Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function

Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 141; no. 9; pp. 3478 - 3484
Main Authors Udagawa, N, Takahashi, N, Yasuda, H, Mizuno, A, Itoh, K, Ueno, Y, Shinki, T, Gillespie, M T, Martin, T J, Higashio, K, Suda, T
Format Journal Article
LanguageEnglish
Published United States 01.09.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced osteoclastic bone resorption. In the present study, potential roles of OPG in osteoclast differentiation were examined using a mouse coculture system of calvarial osteoblasts and bone marrow cells prepared from OPG-deficient mice. In the absence of bone-resorbing factors, no osteoclasts were formed in cocultures of wild-type (+/+) or heterozygous (+/-) mouse-derived osteoblasts with bone marrow cells prepared from homozygous (-/-) mice. In contrast, homozygous (-/-) mouse-derived osteoblasts strongly supported osteoclast formation in the cocultures with homozygous (-/-) bone marrow cells, even in the absence of bone-resorbing factors. Addition of OPG to the cocultures with osteoblasts and bone marrow cells derived from homozygous (-/-) mice completely inhibited spontaneously occurring osteoclast formation. Adding 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] to these cocultures significantly enhanced osteoclast differentiation. In addition, bone-resorbing activity in organ cultures of fetal long bones derived from homozygous (-/-) mice was markedly increased, irrespective of the presence and absence of bone-resorbing factors, in comparison with that from wild-type (+/+) mice. Osteoblasts prepared from homozygous (-/-), heterozygous (+/-), and wild-type (+/+) mice constitutively expressed similar levels of RANKL messenger RNA, which were equally increased by the treatment with 1alpha,25(OH)2D3. When homozygous (-/-) mouse-derived osteoblasts and hemopoietic cells were cocultured, but direct contact between them was prevented, no osteoclasts were formed, even in the presence of 1alpha,25(OH)2D3 and macrophage colony-stimulating factor. These findings suggest that OPG produced by osteoblasts/stromal cells is a physiologically important regulator in osteoclast differentiation and function and that RANKL expressed by osteoblasts functions as a membrane-associated form.
AbstractList Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced osteoclastic bone resorption. In the present study, potential roles of OPG in osteoclast differentiation were examined using a mouse coculture system of calvarial osteoblasts and bone marrow cells prepared from OPG-deficient mice. In the absence of bone-resorbing factors, no osteoclasts were formed in cocultures of wild-type (+/+) or heterozygous (+/-) mouse-derived osteoblasts with bone marrow cells prepared from homozygous (-/-) mice. In contrast, homozygous (-/-) mouse-derived osteoblasts strongly supported osteoclast formation in the cocultures with homozygous (-/-) bone marrow cells, even in the absence of bone-resorbing factors. Addition of OPG to the cocultures with osteoblasts and bone marrow cells derived from homozygous (-/-) mice completely inhibited spontaneously occurring osteoclast formation. Adding 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] to these cocultures significantly enhanced osteoclast differentiation. In addition, bone-resorbing activity in organ cultures of fetal long bones derived from homozygous (-/-) mice was markedly increased, irrespective of the presence and absence of bone-resorbing factors, in comparison with that from wild-type (+/+) mice. Osteoblasts prepared from homozygous (-/-), heterozygous (+/-), and wild-type (+/+) mice constitutively expressed similar levels of RANKL messenger RNA, which were equally increased by the treatment with 1alpha,25(OH)2D3. When homozygous (-/-) mouse-derived osteoblasts and hemopoietic cells were cocultured, but direct contact between them was prevented, no osteoclasts were formed, even in the presence of 1alpha,25(OH)2D3 and macrophage colony-stimulating factor. These findings suggest that OPG produced by osteoblasts/stromal cells is a physiologically important regulator in osteoclast differentiation and function and that RANKL expressed by osteoblasts functions as a membrane-associated form.
Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor- Kappa B ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced osteoclastic bone resorption. In the present study, potential roles of OPG in osteoclast differentiation were examined using a mouse coculture system of calvarial osteoblasts and bone marrow cells prepared from OPG-deficient mice. In the absence of bone-resorbing factors, no osteoclasts were formed in cocultures of wild-type (+/+) or heterozygous (+/-) mouse-derived osteoblasts with bone marrow cells prepared from homozygous (-/-) mice. In contrast, homozygous (-/-) mouse-derived osteoblasts strongly supported osteoclast formation in the cocultures with homozygous (-/-) bone marrow cells, even in the absence of bone-resorbing factors. Addition of OPG to the cocultures with osteoblasts and bone marrow cells derived from homozygous (-/-) mice completely inhibited spontaneously occurring osteoclast formation. Adding 1 alpha ,25-dihydroxyvitamin D sub(3) [1 alpha ,25(OH) sub(2)D sub(3)] to these cocultures significantly enhanced osteoclast differentiation. In addition, bone-resorbing activity in organ cultures of fetal long bones derived from homozygous (-/-) mice was markedly increased, irrespective of the presence and absence of bone-resorbing factors, in comparison with that from wild-type (+/+) mice. Osteoblasts prepared from homozygous (-/-), heterozygous (+/-), and wild-type (+/+) mice constitutively expressed similar levels of RANKL messenger RNA, which were equally increased by the treatment with 1 alpha ,25(OH) sub(2)D sub(3). When homozygous (-/-) mouse-derived osteoblasts and hemopoietic cells were cocultured, but direct contact between them was prevented, no osteoclasts were formed, even in the presence of 1 alpha ,25(OH) sub(2)D sub(3) and macrophage colony-stimulating factor. These findings suggest that OPG produced by osteoblasts/stromal cells is a physiologically important regulator in osteoclast differentiation and function and that RANKL expressed by osteoblasts functions as a membrane-associated form.
Author Martin, T J
Takahashi, N
Yasuda, H
Mizuno, A
Udagawa, N
Itoh, K
Ueno, Y
Shinki, T
Higashio, K
Suda, T
Gillespie, M T
Author_xml – sequence: 1
  givenname: N
  surname: Udagawa
  fullname: Udagawa, N
  organization: Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
– sequence: 2
  givenname: N
  surname: Takahashi
  fullname: Takahashi, N
– sequence: 3
  givenname: H
  surname: Yasuda
  fullname: Yasuda, H
– sequence: 4
  givenname: A
  surname: Mizuno
  fullname: Mizuno, A
– sequence: 5
  givenname: K
  surname: Itoh
  fullname: Itoh, K
– sequence: 6
  givenname: Y
  surname: Ueno
  fullname: Ueno, Y
– sequence: 7
  givenname: T
  surname: Shinki
  fullname: Shinki, T
– sequence: 8
  givenname: M T
  surname: Gillespie
  fullname: Gillespie, M T
– sequence: 9
  givenname: T J
  surname: Martin
  fullname: Martin, T J
– sequence: 10
  givenname: K
  surname: Higashio
  fullname: Higashio, K
– sequence: 11
  givenname: T
  surname: Suda
  fullname: Suda, T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10965921$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PwzAMhiM0BBtw5oZy4tYRJ1m7HBHiS5q0C5yjNHGhqE1G0iLx70nZDtw42ZYfW379LsjMB4-EXAJbAgd2g96FJUhYqmVVCnlE5qDkqqigYjMyZwxEUXFenZJFSh-5lFKKE3IKTJUrxWFO3rdpwLCLYcA3jK2nOXWjRUfrbxqmXt2ZNCTaJmo8bftdiIPxA434NnZmCJHmoV_QTiB1-IVd2PWYGeMdbUZvhzb4c3LcmC7hxSGekdeH-5e7p2KzfXy-u90Ulq-5LBrFSkQhlcTGMiagBrDS8sY6V-G6lBV3K5EVr2vkUjbMqVKtnHKsBsNrI87I9X5vFvI5Yhp03yaLXWc8hjHp_A6QpYJ_QVizistSZPBmD9oYUorY6F1sexO_NTA9uaAnF3S-SSs9uZAnrg6rx7pH94ffv138AMtyh5M
CitedBy_id crossref_primary_10_1051_shsconf_20163000008
crossref_primary_10_1016_j_bone_2021_116148
crossref_primary_10_1002_jcb_20853
crossref_primary_10_1002_art_10680
crossref_primary_10_1096_fj_01_0898hyp
crossref_primary_10_1111_1440_1681_12345
crossref_primary_10_1016_j_colsurfa_2020_124899
crossref_primary_10_1016_j_bone_2013_07_011
crossref_primary_10_1016_j_ijom_2017_11_001
crossref_primary_10_1002_pros_20016
crossref_primary_10_1038_s42255_019_0104_1
crossref_primary_10_1002_jcb_21938
crossref_primary_10_1210_endo_143_8_8954
crossref_primary_10_1007_s00198_015_3250_7
crossref_primary_10_1016_j_actbio_2014_07_025
crossref_primary_10_1074_jbc_M212473200
crossref_primary_10_1042_BST20200978
crossref_primary_10_1016_j_celrep_2020_108052
crossref_primary_10_1016_j_archoralbio_2010_02_007
crossref_primary_10_1158_1078_0432_CCR_05_1849
crossref_primary_10_1002_jbmr_3913
crossref_primary_10_4049_jimmunol_1701574
crossref_primary_10_1161_ATVBAHA_108_174128
crossref_primary_10_3389_fcell_2022_903657
crossref_primary_10_4162_nrp_2015_9_5_459
crossref_primary_10_1016_j_archoralbio_2020_104770
crossref_primary_10_3389_fimmu_2019_02925
crossref_primary_10_1211_jpp_59_8_0016
crossref_primary_10_1002_jemt_10370
crossref_primary_10_1016_j_bone_2023_116709
crossref_primary_10_1002_mnfr_201100270
crossref_primary_10_1016_j_exger_2021_111596
crossref_primary_10_1016_j_tcmj_2015_08_001
crossref_primary_10_3389_fphar_2020_00366
crossref_primary_10_1038_s41413_021_00181_x
crossref_primary_10_1097_BRS_0000000000001701
crossref_primary_10_1038_nrc1528
crossref_primary_10_1016_j_bone_2021_116168
crossref_primary_10_1016_j_jff_2017_10_044
crossref_primary_10_1016_j_ejenta_2014_10_006
crossref_primary_10_1007_s00774_020_01162_6
crossref_primary_10_1002_jcb_20197
crossref_primary_10_1016_j_ejr_2014_01_003
crossref_primary_10_1186_s40902_016_0095_8
crossref_primary_10_1359_JBMR_0301226
crossref_primary_10_12717_DR_2013_17_1_001
crossref_primary_10_3390_ijms23179846
crossref_primary_10_1177_154411130401500202
crossref_primary_10_1007_BF02904492
crossref_primary_10_3390_cells7120260
crossref_primary_10_1186_s40902_015_0015_3
crossref_primary_10_3390_ijms23031393
crossref_primary_10_1074_jbc_M116_751974
crossref_primary_10_1002_ijc_21008
crossref_primary_10_1073_pnas_1400544111
crossref_primary_10_1080_10717544_2022_2086942
crossref_primary_10_1016_j_clnu_2023_07_022
crossref_primary_10_1016_j_toxlet_2018_10_008
crossref_primary_10_1016_j_bbrc_2009_04_084
crossref_primary_10_1016_j_abb_2010_05_027
crossref_primary_10_1055_s_0041_1726065
crossref_primary_10_1128_microbiolspec_BAD_0015_2016
crossref_primary_10_18632_oncotarget_8980
crossref_primary_10_1097_AOG_0b013e318291718c
crossref_primary_10_1016_S8756_3282_03_00172_8
crossref_primary_10_3390_cancers10060182
crossref_primary_10_1093_jbmrpl_ziad014
crossref_primary_10_1016_S0003_9969_03_00100_6
crossref_primary_10_7555_JBR_36_202200266
crossref_primary_10_1097_GME_0b013e318267f909
crossref_primary_10_1182_blood_2010_05_282855
crossref_primary_10_1016_j_bbrc_2005_01_019
crossref_primary_10_1016_j_gastha_2023_11_001
crossref_primary_10_3390_biom11101482
crossref_primary_10_1007_s10856_009_3891_1
crossref_primary_10_3390_molecules26020384
crossref_primary_10_1016_j_celrep_2020_108124
crossref_primary_10_3390_ijms21165600
crossref_primary_10_1016_j_bbrc_2010_02_086
crossref_primary_10_1038_nature01658
crossref_primary_10_1359_jbmr_090215
crossref_primary_10_1111_prd_12368
crossref_primary_10_1016_j_nut_2012_03_009
crossref_primary_10_1016_j_bone_2011_04_006
crossref_primary_10_1359_jbmr_080410
crossref_primary_10_1002_jbm4_10795
crossref_primary_10_1371_journal_pone_0227757
crossref_primary_10_4049_jimmunol_172_4_2504
crossref_primary_10_1002_lsm_20508
crossref_primary_10_1089_dna_2006_25_475
crossref_primary_10_1111_clr_12686
crossref_primary_10_1007_s40610_016_0037_3
crossref_primary_10_1007_s00264_022_05407_z
crossref_primary_10_1016_j_ejcb_2008_06_004
crossref_primary_10_1111_j_1600_0757_2006_00167_x
crossref_primary_10_3389_fimmu_2019_01239
crossref_primary_10_1002_jbm_b_31326
crossref_primary_10_1021_acsbiomaterials_9b01852
crossref_primary_10_1002_jcb_30236
crossref_primary_10_1007_s00198_017_4140_y
crossref_primary_10_3389_fendo_2021_584147
crossref_primary_10_1182_blood_V98_7_2269
crossref_primary_10_1007_s11154_014_9308_6
crossref_primary_10_1111_cpr_12714
crossref_primary_10_1002_jcph_228
crossref_primary_10_3390_biomedicines10020404
crossref_primary_10_3390_cancers11071020
crossref_primary_10_1002_art_42617
crossref_primary_10_3390_ijms19030888
crossref_primary_10_1038_s41413_020_0104_5
crossref_primary_10_1196_annals_1402_068
crossref_primary_10_1016_S8756_3282_01_00505_1
crossref_primary_10_1002_art_27257
crossref_primary_10_1210_me_2005_0187
crossref_primary_10_1002_jcp_29205
crossref_primary_10_1007_s00198_023_06708_8
crossref_primary_10_1016_j_bbrc_2005_01_122
crossref_primary_10_1186_s41232_022_00213_x
crossref_primary_10_1007_s10616_017_0094_3
crossref_primary_10_1016_j_mtcomm_2019_05_010
crossref_primary_10_2183_pjab_96_013
crossref_primary_10_1097_SPC_0b013e32830baac2
crossref_primary_10_1016_j_biopha_2017_05_055
crossref_primary_10_1007_s12011_017_1123_y
crossref_primary_10_1126_sciimmunol_abl5053
crossref_primary_10_1177_0004563218759371
crossref_primary_10_1002_jor_20582
crossref_primary_10_1002_cncr_24896
crossref_primary_10_1038_s41418_020_0590_4
crossref_primary_10_3892_mmr_2015_3891
crossref_primary_10_1016_j_archoralbio_2021_105147
crossref_primary_10_1128_IAI_71_1_226_233_2003
crossref_primary_10_1074_jbc_AC119_008361
crossref_primary_10_1002_jbmr_2097
crossref_primary_10_1007_s12016_015_8523_6
crossref_primary_10_1002_ar_10061
crossref_primary_10_1038_cgt_2010_47
crossref_primary_10_1016_j_bone_2006_09_007
crossref_primary_10_1007_s10103_008_0614_7
crossref_primary_10_1016_j_phrs_2015_06_010
crossref_primary_10_2478_rrlm_2023_0006
crossref_primary_10_3389_fphys_2024_1364694
crossref_primary_10_1152_ajpcell_00039_2023
crossref_primary_10_1007_s10585_006_9026_x
crossref_primary_10_1021_acsbiomaterials_8b01553
crossref_primary_10_3390_jcm12062344
crossref_primary_10_1016_j_bone_2020_115837
crossref_primary_10_3390_cells10092383
crossref_primary_10_1210_jc_2007_1645
crossref_primary_10_3390_cancers13020263
crossref_primary_10_1039_C8TX00340H
crossref_primary_10_1016_j_fsisyn_2023_100326
crossref_primary_10_1016_j_jdsr_2019_03_001
crossref_primary_10_3892_mmr_2017_6611
crossref_primary_10_1002_jbmr_555
crossref_primary_10_3892_ijmm_2014_1934
crossref_primary_10_1016_j_bone_2012_03_012
crossref_primary_10_1016_S8756_3282_01_00654_8
crossref_primary_10_3390_ijms23031786
crossref_primary_10_3109_15368378_2015_1107840
crossref_primary_10_3390_ijms19103197
crossref_primary_10_1002_jcb_20470
crossref_primary_10_4049_jimmunol_175_3_1956
crossref_primary_10_1359_jbmr_2003_18_12_2152
crossref_primary_10_1002_jcp_21002
crossref_primary_10_21926_obm_transplant_2302183
crossref_primary_10_3389_fbioe_2022_886579
crossref_primary_10_1080_03602532_2019_1574303
crossref_primary_10_1016_j_archoralbio_2007_01_005
crossref_primary_10_2147_JIR_S304946
crossref_primary_10_1002_adhm_202200651
crossref_primary_10_1002_jbmr_325
crossref_primary_10_1016_j_pharmthera_2021_107941
crossref_primary_10_1016_j_mtcomm_2018_05_010
crossref_primary_10_1007_s13770_021_00350_3
crossref_primary_10_3892_mmr_2016_5687
crossref_primary_10_1007_s10522_017_9732_6
crossref_primary_10_1182_blood_2010_05_283895
crossref_primary_10_1177_002215540205000708
crossref_primary_10_1083_jcb_200611083
crossref_primary_10_1089_ten_tea_2008_0501
crossref_primary_10_1007_s00198_019_05233_x
crossref_primary_10_1111_j_1600_0757_2006_00166_x
crossref_primary_10_1359_jbmr_2001_16_10_1787
crossref_primary_10_1016_j_numecd_2019_08_018
crossref_primary_10_3390_molecules29081741
crossref_primary_10_1359_jbmr_060610
crossref_primary_10_1016_j_exphem_2004_07_006
crossref_primary_10_1016_S0006_291X_02_00667_8
crossref_primary_10_18632_oncotarget_22014
crossref_primary_10_1007_s00198_022_06549_x
crossref_primary_10_1210_en_2003_0839
crossref_primary_10_1096_fj_201802597RR
crossref_primary_10_1016_j_joms_2011_07_002
crossref_primary_10_1371_journal_pone_0109597
crossref_primary_10_1080_00016489_2020_1717609
crossref_primary_10_1634_theoncologist_2010_0154
crossref_primary_10_1016_j_tifs_2021_10_017
crossref_primary_10_7888_juoeh_36_141
crossref_primary_10_1016_j_ejphar_2022_174941
crossref_primary_10_1002_jcp_20255
crossref_primary_10_1016_j_mad_2020_111335
crossref_primary_10_1074_jbc_RA118_004489
crossref_primary_10_1016_j_bone_2012_04_006
crossref_primary_10_1016_j_jff_2013_10_013
crossref_primary_10_1016_j_msec_2020_110861
crossref_primary_10_1021_acsami_7b07800
crossref_primary_10_1359_JBMR_050515
crossref_primary_10_1016_j_job_2017_05_001
crossref_primary_10_1002_JPER_17_0550
crossref_primary_10_3390_cells3040963
crossref_primary_10_1177_0022034514552677
crossref_primary_10_3390_ijms22126563
crossref_primary_10_1016_j_archoralbio_2005_02_007
crossref_primary_10_1002_jbmr_2236
crossref_primary_10_1038_s41598_017_12651_6
crossref_primary_10_2174_0113892037268414231017074054
crossref_primary_10_3390_molecules26226820
crossref_primary_10_1097_01_mlg_0000150702_28451_35
crossref_primary_10_1111_1471_0307_12708
crossref_primary_10_1002_jcb_25604
crossref_primary_10_1902_jop_2007_070073
crossref_primary_10_7555_JBR_36_20220266
crossref_primary_10_1111_j_1744_9987_2006_00375_x
crossref_primary_10_1146_annurev_immunol_032414_112220
crossref_primary_10_1359_jbmr_2001_16_11_1937
crossref_primary_10_1007_s12275_016_6137_1
crossref_primary_10_1097_01_mlg_0000191466_09210_9a
crossref_primary_10_1002_ar_10121
crossref_primary_10_3390_biom14030294
crossref_primary_10_1002_lsm_22797
crossref_primary_10_1359_jbmr_090716
crossref_primary_10_1016_j_diff_2021_08_003
crossref_primary_10_1038_labinvest_2012_179
crossref_primary_10_1016_j_bone_2011_08_031
crossref_primary_10_1517_14728222_2011_546351
crossref_primary_10_1210_er_2007_0014
crossref_primary_10_3390_antibiotics12010065
crossref_primary_10_1002_jbmr_2024
crossref_primary_10_1084_jem_20040689
crossref_primary_10_1080_14756366_2017_1302440
crossref_primary_10_1210_en_2007_1292
crossref_primary_10_1021_acs_molpharmaceut_7b00501
crossref_primary_10_1007_s10989_016_9529_5
crossref_primary_10_1371_journal_pone_0153180
crossref_primary_10_7732_kjpr_2014_27_6_593
crossref_primary_10_3390_ijms19123924
crossref_primary_10_1016_S1534_5807_02_00157_0
crossref_primary_10_1371_journal_ppat_1007744
crossref_primary_10_1111_mec_12417
crossref_primary_10_1007_s10103_013_1403_5
crossref_primary_10_1002_ar_24878
crossref_primary_10_1002_art_21425
crossref_primary_10_1002_jbmr_490
crossref_primary_10_1016_j_bone_2019_115056
crossref_primary_10_1038_s41413_020_00129_7
crossref_primary_10_1158_1535_7163_MCT_08_0530
crossref_primary_10_4049_jimmunol_171_7_3620
crossref_primary_10_1111_jcmm_16071
crossref_primary_10_1152_ajpcell_00168_2019
Cites_doi 10.1038/46303
10.1210/edrv.20.3.0367
10.1016/S0092-8674(00)80209-3
10.1096/fasebj.12.10.845
10.1016/S0378-1119(97)00509-X
10.1073/pnas.96.7.3540
10.1006/bbrc.1998.8443
10.1006/bbrc.1998.9723
10.1073/pnas.95.7.3597
10.1359/jbmr.2000.15.1.2
10.4049/jimmunol.163.1.434
10.1038/345442a0
10.1006/bbrc.1998.8697
10.1101/gad.13.18.2412
10.1006/bbrc.1999.1623
10.1210/endo.139.3.5837
10.1038/16852
10.1101/gad.12.9.1260
10.1038/36593
10.1016/S0092-8674(00)81569-X
10.1074/jbc.272.40.25190
10.1006/bbrc.1997.6603
10.1210/endo-123-5-2600
10.1073/pnas.97.4.1566
10.1359/jbmr.1999.14.4.518
10.1016/S0076-6879(97)82110-6
10.1016/S8756-3282(98)00141-0
10.1074/jbc.274.19.13613
10.1210/endo.139.11.6433
10.1210/endo-125-4-1805
10.1006/bbrc.1998.8610
10.1006/bbrc.1998.9788
10.1074/jbc.273.42.27091
10.1210/endo-128-4-1792
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7X8
DOI 10.1210/endo.141.9.7634
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1945-7170
EndPage 3484
ExternalDocumentID 10_1210_endo_141_9_7634
10965921
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
.XZ
08P
0R~
18M
1TH
29G
2WC
34G
354
39C
3O-
3V.
4.4
48X
53G
5GY
5RE
5RS
5YH
79B
8F7
AABZA
AACZT
AAIMJ
AAJQQ
AAKAS
AAPGJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAYJJ
ABEFU
ABHFT
ABJNI
ABLJU
ABMNT
ABNHQ
ABPPZ
ABPQP
ABPTD
ABQNK
ABSAR
ABWST
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACPRK
ACUTJ
ACZBC
ADBBV
ADGKP
ADGZP
ADHKW
ADIYS
ADQBN
ADRTK
ADVEK
ADZCM
AELWJ
AEMDU
AENEX
AENZO
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFOFC
AFRAH
AFULF
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGQXC
AGUTN
AHMBA
AJEEA
ALMA_UNASSIGNED_HOLDINGS
APIBT
APJGH
AQKUS
ARIXL
ATGXG
AVNTJ
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BPHCQ
BSWAC
BTRTY
BVXVI
C1A
C45
CDBKE
CGR
CJ0
CS3
CUY
CVF
DAKXR
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
EMOBN
ENERS
F5P
FA8
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
HF~
HZ~
H~9
IAO
IH2
IHR
ITC
J5H
KBUDW
KOP
KQ8
KSI
KSN
L7B
LMP
M5~
MBLQV
MHKGH
MJL
MVM
NLBLG
NOMLY
NOYVH
NPM
NVLIB
O9-
OAUYM
OBH
ODMLO
OFXIZ
OHH
OHT
OJZSN
OK1
OPAEJ
OVD
OVIDX
P2P
PQQKQ
PROAC
Q-A
REU
ROX
ROZ
TEORI
TJX
TLC
TMA
TR2
TWZ
UPT
VQP
VVN
W2D
W8F
WH7
WHG
WOQ
X52
X7M
XJT
XOL
YBU
YHG
YOC
YQI
YSK
YYP
ZCA
ZCG
ZGI
ZKB
ZXP
ZY1
AAYXX
CITATION
7QP
7X8
ID FETCH-LOGICAL-c2824-f906ee3494efc0031b11c4c2fcdd7e86472d531418be244f0d9695d9d0b1a2ba3
ISSN 0013-7227
IngestDate Fri Oct 25 07:09:29 EDT 2024
Fri Oct 25 04:29:51 EDT 2024
Thu Sep 26 16:26:46 EDT 2024
Sat Sep 28 07:40:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2824-f906ee3494efc0031b11c4c2fcdd7e86472d531418be244f0d9695d9d0b1a2ba3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://academic.oup.com/endo/article-pdf/141/9/3478/10366454/endo3478.pdf
PMID 10965921
PQID 18072463
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_72214691
proquest_miscellaneous_18072463
crossref_primary_10_1210_endo_141_9_7634
pubmed_primary_10965921
PublicationCentury 2000
PublicationDate 2000-Sep
PublicationDateYYYYMMDD 2000-09-01
PublicationDate_xml – month: 09
  year: 2000
  text: 2000-Sep
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Endocrinology (Philadelphia)
PublicationTitleAlternate Endocrinology
PublicationYear 2000
References Tan (2019041122163908300_R11) 1997; 204
Kong (2019041122163908300_R19) 1999; 402
Horwood (2019041122163908300_R35) 1999; 265
Yasuda (2019041122163908300_R8) 1998; 139
Suda (2019041122163908300_R23) 1997; 282
Dougall (2019041122163908300_R26) 1999; 13
Takahashi (2019041122163908300_R22) 1991; 128
Wong (2019041122163908300_R3) 1997; 272
Horwood (2019041122163908300_R31) 1998; 139
Yoshida (2019041122163908300_R28) 1990; 345
Yano (2019041122163908300_R30) 1999; 14
Tomoyasu (2019041122163908300_R9) 1998; 245
Yasuda (2019041122163908300_R1) 1998; 95
Tsuda (2019041122163908300_R7) 1997; 234
Akatsu (2019041122163908300_R29) 1998; 23
Anderson (2019041122163908300_R2) 1997; 390
Takai (2019041122163908300_R33) 1998; 273
Takahashi (2019041122163908300_R20) 1988; 123
Lacey (2019041122163908300_R4) 1998; 93
Kong (2019041122163908300_R25) 1999; 397
Mizuno (2019041122163908300_R16) 1998; 247
Li (2019041122163908300_R27) 2000; 97
Hofbauer (2019041122163908300_R6) 2000; 15
Simonet (2019041122163908300_R10) 1997; 89
Nakagawa (2019041122163908300_R14) 1998; 253
Bucay (2019041122163908300_R17) 1998; 12
Jimi (2019041122163908300_R13) 1999; 163
Lum (2019041122163908300_R18) 1999; 274
Murakami (2019041122163908300_R32) 1998; 252
Kwon (2019041122163908300_R12) 1998; 12
Suda (2019041122163908300_R5) 1999; 20
Kotake (2019041122163908300_R34) 1998; 41
Tsukii (2019041122163908300_R24) 1998; 246
Hsu (2019041122163908300_R15) 1999; 96
Udagawa (2019041122163908300_R21) 1989; 125
References_xml – volume: 402
  start-page: 304
  year: 1999
  ident: 2019041122163908300_R19
  article-title: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand.
  publication-title: Nature
  doi: 10.1038/46303
  contributor:
    fullname: Kong
– volume: 20
  start-page: 345
  year: 1999
  ident: 2019041122163908300_R5
  article-title: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families.
  publication-title: Endocr Rev
  doi: 10.1210/edrv.20.3.0367
  contributor:
    fullname: Suda
– volume: 89
  start-page: 309
  year: 1997
  ident: 2019041122163908300_R10
  article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80209-3
  contributor:
    fullname: Simonet
– volume: 12
  start-page: 845
  year: 1998
  ident: 2019041122163908300_R12
  article-title: TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption.
  publication-title: FASEB J
  doi: 10.1096/fasebj.12.10.845
  contributor:
    fullname: Kwon
– volume: 204
  start-page: 35
  year: 1997
  ident: 2019041122163908300_R11
  article-title: Characterization of a novel TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells.
  publication-title: Gene
  doi: 10.1016/S0378-1119(97)00509-X
  contributor:
    fullname: Tan
– volume: 96
  start-page: 3540
  year: 1999
  ident: 2019041122163908300_R15
  article-title: Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.7.3540
  contributor:
    fullname: Hsu
– volume: 245
  start-page: 382
  year: 1998
  ident: 2019041122163908300_R9
  article-title: Characterization of monomeric and homodimeric forms of osteoclastogenesis inhibitory factor.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1998.8443
  contributor:
    fullname: Tomoyasu
– volume: 252
  start-page: 747
  year: 1998
  ident: 2019041122163908300_R32
  article-title: Transforming growth factor-β1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1998.9723
  contributor:
    fullname: Murakami
– volume: 95
  start-page: 3597
  year: 1998
  ident: 2019041122163908300_R1
  article-title: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.7.3597
  contributor:
    fullname: Yasuda
– volume: 15
  start-page: 2
  year: 2000
  ident: 2019041122163908300_R6
  article-title: The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption.
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.2000.15.1.2
  contributor:
    fullname: Hofbauer
– volume: 163
  start-page: 434
  year: 1999
  ident: 2019041122163908300_R13
  article-title: Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.1.434
  contributor:
    fullname: Jimi
– volume: 345
  start-page: 442
  year: 1990
  ident: 2019041122163908300_R28
  article-title: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene.
  publication-title: Nature
  doi: 10.1038/345442a0
  contributor:
    fullname: Yoshida
– volume: 41
  start-page: S320
  year: 1998
  ident: 2019041122163908300_R34
  article-title: Presence of osteoclastogenesis inhibitory factor/osteoprotegerin in synovial fluids from patients with rheumatoid arthritis
  publication-title: Arthritis Rheum [Suppl]
  contributor:
    fullname: Kotake
– volume: 247
  start-page: 610
  year: 1998
  ident: 2019041122163908300_R16
  article-title: Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1998.8697
  contributor:
    fullname: Mizuno
– volume: 13
  start-page: 2412
  year: 1999
  ident: 2019041122163908300_R26
  article-title: RANK is essential for osteoclast and lymph node development.
  publication-title: Genes Dev
  doi: 10.1101/gad.13.18.2412
  contributor:
    fullname: Dougall
– volume: 265
  start-page: 144
  year: 1999
  ident: 2019041122163908300_R35
  article-title: Activated T lymphocytes support osteoclast formation in vitro.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1999.1623
  contributor:
    fullname: Horwood
– volume: 139
  start-page: 1329
  year: 1998
  ident: 2019041122163908300_R8
  article-title: Identification of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG inhibits osteoclastogenesis in vitro.
  publication-title: Endocrinology
  doi: 10.1210/endo.139.3.5837
  contributor:
    fullname: Yasuda
– volume: 397
  start-page: 315
  year: 1999
  ident: 2019041122163908300_R25
  article-title: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis.
  publication-title: Nature
  doi: 10.1038/16852
  contributor:
    fullname: Kong
– volume: 12
  start-page: 1260
  year: 1998
  ident: 2019041122163908300_R17
  article-title: Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification.
  publication-title: Genes Dev
  doi: 10.1101/gad.12.9.1260
  contributor:
    fullname: Bucay
– volume: 390
  start-page: 175
  year: 1997
  ident: 2019041122163908300_R2
  article-title: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function.
  publication-title: Nature
  doi: 10.1038/36593
  contributor:
    fullname: Anderson
– volume: 93
  start-page: 165
  year: 1998
  ident: 2019041122163908300_R4
  article-title: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81569-X
  contributor:
    fullname: Lacey
– volume: 272
  start-page: 25190
  year: 1997
  ident: 2019041122163908300_R3
  article-title: TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.40.25190
  contributor:
    fullname: Wong
– volume: 234
  start-page: 137
  year: 1997
  ident: 2019041122163908300_R7
  article-title: Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1997.6603
  contributor:
    fullname: Tsuda
– volume: 123
  start-page: 2600
  year: 1988
  ident: 2019041122163908300_R20
  article-title: Osteoblastic cells are involved in osteoclast formation.
  publication-title: Endocrinology
  doi: 10.1210/endo-123-5-2600
  contributor:
    fullname: Takahashi
– volume: 97
  start-page: 1566
  year: 2000
  ident: 2019041122163908300_R27
  article-title: RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.4.1566
  contributor:
    fullname: Li
– volume: 14
  start-page: 518
  year: 1999
  ident: 2019041122163908300_R30
  article-title: Immunological characterization of circulating osteoprotegerin/osteoclastogenesis inhibitory factor: increased serum concentrations in postmenopausal women with osteoporosis.
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.1999.14.4.518
  contributor:
    fullname: Yano
– volume: 282
  start-page: 223
  year: 1997
  ident: 2019041122163908300_R23
  article-title: Role of 1α,25-dihydroxyvitamin D3 in osteoclast differentiation and function.
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(97)82110-6
  contributor:
    fullname: Suda
– volume: 23
  start-page: 495
  year: 1998
  ident: 2019041122163908300_R29
  article-title: Osteoclastogenesis inhibitory factor exhibits hypocalcemic effects in normal mice and in hypercalcemic nude mice carrying tumors associated with humoral hypercalcemia of malignancy.
  publication-title: Bone
  doi: 10.1016/S8756-3282(98)00141-0
  contributor:
    fullname: Akatsu
– volume: 274
  start-page: 13613
  year: 1999
  ident: 2019041122163908300_R18
  article-title: Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.274.19.13613
  contributor:
    fullname: Lum
– volume: 139
  start-page: 4743
  year: 1998
  ident: 2019041122163908300_R31
  article-title: Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells.
  publication-title: Endocrinology
  doi: 10.1210/endo.139.11.6433
  contributor:
    fullname: Horwood
– volume: 125
  start-page: 1805
  year: 1989
  ident: 2019041122163908300_R21
  article-title: The bone marrow-derived stromal cell lines MC3T3–G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells.
  publication-title: Endocrinology
  doi: 10.1210/endo-125-4-1805
  contributor:
    fullname: Udagawa
– volume: 246
  start-page: 337
  year: 1998
  ident: 2019041122163908300_R24
  article-title: Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1α,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1998.8610
  contributor:
    fullname: Tsukii
– volume: 253
  start-page: 395
  year: 1998
  ident: 2019041122163908300_R14
  article-title: RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1998.9788
  contributor:
    fullname: Nakagawa
– volume: 273
  start-page: 27091
  year: 1998
  ident: 2019041122163908300_R33
  article-title: Transforming growth factor-β stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.42.27091
  contributor:
    fullname: Takai
– volume: 128
  start-page: 1792
  year: 1991
  ident: 2019041122163908300_R22
  article-title: Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells.
  publication-title: Endocrinology
  doi: 10.1210/endo-128-4-1792
  contributor:
    fullname: Takahashi
SSID ssj0014443
Score 2.2433205
Snippet Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both...
Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor- Kappa B ligand (RANKL)/osteoclast differentiation factor, inhibits...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 3478
SubjectTerms Animals
Bone Development - physiology
Bone Resorption - pathology
Carrier Proteins - metabolism
Coculture Techniques
Glycoproteins - biosynthesis
Glycoproteins - genetics
Glycoproteins - physiology
Membrane Glycoproteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
NF-kappa B - metabolism
Organ Culture Techniques
Osteoblasts - metabolism
Osteoclasts - physiology
Osteoprotegerin
RANK Ligand
Receptor Activator of Nuclear Factor-kappa B
Receptors, Cytoplasmic and Nuclear
Receptors, Tumor Necrosis Factor - biosynthesis
Receptors, Tumor Necrosis Factor - genetics
Receptors, Tumor Necrosis Factor - physiology
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - biosynthesis
RNA, Messenger - genetics
Title Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function
URI https://www.ncbi.nlm.nih.gov/pubmed/10965921
https://search.proquest.com/docview/18072463
https://search.proquest.com/docview/72214691
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB50BfFFdNdL19s8iAiSkkmmaeZxEXURqi8t1Kcwt-wWaVK2CbL76_ecmdxaLagvIUwmF_J9OTnnzLkQ8jY1NkpsngR5mk8CHslJIKZ5HqQmYTYK-VRbXNGdfUvOF_zrcrLsXdkuu6RSY33zx7yS_0EVxgBXzJL9B2S7i8IA7AO-sAWEYftXGH8HiEpXaeECs_gw2MrU2uuUmLxRKtCNqy02LYfPeLV2unZRfbjyDehdKLqfqHFim0HVxZ3jT68DrnXfF6YESePd8aifoksGa01uLjHutvMrLIy8kL_kzmrPXP7EDDLXR7gf_SG3tZE7iRKz1U1dlL2rtXVLhF3cVSdqWRxMI5_434lazgacEgPBGXPfyec3iQ4mqcPWlCDU2ViMQSDy4UyAZLN2ADOsZCN8wvVeEe320F1yLwKJhKLwy7KLBQKjsgmvbJ65qQGF6U17d8Yis821djWZA-aJU1Pmj8jDxr6gZ54sj8kdWxyTk7MC0F5f03fURfw67I7J_VkTWHFCLveoRFsqUXVNB1Siqy2VBe2oRDsqUTippxIdUAlOMLSl0hOy-Pxp_vE8aJpwBBqscR7kIkysxSJGNtf4C1CMaa6jXBsztSl2HzAgxzlLlQVVMQ-NSMTECBMqJiMl46fkqCgL-5xQq0Ido86vYsVNEolQhDwXSkSSa8nNiLxvX2i28bVWMrRRAYYMYQAzlWUiQxhG5E37wjOQh7jIJQtb1tuMpeE04kl8eAYADOqBYCPyzCM1uJlH9vTgkRfkQU_2l-SouqrtK9BKK_XaMeoWtdGO1w
link.rule.ids 315,783,787,27936,27937
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osteoprotegerin+produced+by+osteoblasts+is+an+important+regulator+in+osteoclast+development+and+function&rft.jtitle=Endocrinology+%28Philadelphia%29&rft.au=Udagawa%2C+N&rft.au=Takahashi%2C+N&rft.au=Yasuda%2C+H&rft.au=Mizuno%2C+A&rft.date=2000-09-01&rft.issn=0013-7227&rft.volume=141&rft.issue=9&rft.spage=3478&rft_id=info:doi/10.1210%2Fendo.141.9.7634&rft_id=info%3Apmid%2F10965921&rft.externalDocID=10965921
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7227&client=summon