Affective Computing Model Using Source-temporal Domain

This paper proposes a new Electroencephalographic (EEG) emotion recognition system (EEG-ER) that captures human emotion dynamics. EEG signals are collected from ten healthy subjects, aged 5-6 years. Four basic emotions namely; happy, sad, neutral and fear were induced from the participants using aff...

Full description

Saved in:
Bibliographic Details
Published inProcedia, social and behavioral sciences Vol. 97; pp. 54 - 62
Main Authors Shams, Wafaa Khazaal, Wahab, Abdul, Fakhri, Imad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 06.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a new Electroencephalographic (EEG) emotion recognition system (EEG-ER) that captures human emotion dynamics. EEG signals are collected from ten healthy subjects, aged 5-6 years. Four basic emotions namely; happy, sad, neutral and fear were induced from the participants using affective photographs of varying arousal from the Radbound faces database (RaFD). The affective space model proposed by was used for classifying the acquired signals into a 2-dimensional structure of valence and arousal. Feature extraction method utilized was Time Difference of Arrival (TDOA) approach for reconstructing the relative source domain of brain activity. Regularized Least Square (RLS) and Multi-Layer Perception (MLP) neural network was used for classification process. The results were compared with wavelet coefficients (WC) method and showed high accuracy around 96% for user independent classification and approximately100% for user dependent classification. Overall the results reflect significant stability of accuracy rate among subjects using the proposed method.
AbstractList This paper proposes a new Electroencephalographic (EEG) emotion recognition system (EEG-ER) that captures human emotion dynamics. EEG signals are collected from ten healthy subjects, aged 5-6 years. Four basic emotions namely; happy, sad, neutral and fear were induced from the participants using affective photographs of varying arousal from the Radbound faces database (RaFD). The affective space model proposed by was used for classifying the acquired signals into a 2-dimensional structure of valence and arousal. Feature extraction method utilized was Time Difference of Arrival (TDOA) approach for reconstructing the relative source domain of brain activity. Regularized Least Square (RLS) and Multi-Layer Perception (MLP) neural network was used for classification process. The results were compared with wavelet coefficients (WC) method and showed high accuracy around 96% for user independent classification and approximately100% for user dependent classification. Overall the results reflect significant stability of accuracy rate among subjects using the proposed method.
Author Shams, Wafaa Khazaal
Wahab, Abdul
Fakhri, Imad
Author_xml – sequence: 1
  givenname: Wafaa Khazaal
  surname: Shams
  fullname: Shams, Wafaa Khazaal
  email: wafaa_dth@yahoo.com
– sequence: 2
  givenname: Abdul
  surname: Wahab
  fullname: Wahab, Abdul
– sequence: 3
  givenname: Imad
  surname: Fakhri
  fullname: Fakhri, Imad
BookMark eNqFkMFKAzEQhoNUsNa-gYd9ga3JJptsPQilWhUqHrTnkE0mkrK7WZJtwbc3Sz2IBx0Y_mHg_4dvLtGk8x0gdE3wgmDCb_aLWMc--EWBCU2rpOwMTUklRI5ZUU1-zBdoHuMep6KELotiivjKWtCDO0K29m1_GFz3kb14A022i-P85g9BQz5A2_ugmuzet8p1V-jcqibC_FtnaLd5eF8_5dvXx-f1apvroiqGnBlmNC3TeUVIyTllQtWcEiUMs2VZW4IrziheGgyixpQbKkDYZT02FCWdIXbK1cHHGMDKPrhWhU9JsBzx5V6e8OWIP24TfrLd_rJpN6jB-W4IyjX_me9OZkhgRwdBRu2g02BcSK-Sxru_A74APXR58w
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3227627
crossref_primary_10_1109_ACCESS_2020_2980893
Cites_doi 10.1016/j.patcog.2010.09.020
10.1016/S1071-5819(03)00052-1
10.1080/02699930903485076
10.1016/S1071-5819(03)00051-X
10.21236/ADA164453
10.7551/mitpress/9108.001.0001
10.1109/TAES.1972.309614
10.1016/S0031-3203(02)00052-3
10.1016/j.neulet.2005.09.004
10.1109/TASSP.1976.1162830
10.1016/j.clinph.2005.08.034
10.1109/34.954607
10.1037/h0077714
10.1109/ICSMC.2007.4413638
10.1109/TMM.2006.870737
10.1109/ICME.2005.1521560
10.1016/j.ijpsycho.2006.07.003
10.1007/978-3-642-34478-7_47
10.1090/S0002-9947-1950-0051437-7
ContentType Journal Article
Copyright 2013 The Authors
Copyright_xml – notice: 2013 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.sbspro.2013.10.204
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 1877-0428
EndPage 62
ExternalDocumentID 10_1016_j_sbspro_2013_10_204
S1877042813036495
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP2
EP3
F5P
FDB
FEDTE
FNPLU
HVGLF
IXB
KQ8
NCXOZ
O-L
O9-
OK1
OZT
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ADVLN
CITATION
HZ~
ID FETCH-LOGICAL-c282t-4d4dc35877a11566347ab631a7d4f55bf10864309d0e7b036d37e7f9b7f9be253
IEDL.DBID IXB
ISSN 1877-0428
IngestDate Tue Jul 01 04:57:46 EDT 2025
Thu Apr 24 22:55:25 EDT 2025
Fri Feb 23 02:30:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords RafD faces
2 Dimension affective model
emotion
relative source temporal features
EEG
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-4d4dc35877a11566347ab631a7d4f55bf10864309d0e7b036d37e7f9b7f9be253
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877042813036495
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_sbspro_2013_10_204
crossref_citationtrail_10_1016_j_sbspro_2013_10_204
elsevier_sciencedirect_doi_10_1016_j_sbspro_2013_10_204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-06
PublicationDateYYYYMMDD 2013-11-06
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-06
  day: 06
PublicationDecade 2010
PublicationTitle Procedia, social and behavioral sciences
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Murugappan M, Rizon M , Nagarajan R , YaacobS , Zunaidi I , Hazry D. EEG feature extraction for classifying emotions using FCM and FKM. J Comput. Commun 2007; 1: 21-25.
Atkinson K.E .An introduction to numerical analysis. John Wiley & Sons 1989.
Chanel G, Ansari-Asl K, Pun T. Valence-arousal evaluation using physiological signals in an emotion recall paradigm. IEEE International Conference on Systems, Man and Cybernetics, ISIC 2007: 2662-2667.
Picard (bib0035) 2003; 59
Langner O,Dotsch R, Bijlstra G, Wigboldus DHJ, Hawk ST, Knippenberg AV. Presentation and validation of the Radboud Faces Database. Cognition and Emotion 2010; 24: 1377-1388.
Tacchetti A, Mallapragada PS,Santoro M,RosascoL. GURLS: a Toolbox for Regularized Least Squares Learning. Computer Science and Artifical Intelligence Laboratory , Technical Report CBCL-306, MIT , 2012.
Yeasin M, Bullot B,Sharma R. Recognition of facial expressions and measurement of levels of interest from video. IEEE Transactions on Multimedia 2006; 8: 500-508.
Balconi M , Lucchiari C. EEG correlates (event-related desynchronization) of emotional face elaboration: a temporal analysis. Neuroscience Letters 2006; 392: 118-123.
Rumelhart D,Hinton G, Williams R. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing, Explorations in the Microstructure of Cognition, Cambridge, MA: MIT Press, 1986.
Schuller B, Reiter S, Muller R, Al-Hames M, Lang M, Rigoll G. Speaker independent speech emotion recognition by ensemble classification. IEEE International Conference on Multimedia and Expo, ICME 2005:864-867.
Kayser J, Tenke CE. Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: Evaluation with auditory oddball tasks. Clinical Neurophysiology 2006; 117: 348-368.
Cohen I, Garg, Huang TS. Emotion recognition from facial expressions using multilevel HMM. Neural information processing systems 2000. Citeseer.
Güntekin B, Basar E. Emotional face expressions are differentiated with brain oscillations. International Journal of Psychophysiology2007; 64: 91-100.
Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc1950; 68: 337-404.
EIAyadi M, Kamel MS, KarrayF. Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition 2011; 44: 572-587.
Russell JA. A circumplex model of affect. Journal of personality and social psychology, 1980; 39: 1161-1178.
Shams WK., Wahab W, Qidwai UA. Detecting different tasks using EEG-source-temporal features. Lecture Notes in Computer science 2012; 7666: 380-387.
Schmidt RO. A new approach to geometry of range difference location. IEEE Transactions on Aerospace and Electronic Systems 1972; 821-835.
Fasel B, Luettin J .Automatic facial expression analysis: a survey. Pattern Recognition 2003; 36: 259-275.
Knapp, Carter (bib0105) 1976; 24
Rabinovich MI, Friston KJ, Varona P. Principles of brain dynamics: global state interactions. MIT Press , 2012.
Picard RW,Vyzas E, HealeyJ. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001; 23:1175-1191.
Lisetti C, Nasoz F, leRouge C, Ozyer O, AlvarezK. Developing multimodal intelligent affective interfaces for tele-home health care. International journal of Human-Computer Studies 2003; 59: 245-255.
Davidson RJ, Schwartz GE, Saron C, Bennett J,Goleman DJ. Frontal versus parietal EEG asymmetry during positive and negative affect. Psychophysiology 1979; 16: 202-203.
10.1016/j.sbspro.2013.10.204_bib0040
10.1016/j.sbspro.2013.10.204_bib0095
10.1016/j.sbspro.2013.10.204_bib0030
Picard (10.1016/j.sbspro.2013.10.204_bib0035) 2003; 59
10.1016/j.sbspro.2013.10.204_bib0085
10.1016/j.sbspro.2013.10.204_bib0020
10.1016/j.sbspro.2013.10.204_bib0075
10.1016/j.sbspro.2013.10.204_bib0010
10.1016/j.sbspro.2013.10.204_bib0065
10.1016/j.sbspro.2013.10.204_bib0120
10.1016/j.sbspro.2013.10.204_bib0055
10.1016/j.sbspro.2013.10.204_bib0110
10.1016/j.sbspro.2013.10.204_bib0045
10.1016/j.sbspro.2013.10.204_bib0100
Knapp (10.1016/j.sbspro.2013.10.204_bib0105) 1976; 24
10.1016/j.sbspro.2013.10.204_bib0025
10.1016/j.sbspro.2013.10.204_bib0090
10.1016/j.sbspro.2013.10.204_bib0080
10.1016/j.sbspro.2013.10.204_bib0070
10.1016/j.sbspro.2013.10.204_bib0060
10.1016/j.sbspro.2013.10.204_bib0050
10.1016/j.sbspro.2013.10.204_bib0125
10.1016/j.sbspro.2013.10.204_bib0005
10.1016/j.sbspro.2013.10.204_bib0115
References_xml – reference: Rabinovich MI, Friston KJ, Varona P. Principles of brain dynamics: global state interactions. MIT Press , 2012.
– reference: Schuller B, Reiter S, Muller R, Al-Hames M, Lang M, Rigoll G. Speaker independent speech emotion recognition by ensemble classification. IEEE International Conference on Multimedia and Expo, ICME 2005:864-867.
– reference: Yeasin M, Bullot B,Sharma R. Recognition of facial expressions and measurement of levels of interest from video. IEEE Transactions on Multimedia 2006; 8: 500-508.
– reference: EIAyadi M, Kamel MS, KarrayF. Survey on speech emotion recognition: Features, classification schemes, and databases. Pattern Recognition 2011; 44: 572-587.
– reference: Güntekin B, Basar E. Emotional face expressions are differentiated with brain oscillations. International Journal of Psychophysiology2007; 64: 91-100.
– reference: Fasel B, Luettin J .Automatic facial expression analysis: a survey. Pattern Recognition 2003; 36: 259-275.
– reference: Russell JA. A circumplex model of affect. Journal of personality and social psychology, 1980; 39: 1161-1178.
– reference: Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc1950; 68: 337-404.
– volume: 59
  start-page: 55
  year: 2003
  end-page: 64
  ident: bib0035
  article-title: Affective computing: challenges
  publication-title: International Journal of Human-Computer Studies
– reference: Chanel G, Ansari-Asl K, Pun T. Valence-arousal evaluation using physiological signals in an emotion recall paradigm. IEEE International Conference on Systems, Man and Cybernetics, ISIC 2007: 2662-2667.
– reference: Shams WK., Wahab W, Qidwai UA. Detecting different tasks using EEG-source-temporal features. Lecture Notes in Computer science 2012; 7666: 380-387.
– reference: Davidson RJ, Schwartz GE, Saron C, Bennett J,Goleman DJ. Frontal versus parietal EEG asymmetry during positive and negative affect. Psychophysiology 1979; 16: 202-203.
– reference: Langner O,Dotsch R, Bijlstra G, Wigboldus DHJ, Hawk ST, Knippenberg AV. Presentation and validation of the Radboud Faces Database. Cognition and Emotion 2010; 24: 1377-1388.
– volume: 24
  start-page: 320
  year: 1976
  end-page: 327
  ident: bib0105
  article-title: The generalized correlation method for estimation of time delay.
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
– reference: Lisetti C, Nasoz F, leRouge C, Ozyer O, AlvarezK. Developing multimodal intelligent affective interfaces for tele-home health care. International journal of Human-Computer Studies 2003; 59: 245-255.
– reference: Cohen I, Garg, Huang TS. Emotion recognition from facial expressions using multilevel HMM. Neural information processing systems 2000. Citeseer.
– reference: Picard RW,Vyzas E, HealeyJ. Toward machine emotional intelligence: Analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001; 23:1175-1191.
– reference: Rumelhart D,Hinton G, Williams R. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing, Explorations in the Microstructure of Cognition, Cambridge, MA: MIT Press, 1986.
– reference: Atkinson K.E .An introduction to numerical analysis. John Wiley & Sons 1989.
– reference: Tacchetti A, Mallapragada PS,Santoro M,RosascoL. GURLS: a Toolbox for Regularized Least Squares Learning. Computer Science and Artifical Intelligence Laboratory , Technical Report CBCL-306, MIT , 2012.
– reference: Balconi M , Lucchiari C. EEG correlates (event-related desynchronization) of emotional face elaboration: a temporal analysis. Neuroscience Letters 2006; 392: 118-123.
– reference: Murugappan M, Rizon M , Nagarajan R , YaacobS , Zunaidi I , Hazry D. EEG feature extraction for classifying emotions using FCM and FKM. J Comput. Commun 2007; 1: 21-25.
– reference: Schmidt RO. A new approach to geometry of range difference location. IEEE Transactions on Aerospace and Electronic Systems 1972; 821-835.
– reference: Kayser J, Tenke CE. Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: Evaluation with auditory oddball tasks. Clinical Neurophysiology 2006; 117: 348-368.
– ident: 10.1016/j.sbspro.2013.10.204_bib0005
– ident: 10.1016/j.sbspro.2013.10.204_bib0125
  doi: 10.1016/j.patcog.2010.09.020
– ident: 10.1016/j.sbspro.2013.10.204_bib0120
– volume: 59
  start-page: 55
  year: 2003
  ident: 10.1016/j.sbspro.2013.10.204_bib0035
  article-title: Affective computing: challenges
  publication-title: International Journal of Human-Computer Studies
  doi: 10.1016/S1071-5819(03)00052-1
– ident: 10.1016/j.sbspro.2013.10.204_bib0080
  doi: 10.1080/02699930903485076
– ident: 10.1016/j.sbspro.2013.10.204_bib0100
– ident: 10.1016/j.sbspro.2013.10.204_bib0040
– ident: 10.1016/j.sbspro.2013.10.204_bib0030
  doi: 10.1016/S1071-5819(03)00051-X
– ident: 10.1016/j.sbspro.2013.10.204_bib0110
  doi: 10.21236/ADA164453
– ident: 10.1016/j.sbspro.2013.10.204_bib0045
  doi: 10.7551/mitpress/9108.001.0001
– ident: 10.1016/j.sbspro.2013.10.204_bib0065
  doi: 10.1109/TAES.1972.309614
– ident: 10.1016/j.sbspro.2013.10.204_bib0070
  doi: 10.1016/S0031-3203(02)00052-3
– ident: 10.1016/j.sbspro.2013.10.204_bib0050
  doi: 10.1016/j.neulet.2005.09.004
– volume: 24
  start-page: 320
  year: 1976
  ident: 10.1016/j.sbspro.2013.10.204_bib0105
  article-title: The generalized correlation method for estimation of time delay.
  publication-title: IEEE Transactions on Acoustics, Speech and Signal Processing
  doi: 10.1109/TASSP.1976.1162830
– ident: 10.1016/j.sbspro.2013.10.204_bib0095
  doi: 10.1016/j.clinph.2005.08.034
– ident: 10.1016/j.sbspro.2013.10.204_bib0025
  doi: 10.1109/34.954607
– ident: 10.1016/j.sbspro.2013.10.204_bib0085
  doi: 10.1037/h0077714
– ident: 10.1016/j.sbspro.2013.10.204_bib0075
  doi: 10.1109/ICSMC.2007.4413638
– ident: 10.1016/j.sbspro.2013.10.204_bib0010
  doi: 10.1109/TMM.2006.870737
– ident: 10.1016/j.sbspro.2013.10.204_bib0020
  doi: 10.1109/ICME.2005.1521560
– ident: 10.1016/j.sbspro.2013.10.204_bib0060
  doi: 10.1016/j.ijpsycho.2006.07.003
– ident: 10.1016/j.sbspro.2013.10.204_bib0090
  doi: 10.1007/978-3-642-34478-7_47
– ident: 10.1016/j.sbspro.2013.10.204_bib0115
  doi: 10.1090/S0002-9947-1950-0051437-7
– ident: 10.1016/j.sbspro.2013.10.204_bib0055
SSID ssj0000313922
Score 1.8978717
Snippet This paper proposes a new Electroencephalographic (EEG) emotion recognition system (EEG-ER) that captures human emotion dynamics. EEG signals are collected...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 54
SubjectTerms 2 Dimension affective model
EEG
emotion
RafD faces
relative source temporal features
Title Affective Computing Model Using Source-temporal Domain
URI https://dx.doi.org/10.1016/j.sbspro.2013.10.204
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJy_iJ84vcvCgh7iPJE1ynNMxFAWZg91K06Qwmd1w8__3vTQdiqDgoYWGPGh_TX95SX_vPUIuEpXBIkNbVhgpmTDwLqzTkmmTGC9ya7zDrYHHp2Q0EfdTOW2QQR0Lg7LKyP0Vpwe2ji3tiGZ7OZu1x12tFHr8gYXBzwce5kKHIL7pzWafBXMTmvAzAfszNKgj6ILMa2VXQFWo8eLXqIuOFdt-zFBfZp3hDtmO7iLtV3e0Sxq-3COtKqaWxu9yRS9j8uirfZL0g0ADOIxWBRtgaqJY8GxOgzqAjsNuPYspqeb0dvGWzcoDMhnevQxGLNZGYDksktZMOOFyLuGRsi4uwbhQmU14N1NOFFLaAisoCd4xruOVBYAcV14VxuLhe5Ifkma5KP0RodAj04XjxhktetboHFykItNeet-xPGkRXuOR5jFxONavmKe1Quw1rVBMEUVsBRRbhG2sllXijD_6qxrq9NsASIHbf7U8_rflCdnCqxBamJyS5vr9w5-Bj7G252EQwfnhWX8C013PPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA6iB72IT6zPHBT0EPtIdrM5ePBVWqte2kJv62aThUpti62Iv8s_6Ew2K4qgIPSwl2wSwiR8M5N8M0PIYSgTcDIizTIVBEwo2AttooBFKlRWpFpZg1cDd_dhoytuekFvjrwXsTBIq_TYn2O6Q2vfUvbSLI_7_XK7GkmJFr9DYbDzPbOyZd9ewW-bnDWvYJOParX6deeywXxpAZaCjzFlwgiT8gBmSKrowXAhEx3yaiKNyIJAZ1iASPCKMhUrNcxvuLQyUxo_W8NSEYD7C2B9SESDZu_i82IHkyEq93qBC2S4wiJkz_HKJnoC2IikMn6KRGxfIu6HSvyi5uorZNnbp_Q8F8EqmbPDNVLKg3ipB4IJPfbZqk_WSXjuGCEAmjSvEAG6kGKFtQF1dATads8DzOfAGtCr0VPSH26Q7kwktknmh6Oh3SIUeiRRZrgyKhI1raIUbLIsiWxgbUXzsER4IY849ZnKsWDGIC4oaY9xLsUYpYitIMUSYZ-jxnmmjj_6y0LU8bcTF4My-XXk9r9HHpDFRufuNr5t3rd2yBL-cXGN4S6Znz6_2D0wcKZ63x0oSh5mfYI_AAh7Ckk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affective+Computing+Model+Using+Source-temporal+Domain&rft.jtitle=Procedia%2C+social+and+behavioral+sciences&rft.au=Shams%2C+Wafaa+Khazaal&rft.au=Wahab%2C+Abdul&rft.au=Fakhri%2C+Imad&rft.date=2013-11-06&rft.pub=Elsevier+Ltd&rft.issn=1877-0428&rft.eissn=1877-0428&rft.volume=97&rft.spage=54&rft.epage=62&rft_id=info:doi/10.1016%2Fj.sbspro.2013.10.204&rft.externalDocID=S1877042813036495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0428&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0428&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0428&client=summon