The combined effects of the cooling rate and alloying element on the mechanical behavior of Mg-Mn-Zn alloying system
Magnesium (Mg) alloys have recently been the subject of many investigations, as they show great potential for use in a multitude of applications. Due to their biocompatibility and attractive mechanical properties, one of the areas showing the greatest potential is with orthopedic biomedical implants...
Saved in:
Published in | Journal of Alloys and Metallurgical Systems Vol. 5; p. 100055 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnesium (Mg) alloys have recently been the subject of many investigations, as they show great potential for use in a multitude of applications. Due to their biocompatibility and attractive mechanical properties, one of the areas showing the greatest potential is with orthopedic biomedical implants. Because the suitability of implant devices hinges greatly on their ability to mimic bone, the mechanical properties are of paramount importance when it comes to material selection. The goal of this study was to produce a biodegradable-biomedical alloy with desired mechanical properties. Since Mg is a biodegradable and biomedical alloy, it became the starting point for the alloying system. However, Mg lacks some desired mechanical properties, so the study aimed to improve the mechanical properties to be suitable for such applications. This work investigates the influence of different cooling rates on the strength of pure Mg. Additionally, the influence in adding zinc (Zn) and manganese (Mn) to create Mg-1Mn-2Zn and Mg-1Mn-4Zn alloys were studied. Hardness, tensile, and impact testing were performed in addition to fractography and microstructural evaluations. All chemical compositions were illustrated as a weight percent, or wt%. It was found that in general, for both the pure magnesium and Mg-Mn-Zn alloys, the mechanical properties had a tendency to improve by refinement of the grain structure. |
---|---|
AbstractList | Magnesium (Mg) alloys have recently been the subject of many investigations, as they show great potential for use in a multitude of applications. Due to their biocompatibility and attractive mechanical properties, one of the areas showing the greatest potential is with orthopedic biomedical implants. Because the suitability of implant devices hinges greatly on their ability to mimic bone, the mechanical properties are of paramount importance when it comes to material selection. The goal of this study was to produce a biodegradable-biomedical alloy with desired mechanical properties. Since Mg is a biodegradable and biomedical alloy, it became the starting point for the alloying system. However, Mg lacks some desired mechanical properties, so the study aimed to improve the mechanical properties to be suitable for such applications. This work investigates the influence of different cooling rates on the strength of pure Mg. Additionally, the influence in adding zinc (Zn) and manganese (Mn) to create Mg-1Mn-2Zn and Mg-1Mn-4Zn alloys were studied. Hardness, tensile, and impact testing were performed in addition to fractography and microstructural evaluations. All chemical compositions were illustrated as a weight percent, or wt%. It was found that in general, for both the pure magnesium and Mg-Mn-Zn alloys, the mechanical properties had a tendency to improve by refinement of the grain structure. |
ArticleNumber | 100055 |
Author | Jamel, Murtatha M. Lindner, Brad Lopez, Hugo Cho, Emilee |
Author_xml | – sequence: 1 givenname: Murtatha M. surname: Jamel fullname: Jamel, Murtatha M. email: mmjamel@uwm.edu – sequence: 2 givenname: Hugo surname: Lopez fullname: Lopez, Hugo email: hlopez@uwm.edu – sequence: 3 givenname: Emilee surname: Cho fullname: Cho, Emilee email: emilee.cho.rw@gmail.com – sequence: 4 givenname: Brad surname: Lindner fullname: Lindner, Brad email: brad.lindner@gmail.com |
BookMark | eNp9kc9q3DAQxkVIIX-aN8hBL-CNLEu2dAmE0DaBhFySSy5iLI12ZWwpSCawb1_vurQ95TTDx3w_Zua7IKcxRSTkumabmtXtzbAZYJywbDjjYpEYk_KEnHMtdKXrTp3-15-Rq1KGZYRr3nRNd07m1x1Sm6Y-RHQUvUc7F5o8nY96GkPc0gwzUoiOwjim_UHBESeMM03xODih3UEMFkba4w4-Q8oHxvO2eo7Ve_znK_sy4_SdfPMwFrz6Uy_J288fr_cP1dPLr8f7u6fKcsVl1XjfYueEFZ11Vje8l623GqXvwdXctb5VumlZJ1ExL6GWmkvhhHS6VX3Pm0vyuHJdgsF85DBB3psEwRyFlLcG8hzsiAZ079DyRtWiEdgpZW0P4JkTyIRjamGJlWVzKiWj_8urmTkEYQazBmEOQZg1iMV2u9pwufMzYDbFBowWXcjLq5dFwteA35JSlfc |
Cites_doi | 10.1016/j.ijmecsci.2005.09.003 10.1016/j.jallcom.2012.07.083 10.1016/S1003-6326(08)60131-4 10.1016/S1003-6326(10)60175-6 10.1016/j.pnsc.2014.09.002 10.1016/j.msea.2006.01.091 10.1016/j.matdes.2013.06.055 10.1016/j.intermet.2008.03.003 10.1016/j.actbio.2011.11.014 10.1016/j.actbio.2009.11.024 10.1002/jbm.a.34368 10.1016/j.msea.2009.09.008 10.1016/S1003-6326(11)60672-9 10.1016/j.matchar.2010.06.004 10.1016/j.biomaterials.2009.11.015 10.1016/j.corsci.2012.08.037 10.1016/j.actbio.2009.10.008 10.1016/j.corsci.2012.03.030 10.1001/jama.1974.03230160038009 10.1016/j.actbio.2010.12.004 10.1016/j.pnsc.2014.08.014 10.1016/j.jma.2014.03.002 10.1016/j.jma.2016.12.002 10.1016/j.ijfatigue.2013.02.017 10.1016/j.jallcom.2016.07.120 10.1016/j.jma.2017.05.001 10.1016/j.corsci.2008.11.003 10.1016/j.jma.2014.10.002 10.3390/met7070252 10.1016/j.jma.2014.05.006 10.1016/j.matdes.2015.12.128 10.1016/j.jma.2017.08.003 10.1007/s12598-011-0211-y 10.1016/S0002-8223(02)90346-9 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jalmes.2024.100055 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2949-9178 |
ExternalDocumentID | oai_doaj_org_article_a9bdec2381434e788ccbaaf0d4e04d08 10_1016_j_jalmes_2024_100055 S2949917824000026 |
GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS EBS FDB GROUPED_DOAJ M~E 0R~ AALRI AAXUO AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP AMRAJ APXCP CITATION |
ID | FETCH-LOGICAL-c2825-3ff6e7d4c47cdc932b56fc9e5fbad12d6f68936075e80f5a159254d45d968bb23 |
IEDL.DBID | DOA |
ISSN | 2949-9178 |
IngestDate | Wed Aug 27 01:30:13 EDT 2025 Tue Jul 01 04:28:31 EDT 2025 Sat Apr 06 16:25:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mechanical properties Solidification rate Magnesium Microstructure alloys Magnesium alloys |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2825-3ff6e7d4c47cdc932b56fc9e5fbad12d6f68936075e80f5a159254d45d968bb23 |
OpenAccessLink | https://doaj.org/article/a9bdec2381434e788ccbaaf0d4e04d08 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a9bdec2381434e788ccbaaf0d4e04d08 crossref_primary_10_1016_j_jalmes_2024_100055 elsevier_sciencedirect_doi_10_1016_j_jalmes_2024_100055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Alloys and Metallurgical Systems |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Song, Han, Dong, Shan, Yim, You (bib14) 2014; Vol.2 Lugo, Jordon, Solanki, Hector, Bernard, Luo, Horstemeyer (bib22) 2013; Vol.52 Nguyen Nam Dang; Mathesh, Motilal; Forsyth, Maria; Jo, Deok Su, Effect of manganese additions on the corrosion behavior of an extruded Mg–5Al based alloy J. Alloy. Compd. Vol.542 2012 199 206. Trumbo, Schlicker, Yates, Poos (bib32) 2002; Vol.102 Khan, Miyashita, Mutoh, Sajuri (bib24) 2006; Vol.420 Gu, Zheng, Zhong, Xi, Wang, Wang (bib12) 2010; Vol.31 Li, He, Zhang, Wang (bib13) 2014; Vol.2 Azeem, Tewari, Ramamurty (bib23) 2010; Vol.527 Yin Dongsong, Erlin (bib1) 2009; Vol.6 William, Crosby, Vilas, Likhite, PhD; Joseph, O'Brien, David Forman (bib26) 1974; 227 Zainuddin Sajuri Bin; Miyashita, Yukio; Hosokai, Yasunobu; Mutoh, Yoshiharu, Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys Int. J. Mech. Sci. Vol.48 2 2006 198 209. El-Mahallawy, Palkowski, Klingner, Diaa, Shoeib (bib9) 2020; Vol.24 Zhang, Shi, Zhao, Qi (bib40) 2011; Vol.21 Bakhsheshi-Rad, Idris, Abdul-Kadir, Ourdjini, M, Daroonparvar, Hamzah (bib5) 2014; Vol.53 Ben-Hamu, Eliezer, Shin (bib41) 2008; Vol.16 Liu, Shan, Song, Han (bib18) 2017; Vol.5 Liu, Sun, Zhou, Yang, Chang, Qiu, Pu, Li, Zheng (bib29) 2016; Vol.94 Song, Han, Shan, Yim, You (bib15) 2012; Vol.65 Zhang, Yang, Xu, Chen (bib17) 2010; Vol.6 Kirkland, Birbilis, Staiger (bib2) 2011; Vol 8 Charles Moosbrugger. Engineering Properties of Magnesium Alloys. ASM, 2017, Chapter 1, 3. Stulikova, Smola (bib8) 2010; Vol.61 Petzow (bib43) 1978 William D. Callister Jr Mater. Sci. Eng. - Introd., Eighth Ed. 2010 212 225. Huang, Liu, Xu, Du (bib42) 2016; Vol.688 Zhang, Shi, Dai, Yuan, Duan (bib39) 2008; Vol.18 Bi, Guangli, Li, Yuandong, Zang, Shijun, Zhang, Jianbin, Ma, Ying, Hao, Yuan. Microstructure, mechanical and corrosion properties of Mg–2Dy–xZn (x=0, 0.1, 0.5 and 1 at%) alloys, Journal of Magnesium and Alloys, March 2014, Vol.2(1), pp.64–71. Radha, Sreekanth (bib7) 2017; Vol.5 Dilip Chandrasekaran (bib35) 2003 Hou, Li, Pan, Du, Li, Zheng, Li (bib27) 2014; Vol.24 Xin, Hu, Chu (bib33) 2011; Vol.7 Ren, Wang, Huang, Zhang, Yang (bib3) 2007 Izumi, Yamasaki, Kawamura (bib37) 2009; Vol.51 Rosalbino, Negri, Scavino, Saccone (bib10) 2013; Vol.101 Van der Biest, Omer, Marco Pelegrin, Iñigo “Degradation Testing of Magnesium and its Alloys aiming at Biodegradable Implant Applications; Degradatietesten van magnesium en magnesium legeringen voor biologisch afbreekbare implantaten”- Dissertation, 2016–12-02, pp13. Dong-Song, Er-Lin, Song-Yan (bib38) 2008; Vol.18 Anja, Gerber, Isabel, Michael, Jörg, Uggowitzer (bib11) 2010; Vol.6 Haghshenas (bib28) 2017; Vol.5 Li, Wang, Ding (bib20) 2011; Vol.30 Li, Zheng, Qin (bib30) 2014; Vol.24 Peron, Torgersen, Berto (bib31) 2017; Vol.7 Kelvii Wei Guo (bib6) 2011; Volume 1 Song, Han, Shan, Yim, You (bib16) 2012; Vol.60 Liu (10.1016/j.jalmes.2024.100055_bib18) 2017; Vol.5 Zhang (10.1016/j.jalmes.2024.100055_bib39) 2008; Vol.18 Zhang (10.1016/j.jalmes.2024.100055_bib40) 2011; Vol.21 Zhang (10.1016/j.jalmes.2024.100055_bib17) 2010; Vol.6 Gu (10.1016/j.jalmes.2024.100055_bib12) 2010; Vol.31 Anja (10.1016/j.jalmes.2024.100055_bib11) 2010; Vol.6 Li (10.1016/j.jalmes.2024.100055_bib13) 2014; Vol.2 William (10.1016/j.jalmes.2024.100055_bib26) 1974; 227 Radha (10.1016/j.jalmes.2024.100055_bib7) 2017; Vol.5 Rosalbino (10.1016/j.jalmes.2024.100055_bib10) 2013; Vol.101 10.1016/j.jalmes.2024.100055_bib4 10.1016/j.jalmes.2024.100055_bib25 Song (10.1016/j.jalmes.2024.100055_bib16) 2012; Vol.60 Li (10.1016/j.jalmes.2024.100055_bib20) 2011; Vol.30 Lugo (10.1016/j.jalmes.2024.100055_bib22) 2013; Vol.52 Trumbo (10.1016/j.jalmes.2024.100055_bib32) 2002; Vol.102 Song (10.1016/j.jalmes.2024.100055_bib14) 2014; Vol.2 10.1016/j.jalmes.2024.100055_bib21 Azeem (10.1016/j.jalmes.2024.100055_bib23) 2010; Vol.527 Dilip Chandrasekaran (10.1016/j.jalmes.2024.100055_bib35) 2003 Hou (10.1016/j.jalmes.2024.100055_bib27) 2014; Vol.24 Dong-Song (10.1016/j.jalmes.2024.100055_bib38) 2008; Vol.18 Peron (10.1016/j.jalmes.2024.100055_bib31) 2017; Vol.7 Yin Dongsong (10.1016/j.jalmes.2024.100055_bib1) 2009; Vol.6 Xin (10.1016/j.jalmes.2024.100055_bib33) 2011; Vol.7 Liu (10.1016/j.jalmes.2024.100055_bib29) 2016; Vol.94 Khan (10.1016/j.jalmes.2024.100055_bib24) 2006; Vol.420 Izumi (10.1016/j.jalmes.2024.100055_bib37) 2009; Vol.51 10.1016/j.jalmes.2024.100055_bib36 Ren (10.1016/j.jalmes.2024.100055_bib3) 2007 Haghshenas (10.1016/j.jalmes.2024.100055_bib28) 2017; Vol.5 10.1016/j.jalmes.2024.100055_bib34 Bakhsheshi-Rad (10.1016/j.jalmes.2024.100055_bib5) 2014; Vol.53 Stulikova (10.1016/j.jalmes.2024.100055_bib8) 2010; Vol.61 Huang (10.1016/j.jalmes.2024.100055_bib42) 2016; Vol.688 Kelvii Wei Guo (10.1016/j.jalmes.2024.100055_bib6) 2011; Volume 1 Petzow (10.1016/j.jalmes.2024.100055_bib43) 1978 Kirkland (10.1016/j.jalmes.2024.100055_bib2) 2011; Vol 8 Song (10.1016/j.jalmes.2024.100055_bib15) 2012; Vol.65 El-Mahallawy (10.1016/j.jalmes.2024.100055_bib9) 2020; Vol.24 10.1016/j.jalmes.2024.100055_bib19 Li (10.1016/j.jalmes.2024.100055_bib30) 2014; Vol.24 Ben-Hamu (10.1016/j.jalmes.2024.100055_bib41) 2008; Vol.16 |
References_xml | – volume: Vol.16 start-page: 860 year: 2008 end-page: 867 ident: bib41 article-title: The role of Mg 2Si on the corrosion behavior of wrought Mg–Zn–Mn alloy publication-title: Intermetallics – volume: Vol.688 start-page: 1115 year: 2016 end-page: 1124 ident: bib42 article-title: Phase equilibria of the Mg–Mn–Zn system at 593 K (320 °C) publication-title: J. Alloy. Compd., 15 – start-page: 5 year: 2003 end-page: 13 ident: bib35 article-title: Grain size and solid solution strengthening in metals publication-title: A Theor. Exp. Study – volume: Vol.24 year: 2020 ident: bib9 article-title: Effect of 1.0 wt% Zn addition on the microstructure, mechanical properties, and bio-corrosion behaviour of micro alloyed Mg-0.24Sn-0.04Mn alloy as biodegradable material publication-title: Mater. Today Commun. – volume: Vol.420 start-page: 315 year: 2006 end-page: 321 ident: bib24 article-title: Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys publication-title: Mater. Sci. Eng. A – reference: Nguyen Nam Dang; Mathesh, Motilal; Forsyth, Maria; Jo, Deok Su, Effect of manganese additions on the corrosion behavior of an extruded Mg–5Al based alloy J. Alloy. Compd. Vol.542 2012 199 206. – volume: Vol 8 start-page: 925 year: 2011 end-page: 936 ident: bib2 article-title: Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations publication-title: Acta Biomater. – volume: Vol.18 start-page: 763 year: 2008 end-page: 768 ident: bib38 article-title: Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy publication-title: Trans. Nonferrous Met. Soc. China – volume: Vol.6 start-page: 1824 year: 2010 end-page: 1833 ident: bib11 article-title: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys publication-title: Acta Biomater. – volume: Vol.5 start-page: 26 year: 2017 end-page: 34 ident: bib18 article-title: Influence of yttrium element on the corrosion behaviors of Mg–Y binary magnesium alloy publication-title: J. Magnes. Alloy. – start-page: 72 year: 1978 end-page: 74 ident: bib43 article-title: Metallographic etching: metallographic and ceramographic methods for revealing microstructure publication-title: 5th Ed. Am. Soc. Met. – volume: Vol.60 start-page: 238 year: 2012 end-page: 245 ident: bib16 article-title: The role of second phases in the corrosion behavior of Mg–5Zn alloy publication-title: Corros. Sci. – reference: Bi, Guangli, Li, Yuandong, Zang, Shijun, Zhang, Jianbin, Ma, Ying, Hao, Yuan. Microstructure, mechanical and corrosion properties of Mg–2Dy–xZn (x=0, 0.1, 0.5 and 1 at%) alloys, Journal of Magnesium and Alloys, March 2014, Vol.2(1), pp.64–71. – reference: Charles Moosbrugger. Engineering Properties of Magnesium Alloys. ASM, 2017, Chapter 1, 3. – volume: Vol.2 start-page: 208 year: 2014 end-page: 213 ident: bib14 article-title: Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys publication-title: J. Magnes. Alloy. – reference: William D. Callister Jr Mater. Sci. Eng. - Introd., Eighth Ed. 2010 212 225. – volume: Vol.7 start-page: 1452 year: 2011 end-page: 1459 ident: bib33 article-title: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review publication-title: Acta Biomater. – volume: Vol.5 start-page: 286 year: 2017 end-page: 312 ident: bib7 article-title: nsight of magnesium alloys and composites for orthopedic implant applications – a review publication-title: J. Magnes. Alloy. – volume: Vol.53 start-page: 283 year: 2014 end-page: 292 ident: bib5 article-title: Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys publication-title: Mater. Des. – start-page: 342 year: 2007 end-page: 343 ident: bib3 article-title: Study of biodegradation of pure Magnesium publication-title: Key Eng. Mater. – volume: Volume 1 year: 2011 ident: bib6 article-title: A review of magnesium/magnesium alloys corrosion and its protection publication-title: Recent Pat. Corros. Sci. – volume: Vol.6 start-page: 1756 year: 2010 end-page: 1762 ident: bib17 article-title: Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application publication-title: Acta Biomater. – volume: Vol.102 start-page: 1621 year: 2002 end-page: 1630 ident: bib32 article-title: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids publication-title: J. Am. Diet. Assoc. – volume: Vol.6 start-page: 43 year: 2009 end-page: 47 ident: bib1 article-title: Effect of Zn content on microstructure,mechanical properties and fracture behavior of Mg-Mn alloy publication-title: China Foundry, 01 – reference: Van der Biest, Omer, Marco Pelegrin, Iñigo “Degradation Testing of Magnesium and its Alloys aiming at Biodegradable Implant Applications; Degradatietesten van magnesium en magnesium legeringen voor biologisch afbreekbare implantaten”- Dissertation, 2016–12-02, pp13. – volume: Vol.51 start-page: 395 year: 2009 end-page: 402 ident: bib37 article-title: Relation between corrosion behavior and microstructure of Mg–Zn–Y alloys prepared by rapid solidification at various cooling rates publication-title: Corros. Sci. – reference: Zainuddin Sajuri Bin; Miyashita, Yukio; Hosokai, Yasunobu; Mutoh, Yoshiharu, Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys Int. J. Mech. Sci. Vol.48 2 2006 198 209. – volume: Vol.24 start-page: 466 year: 2014 end-page: 471 ident: bib27 article-title: In vitro and in vivo studies on biodegradable magnesium alloy publication-title: Prog. Nat. Sci.: Mater. Int. – volume: Vol.31 start-page: 1093 year: 2010 end-page: 1103 ident: bib12 article-title: Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses publication-title: Biomaterials – volume: Vol.65 start-page: 322 year: 2012 end-page: 330 ident: bib15 article-title: The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys publication-title: Corros. Sci. – volume: Vol.21 start-page: 15 year: 2011 end-page: 25 ident: bib40 article-title: Microstructure evolution and mechanical properties of Mg- x%Zn-1%Mn ( x=4, 5, 6, 7, 8, 9) wrought magnesium alloys publication-title: Trans. Nonferrous Met. Soc. China – volume: Vol.527 start-page: 898 year: 2010 end-page: 903 ident: bib23 article-title: Effect of recrystallization and grain growth on the mechanical properties of an extruded AZ21 Mg alloy publication-title: Mater. Sci. Eng. A – volume: Vol.18 start-page: s59 year: 2008 end-page: s63 ident: bib39 article-title: Microstructures and mechanical properties of high strength Mg-Zn-Mn alloy publication-title: Trans. Nonferrous Met. Soc. China – volume: Vol.24 start-page: 414 year: 2014 end-page: 422 ident: bib30 article-title: Progress of biodegradable metals publication-title: Prog. Nat. Sci.: Mater. Int. – volume: Vol.7 start-page: 252 year: 2017 ident: bib31 article-title: Mg and its alloys for biomedical applications: exploring corrosion and its interplay with mechanical failure publication-title: Metals – volume: Vol.94 start-page: 95 year: 2016 end-page: 104 ident: bib29 article-title: Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application publication-title: Mater. Des. – volume: Vol.30 start-page: 131 year: 2011 end-page: 136 ident: bib20 article-title: Effects of Ho on the microstructure and mechanical properties of Mg-Zn-Ho-Zr magnesium alloys publication-title: Rare Met. – volume: Vol.2 start-page: 181 year: 2014 end-page: 189 ident: bib13 article-title: Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy publication-title: J. Magnes. Alloy. – volume: Vol.101 start-page: 704 year: 2013 end-page: 711 ident: bib10 article-title: A., Microstructure and in vitro degradation performance of Mg–Zn–Mn alloys for biomedical application publication-title: J. Biomed. Mater. Res. Part A – volume: Vol.5 start-page: 189 year: 2017 end-page: 201 ident: bib28 article-title: Mechanical characteristics of biodegradable magnesium matrix composites: a review publication-title: J. Magnes. Alloy. – volume: Vol.61 start-page: 952 year: 2010 end-page: 958 ident: bib8 article-title: Mechanical properties and phase composition of potential biodegradable Mg–Zn–Mn–base alloys with addition of rare earth elements publication-title: Mater. Charact. – volume: Vol.52 start-page: 131 year: 2013 end-page: 143 ident: bib22 article-title: Role of different material processing methods on the fatigue behavior of an AZ31 magnesium alloy publication-title: Int. J. Fatigue – volume: 227 start-page: 310 year: 1974 end-page: 312 ident: bib26 article-title: Serum iron levels in ostensibly normal people publication-title: JAMA – volume: Volume 1 issue: Issue 1 year: 2011 ident: 10.1016/j.jalmes.2024.100055_bib6 article-title: A review of magnesium/magnesium alloys corrosion and its protection publication-title: Recent Pat. Corros. Sci. – ident: 10.1016/j.jalmes.2024.100055_bib21 doi: 10.1016/j.ijmecsci.2005.09.003 – ident: 10.1016/j.jalmes.2024.100055_bib25 doi: 10.1016/j.jallcom.2012.07.083 – volume: Vol.18 start-page: 763 issue: 4 year: 2008 ident: 10.1016/j.jalmes.2024.100055_bib38 article-title: Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(08)60131-4 – volume: Vol.18 start-page: s59 year: 2008 ident: 10.1016/j.jalmes.2024.100055_bib39 article-title: Microstructures and mechanical properties of high strength Mg-Zn-Mn alloy publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(10)60175-6 – volume: Vol.24 start-page: 466 issue: 5 year: 2014 ident: 10.1016/j.jalmes.2024.100055_bib27 article-title: In vitro and in vivo studies on biodegradable magnesium alloy publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2014.09.002 – volume: Vol.420 start-page: 315 issue: 1-2 year: 2006 ident: 10.1016/j.jalmes.2024.100055_bib24 article-title: Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.01.091 – volume: Vol.53 start-page: 283 year: 2014 ident: 10.1016/j.jalmes.2024.100055_bib5 article-title: Mechanical and bio-corrosion properties of quaternary Mg-Ca-Mn-Zn alloys compared with binary Mg-Ca alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.06.055 – volume: Vol.16 start-page: 860 issue: 7 year: 2008 ident: 10.1016/j.jalmes.2024.100055_bib41 article-title: The role of Mg 2Si on the corrosion behavior of wrought Mg–Zn–Mn alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2008.03.003 – volume: Vol 8 start-page: 925 issue: 3 year: 2011 ident: 10.1016/j.jalmes.2024.100055_bib2 article-title: Assessing the corrosion of biodegradable magnesium implants: a critical review of current methodologies and their limitations publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.11.014 – volume: Vol.6 start-page: 1756 issue: 5 year: 2010 ident: 10.1016/j.jalmes.2024.100055_bib17 article-title: Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.11.024 – volume: Vol.101 start-page: 704 issue: 3 year: 2013 ident: 10.1016/j.jalmes.2024.100055_bib10 article-title: A., Microstructure and in vitro degradation performance of Mg–Zn–Mn alloys for biomedical application publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.34368 – volume: Vol.527 start-page: 898 issue: 4-5 year: 2010 ident: 10.1016/j.jalmes.2024.100055_bib23 article-title: Effect of recrystallization and grain growth on the mechanical properties of an extruded AZ21 Mg alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2009.09.008 – volume: Vol.21 start-page: 15 issue: 1 year: 2011 ident: 10.1016/j.jalmes.2024.100055_bib40 article-title: Microstructure evolution and mechanical properties of Mg- x%Zn-1%Mn ( x=4, 5, 6, 7, 8, 9) wrought magnesium alloys publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(11)60672-9 – volume: Vol.24 year: 2020 ident: 10.1016/j.jalmes.2024.100055_bib9 article-title: Effect of 1.0 wt% Zn addition on the microstructure, mechanical properties, and bio-corrosion behaviour of micro alloyed Mg-0.24Sn-0.04Mn alloy as biodegradable material publication-title: Mater. Today Commun. – volume: Vol.61 start-page: 952 issue: 10 year: 2010 ident: 10.1016/j.jalmes.2024.100055_bib8 article-title: Mechanical properties and phase composition of potential biodegradable Mg–Zn–Mn–base alloys with addition of rare earth elements publication-title: Mater. Charact. doi: 10.1016/j.matchar.2010.06.004 – volume: Vol.31 start-page: 1093 issue: 6 year: 2010 ident: 10.1016/j.jalmes.2024.100055_bib12 article-title: Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.015 – volume: Vol.65 start-page: 322 year: 2012 ident: 10.1016/j.jalmes.2024.100055_bib15 article-title: The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.08.037 – volume: Vol.6 start-page: 1824 issue: 5 year: 2010 ident: 10.1016/j.jalmes.2024.100055_bib11 article-title: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.10.008 – volume: Vol.60 start-page: 238 year: 2012 ident: 10.1016/j.jalmes.2024.100055_bib16 article-title: The role of second phases in the corrosion behavior of Mg–5Zn alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2012.03.030 – volume: 227 start-page: 310 issue: 3 year: 1974 ident: 10.1016/j.jalmes.2024.100055_bib26 article-title: Serum iron levels in ostensibly normal people publication-title: JAMA doi: 10.1001/jama.1974.03230160038009 – volume: Vol.7 start-page: 1452 issue: 4 year: 2011 ident: 10.1016/j.jalmes.2024.100055_bib33 article-title: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.12.004 – start-page: 72 year: 1978 ident: 10.1016/j.jalmes.2024.100055_bib43 article-title: Metallographic etching: metallographic and ceramographic methods for revealing microstructure publication-title: 5th Ed. Am. Soc. Met. – volume: Vol.24 start-page: 414 issue: 5 year: 2014 ident: 10.1016/j.jalmes.2024.100055_bib30 article-title: Progress of biodegradable metals publication-title: Prog. Nat. Sci.: Mater. Int. doi: 10.1016/j.pnsc.2014.08.014 – ident: 10.1016/j.jalmes.2024.100055_bib4 – ident: 10.1016/j.jalmes.2024.100055_bib19 doi: 10.1016/j.jma.2014.03.002 – volume: Vol.5 start-page: 26 issue: 1 year: 2017 ident: 10.1016/j.jalmes.2024.100055_bib18 article-title: Influence of yttrium element on the corrosion behaviors of Mg–Y binary magnesium alloy publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2016.12.002 – volume: Vol.52 start-page: 131 year: 2013 ident: 10.1016/j.jalmes.2024.100055_bib22 article-title: Role of different material processing methods on the fatigue behavior of an AZ31 magnesium alloy publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2013.02.017 – volume: Vol.688 start-page: 1115 year: 2016 ident: 10.1016/j.jalmes.2024.100055_bib42 article-title: Phase equilibria of the Mg–Mn–Zn system at 593 K (320 °C) publication-title: J. Alloy. Compd., 15 doi: 10.1016/j.jallcom.2016.07.120 – start-page: 342 year: 2007 ident: 10.1016/j.jalmes.2024.100055_bib3 article-title: Study of biodegradation of pure Magnesium publication-title: Key Eng. Mater. – volume: Vol.5 start-page: 189 issue: 2 year: 2017 ident: 10.1016/j.jalmes.2024.100055_bib28 article-title: Mechanical characteristics of biodegradable magnesium matrix composites: a review publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2017.05.001 – volume: Vol.51 start-page: 395 issue: 2 year: 2009 ident: 10.1016/j.jalmes.2024.100055_bib37 article-title: Relation between corrosion behavior and microstructure of Mg–Zn–Y alloys prepared by rapid solidification at various cooling rates publication-title: Corros. Sci. doi: 10.1016/j.corsci.2008.11.003 – volume: Vol.2 start-page: 208 issue: 3 year: 2014 ident: 10.1016/j.jalmes.2024.100055_bib14 article-title: Effect of hydrogen on the corrosion behavior of the Mg–xZn alloys publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2014.10.002 – volume: Vol.7 start-page: 252 issue: 7 year: 2017 ident: 10.1016/j.jalmes.2024.100055_bib31 article-title: Mg and its alloys for biomedical applications: exploring corrosion and its interplay with mechanical failure publication-title: Metals doi: 10.3390/met7070252 – volume: Vol.6 start-page: 43 issue: 1 year: 2009 ident: 10.1016/j.jalmes.2024.100055_bib1 article-title: Effect of Zn content on microstructure,mechanical properties and fracture behavior of Mg-Mn alloy publication-title: China Foundry, 01 – volume: Vol.2 start-page: 181 issue: 2 year: 2014 ident: 10.1016/j.jalmes.2024.100055_bib13 article-title: Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2014.05.006 – start-page: 5 year: 2003 ident: 10.1016/j.jalmes.2024.100055_bib35 article-title: Grain size and solid solution strengthening in metals publication-title: A Theor. Exp. Study – volume: Vol.94 start-page: 95 year: 2016 ident: 10.1016/j.jalmes.2024.100055_bib29 article-title: Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.128 – volume: Vol.5 start-page: 286 issue: 3 year: 2017 ident: 10.1016/j.jalmes.2024.100055_bib7 article-title: nsight of magnesium alloys and composites for orthopedic implant applications – a review publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2017.08.003 – volume: Vol.30 start-page: 131 issue: 2 year: 2011 ident: 10.1016/j.jalmes.2024.100055_bib20 article-title: Effects of Ho on the microstructure and mechanical properties of Mg-Zn-Ho-Zr magnesium alloys publication-title: Rare Met. doi: 10.1007/s12598-011-0211-y – volume: Vol.102 start-page: 1621 issue: 11 year: 2002 ident: 10.1016/j.jalmes.2024.100055_bib32 article-title: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids publication-title: J. Am. Diet. Assoc. doi: 10.1016/S0002-8223(02)90346-9 – ident: 10.1016/j.jalmes.2024.100055_bib34 – ident: 10.1016/j.jalmes.2024.100055_bib36 |
SSID | ssj0002923737 |
Score | 2.2488933 |
Snippet | Magnesium (Mg) alloys have recently been the subject of many investigations, as they show great potential for use in a multitude of applications. Due to their... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100055 |
SubjectTerms | Magnesium Magnesium alloys Mechanical properties Microstructure alloys Solidification rate |
Title | The combined effects of the cooling rate and alloying element on the mechanical behavior of Mg-Mn-Zn alloying system |
URI | https://dx.doi.org/10.1016/j.jalmes.2024.100055 https://doaj.org/article/a9bdec2381434e788ccbaaf0d4e04d08 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvAa7LZpkh5VdlmEenJh8RLyXFywK1Kv_nZnmlZ70ouXUkIyKTMh8w2db4aQayGNAbfumVPWM-7wHpQmsGhLQP8-SDVF7nD9KBZL_rAqV6NWX5gTlsoDJ8XdmMr64NCx8ILDUuWcNSZmnoeM-0TzBZ83CqbwDs4Bt8hCDly5LqFrgw1JsEJ3zjE3IEN238gXdSX7Ry5p5GbmB2S_x4f0Nn3XIdkJzRFpwZgUjgZEscHTPgWDbiNtu3Hsu7OmWPOBmsZT_JWO5CUaUmo43TbdxNeALF80Ch3I-SijXrO6Yc_Nz7pU3fmYLOezp_sF69slMIcEVFbEKIL03HHpvANcZksRXRXKaI2f5l5EAeBEAEYIKoulASAD0aHnpa-EsjYvTshus23CKaEAGyHyQ6gYsD26AJAIb6oyShkZ8mJC2KA4_ZaqYughXWyjk6I1KlonRU_IHWr3ey7WtO4GwNK6t7T-y9ITIgfb6B4eJLcPol5-3f7sP7Y_J3soMuWfXZDd9v0jXAIgae1Vd_bgWX_OvgA3euDc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+combined+effects+of+the+cooling+rate+and+alloying+element+on+the+mechanical+behavior+of+Mg-Mn-Zn+alloying+system&rft.jtitle=Journal+of+Alloys+and+Metallurgical+Systems&rft.au=Murtatha+M.+Jamel&rft.au=Hugo+Lopez&rft.au=Emilee+Cho&rft.au=Brad+Lindner&rft.date=2024-03-01&rft.pub=Elsevier&rft.eissn=2949-9178&rft.volume=5&rft.spage=100055&rft_id=info:doi/10.1016%2Fj.jalmes.2024.100055&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a9bdec2381434e788ccbaaf0d4e04d08 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9178&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9178&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9178&client=summon |