Principle and strategy of using probabilistic shaping in a flexible coherent passive optical network without optical amplifiers
The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power budget for 100G and beyond. In order to fully utilize the channel capacity and achieve adaptive rate adjustment in a flexible coherent passiv...
Saved in:
Published in | Journal of optical communications and networking Vol. 15; no. 8; pp. 507 - 517 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
Optica Publishing Group
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power budget for 100G and beyond. In order to fully utilize the channel capacity and achieve adaptive rate adjustment in a flexible coherent passive optical network (FLCS-CPON), constellation-shaping techniques, such as probabilistic shaping (PS), have been introduced. Unlike long-distance transmission networks, which are subject to average power constraint when optical amplifiers are utilized, commercial passive optical network systems are generally subject to peak power constraint, as no optical amplifiers are used. This difference makes the classical probabilistic-shaping (CPS) technology less efficient in CPON systems without optical amplifiers. In this study, the use cases of PS in a flexible coherent access network, including nonlinear-penalty-dominant and noise-dominated regions, are thoroughly explored. By fixing the modulation order and utilizing CPS and reversed probabilistic shaping with a fixed modulation format, a hybrid PS-based FLCS-CPON without optical amplifiers is demonstrated, achieving a peak rate of 200G and a high dynamic range boost of up to 72% from 16 to 27.5 dB in upstream burst-mode-based PS-16 quadrature amplitude modulation. Over the entire dynamic range, the net data rate varies from 168 to 85 Gbps with a power budget of 37 dB, and a dynamic range and net-rate product improvement of 55% is achieved. |
---|---|
AbstractList | The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power budget for 100G and beyond. In order to fully utilize the channel capacity and achieve adaptive rate adjustment in a flexible coherent passive optical network (FLCS-CPON), constellation-shaping techniques, such as probabilistic shaping (PS), have been introduced. Unlike long-distance transmission networks, which are subject to average power constraint when optical amplifiers are utilized, commercial passive optical network systems are generally subject to peak power constraint, as no optical amplifiers are used. This difference makes the classical probabilistic-shaping (CPS) technology less efficient in CPON systems without optical amplifiers. In this study, the use cases of PS in a flexible coherent access network, including nonlinear-penalty-dominant and noise-dominated regions, are thoroughly explored. By fixing the modulation order and utilizing CPS and reversed probabilistic shaping with a fixed modulation format, a hybrid PS-based FLCS-CPON without optical amplifiers is demonstrated, achieving a peak rate of 200G and a high dynamic range boost of up to 72% from 16 to 27.5 dB in upstream burst-mode-based PS-16 quadrature amplitude modulation. Over the entire dynamic range, the net data rate varies from 168 to 85 Gbps with a power budget of 37 dB, and a dynamic range and net-rate product improvement of 55% is achieved. The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power budget for 100G and beyond. In order to fully utilize the channel capacity and achieve adaptive rate adjustment in a flexible coherent passive optical network (FLCS-CPON), constellation-shaping techniques, such as probabilistic shaping (PS), have been introduced. Unlike long-distance transmission networks, which are subject to average power constraint when optical amplifiers are utilized, commercial passive optical network systems are generally subject to peak power constraint, as no optical amplifiers are used. This difference makes the classical probabilistic-shaping (CPS) technology less efficient in CPON systems without optical amplifiers. In this study, the use cases of PS in a flexible coherent access network, including nonlinear-penalty-dominant and noise-dominated regions, are thoroughly explored. By fixing the modulation order and utilizing CPS and reversed probabilistic shaping with a fixed modulation format, a hybrid PS-based FLCS-CPON without optical amplifiers is demonstrated, achieving a peak rate of 200G and a high dynamic range boost of up to 72% from 16 to 27.5 dB in upstream burst-mode-based PS-16 quadrature amplitude modulation. Over the entire dynamic range, the net data rate varies from 168 to 85 Gbps with a power budget of 37 dB, and a dynamic range and net-rate product improvement of 55% is achieved. |
Author | Yan, An Li, Zhongya Li, Guoqiang Shi, Jianyang Wang, Jiaye Chi, Nan Xing, Sizhe Shen, Wangwei Zhang, Junwen He, Zhixue |
Author_xml | – sequence: 1 givenname: Sizhe surname: Xing fullname: Xing, Sizhe organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China – sequence: 2 givenname: Guoqiang orcidid: 0000-0002-7704-2984 surname: Li fullname: Li, Guoqiang organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China – sequence: 3 givenname: An orcidid: 0009-0009-2778-3803 surname: Yan fullname: Yan, An organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China – sequence: 4 givenname: Wangwei surname: Shen fullname: Shen, Wangwei organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China – sequence: 5 givenname: Zhongya orcidid: 0000-0003-1247-2059 surname: Li fullname: Li, Zhongya organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China – sequence: 6 givenname: Jiaye surname: Wang fullname: Wang, Jiaye organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China – sequence: 7 givenname: Jianyang orcidid: 0000-0002-5478-3704 surname: Shi fullname: Shi, Jianyang organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China – sequence: 8 givenname: Zhixue surname: He fullname: He, Zhixue organization: Peng Cheng Laboratory, Shenzhen, 518055, China – sequence: 9 givenname: Nan orcidid: 0000-0003-4966-3844 surname: Chi fullname: Chi, Nan organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China – sequence: 10 givenname: Junwen orcidid: 0000-0001-8041-1608 surname: Zhang fullname: Zhang, Junwen organization: Department of Communication Science and Engineering, Key Laboratory for Information Science of Electromagnetic Waves (MoE),Fudan University, Shanghai, China |
BookMark | eNp1kE1PGzEQhq2KSg20p157sNRjFbDXXn8cUdQPEAIO9Lzy7o6TCYu92A6UE3-djYKiConTjEbPO6N5DslBiAEI-crZMRdKnpxfLS6PpdFGsQ9kxq0Uc6aEPdj3FftEDnNeM6Y05_WMPF8nDB2OA1AXeppLcgWWTzR6uskYlnRMsXUtDpgLdjSv3LidYqCO-gH-YTslu7iCBKHQ0eWMD0DjOMFuoAHKY0y39BHLKm7Kfu7uxgE9QsqfyUfvhgxfXusR-fvr583iz_zi6vfZ4vRi3lWmKnPhe6UVb42vOLeaeQOtN72qtQErnXWtEVob2WsprZSi97XsbSuUNUwq3Ykj8n23d_rnfgO5NOu4SWE62VRGVryqdV1NFN9RXYo5J_BNh8UVjGHygkPDWbP13Gw9NzvPU-bHm8yY8M6lp3fobzsaAeA_ktvaWCVeAHTbi1c |
CODEN | JOCNBB |
CitedBy_id | crossref_primary_10_1364_AO_536890 crossref_primary_10_3788_AOS231809 crossref_primary_10_1364_OE_522106 crossref_primary_10_1364_OE_530746 crossref_primary_10_3788_COL202422_040604 |
Cites_doi | 10.1109/MWC.004.2100528 10.1109/JLT.2022.3208575 10.1109/JLT.2021.3083530 10.1109/26.554282 10.1109/JLT.2015.2510034 10.1364/OFC.2018.M3B.1 10.1109/JLT.2015.2463719 10.1109/JLT.2018.2856828 10.1109/JLT.2016.2594271 10.3390/app10196636 10.1109/ECOC48923.2020.9333172 10.1109/JLT.2015.2450537 10.1109/JLT.2017.2787342 10.1109/JLT.2022.3216763 10.1038/s41467-018-04956-5 10.1109/ACCESS.2019.2897381 10.1364/JOCN.438127 10.1109/MNET.005.2100604 10.1109/ACCESS.2020.2974620 10.1109/TIT.2015.2499181 10.1109/JLT.2017.2758326 10.1364/JOCN.402591 10.1364/JOCN.452036 10.1109/ECOC48923.2020.9333413 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1364/JOCN.487860 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1943-0639 |
EndPage | 517 |
ExternalDocumentID | 10_1364_JOCN_487860 10195896 |
Genre | orig-research |
GroupedDBID | 0R~ 29L 29N 4.4 5VS 6IK 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACIWK AEDJG AENEX AETIX AGQYO AGSQL AHBIQ AKGWG AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR AZYMN BEFXN BFFAM BGNUA BKEBE BPEOZ DSZJF DU5 EBS EJD HZ~ IES IFIPE IPLJI JAVBF M43 O9- OCL ODPQJ OFLFD OPJBK RIA RIE RNS ROL ROS TR6 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c282t-3fd6761b8f211970f8ebf8d6578e94a9ab837784d7449443df54d9b36980467c3 |
IEDL.DBID | RIE |
ISSN | 1943-0620 |
IngestDate | Mon Jun 30 10:16:18 EDT 2025 Thu Apr 24 22:53:44 EDT 2025 Tue Jul 01 01:09:32 EDT 2025 Wed Aug 27 02:12:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c282t-3fd6761b8f211970f8ebf8d6578e94a9ab837784d7449443df54d9b36980467c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7704-2984 0000-0003-4966-3844 0000-0003-1247-2059 0000-0002-5478-3704 0000-0001-8041-1608 0009-0009-2778-3803 |
PQID | 2842125752 |
PQPubID | 85498 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1364_JOCN_487860 ieee_primary_10195896 proquest_journals_2842125752 crossref_primary_10_1364_JOCN_487860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | Journal of optical communications and networking |
PublicationTitleAbbrev | jocn |
PublicationYear | 2023 |
Publisher | Optica Publishing Group The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: Optica Publishing Group – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Jia (jocn-15-8-507-R26) 2020; 10 Xing (jocn-15-8-507-R8) 2022 Alvarado (jocn-15-8-507-R24) 2015; 33 Che (jocn-15-8-507-R19) 2021; 39 Xing (jocn-15-8-507-R21) 2022; 41 Zhang (jocn-15-8-507-R11) 2022 Zhang (jocn-15-8-507-R15) 2020; 8 Zhang (jocn-15-8-507-R30) 2018; 36 Sheikh (jocn-15-8-507-R22) 2018; 36 Zhang (jocn-15-8-507-R31) 2021; 13 Kaneda (jocn-15-8-507-R17) 2022; 14 Fehenberger (jocn-15-8-507-R28) 2016; 34 Kikuchi (jocn-15-8-507-R5) 2016; 34 Lavery (jocn-15-8-507-R6) 2018 Fan (jocn-15-8-507-R3) 2022; 29 Mengali (jocn-15-8-507-R32) 1997; 45 Borkowski (jocn-15-8-507-R13) 2022; 14 Li (jocn-15-8-507-R7) 2022 Qu (jocn-15-8-507-R23) 2019; 7 Xu (jocn-15-8-507-R9) 2022 Campos (jocn-15-8-507-R2) 2022 Buchali (jocn-15-8-507-R18) 2016; 34 Zhang (jocn-15-8-507-R12) 2020 Schulte (jocn-15-8-507-R29) 2016; 62 Wey (jocn-15-8-507-R4) 2019; 37 Li (jocn-15-8-507-R20) 2022; 41 Borkowski (jocn-15-8-507-R16) 2020 Zhang (jocn-15-8-507-R1) 2022; 36 Olsson (jocn-15-8-507-R27) 2018; 9 Xu (jocn-15-8-507-R10) 2021 Zhang (jocn-15-8-507-R14) 2020 |
References_xml | – start-page: Th5I.4 volume-title: Optical Fiber Communication Conference (OFC) year: 2021 ident: jocn-15-8-507-R10 article-title: Adaptive modulation and coding scheme in coherent PON for enhanced capacity and rural coverage – volume: 29 start-page: 100 year: 2022 ident: jocn-15-8-507-R3 publication-title: IEEE Wireless Commun. doi: 10.1109/MWC.004.2100528 – volume: 41 start-page: 1230 year: 2022 ident: jocn-15-8-507-R21 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2022.3208575 – volume: 39 start-page: 4997 year: 2021 ident: jocn-15-8-507-R19 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3083530 – volume: 45 start-page: 23 year: 1997 ident: jocn-15-8-507-R32 publication-title: IEEE Trans. Commun. doi: 10.1109/26.554282 – volume: 34 start-page: 1599 year: 2016 ident: jocn-15-8-507-R18 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2510034 – start-page: M3 volume-title: Optical Fiber Communication Conference (OFC) year: 2018 ident: jocn-15-8-507-R6 article-title: Recent progress and outlook for coherent PON doi: 10.1364/OFC.2018.M3B.1 – volume: 34 start-page: 157 year: 2016 ident: jocn-15-8-507-R5 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2463719 – volume: 37 start-page: 2830 year: 2019 ident: jocn-15-8-507-R4 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2856828 – volume: 34 start-page: 5063 year: 2016 ident: jocn-15-8-507-R28 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2594271 – volume: 10 start-page: 6636 year: 2020 ident: jocn-15-8-507-R26 publication-title: Appl. Sci. doi: 10.3390/app10196636 – volume-title: European Conference on Optical Communications (ECOC) year: 2020 ident: jocn-15-8-507-R14 article-title: Probabilistic and geometric shaping for next-generation 100G flexible PON doi: 10.1109/ECOC48923.2020.9333172 – volume: 33 start-page: 4338 year: 2015 ident: jocn-15-8-507-R24 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2450537 – volume: 36 start-page: 1689 year: 2018 ident: jocn-15-8-507-R22 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2787342 – volume: 41 start-page: 1240 year: 2022 ident: jocn-15-8-507-R20 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2022.3216763 – volume: 9 start-page: 2513 year: 2018 ident: jocn-15-8-507-R27 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04956-5 – start-page: Th3E.3 volume-title: Optical Fiber Communication Conference (OFC) year: 2022 ident: jocn-15-8-507-R7 article-title: 200-Gb/s/λ coherent TDM-PON with wide dynamic range of >30-dB based on local oscillator power adjustment – volume: 7 start-page: 21454 year: 2019 ident: jocn-15-8-507-R23 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897381 – volume: 14 start-page: A23 year: 2022 ident: jocn-15-8-507-R17 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.438127 – volume: 36 start-page: 116 year: 2022 ident: jocn-15-8-507-R1 publication-title: IEEE Netw. doi: 10.1109/MNET.005.2100604 – start-page: Th4A.4 volume-title: Optical Fiber Communication Conference (OFC) year: 2022 ident: jocn-15-8-507-R8 article-title: First demonstration of PS-QAM based flexible coherent PON in burst-mode with 300G peak-rate and record dynamic-range and net-rate product up to 7,104 dB Gbps – start-page: Th3E.2 volume-title: Optical Fiber Communication Conference (OFC) year: 2022 ident: jocn-15-8-507-R9 article-title: Intelligent burst receiving control in 100G coherent PON with 4 × 25G TFDM upstream transmission – volume: 8 start-page: 34170 year: 2020 ident: jocn-15-8-507-R15 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974620 – volume: 62 start-page: 430 year: 2016 ident: jocn-15-8-507-R29 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2015.2499181 – volume: 36 start-page: 495 year: 2018 ident: jocn-15-8-507-R30 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2017.2758326 – start-page: Th3E.4 volume-title: Optical Fiber Communication Conference (OFC) year: 2022 ident: jocn-15-8-507-R11 article-title: Experimental demonstration of 200 Gb/s/λ coherent PON with a low-complexity receiver and a multi-purpose neural network – start-page: Th3E.1 volume-title: Optical Fiber Communication Conference (OFC) year: 2022 ident: jocn-15-8-507-R2 article-title: Coherent optics for access from P2P to P2MP – start-page: W1 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-15-8-507-R12 article-title: Rate-flexible single-wavelength TFDM 100G coherent PON based on digital subcarrier multiplexing technology – volume: 13 start-page: A135 year: 2021 ident: jocn-15-8-507-R31 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.402591 – volume: 14 start-page: C82 year: 2022 ident: jocn-15-8-507-R13 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.452036 – volume-title: European Conference on Optical Communications (ECOC) year: 2020 ident: jocn-15-8-507-R16 article-title: World’s first field trial of 100 Gbit/s flexible PON (FLCS-PON) doi: 10.1109/ECOC48923.2020.9333413 |
SSID | ssj0067115 |
Score | 2.3509743 |
Snippet | The coherent passive optical network (CPON) has received a great deal of attention in recent years due to its superior receiver sensitivity and extended power... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 507 |
SubjectTerms | Budgets Channel capacity Coherence Dynamic range Entropy Light amplifiers Optical communication Optical network units Optical receivers Optical sensors Passive optical networks Probabilistic logic Quadrature amplitude modulation |
Title | Principle and strategy of using probabilistic shaping in a flexible coherent passive optical network without optical amplifiers |
URI | https://ieeexplore.ieee.org/document/10195896 https://www.proquest.com/docview/2842125752 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05SwQxFA5qpYW3uLpKCithVncnm6MUUURwtVCwG3KqKDOLO1to41_3vWRGxQPshiGBwEvyjrzv-wjZs67veW55htRGGeNGZrqvNQRy3jPpwkANEDt8MeJnN-z8dnjbgNUjFsZ7H5vPfA8_41u-q-wUS2VwwpEaRfFZMguZWwJrtdcuF_0oVwBJOcoVDA4bMF7O2cH55fGoB5G5jESUn-4n6qn8uISjZzldIqN2Tamh5LE3rU3Pvn6ja_z3opfJYhNj0qO0KVbIjC9XycIX5sE18nbVFtmpLh2dJI7aF1oFip3wdxSFZiL5LvI408m9RlwVfSippgE5NA3MtNU9ggVrOoYIHG5NWo1jZZyWqbecYpG3mtYf_zW2rwcU314nN6cn18dnWaPFkFlIyuosD44L3jcyICWcOAzSmyAdhwPvFdNKG8h0hWROMKYYy10YMqdMzpWEDFzYfIPMlVXpNwkdqqFVhmkjRGDgQI1URjCDwZfXXokO2W9NVNiGqBz1Mp6K-PrGWYH2LJI9O7Dd2sHjxM_x-7B1tMyXIckoHdJtjV80h3dSgMcGhw5x7GDrj2nbZB5l51MjYJfM1c9TvwPBSW1246Z8B-ES5BI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZ4HNoeKFCqLgXqQ09I2ZKN48exWhUtCyw9gMQt8hNQq2TVzR7aC3-dGTtpUUslblFkS5bG9jw83_cR8tG63PPC8gypjTLGjcx0rjUEct4z6cJIjRA7fD7jkys2vS6vO7B6xMJ472PzmR_iZ3zLd41dYqkMTjhSoyi-StbB8Zd5gmv1Fy8XeRQsgLQcBQtGRx0cr-Ds0_RiPBtCbC4jFeUfBxQVVf65hqNvOX5NZv2qUkvJt-GyNUP76y_Cxmcve5NsdFEm_Zy2xRZZ8fU2efWIe_ANuf_al9mprh1dJJban7QJFHvhbyhKzUT6XWRypotbjcgqeldTTQOyaBqYaZtbhAu2dA4xONybtJnH2jitU3c5xTJvs2x__9fYwB5QfnuHXB1_uRxPsk6NIbOQlrVZERwXPDcyICmcOArSmyAdhyPvFdNKG8h1hWROMKYYK1womVOm4EpCDi5s8Zas1U3t3xFaqtIqw7QRIjBwoUYqI5jB8Mtrr8SAHPYmqmxHVY6KGd-r-P7GWYX2rJI9B7Dh-sHzxNDx9LAdtMyjIckoA7LXG7_qju-iAp8NLh0i2dHuf6Z9IC8ml-dn1dnJ7PQ9eYki9KktcI-stT-Wfh9CldYcxA36AOph51s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principle+and+strategy+of+using+probabilistic+shaping+in+a+flexible+coherent+passive+optical+network+without+optical+amplifiers&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Xing%2C+Sizhe&rft.au=Li%2C+Guoqiang&rft.au=Yan%2C+An&rft.au=Shen%2C+Wangwei&rft.date=2023-08-01&rft.pub=Optica+Publishing+Group&rft.issn=1943-0620&rft.volume=15&rft.issue=8&rft.spage=507&rft.epage=517&rft_id=info:doi/10.1364%2FJOCN.487860&rft.externalDocID=10195896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon |