rHliJm4mdyYFDdmEDiB_G_2OcD63aA0iVOOUQ24qex_GMZt4bgCMhFMrYFNznWvI4VRkfICa8iB0mMlMmLQJR-GJizqbxryt9tQLPHRemrnbvUpINpyGoNJXV8TwvWm3b6BjnN1lgv0U64qEfK_ktKuJdbeUYnx4pclt8Pz-lbf4m5ejn5Y8z3jYX4J6ijIprj9KZ3Od5qExMUqSnzgwZsHHORKpIc59kSRQLkTiMnXaeQikhnVJF6J2taN1V-BAHCjIdo6kcLumYMjVtKdkrH_v3Rbj0bv9JyNb33GgLPrYOKhs2FvUJVrD8DOt1oahfbMPJkOWIcxZ0MGlY2VSRs06anFUzRtb8gIwcS0b_08wzvG3kxHdg-i4Q7cJaOStxD5ihME8nKLykIVmuMopqzKAI-pDap-h7EHVg2Hkjs2EbynRkA362wc8SfrbGz-oe9DvQbHvuFlZRRKVDUl30QHRALl-_seT-f8z5Cht_Tkf29_lkfACbst7ghAvdh7Xq7h4PyWWp3JfaQBhcv7dFvgALQ_bu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+neural+network+approach+to+solve+the+Dirac+equation&rft.jtitle=The+European+physical+journal.+A%2C+Hadrons+and+nuclei&rft.au=Wang+Chuanxin&rft.au=Naito+Tomoya&rft.au=Li%2C+Jian&rft.au=Liang+Haozhao&rft.date=2025-07-15&rft.pub=Springer+Nature+B.V&rft.issn=1434-6001&rft.eissn=1434-601X&rft.volume=61&rft.issue=7&rft_id=info:doi/10.1140%2Fepja%2Fs10050-025-01630-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-601X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-601X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-601X&client=summon