Principle and strategy of using probabilistic shaping in a flexible coherent passive optical network without optical amplifiers

The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power budget for 100G and beyond. In order to fully utilize the channel capacity and achieve adaptive rate adjustment in a flexible coherent passiv...

Full description

Saved in:
Bibliographic Details
Published inJournal of optical communications and networking Vol. 15; no. 8; pp. 507 - 517
Main Authors Xing, Sizhe, Li, Guoqiang, Yan, An, Shen, Wangwei, Li, Zhongya, Wang, Jiaye, Shi, Jianyang, He, Zhixue, Chi, Nan, Zhang, Junwen
Format Journal Article
LanguageEnglish
Published Piscataway Optica Publishing Group 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power budget for 100G and beyond. In order to fully utilize the channel capacity and achieve adaptive rate adjustment in a flexible coherent passive optical network (FLCS-CPON), constellation-shaping techniques, such as probabilistic shaping (PS), have been introduced. Unlike long-distance transmission networks, which are subject to average power constraint when optical amplifiers are utilized, commercial passive optical network systems are generally subject to peak power constraint, as no optical amplifiers are used. This difference makes the classical probabilistic-shaping (CPS) technology less efficient in CPON systems without optical amplifiers. In this study, the use cases of PS in a flexible coherent access network, including nonlinear-penalty-dominant and noise-dominated regions, are thoroughly explored. By fixing the modulation order and utilizing CPS and reversed probabilistic shaping with a fixed modulation format, a hybrid PS-based FLCS-CPON without optical amplifiers is demonstrated, achieving a peak rate of 200G and a high dynamic range boost of up to 72% from 16 to 27.5 dB in upstream burst-mode-based PS-16 quadrature amplitude modulation. Over the entire dynamic range, the net data rate varies from 168 to 85 Gbps with a power budget of 37 dB, and a dynamic range and net-rate product improvement of 55% is achieved.
AbstractList The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power budget for 100G and beyond. In order to fully utilize the channel capacity and achieve adaptive rate adjustment in a flexible coherent passive optical network (FLCS-CPON), constellation-shaping techniques, such as probabilistic shaping (PS), have been introduced. Unlike long-distance transmission networks, which are subject to average power constraint when optical amplifiers are utilized, commercial passive optical network systems are generally subject to peak power constraint, as no optical amplifiers are used. This difference makes the classical probabilistic-shaping (CPS) technology less efficient in CPON systems without optical amplifiers. In this study, the use cases of PS in a flexible coherent access network, including nonlinear-penalty-dominant and noise-dominated regions, are thoroughly explored. By fixing the modulation order and utilizing CPS and reversed probabilistic shaping with a fixed modulation format, a hybrid PS-based FLCS-CPON without optical amplifiers is demonstrated, achieving a peak rate of 200G and a high dynamic range boost of up to 72% from 16 to 27.5 dB in upstream burst-mode-based PS-16 quadrature amplitude modulation. Over the entire dynamic range, the net data rate varies from 168 to 85 Gbps with a power budget of 37 dB, and a dynamic range and net-rate product improvement of 55% is achieved.
The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power budget for 100G and beyond. In order to fully utilize the channel capacity and achieve adaptive rate adjustment in a flexible coherent passive optical network (FLCS-CPON), constellation-shaping techniques, such as probabilistic shaping (PS), have been introduced. Unlike long-distance transmission networks, which are subject to average power constraint when optical amplifiers are utilized, commercial passive optical network systems are generally subject to peak power constraint, as no optical amplifiers are used. This difference makes the classical probabilistic-shaping (CPS) technology less efficient in CPON systems without optical amplifiers. In this study, the use cases of PS in a flexible coherent access network, including nonlinear-penalty-dominant and noise-dominated regions, are thoroughly explored. By fixing the modulation order and utilizing CPS and reversed probabilistic shaping with a fixed modulation format, a hybrid PS-based FLCS-CPON without optical amplifiers is demonstrated, achieving a peak rate of 200G and a high dynamic range boost of up to 72% from 16 to 27.5 dB in upstream burst-mode-based PS-16 quadrature amplitude modulation. Over the entire dynamic range, the net data rate varies from 168 to 85 Gbps with a power budget of 37 dB, and a dynamic range and net-rate product improvement of 55% is achieved.
Author Yan, An
Li, Zhongya
Li, Guoqiang
Shi, Jianyang
Wang, Jiaye
Chi, Nan
Xing, Sizhe
Shen, Wangwei
Zhang, Junwen
He, Zhixue
Author_xml – sequence: 1
  givenname: Sizhe
  surname: Xing
  fullname: Xing, Sizhe
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
– sequence: 2
  givenname: Guoqiang
  orcidid: 0000-0002-7704-2984
  surname: Li
  fullname: Li, Guoqiang
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
– sequence: 3
  givenname: An
  orcidid: 0009-0009-2778-3803
  surname: Yan
  fullname: Yan, An
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
– sequence: 4
  givenname: Wangwei
  surname: Shen
  fullname: Shen, Wangwei
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
– sequence: 5
  givenname: Zhongya
  orcidid: 0000-0003-1247-2059
  surname: Li
  fullname: Li, Zhongya
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
– sequence: 6
  givenname: Jiaye
  surname: Wang
  fullname: Wang, Jiaye
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
– sequence: 7
  givenname: Jianyang
  orcidid: 0000-0002-5478-3704
  surname: Shi
  fullname: Shi, Jianyang
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
– sequence: 8
  givenname: Zhixue
  surname: He
  fullname: He, Zhixue
  organization: Peng Cheng Laboratory, Shenzhen, 518055, China
– sequence: 9
  givenname: Nan
  orcidid: 0000-0003-4966-3844
  surname: Chi
  fullname: Chi, Nan
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
– sequence: 10
  givenname: Junwen
  orcidid: 0000-0001-8041-1608
  surname: Zhang
  fullname: Zhang, Junwen
  organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China
BookMark eNp1kE1PGzEQhq2KSg20p157sNRjFbDXXn8cUdQPEAIO9Lzy7o6TCYu92A6UE3-djYKiConTjEbPO6N5DslBiAEI-crZMRdKnpxfLS6PpdFGsQ9kxq0Uc6aEPdj3FftEDnNeM6Y05_WMPF8nDB2OA1AXeppLcgWWTzR6uskYlnRMsXUtDpgLdjSv3LidYqCO-gH-YTslu7iCBKHQ0eWMD0DjOMFuoAHKY0y39BHLKm7Kfu7uxgE9QsqfyUfvhgxfXusR-fvr583iz_zi6vfZ4vRi3lWmKnPhe6UVb42vOLeaeQOtN72qtQErnXWtEVob2WsprZSi97XsbSuUNUwq3Ykj8n23d_rnfgO5NOu4SWE62VRGVryqdV1NFN9RXYo5J_BNh8UVjGHygkPDWbP13Gw9NzvPU-bHm8yY8M6lp3fobzsaAeA_ktvaWCVeAHTbi1c
CODEN JOCNBB
CitedBy_id crossref_primary_10_1364_AO_536890
crossref_primary_10_3788_AOS231809
crossref_primary_10_1364_OE_522106
crossref_primary_10_1364_OE_530746
crossref_primary_10_3788_COL202422_040604
Cites_doi 10.1109/MWC.004.2100528
10.1109/JLT.2022.3208575
10.1109/JLT.2021.3083530
10.1109/26.554282
10.1109/JLT.2015.2510034
10.1364/OFC.2018.M3B.1
10.1109/JLT.2015.2463719
10.1109/JLT.2018.2856828
10.1109/JLT.2016.2594271
10.3390/app10196636
10.1109/ECOC48923.2020.9333172
10.1109/JLT.2015.2450537
10.1109/JLT.2017.2787342
10.1109/JLT.2022.3216763
10.1038/s41467-018-04956-5
10.1109/ACCESS.2019.2897381
10.1364/JOCN.438127
10.1109/MNET.005.2100604
10.1109/ACCESS.2020.2974620
10.1109/TIT.2015.2499181
10.1109/JLT.2017.2758326
10.1364/JOCN.402591
10.1364/JOCN.452036
10.1109/ECOC48923.2020.9333413
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1364/JOCN.487860
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-0639
EndPage 517
ExternalDocumentID 10_1364_JOCN_487860
10195896
Genre orig-research
GroupedDBID 0R~
29L
29N
4.4
5VS
6IK
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AEDJG
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKGWG
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
AZYMN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DSZJF
DU5
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
ODPQJ
OFLFD
OPJBK
RIA
RIE
RNS
ROL
ROS
TR6
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c282t-3fd6761b8f211970f8ebf8d6578e94a9ab837784d7449443df54d9b36980467c3
IEDL.DBID RIE
ISSN 1943-0620
IngestDate Mon Jun 30 10:16:18 EDT 2025
Thu Apr 24 22:53:44 EDT 2025
Tue Jul 01 01:09:32 EDT 2025
Wed Aug 27 02:12:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-3fd6761b8f211970f8ebf8d6578e94a9ab837784d7449443df54d9b36980467c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7704-2984
0000-0003-4966-3844
0000-0003-1247-2059
0000-0002-5478-3704
0000-0001-8041-1608
0009-0009-2778-3803
PQID 2842125752
PQPubID 85498
PageCount 11
ParticipantIDs crossref_citationtrail_10_1364_JOCN_487860
ieee_primary_10195896
proquest_journals_2842125752
crossref_primary_10_1364_JOCN_487860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle Journal of optical communications and networking
PublicationTitleAbbrev jocn
PublicationYear 2023
Publisher Optica Publishing Group
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: Optica Publishing Group
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Jia (jocn-15-8-507-R26) 2020; 10
Xing (jocn-15-8-507-R8) 2022
Alvarado (jocn-15-8-507-R24) 2015; 33
Che (jocn-15-8-507-R19) 2021; 39
Xing (jocn-15-8-507-R21) 2022; 41
Zhang (jocn-15-8-507-R11) 2022
Zhang (jocn-15-8-507-R15) 2020; 8
Zhang (jocn-15-8-507-R30) 2018; 36
Sheikh (jocn-15-8-507-R22) 2018; 36
Zhang (jocn-15-8-507-R31) 2021; 13
Kaneda (jocn-15-8-507-R17) 2022; 14
Fehenberger (jocn-15-8-507-R28) 2016; 34
Kikuchi (jocn-15-8-507-R5) 2016; 34
Lavery (jocn-15-8-507-R6) 2018
Fan (jocn-15-8-507-R3) 2022; 29
Mengali (jocn-15-8-507-R32) 1997; 45
Borkowski (jocn-15-8-507-R13) 2022; 14
Li (jocn-15-8-507-R7) 2022
Qu (jocn-15-8-507-R23) 2019; 7
Xu (jocn-15-8-507-R9) 2022
Campos (jocn-15-8-507-R2) 2022
Buchali (jocn-15-8-507-R18) 2016; 34
Zhang (jocn-15-8-507-R12) 2020
Schulte (jocn-15-8-507-R29) 2016; 62
Wey (jocn-15-8-507-R4) 2019; 37
Li (jocn-15-8-507-R20) 2022; 41
Borkowski (jocn-15-8-507-R16) 2020
Zhang (jocn-15-8-507-R1) 2022; 36
Olsson (jocn-15-8-507-R27) 2018; 9
Xu (jocn-15-8-507-R10) 2021
Zhang (jocn-15-8-507-R14) 2020
References_xml – start-page: Th5I.4
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2021
  ident: jocn-15-8-507-R10
  article-title: Adaptive modulation and coding scheme in coherent PON for enhanced capacity and rural coverage
– volume: 29
  start-page: 100
  year: 2022
  ident: jocn-15-8-507-R3
  publication-title: IEEE Wireless Commun.
  doi: 10.1109/MWC.004.2100528
– volume: 41
  start-page: 1230
  year: 2022
  ident: jocn-15-8-507-R21
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2022.3208575
– volume: 39
  start-page: 4997
  year: 2021
  ident: jocn-15-8-507-R19
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3083530
– volume: 45
  start-page: 23
  year: 1997
  ident: jocn-15-8-507-R32
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.554282
– volume: 34
  start-page: 1599
  year: 2016
  ident: jocn-15-8-507-R18
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2510034
– start-page: M3
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2018
  ident: jocn-15-8-507-R6
  article-title: Recent progress and outlook for coherent PON
  doi: 10.1364/OFC.2018.M3B.1
– volume: 34
  start-page: 157
  year: 2016
  ident: jocn-15-8-507-R5
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2463719
– volume: 37
  start-page: 2830
  year: 2019
  ident: jocn-15-8-507-R4
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2856828
– volume: 34
  start-page: 5063
  year: 2016
  ident: jocn-15-8-507-R28
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2594271
– volume: 10
  start-page: 6636
  year: 2020
  ident: jocn-15-8-507-R26
  publication-title: Appl. Sci.
  doi: 10.3390/app10196636
– volume-title: European Conference on Optical Communications (ECOC)
  year: 2020
  ident: jocn-15-8-507-R14
  article-title: Probabilistic and geometric shaping for next-generation 100G flexible PON
  doi: 10.1109/ECOC48923.2020.9333172
– volume: 33
  start-page: 4338
  year: 2015
  ident: jocn-15-8-507-R24
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2450537
– volume: 36
  start-page: 1689
  year: 2018
  ident: jocn-15-8-507-R22
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2787342
– volume: 41
  start-page: 1240
  year: 2022
  ident: jocn-15-8-507-R20
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2022.3216763
– volume: 9
  start-page: 2513
  year: 2018
  ident: jocn-15-8-507-R27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04956-5
– start-page: Th3E.3
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2022
  ident: jocn-15-8-507-R7
  article-title: 200-Gb/s/λ coherent TDM-PON with wide dynamic range of >30-dB based on local oscillator power adjustment
– volume: 7
  start-page: 21454
  year: 2019
  ident: jocn-15-8-507-R23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2897381
– volume: 14
  start-page: A23
  year: 2022
  ident: jocn-15-8-507-R17
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.438127
– volume: 36
  start-page: 116
  year: 2022
  ident: jocn-15-8-507-R1
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.005.2100604
– start-page: Th4A.4
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2022
  ident: jocn-15-8-507-R8
  article-title: First demonstration of PS-QAM based flexible coherent PON in burst-mode with 300G peak-rate and record dynamic-range and net-rate product up to 7,104  dB Gbps
– start-page: Th3E.2
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2022
  ident: jocn-15-8-507-R9
  article-title: Intelligent burst receiving control in 100G coherent PON with 4 × 25G TFDM upstream transmission
– volume: 8
  start-page: 34170
  year: 2020
  ident: jocn-15-8-507-R15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974620
– volume: 62
  start-page: 430
  year: 2016
  ident: jocn-15-8-507-R29
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2015.2499181
– volume: 36
  start-page: 495
  year: 2018
  ident: jocn-15-8-507-R30
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2017.2758326
– start-page: Th3E.4
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2022
  ident: jocn-15-8-507-R11
  article-title: Experimental demonstration of 200  Gb/s/λ coherent PON with a low-complexity receiver and a multi-purpose neural network
– start-page: Th3E.1
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2022
  ident: jocn-15-8-507-R2
  article-title: Coherent optics for access from P2P to P2MP
– start-page: W1
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-15-8-507-R12
  article-title: Rate-flexible single-wavelength TFDM 100G coherent PON based on digital subcarrier multiplexing technology
– volume: 13
  start-page: A135
  year: 2021
  ident: jocn-15-8-507-R31
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.402591
– volume: 14
  start-page: C82
  year: 2022
  ident: jocn-15-8-507-R13
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.452036
– volume-title: European Conference on Optical Communications (ECOC)
  year: 2020
  ident: jocn-15-8-507-R16
  article-title: World’s first field trial of 100  Gbit/s flexible PON (FLCS-PON)
  doi: 10.1109/ECOC48923.2020.9333413
SSID ssj0067115
Score 2.3509743
Snippet The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 507
SubjectTerms Budgets
Channel capacity
Coherence
Dynamic range
Entropy
Light amplifiers
Optical communication
Optical network units
Optical receivers
Optical sensors
Passive optical networks
Probabilistic logic
Quadrature amplitude modulation
Title Principle and strategy of using probabilistic shaping in a flexible coherent passive optical network without optical amplifiers
URI https://ieeexplore.ieee.org/document/10195896
https://www.proquest.com/docview/2842125752
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05SwQxFA5qpYW3uLpKCithVncnm6MUUURwtVCwG3KqKDOLO1to41_3vWRGxQPshiGBwEvyjrzv-wjZs67veW55htRGGeNGZrqvNQRy3jPpwkANEDt8MeJnN-z8dnjbgNUjFsZ7H5vPfA8_41u-q-wUS2VwwpEaRfFZMguZWwJrtdcuF_0oVwBJOcoVDA4bMF7O2cH55fGoB5G5jESUn-4n6qn8uISjZzldIqN2Tamh5LE3rU3Pvn6ja_z3opfJYhNj0qO0KVbIjC9XycIX5sE18nbVFtmpLh2dJI7aF1oFip3wdxSFZiL5LvI408m9RlwVfSippgE5NA3MtNU9ggVrOoYIHG5NWo1jZZyWqbecYpG3mtYf_zW2rwcU314nN6cn18dnWaPFkFlIyuosD44L3jcyICWcOAzSmyAdhwPvFdNKG8h0hWROMKYYy10YMqdMzpWEDFzYfIPMlVXpNwkdqqFVhmkjRGDgQI1URjCDwZfXXokO2W9NVNiGqBz1Mp6K-PrGWYH2LJI9O7Dd2sHjxM_x-7B1tMyXIckoHdJtjV80h3dSgMcGhw5x7GDrj2nbZB5l51MjYJfM1c9TvwPBSW1246Z8B-ES5BI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4HNoeKFCqLgXqQ09I2ZKN48exWhUtCyw9gMQt8hNQq2TVzR7aC3-dGTtpUUslblFkS5bG9jw83_cR8tG63PPC8gypjTLGjcx0rjUEct4z6cJIjRA7fD7jkys2vS6vO7B6xMJ472PzmR_iZ3zLd41dYqkMTjhSoyi-StbB8Zd5gmv1Fy8XeRQsgLQcBQtGRx0cr-Ds0_RiPBtCbC4jFeUfBxQVVf65hqNvOX5NZv2qUkvJt-GyNUP76y_Cxmcve5NsdFEm_Zy2xRZZ8fU2efWIe_ANuf_al9mprh1dJJban7QJFHvhbyhKzUT6XWRypotbjcgqeldTTQOyaBqYaZtbhAu2dA4xONybtJnH2jitU3c5xTJvs2x__9fYwB5QfnuHXB1_uRxPsk6NIbOQlrVZERwXPDcyICmcOArSmyAdhyPvFdNKG8h1hWROMKYYK1womVOm4EpCDi5s8Zas1U3t3xFaqtIqw7QRIjBwoUYqI5jB8Mtrr8SAHPYmqmxHVY6KGd-r-P7GWYX2rJI9B7Dh-sHzxNDx9LAdtMyjIckoA7LXG7_qju-iAp8NLh0i2dHuf6Z9IC8ml-dn1dnJ7PQ9eYki9KktcI-stT-Wfh9CldYcxA36AOph51s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principle+and+strategy+of+using+probabilistic+shaping+in+a+flexible+coherent+passive+optical+network+without+optical+amplifiers&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Xing%2C+Sizhe&rft.au=Li%2C+Guoqiang&rft.au=Yan%2C+An&rft.au=Shen%2C+Wangwei&rft.date=2023-08-01&rft.pub=Optica+Publishing+Group&rft.issn=1943-0620&rft.volume=15&rft.issue=8&rft.spage=507&rft.epage=517&rft_id=info:doi/10.1364%2FJOCN.487860&rft.externalDocID=10195896
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon