Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function
Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced...
Saved in:
Published in | Endocrinology (Philadelphia) Vol. 141; no. 9; pp. 3478 - 3484 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced osteoclastic bone resorption. In the present study, potential roles of OPG in osteoclast differentiation were examined using a mouse coculture system of calvarial osteoblasts and bone marrow cells prepared from OPG-deficient mice. In the absence of bone-resorbing factors, no osteoclasts were formed in cocultures of wild-type (+/+) or heterozygous (+/-) mouse-derived osteoblasts with bone marrow cells prepared from homozygous (-/-) mice. In contrast, homozygous (-/-) mouse-derived osteoblasts strongly supported osteoclast formation in the cocultures with homozygous (-/-) bone marrow cells, even in the absence of bone-resorbing factors. Addition of OPG to the cocultures with osteoblasts and bone marrow cells derived from homozygous (-/-) mice completely inhibited spontaneously occurring osteoclast formation. Adding 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] to these cocultures significantly enhanced osteoclast differentiation. In addition, bone-resorbing activity in organ cultures of fetal long bones derived from homozygous (-/-) mice was markedly increased, irrespective of the presence and absence of bone-resorbing factors, in comparison with that from wild-type (+/+) mice. Osteoblasts prepared from homozygous (-/-), heterozygous (+/-), and wild-type (+/+) mice constitutively expressed similar levels of RANKL messenger RNA, which were equally increased by the treatment with 1alpha,25(OH)2D3. When homozygous (-/-) mouse-derived osteoblasts and hemopoietic cells were cocultured, but direct contact between them was prevented, no osteoclasts were formed, even in the presence of 1alpha,25(OH)2D3 and macrophage colony-stimulating factor. These findings suggest that OPG produced by osteoblasts/stromal cells is a physiologically important regulator in osteoclast differentiation and function and that RANKL expressed by osteoblasts functions as a membrane-associated form. |
---|---|
AbstractList | Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced osteoclastic bone resorption. In the present study, potential roles of OPG in osteoclast differentiation were examined using a mouse coculture system of calvarial osteoblasts and bone marrow cells prepared from OPG-deficient mice. In the absence of bone-resorbing factors, no osteoclasts were formed in cocultures of wild-type (+/+) or heterozygous (+/-) mouse-derived osteoblasts with bone marrow cells prepared from homozygous (-/-) mice. In contrast, homozygous (-/-) mouse-derived osteoblasts strongly supported osteoclast formation in the cocultures with homozygous (-/-) bone marrow cells, even in the absence of bone-resorbing factors. Addition of OPG to the cocultures with osteoblasts and bone marrow cells derived from homozygous (-/-) mice completely inhibited spontaneously occurring osteoclast formation. Adding 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] to these cocultures significantly enhanced osteoclast differentiation. In addition, bone-resorbing activity in organ cultures of fetal long bones derived from homozygous (-/-) mice was markedly increased, irrespective of the presence and absence of bone-resorbing factors, in comparison with that from wild-type (+/+) mice. Osteoblasts prepared from homozygous (-/-), heterozygous (+/-), and wild-type (+/+) mice constitutively expressed similar levels of RANKL messenger RNA, which were equally increased by the treatment with 1alpha,25(OH)2D3. When homozygous (-/-) mouse-derived osteoblasts and hemopoietic cells were cocultured, but direct contact between them was prevented, no osteoclasts were formed, even in the presence of 1alpha,25(OH)2D3 and macrophage colony-stimulating factor. These findings suggest that OPG produced by osteoblasts/stromal cells is a physiologically important regulator in osteoclast differentiation and function and that RANKL expressed by osteoblasts functions as a membrane-associated form. Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor- Kappa B ligand (RANKL)/osteoclast differentiation factor, inhibits both differentiation and function of osteoclasts. We previously reported that OPG-deficient mice exhibited severe osteoporosis caused by enhanced osteoclastic bone resorption. In the present study, potential roles of OPG in osteoclast differentiation were examined using a mouse coculture system of calvarial osteoblasts and bone marrow cells prepared from OPG-deficient mice. In the absence of bone-resorbing factors, no osteoclasts were formed in cocultures of wild-type (+/+) or heterozygous (+/-) mouse-derived osteoblasts with bone marrow cells prepared from homozygous (-/-) mice. In contrast, homozygous (-/-) mouse-derived osteoblasts strongly supported osteoclast formation in the cocultures with homozygous (-/-) bone marrow cells, even in the absence of bone-resorbing factors. Addition of OPG to the cocultures with osteoblasts and bone marrow cells derived from homozygous (-/-) mice completely inhibited spontaneously occurring osteoclast formation. Adding 1 alpha ,25-dihydroxyvitamin D sub(3) [1 alpha ,25(OH) sub(2)D sub(3)] to these cocultures significantly enhanced osteoclast differentiation. In addition, bone-resorbing activity in organ cultures of fetal long bones derived from homozygous (-/-) mice was markedly increased, irrespective of the presence and absence of bone-resorbing factors, in comparison with that from wild-type (+/+) mice. Osteoblasts prepared from homozygous (-/-), heterozygous (+/-), and wild-type (+/+) mice constitutively expressed similar levels of RANKL messenger RNA, which were equally increased by the treatment with 1 alpha ,25(OH) sub(2)D sub(3). When homozygous (-/-) mouse-derived osteoblasts and hemopoietic cells were cocultured, but direct contact between them was prevented, no osteoclasts were formed, even in the presence of 1 alpha ,25(OH) sub(2)D sub(3) and macrophage colony-stimulating factor. These findings suggest that OPG produced by osteoblasts/stromal cells is a physiologically important regulator in osteoclast differentiation and function and that RANKL expressed by osteoblasts functions as a membrane-associated form. |
Author | Martin, T J Takahashi, N Yasuda, H Mizuno, A Udagawa, N Itoh, K Ueno, Y Shinki, T Higashio, K Suda, T Gillespie, M T |
Author_xml | – sequence: 1 givenname: N surname: Udagawa fullname: Udagawa, N organization: Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan – sequence: 2 givenname: N surname: Takahashi fullname: Takahashi, N – sequence: 3 givenname: H surname: Yasuda fullname: Yasuda, H – sequence: 4 givenname: A surname: Mizuno fullname: Mizuno, A – sequence: 5 givenname: K surname: Itoh fullname: Itoh, K – sequence: 6 givenname: Y surname: Ueno fullname: Ueno, Y – sequence: 7 givenname: T surname: Shinki fullname: Shinki, T – sequence: 8 givenname: M T surname: Gillespie fullname: Gillespie, M T – sequence: 9 givenname: T J surname: Martin fullname: Martin, T J – sequence: 10 givenname: K surname: Higashio fullname: Higashio, K – sequence: 11 givenname: T surname: Suda fullname: Suda, T |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10965921$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PwzAMhiM0BBtw5oZy4tYRJ1m7HBHiS5q0C5yjNHGhqE1G0iLx70nZDtw42ZYfW379LsjMB4-EXAJbAgd2g96FJUhYqmVVCnlE5qDkqqigYjMyZwxEUXFenZJFSh-5lFKKE3IKTJUrxWFO3rdpwLCLYcA3jK2nOXWjRUfrbxqmXt2ZNCTaJmo8bftdiIPxA434NnZmCJHmoV_QTiB1-IVd2PWYGeMdbUZvhzb4c3LcmC7hxSGekdeH-5e7p2KzfXy-u90Ulq-5LBrFSkQhlcTGMiagBrDS8sY6V-G6lBV3K5EVr2vkUjbMqVKtnHKsBsNrI87I9X5vFvI5Yhp03yaLXWc8hjHp_A6QpYJ_QVizistSZPBmD9oYUorY6F1sexO_NTA9uaAnF3S-SSs9uZAnrg6rx7pH94ffv138AMtyh5M |
CitedBy_id | crossref_primary_10_1051_shsconf_20163000008 crossref_primary_10_1016_j_bone_2021_116148 crossref_primary_10_1002_jcb_20853 crossref_primary_10_1002_art_10680 crossref_primary_10_1096_fj_01_0898hyp crossref_primary_10_1111_1440_1681_12345 crossref_primary_10_1016_j_colsurfa_2020_124899 crossref_primary_10_1016_j_bone_2013_07_011 crossref_primary_10_1016_j_ijom_2017_11_001 crossref_primary_10_1002_pros_20016 crossref_primary_10_1038_s42255_019_0104_1 crossref_primary_10_1002_jcb_21938 crossref_primary_10_1210_endo_143_8_8954 crossref_primary_10_1007_s00198_015_3250_7 crossref_primary_10_1016_j_actbio_2014_07_025 crossref_primary_10_1074_jbc_M212473200 crossref_primary_10_1042_BST20200978 crossref_primary_10_1016_j_celrep_2020_108052 crossref_primary_10_1016_j_archoralbio_2010_02_007 crossref_primary_10_1158_1078_0432_CCR_05_1849 crossref_primary_10_1002_jbmr_3913 crossref_primary_10_4049_jimmunol_1701574 crossref_primary_10_1161_ATVBAHA_108_174128 crossref_primary_10_3389_fcell_2022_903657 crossref_primary_10_4162_nrp_2015_9_5_459 crossref_primary_10_1016_j_archoralbio_2020_104770 crossref_primary_10_3389_fimmu_2019_02925 crossref_primary_10_1211_jpp_59_8_0016 crossref_primary_10_1002_jemt_10370 crossref_primary_10_1016_j_bone_2023_116709 crossref_primary_10_1002_mnfr_201100270 crossref_primary_10_1016_j_exger_2021_111596 crossref_primary_10_1016_j_tcmj_2015_08_001 crossref_primary_10_3389_fphar_2020_00366 crossref_primary_10_1038_s41413_021_00181_x crossref_primary_10_1097_BRS_0000000000001701 crossref_primary_10_1038_nrc1528 crossref_primary_10_1016_j_bone_2021_116168 crossref_primary_10_1016_j_jff_2017_10_044 crossref_primary_10_1016_j_ejenta_2014_10_006 crossref_primary_10_1007_s00774_020_01162_6 crossref_primary_10_1002_jcb_20197 crossref_primary_10_1016_j_ejr_2014_01_003 crossref_primary_10_1186_s40902_016_0095_8 crossref_primary_10_1359_JBMR_0301226 crossref_primary_10_12717_DR_2013_17_1_001 crossref_primary_10_3390_ijms23179846 crossref_primary_10_1177_154411130401500202 crossref_primary_10_1007_BF02904492 crossref_primary_10_3390_cells7120260 crossref_primary_10_1186_s40902_015_0015_3 crossref_primary_10_3390_ijms23031393 crossref_primary_10_1074_jbc_M116_751974 crossref_primary_10_1002_ijc_21008 crossref_primary_10_1073_pnas_1400544111 crossref_primary_10_1080_10717544_2022_2086942 crossref_primary_10_1016_j_clnu_2023_07_022 crossref_primary_10_1016_j_toxlet_2018_10_008 crossref_primary_10_1016_j_bbrc_2009_04_084 crossref_primary_10_1016_j_abb_2010_05_027 crossref_primary_10_1055_s_0041_1726065 crossref_primary_10_1128_microbiolspec_BAD_0015_2016 crossref_primary_10_18632_oncotarget_8980 crossref_primary_10_1097_AOG_0b013e318291718c crossref_primary_10_1016_S8756_3282_03_00172_8 crossref_primary_10_3390_cancers10060182 crossref_primary_10_1093_jbmrpl_ziad014 crossref_primary_10_1016_S0003_9969_03_00100_6 crossref_primary_10_7555_JBR_36_202200266 crossref_primary_10_1097_GME_0b013e318267f909 crossref_primary_10_1182_blood_2010_05_282855 crossref_primary_10_1016_j_bbrc_2005_01_019 crossref_primary_10_1016_j_gastha_2023_11_001 crossref_primary_10_3390_biom11101482 crossref_primary_10_1007_s10856_009_3891_1 crossref_primary_10_3390_molecules26020384 crossref_primary_10_1016_j_celrep_2020_108124 crossref_primary_10_3390_ijms21165600 crossref_primary_10_1016_j_bbrc_2010_02_086 crossref_primary_10_1038_nature01658 crossref_primary_10_1359_jbmr_090215 crossref_primary_10_1111_prd_12368 crossref_primary_10_1016_j_nut_2012_03_009 crossref_primary_10_1016_j_bone_2011_04_006 crossref_primary_10_1359_jbmr_080410 crossref_primary_10_1002_jbm4_10795 crossref_primary_10_1371_journal_pone_0227757 crossref_primary_10_4049_jimmunol_172_4_2504 crossref_primary_10_1002_lsm_20508 crossref_primary_10_1089_dna_2006_25_475 crossref_primary_10_1111_clr_12686 crossref_primary_10_1007_s40610_016_0037_3 crossref_primary_10_1007_s00264_022_05407_z crossref_primary_10_1016_j_ejcb_2008_06_004 crossref_primary_10_1111_j_1600_0757_2006_00167_x crossref_primary_10_3389_fimmu_2019_01239 crossref_primary_10_1002_jbm_b_31326 crossref_primary_10_1021_acsbiomaterials_9b01852 crossref_primary_10_1002_jcb_30236 crossref_primary_10_1007_s00198_017_4140_y crossref_primary_10_3389_fendo_2021_584147 crossref_primary_10_1182_blood_V98_7_2269 crossref_primary_10_1007_s11154_014_9308_6 crossref_primary_10_1111_cpr_12714 crossref_primary_10_1002_jcph_228 crossref_primary_10_3390_biomedicines10020404 crossref_primary_10_3390_cancers11071020 crossref_primary_10_1002_art_42617 crossref_primary_10_3390_ijms19030888 crossref_primary_10_1038_s41413_020_0104_5 crossref_primary_10_1196_annals_1402_068 crossref_primary_10_1016_S8756_3282_01_00505_1 crossref_primary_10_1002_art_27257 crossref_primary_10_1210_me_2005_0187 crossref_primary_10_1002_jcp_29205 crossref_primary_10_1007_s00198_023_06708_8 crossref_primary_10_1016_j_bbrc_2005_01_122 crossref_primary_10_1186_s41232_022_00213_x crossref_primary_10_1007_s10616_017_0094_3 crossref_primary_10_1016_j_mtcomm_2019_05_010 crossref_primary_10_2183_pjab_96_013 crossref_primary_10_1097_SPC_0b013e32830baac2 crossref_primary_10_1016_j_biopha_2017_05_055 crossref_primary_10_1007_s12011_017_1123_y crossref_primary_10_1126_sciimmunol_abl5053 crossref_primary_10_1177_0004563218759371 crossref_primary_10_1002_jor_20582 crossref_primary_10_1002_cncr_24896 crossref_primary_10_1038_s41418_020_0590_4 crossref_primary_10_3892_mmr_2015_3891 crossref_primary_10_1016_j_archoralbio_2021_105147 crossref_primary_10_1128_IAI_71_1_226_233_2003 crossref_primary_10_1074_jbc_AC119_008361 crossref_primary_10_1002_jbmr_2097 crossref_primary_10_1007_s12016_015_8523_6 crossref_primary_10_1002_ar_10061 crossref_primary_10_1038_cgt_2010_47 crossref_primary_10_1016_j_bone_2006_09_007 crossref_primary_10_1007_s10103_008_0614_7 crossref_primary_10_1016_j_phrs_2015_06_010 crossref_primary_10_2478_rrlm_2023_0006 crossref_primary_10_3389_fphys_2024_1364694 crossref_primary_10_1152_ajpcell_00039_2023 crossref_primary_10_1007_s10585_006_9026_x crossref_primary_10_1021_acsbiomaterials_8b01553 crossref_primary_10_3390_jcm12062344 crossref_primary_10_1016_j_bone_2020_115837 crossref_primary_10_3390_cells10092383 crossref_primary_10_1210_jc_2007_1645 crossref_primary_10_3390_cancers13020263 crossref_primary_10_1039_C8TX00340H crossref_primary_10_1016_j_fsisyn_2023_100326 crossref_primary_10_1016_j_jdsr_2019_03_001 crossref_primary_10_3892_mmr_2017_6611 crossref_primary_10_1002_jbmr_555 crossref_primary_10_3892_ijmm_2014_1934 crossref_primary_10_1016_j_bone_2012_03_012 crossref_primary_10_1016_S8756_3282_01_00654_8 crossref_primary_10_3390_ijms23031786 crossref_primary_10_3109_15368378_2015_1107840 crossref_primary_10_3390_ijms19103197 crossref_primary_10_1002_jcb_20470 crossref_primary_10_4049_jimmunol_175_3_1956 crossref_primary_10_1359_jbmr_2003_18_12_2152 crossref_primary_10_1002_jcp_21002 crossref_primary_10_21926_obm_transplant_2302183 crossref_primary_10_3389_fbioe_2022_886579 crossref_primary_10_1080_03602532_2019_1574303 crossref_primary_10_1016_j_archoralbio_2007_01_005 crossref_primary_10_2147_JIR_S304946 crossref_primary_10_1002_adhm_202200651 crossref_primary_10_1002_jbmr_325 crossref_primary_10_1016_j_pharmthera_2021_107941 crossref_primary_10_1016_j_mtcomm_2018_05_010 crossref_primary_10_1007_s13770_021_00350_3 crossref_primary_10_3892_mmr_2016_5687 crossref_primary_10_1007_s10522_017_9732_6 crossref_primary_10_1182_blood_2010_05_283895 crossref_primary_10_1177_002215540205000708 crossref_primary_10_1083_jcb_200611083 crossref_primary_10_1089_ten_tea_2008_0501 crossref_primary_10_1007_s00198_019_05233_x crossref_primary_10_1111_j_1600_0757_2006_00166_x crossref_primary_10_1359_jbmr_2001_16_10_1787 crossref_primary_10_1016_j_numecd_2019_08_018 crossref_primary_10_3390_molecules29081741 crossref_primary_10_1359_jbmr_060610 crossref_primary_10_1016_j_exphem_2004_07_006 crossref_primary_10_1016_S0006_291X_02_00667_8 crossref_primary_10_18632_oncotarget_22014 crossref_primary_10_1007_s00198_022_06549_x crossref_primary_10_1210_en_2003_0839 crossref_primary_10_1096_fj_201802597RR crossref_primary_10_1016_j_joms_2011_07_002 crossref_primary_10_1371_journal_pone_0109597 crossref_primary_10_1080_00016489_2020_1717609 crossref_primary_10_1634_theoncologist_2010_0154 crossref_primary_10_1016_j_tifs_2021_10_017 crossref_primary_10_7888_juoeh_36_141 crossref_primary_10_1016_j_ejphar_2022_174941 crossref_primary_10_1002_jcp_20255 crossref_primary_10_1016_j_mad_2020_111335 crossref_primary_10_1074_jbc_RA118_004489 crossref_primary_10_1016_j_bone_2012_04_006 crossref_primary_10_1016_j_jff_2013_10_013 crossref_primary_10_1016_j_msec_2020_110861 crossref_primary_10_1021_acsami_7b07800 crossref_primary_10_1359_JBMR_050515 crossref_primary_10_1016_j_job_2017_05_001 crossref_primary_10_1002_JPER_17_0550 crossref_primary_10_3390_cells3040963 crossref_primary_10_1177_0022034514552677 crossref_primary_10_3390_ijms22126563 crossref_primary_10_1016_j_archoralbio_2005_02_007 crossref_primary_10_1002_jbmr_2236 crossref_primary_10_1038_s41598_017_12651_6 crossref_primary_10_2174_0113892037268414231017074054 crossref_primary_10_3390_molecules26226820 crossref_primary_10_1097_01_mlg_0000150702_28451_35 crossref_primary_10_1111_1471_0307_12708 crossref_primary_10_1002_jcb_25604 crossref_primary_10_1902_jop_2007_070073 crossref_primary_10_7555_JBR_36_20220266 crossref_primary_10_1111_j_1744_9987_2006_00375_x crossref_primary_10_1146_annurev_immunol_032414_112220 crossref_primary_10_1359_jbmr_2001_16_11_1937 crossref_primary_10_1007_s12275_016_6137_1 crossref_primary_10_1097_01_mlg_0000191466_09210_9a crossref_primary_10_1002_ar_10121 crossref_primary_10_3390_biom14030294 crossref_primary_10_1002_lsm_22797 crossref_primary_10_1359_jbmr_090716 crossref_primary_10_1016_j_diff_2021_08_003 crossref_primary_10_1038_labinvest_2012_179 crossref_primary_10_1016_j_bone_2011_08_031 crossref_primary_10_1517_14728222_2011_546351 crossref_primary_10_1210_er_2007_0014 crossref_primary_10_3390_antibiotics12010065 crossref_primary_10_1002_jbmr_2024 crossref_primary_10_1084_jem_20040689 crossref_primary_10_1080_14756366_2017_1302440 crossref_primary_10_1210_en_2007_1292 crossref_primary_10_1021_acs_molpharmaceut_7b00501 crossref_primary_10_1007_s10989_016_9529_5 crossref_primary_10_1371_journal_pone_0153180 crossref_primary_10_7732_kjpr_2014_27_6_593 crossref_primary_10_3390_ijms19123924 crossref_primary_10_1016_S1534_5807_02_00157_0 crossref_primary_10_1371_journal_ppat_1007744 crossref_primary_10_1111_mec_12417 crossref_primary_10_1007_s10103_013_1403_5 crossref_primary_10_1002_ar_24878 crossref_primary_10_1002_art_21425 crossref_primary_10_1002_jbmr_490 crossref_primary_10_1016_j_bone_2019_115056 crossref_primary_10_1038_s41413_020_00129_7 crossref_primary_10_1158_1535_7163_MCT_08_0530 crossref_primary_10_4049_jimmunol_171_7_3620 crossref_primary_10_1111_jcmm_16071 crossref_primary_10_1152_ajpcell_00168_2019 |
Cites_doi | 10.1038/46303 10.1210/edrv.20.3.0367 10.1016/S0092-8674(00)80209-3 10.1096/fasebj.12.10.845 10.1016/S0378-1119(97)00509-X 10.1073/pnas.96.7.3540 10.1006/bbrc.1998.8443 10.1006/bbrc.1998.9723 10.1073/pnas.95.7.3597 10.1359/jbmr.2000.15.1.2 10.4049/jimmunol.163.1.434 10.1038/345442a0 10.1006/bbrc.1998.8697 10.1101/gad.13.18.2412 10.1006/bbrc.1999.1623 10.1210/endo.139.3.5837 10.1038/16852 10.1101/gad.12.9.1260 10.1038/36593 10.1016/S0092-8674(00)81569-X 10.1074/jbc.272.40.25190 10.1006/bbrc.1997.6603 10.1210/endo-123-5-2600 10.1073/pnas.97.4.1566 10.1359/jbmr.1999.14.4.518 10.1016/S0076-6879(97)82110-6 10.1016/S8756-3282(98)00141-0 10.1074/jbc.274.19.13613 10.1210/endo.139.11.6433 10.1210/endo-125-4-1805 10.1006/bbrc.1998.8610 10.1006/bbrc.1998.9788 10.1074/jbc.273.42.27091 10.1210/endo-128-4-1792 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7X8 |
DOI | 10.1210/endo.141.9.7634 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1945-7170 |
EndPage | 3484 |
ExternalDocumentID | 10_1210_endo_141_9_7634 10965921 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ .XZ 08P 0R~ 18M 1TH 29G 2WC 34G 354 39C 3O- 3V. 4.4 48X 53G 5GY 5RE 5RS 5YH 79B 8F7 AABZA AACZT AAIMJ AAJQQ AAKAS AAPGJ AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAYJJ ABEFU ABHFT ABJNI ABLJU ABMNT ABNHQ ABPPZ ABPQP ABPTD ABQNK ABSAR ABWST ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACPRK ACUTJ ACZBC ADBBV ADGKP ADGZP ADHKW ADIYS ADQBN ADRTK ADVEK ADZCM AELWJ AEMDU AENEX AENZO AETBJ AEWNT AFFNX AFFZL AFGWE AFOFC AFRAH AFULF AFXAL AFYAG AGINJ AGKRT AGMDO AGQXC AGUTN AHMBA AJEEA ALMA_UNASSIGNED_HOLDINGS APIBT APJGH AQKUS ARIXL ATGXG AVNTJ BAWUL BAYMD BCRHZ BENPR BEYMZ BPHCQ BSWAC BTRTY BVXVI C1A C45 CDBKE CGR CJ0 CS3 CUY CVF DAKXR DIK DU5 E3Z EBS ECM EIF EJD EMOBN ENERS F5P FA8 FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 HF~ HZ~ H~9 IAO IH2 IHR ITC J5H KBUDW KOP KQ8 KSI KSN L7B LMP M5~ MBLQV MHKGH MJL MVM NLBLG NOMLY NOYVH NPM NVLIB O9- OAUYM OBH ODMLO OFXIZ OHH OHT OJZSN OK1 OPAEJ OVD OVIDX P2P PQQKQ PROAC Q-A REU ROX ROZ TEORI TJX TLC TMA TR2 TWZ UPT VQP VVN W2D W8F WH7 WHG WOQ X52 X7M XJT XOL YBU YHG YOC YQI YSK YYP ZCA ZCG ZGI ZKB ZXP ZY1 AAYXX CITATION 7QP 7X8 |
ID | FETCH-LOGICAL-c2824-f906ee3494efc0031b11c4c2fcdd7e86472d531418be244f0d9695d9d0b1a2ba3 |
ISSN | 0013-7227 |
IngestDate | Fri Oct 25 07:09:29 EDT 2024 Fri Oct 25 04:29:51 EDT 2024 Thu Sep 26 16:26:46 EDT 2024 Sat Sep 28 07:40:46 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2824-f906ee3494efc0031b11c4c2fcdd7e86472d531418be244f0d9695d9d0b1a2ba3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://academic.oup.com/endo/article-pdf/141/9/3478/10366454/endo3478.pdf |
PMID | 10965921 |
PQID | 18072463 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_72214691 proquest_miscellaneous_18072463 crossref_primary_10_1210_endo_141_9_7634 pubmed_primary_10965921 |
PublicationCentury | 2000 |
PublicationDate | 2000-Sep |
PublicationDateYYYYMMDD | 2000-09-01 |
PublicationDate_xml | – month: 09 year: 2000 text: 2000-Sep |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Endocrinology (Philadelphia) |
PublicationTitleAlternate | Endocrinology |
PublicationYear | 2000 |
References | Tan (2019041122163908300_R11) 1997; 204 Kong (2019041122163908300_R19) 1999; 402 Horwood (2019041122163908300_R35) 1999; 265 Yasuda (2019041122163908300_R8) 1998; 139 Suda (2019041122163908300_R23) 1997; 282 Dougall (2019041122163908300_R26) 1999; 13 Takahashi (2019041122163908300_R22) 1991; 128 Wong (2019041122163908300_R3) 1997; 272 Horwood (2019041122163908300_R31) 1998; 139 Yoshida (2019041122163908300_R28) 1990; 345 Yano (2019041122163908300_R30) 1999; 14 Tomoyasu (2019041122163908300_R9) 1998; 245 Yasuda (2019041122163908300_R1) 1998; 95 Tsuda (2019041122163908300_R7) 1997; 234 Akatsu (2019041122163908300_R29) 1998; 23 Anderson (2019041122163908300_R2) 1997; 390 Takai (2019041122163908300_R33) 1998; 273 Takahashi (2019041122163908300_R20) 1988; 123 Lacey (2019041122163908300_R4) 1998; 93 Kong (2019041122163908300_R25) 1999; 397 Mizuno (2019041122163908300_R16) 1998; 247 Li (2019041122163908300_R27) 2000; 97 Hofbauer (2019041122163908300_R6) 2000; 15 Simonet (2019041122163908300_R10) 1997; 89 Nakagawa (2019041122163908300_R14) 1998; 253 Bucay (2019041122163908300_R17) 1998; 12 Jimi (2019041122163908300_R13) 1999; 163 Lum (2019041122163908300_R18) 1999; 274 Murakami (2019041122163908300_R32) 1998; 252 Kwon (2019041122163908300_R12) 1998; 12 Suda (2019041122163908300_R5) 1999; 20 Kotake (2019041122163908300_R34) 1998; 41 Tsukii (2019041122163908300_R24) 1998; 246 Hsu (2019041122163908300_R15) 1999; 96 Udagawa (2019041122163908300_R21) 1989; 125 |
References_xml | – volume: 402 start-page: 304 year: 1999 ident: 2019041122163908300_R19 article-title: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. publication-title: Nature doi: 10.1038/46303 contributor: fullname: Kong – volume: 20 start-page: 345 year: 1999 ident: 2019041122163908300_R5 article-title: Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. publication-title: Endocr Rev doi: 10.1210/edrv.20.3.0367 contributor: fullname: Suda – volume: 89 start-page: 309 year: 1997 ident: 2019041122163908300_R10 article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. publication-title: Cell doi: 10.1016/S0092-8674(00)80209-3 contributor: fullname: Simonet – volume: 12 start-page: 845 year: 1998 ident: 2019041122163908300_R12 article-title: TR1, a new member of the tumor necrosis factor receptor superfamily, induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. publication-title: FASEB J doi: 10.1096/fasebj.12.10.845 contributor: fullname: Kwon – volume: 204 start-page: 35 year: 1997 ident: 2019041122163908300_R11 article-title: Characterization of a novel TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. publication-title: Gene doi: 10.1016/S0378-1119(97)00509-X contributor: fullname: Tan – volume: 96 start-page: 3540 year: 1999 ident: 2019041122163908300_R15 article-title: Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.7.3540 contributor: fullname: Hsu – volume: 245 start-page: 382 year: 1998 ident: 2019041122163908300_R9 article-title: Characterization of monomeric and homodimeric forms of osteoclastogenesis inhibitory factor. publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1998.8443 contributor: fullname: Tomoyasu – volume: 252 start-page: 747 year: 1998 ident: 2019041122163908300_R32 article-title: Transforming growth factor-β1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1998.9723 contributor: fullname: Murakami – volume: 95 start-page: 3597 year: 1998 ident: 2019041122163908300_R1 article-title: Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.7.3597 contributor: fullname: Yasuda – volume: 15 start-page: 2 year: 2000 ident: 2019041122163908300_R6 article-title: The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. publication-title: J Bone Miner Res doi: 10.1359/jbmr.2000.15.1.2 contributor: fullname: Hofbauer – volume: 163 start-page: 434 year: 1999 ident: 2019041122163908300_R13 article-title: Osteoclast differentiation factor acts as a multifunctional regulator in murine osteoclast differentiation and function. publication-title: J Immunol doi: 10.4049/jimmunol.163.1.434 contributor: fullname: Jimi – volume: 345 start-page: 442 year: 1990 ident: 2019041122163908300_R28 article-title: The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. publication-title: Nature doi: 10.1038/345442a0 contributor: fullname: Yoshida – volume: 41 start-page: S320 year: 1998 ident: 2019041122163908300_R34 article-title: Presence of osteoclastogenesis inhibitory factor/osteoprotegerin in synovial fluids from patients with rheumatoid arthritis publication-title: Arthritis Rheum [Suppl] contributor: fullname: Kotake – volume: 247 start-page: 610 year: 1998 ident: 2019041122163908300_R16 article-title: Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1998.8697 contributor: fullname: Mizuno – volume: 13 start-page: 2412 year: 1999 ident: 2019041122163908300_R26 article-title: RANK is essential for osteoclast and lymph node development. publication-title: Genes Dev doi: 10.1101/gad.13.18.2412 contributor: fullname: Dougall – volume: 265 start-page: 144 year: 1999 ident: 2019041122163908300_R35 article-title: Activated T lymphocytes support osteoclast formation in vitro. publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.1623 contributor: fullname: Horwood – volume: 139 start-page: 1329 year: 1998 ident: 2019041122163908300_R8 article-title: Identification of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG inhibits osteoclastogenesis in vitro. publication-title: Endocrinology doi: 10.1210/endo.139.3.5837 contributor: fullname: Yasuda – volume: 397 start-page: 315 year: 1999 ident: 2019041122163908300_R25 article-title: OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. publication-title: Nature doi: 10.1038/16852 contributor: fullname: Kong – volume: 12 start-page: 1260 year: 1998 ident: 2019041122163908300_R17 article-title: Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. publication-title: Genes Dev doi: 10.1101/gad.12.9.1260 contributor: fullname: Bucay – volume: 390 start-page: 175 year: 1997 ident: 2019041122163908300_R2 article-title: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. publication-title: Nature doi: 10.1038/36593 contributor: fullname: Anderson – volume: 93 start-page: 165 year: 1998 ident: 2019041122163908300_R4 article-title: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. publication-title: Cell doi: 10.1016/S0092-8674(00)81569-X contributor: fullname: Lacey – volume: 272 start-page: 25190 year: 1997 ident: 2019041122163908300_R3 article-title: TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. publication-title: J Biol Chem doi: 10.1074/jbc.272.40.25190 contributor: fullname: Wong – volume: 234 start-page: 137 year: 1997 ident: 2019041122163908300_R7 article-title: Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1997.6603 contributor: fullname: Tsuda – volume: 123 start-page: 2600 year: 1988 ident: 2019041122163908300_R20 article-title: Osteoblastic cells are involved in osteoclast formation. publication-title: Endocrinology doi: 10.1210/endo-123-5-2600 contributor: fullname: Takahashi – volume: 97 start-page: 1566 year: 2000 ident: 2019041122163908300_R27 article-title: RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.4.1566 contributor: fullname: Li – volume: 14 start-page: 518 year: 1999 ident: 2019041122163908300_R30 article-title: Immunological characterization of circulating osteoprotegerin/osteoclastogenesis inhibitory factor: increased serum concentrations in postmenopausal women with osteoporosis. publication-title: J Bone Miner Res doi: 10.1359/jbmr.1999.14.4.518 contributor: fullname: Yano – volume: 282 start-page: 223 year: 1997 ident: 2019041122163908300_R23 article-title: Role of 1α,25-dihydroxyvitamin D3 in osteoclast differentiation and function. publication-title: Methods Enzymol doi: 10.1016/S0076-6879(97)82110-6 contributor: fullname: Suda – volume: 23 start-page: 495 year: 1998 ident: 2019041122163908300_R29 article-title: Osteoclastogenesis inhibitory factor exhibits hypocalcemic effects in normal mice and in hypercalcemic nude mice carrying tumors associated with humoral hypercalcemia of malignancy. publication-title: Bone doi: 10.1016/S8756-3282(98)00141-0 contributor: fullname: Akatsu – volume: 274 start-page: 13613 year: 1999 ident: 2019041122163908300_R18 article-title: Evidence for a role of a tumor necrosis factor-α (TNF-α)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. publication-title: J Biol Chem doi: 10.1074/jbc.274.19.13613 contributor: fullname: Lum – volume: 139 start-page: 4743 year: 1998 ident: 2019041122163908300_R31 article-title: Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. publication-title: Endocrinology doi: 10.1210/endo.139.11.6433 contributor: fullname: Horwood – volume: 125 start-page: 1805 year: 1989 ident: 2019041122163908300_R21 article-title: The bone marrow-derived stromal cell lines MC3T3–G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. publication-title: Endocrinology doi: 10.1210/endo-125-4-1805 contributor: fullname: Udagawa – volume: 246 start-page: 337 year: 1998 ident: 2019041122163908300_R24 article-title: Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1α,25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1998.8610 contributor: fullname: Tsukii – volume: 253 start-page: 395 year: 1998 ident: 2019041122163908300_R14 article-title: RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1998.9788 contributor: fullname: Nakagawa – volume: 273 start-page: 27091 year: 1998 ident: 2019041122163908300_R33 article-title: Transforming growth factor-β stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. publication-title: J Biol Chem doi: 10.1074/jbc.273.42.27091 contributor: fullname: Takai – volume: 128 start-page: 1792 year: 1991 ident: 2019041122163908300_R22 article-title: Deficiency of osteoclasts in osteopetrotic mice is due to a defect in the local microenvironment provided by osteoblastic cells. publication-title: Endocrinology doi: 10.1210/endo-128-4-1792 contributor: fullname: Takahashi |
SSID | ssj0014443 |
Score | 2.2433205 |
Snippet | Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoclast differentiation factor, inhibits both... Osteoprotegerin (OPG), a soluble decoy receptor for receptor activator of nuclear factor- Kappa B ligand (RANKL)/osteoclast differentiation factor, inhibits... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 3478 |
SubjectTerms | Animals Bone Development - physiology Bone Resorption - pathology Carrier Proteins - metabolism Coculture Techniques Glycoproteins - biosynthesis Glycoproteins - genetics Glycoproteins - physiology Membrane Glycoproteins - metabolism Mice Mice, Inbred C57BL Mice, Knockout NF-kappa B - metabolism Organ Culture Techniques Osteoblasts - metabolism Osteoclasts - physiology Osteoprotegerin RANK Ligand Receptor Activator of Nuclear Factor-kappa B Receptors, Cytoplasmic and Nuclear Receptors, Tumor Necrosis Factor - biosynthesis Receptors, Tumor Necrosis Factor - genetics Receptors, Tumor Necrosis Factor - physiology Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - biosynthesis RNA, Messenger - genetics |
Title | Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function |
URI | https://www.ncbi.nlm.nih.gov/pubmed/10965921 https://search.proquest.com/docview/18072463 https://search.proquest.com/docview/72214691 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB50BfFFdNdL19s8iAiSkkmmaeZxEXURqi8t1Kcwt-wWaVK2CbL76_ecmdxaLagvIUwmF_J9OTnnzLkQ8jY1NkpsngR5mk8CHslJIKZ5HqQmYTYK-VRbXNGdfUvOF_zrcrLsXdkuu6RSY33zx7yS_0EVxgBXzJL9B2S7i8IA7AO-sAWEYftXGH8HiEpXaeECs_gw2MrU2uuUmLxRKtCNqy02LYfPeLV2unZRfbjyDehdKLqfqHFim0HVxZ3jT68DrnXfF6YESePd8aifoksGa01uLjHutvMrLIy8kL_kzmrPXP7EDDLXR7gf_SG3tZE7iRKz1U1dlL2rtXVLhF3cVSdqWRxMI5_434lazgacEgPBGXPfyec3iQ4mqcPWlCDU2ViMQSDy4UyAZLN2ADOsZCN8wvVeEe320F1yLwKJhKLwy7KLBQKjsgmvbJ65qQGF6U17d8Yis821djWZA-aJU1Pmj8jDxr6gZ54sj8kdWxyTk7MC0F5f03fURfw67I7J_VkTWHFCLveoRFsqUXVNB1Siqy2VBe2oRDsqUTippxIdUAlOMLSl0hOy-Pxp_vE8aJpwBBqscR7kIkysxSJGNtf4C1CMaa6jXBsztSl2HzAgxzlLlQVVMQ-NSMTECBMqJiMl46fkqCgL-5xQq0Ido86vYsVNEolQhDwXSkSSa8nNiLxvX2i28bVWMrRRAYYMYQAzlWUiQxhG5E37wjOQh7jIJQtb1tuMpeE04kl8eAYADOqBYCPyzCM1uJlH9vTgkRfkQU_2l-SouqrtK9BKK_XaMeoWtdGO1w |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Osteoprotegerin+produced+by+osteoblasts+is+an+important+regulator+in+osteoclast+development+and+function&rft.jtitle=Endocrinology+%28Philadelphia%29&rft.au=Udagawa%2C+N&rft.au=Takahashi%2C+N&rft.au=Yasuda%2C+H&rft.au=Mizuno%2C+A&rft.date=2000-09-01&rft.issn=0013-7227&rft.volume=141&rft.issue=9&rft.spage=3478&rft_id=info:doi/10.1210%2Fendo.141.9.7634&rft_id=info%3Apmid%2F10965921&rft.externalDocID=10965921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7227&client=summon |