Feasibility of submillimeter functional quantitative susceptibility mapping using 3D echo planar imaging at 7 T

Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood‐oxygen‐level‐dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared t...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 38; no. 1; pp. e5263 - n/a
Main Authors Straub, Sina, Zhou, Xiangzhi, Tao, Shengzhen, Westerhold, Erin M., Jin, Jin, Middlebrooks, Erik H.
Format Journal Article
LanguageEnglish
Published England 01.01.2025
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.5263

Cover

Abstract Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood‐oxygen‐level‐dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient‐echo echo planar imaging (EPI) at ultra‐high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right‐hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path‐based unwrapping, the variable‐kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z‐scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z‐scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t‐values localized in the cortex was higher for fQSM (52%) than for positive or negative t‐values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole‐brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences. Using quantitative susceptibility mapping (QSM) for functional brain mapping, blood‐oxygen‐level‐dependent (BOLD) susceptibility changes can be quantified directly. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI acquired with 3D echo planar imaging at ultra‐high field. High negative t‐values were better localized in the cortex for fQSM (52%) than positive or negative t‐values for fMRI (45%), and the feasibility of whole‐brain fQSM with voxel volume of 0.53 μL was demonstrated.
AbstractList Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood-oxygen-level-dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient-echo echo planar imaging (EPI) at ultra-high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right-hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path-based unwrapping, the variable-kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z-scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z-scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t-values localized in the cortex was higher for fQSM (52%) than for positive or negative t-values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole-brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences.
Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood‐oxygen‐level‐dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient‐echo echo planar imaging (EPI) at ultra‐high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right‐hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path‐based unwrapping, the variable‐kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z‐scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z‐scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t‐values localized in the cortex was higher for fQSM (52%) than for positive or negative t‐values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole‐brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences. Using quantitative susceptibility mapping (QSM) for functional brain mapping, blood‐oxygen‐level‐dependent (BOLD) susceptibility changes can be quantified directly. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI acquired with 3D echo planar imaging at ultra‐high field. High negative t‐values were better localized in the cortex for fQSM (52%) than positive or negative t‐values for fMRI (45%), and the feasibility of whole‐brain fQSM with voxel volume of 0.53 μL was demonstrated.
Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood-oxygen-level-dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient-echo echo planar imaging (EPI) at ultra-high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right-hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path-based unwrapping, the variable-kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z-scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z-scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t-values localized in the cortex was higher for fQSM (52%) than for positive or negative t-values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole-brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences.Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood-oxygen-level-dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient-echo echo planar imaging (EPI) at ultra-high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right-hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path-based unwrapping, the variable-kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z-scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z-scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t-values localized in the cortex was higher for fQSM (52%) than for positive or negative t-values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole-brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences.
Author Tao, Shengzhen
Jin, Jin
Straub, Sina
Zhou, Xiangzhi
Middlebrooks, Erik H.
Westerhold, Erin M.
Author_xml – sequence: 1
  givenname: Sina
  orcidid: 0000-0002-9167-8778
  surname: Straub
  fullname: Straub, Sina
  email: sina.straub@gmail.com
  organization: Mayo Clinic
– sequence: 2
  givenname: Xiangzhi
  surname: Zhou
  fullname: Zhou, Xiangzhi
  organization: Mayo Clinic
– sequence: 3
  givenname: Shengzhen
  surname: Tao
  fullname: Tao, Shengzhen
  organization: Mayo Clinic
– sequence: 4
  givenname: Erin M.
  surname: Westerhold
  fullname: Westerhold, Erin M.
  organization: Mayo Clinic
– sequence: 5
  givenname: Jin
  surname: Jin
  fullname: Jin, Jin
  organization: Siemens Healthcare
– sequence: 6
  givenname: Erik H.
  surname: Middlebrooks
  fullname: Middlebrooks, Erik H.
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39401773$$D View this record in MEDLINE/PubMed
BookMark eNp1kctOwzAQRS0Eog-Q-ALkJZsUP5I4XkKhgFRg073lJHYxSpw0dkDdseU3-RJc2sKKzYw0OjO6d-4IHNrGKgDOMJpghMilzetJQlJ6AIYYcR7hmJNDMEQ8IRGNMzQAI-deEUJZTMkxGFAeI8wYHYLVTElnclMZv4aNhq7Pa1NVplZedVD3tvCmsbKCq15ab7z05k0FyhWq9fu9WratsUvYu02lN1AVLw1sK2llB00tl5ux9JB9fXwuTsCRlpVTp7s-BovZ7WJ6H82f7x6mV_OoIBmhESvLEmOUZDhOVKZLrZnMU4Q4JRnnLKM4S3IcY85YQeNgtExQIdNEY5ZiltMxuNiebbtm1SvnRW2C6CqIUk3vBMU4TVmSpiSg5zs0mFelaLuguVuL_Zf-bhVd41yn9C-CkdgEIEIAYhNAQKMt-m4qtf6XE0_Xjz_8N2vJhv0
Cites_doi 10.1093/cercor/bhn053
10.1038/s41467‐021‐25431‐8
10.1002/mrm.29213
10.1002/hbm.22320
10.1016/j.neuroimage.2006.09.039
10.1016/j.neuroimage.2005.01.007
10.1002/nbm.3619
10.1016/j.neuroimage.2020.117539
10.1109/TRPMS.2019.2894262
10.1002/mrm.10041
10.1002/mrm.10065
10.1016/j.neuroimage.2018.06.025
10.1002/mrm.27907
10.1002/nbm.3383
10.1002/hbm.24750
10.3389/fneur.2023.1112312
10.1016/j.yebeh.2019.06.010
10.1016/j.neuroimage.2010.01.108
10.1101/2023.09.22.23295993
10.2967/jnumed.122.264391
10.1016/j.neuroimage.2022.118931
10.1016/j.media.2020.101940
10.1038/s41592‐023‐02068‐7
10.1002/mrm.28486
10.1002/mrm.25316
10.1002/mrm.29867
10.1038/s41592‐020‐0941‐6
10.3389/fnana.2020.536838
10.1093/brain/awac174
10.1038/jcbfm.2012.23
10.1016/j.neuroimage.2021.118574
10.1364/AO.46.006623
10.1002/mrm.23282
10.1016/j.neuroimage.2014.06.011
10.1002/nbm.4847
10.1016/j.pneurobio.2020.101835
10.1038/s41598‐021‐81249‐w
10.1016/j.neuroimage.2016.05.013
10.1016/j.neuroimage.2020.117611
10.1016/j.neubiorev.2021.07.005
10.1016/j.neuroimage.2014.05.079
10.1002/mrm.1124
10.1016/j.neuroimage.2010.11.088
10.1371/journal.pone.0225286
10.1177/1352458514525868
10.1016/S1361‐8415(01)00036‐6
10.1016/j.neuroimage.2014.11.046
10.1016/j.neuroimage.2020.117358
10.1016/j.neuroimage.2009.05.015
10.1006/nimg.2002.1132
10.1002/mrm.28277
10.1002/nbm.3501
10.1002/mrm.28390
10.1002/mrm.21710
10.1016/j.pnmrs.2018.06.001
10.1016/j.neuron.2017.11.005
10.1002/jnr.24701
10.1016/j.jmr.2021.107033
10.1177/0271678X20973951
10.1111/j.2517‐6161.1995.tb02031.x
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/nbm.5263
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage n/a
ExternalDocumentID 39401773
10_1002_nbm_5263
NBM5263
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c2823-7ddd11058145e8fdff7ab600932899783185b141977c34952d50ca65f17617b3
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Fri Jul 11 08:31:39 EDT 2025
Wed Feb 19 02:03:18 EST 2025
Tue Jul 01 05:29:42 EDT 2025
Wed Jan 22 17:13:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords functional QSM
ultra‐high field
functional MRI (fMRI)
quantitative susceptibility mapping (QSM)
submillimeter fMRI
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2823-7ddd11058145e8fdff7ab600932899783185b141977c34952d50ca65f17617b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9167-8778
PMID 39401773
PQID 3116675662
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3116675662
pubmed_primary_39401773
crossref_primary_10_1002_nbm_5263
wiley_primary_10_1002_nbm_5263_NBM5263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-Jan
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2025
References 2021; 69
2002; 17
2009; 47
2022; 250
2023; 36
2021; 0787
2021; 244
2015; 73
2021; 128
2021; 207
2019; 14
2020; 17
2011; 55
2020; 14
2021; 121
2015; 107
2020; 98
2024
2005; 26
2001; 45
2007; 34
2014; 20
2023; 64
2023; 20
2002; 47
2017; 30
2018; 178
2012; 68
2021; 85
2021; 41
2008; 60
2023; 14
2019; 3
2020; 84
2020; 83
2021; 227
1995; 57
2008; 18
2021; 226
2006
2018; 109
2022; 88
2020; 223
2012; 32
2022; 145
2017; 96
2015; 28
2019; 40
2021; 12
2021; 11
2023
2021
2001; 5
2014; 35
2016; 137
2021; 330
2014; 100
2007; 46
2010; 51
2023; 91
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
(e_1_2_7_51_1) 2006
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 516
  issue: 4
  year: 2019
  end-page: 522
  article-title: Quantitative susceptibility mapping of brain function during auditory stimulation
  publication-title: IEEE T Radiat Plasma
– volume: 0787
  year: 2021
– volume: 34
  start-page: 542
  issue: 2
  year: 2007
  end-page: 549
  article-title: Mapping the MRI voxel volume in which thermal noise matches physiological noise‐Implications for fMRI
  publication-title: Neuroimage
– volume: 14
  start-page: 14
  year: 2023
  article-title: Implications of quantitative susceptibility mapping at 7 Tesla MRI for microbleeds detection in cerebral small vessel disease
  publication-title: Front Neurol
– volume: 64
  start-page: 466
  issue: 3
  year: 2023
  end-page: 471
  article-title: Neurovascular uncoupling: multimodal imaging delineates the acute effects of 3,4‐methylenedioxymethamphetamine
  publication-title: J Nucl Med
– volume: 51
  start-page: 261
  issue: 1
  year: 2010
  end-page: 266
  article-title: Three dimensional echo‐planar imaging at 7 Tesla
  publication-title: Neuroimage
– volume: 178
  start-page: 769
  year: 2018
  end-page: 779
  article-title: Ultra‐high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: capabilities and challenges
  publication-title: Neuroimage
– volume: 137
  start-page: 52
  year: 2016
  end-page: 60
  article-title: Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: a group level comparison with BOLD fMRI and PET
  publication-title: Neuroimage
– volume: 5
  start-page: 143
  issue: 2
  year: 2001
  end-page: 156
  article-title: A global optimisation method for robust affine registration of brain images
  publication-title: Med Image Anal
– volume: 107
  start-page: 23
  year: 2015
  end-page: 33
  article-title: Cortical lamina‐dependent blood volume changes in human brain at 7 T
  publication-title: Neuroimage
– volume: 96
  start-page: 1253
  issue: 6
  year: 2017
  end-page: 1263.e7
  article-title: High‐resolution CBV‐fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1
  publication-title: Neuron
– volume: 20
  start-page: 2048
  issue: 12
  year: 2023
  end-page: 2057
  article-title: Next‐generation MRI scanner designed for ultra‐high‐resolution human brain imaging at 7 Tesla
  publication-title: Nat Methods
– year: 2024
– volume: 46
  start-page: 6623
  issue: 26
  year: 2007
  end-page: 6635
  article-title: Fast and robust three‐dimensional best path phase unwrapping algorithm
  publication-title: Appl Optics
– volume: 84
  start-page: 3271
  issue: 6
  year: 2020
  end-page: 3285
  article-title: Quantification of brain oxygen extraction fraction using QSM and a hyperoxic challenge
  publication-title: Magn Reson Med
– volume: 30
  issue: 4
  year: 2017
  article-title: Structural and functional quantitative susceptibility mapping from standard fMRI studies
  publication-title: NMR Biomed
– volume: 109
  start-page: 1
  year: 2018
  end-page: 50
  article-title: Pros and cons of ultra‐high‐field MRI/MRS for human application
  publication-title: Prog Nucl Mag Res Sp
– volume: 41
  start-page: 1658
  issue: 7
  year: 2021
  end-page: 1668
  article-title: Cerebral oxygen extraction fraction (OEF): comparison of challenge‐free gradient echo QSM+qBOLD (QQ) with (15)O PET in healthy adults
  publication-title: J Cereb Blood Flow Metab
– volume: 85
  start-page: 1540
  issue: 3
  year: 2021
  end-page: 1551
  article-title: Segmented K‐space blipped‐controlled aliasing in parallel imaging for high spatiotemporal resolution EPI
  publication-title: Magn Reson Med
– volume: 98
  start-page: 2219
  issue: 11
  year: 2020
  end-page: 2231
  article-title: Toward quantitative neuroimaging biomarkers for Friedreich's ataxia at 7 Tesla: susceptibility mapping, diffusion imaging, and relaxometry
  publication-title: J Neurosci Res
– volume: 35
  start-page: 2191
  issue: 5
  year: 2014
  end-page: 2205
  article-title: Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T
  publication-title: Hum Brain Mapp
– volume: 223
  start-page: 117358
  year: 2020
  article-title: Multi‐centre, multi‐vendor reproducibility of 7T QSM and R2* in the human brain: Results from the UK7T study
  publication-title: Neuroimage
– volume: 47
  start-page: 1425
  issue: 4
  year: 2009
  end-page: 1434
  article-title: fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes
  publication-title: Neuroimage
– volume: 11
  issue: 1
  year: 2021
  article-title: An in‐vivo study of BOLD laminar responses as a function of echo time and static magnetic field strength
  publication-title: Sci Rep‐Uk
– volume: 100
  start-page: 112
  year: 2014
  end-page: 124
  article-title: Functional quantitative susceptibility mapping (fQSM)
  publication-title: Neuroimage
– volume: 18
  start-page: 2932
  issue: 12
  year: 2008
  end-page: 2940
  article-title: Hemispheric asymmetry of frequency‐dependent suppression in the ipsilateral primary motor cortex during finger movement: a functional magnetic resonance imaging study
  publication-title: Cereb Cortex
– volume: 47
  start-page: 344
  issue: 2
  year: 2002
  end-page: 353
  article-title: Correction of physiologically induced global off resonance effects in dynamic echo‐planar and spiral functional imaging
  publication-title: Magn Reson Med
– volume: 28
  start-page: 1294
  issue: 10
  year: 2015
  end-page: 1303
  article-title: Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range
  publication-title: NMR Biomed
– volume: 73
  start-page: 1932
  issue: 5
  year: 2015
  end-page: 1938
  article-title: Quantitative susceptibility mapping using single‐shot echo‐planar imaging
  publication-title: Magn Reson Med
– volume: 36
  issue: 3
  year: 2023
  article-title: Quantitative magnetic resonance imaging biomarkers for cortical pathology in multiple sclerosis at 7 T
  publication-title: NMR Biomed
– volume: 207
  year: 2021
  article-title: Layer‐dependent functional connectivity methods
  publication-title: Prog Neurobiol
– volume: 55
  start-page: 1645
  issue: 4
  year: 2011
  end-page: 1656
  article-title: Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition
  publication-title: Neuroimage
– volume: 330
  year: 2021
  article-title: On the separation of susceptibility sources in quantitative susceptibility mapping: theory and phantom validation with an in vivo application to multiple sclerosis lesions of different age
  publication-title: J Magn Reson
– volume: 26
  start-page: 243
  issue: 1
  year: 2005
  end-page: 250
  article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters
  publication-title: Neuroimage
– volume: 250
  year: 2022
  article-title: A novel gradient echo data based vein segmentation algorithm and its application for the detection of regional cerebral differences in venous susceptibility
  publication-title: Neuroimage
– volume: 91
  start-page: 699
  issue: 2
  year: 2023
  end-page: 715
  article-title: Incorporating the effect of white matter microstructure in the estimation of magnetic susceptibility in ex vivo mouse brain
  publication-title: Magn Reson Med
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate — a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc B
– volume: 88
  start-page: 380
  issue: 1
  year: 2022
  end-page: 390
  article-title: Imaging white matter microstructure with gradient‐echo phase imaging: is ex vivo imaging with formalin‐fixed tissue a good approximation of the in vivo brain?
  publication-title: Magn Reson Med
– volume: 45
  start-page: 930
  issue: 5
  year: 2001
  end-page: 933
  article-title: Single‐shot T2(*) measurement to establish optimum echo time for fMRI: studies of the visual, motor, and auditory cortices at 3.0 T
  publication-title: Magn Reson Med
– volume: 20
  start-page: 1464
  issue: 11
  year: 2014
  end-page: 1470
  article-title: Rapid, high‐resolution, whole‐brain, susceptibility‐based MRI of multiple sclerosis
  publication-title: Mult Scler
– volume: 30
  issue: 4
  year: 2017
  article-title: Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo‐planar imaging
  publication-title: NMR Biomed
– volume: 32
  start-page: 1188
  issue: 7
  year: 2012
  end-page: 1206
  article-title: Biophysical and physiological origins of blood oxygenation level‐dependent fMRI signals
  publication-title: J Cerebr Blood F Met
– volume: 14
  start-page: 14
  year: 2020
  article-title: 7 Tesla MRI followed by histological 3D reconstructions in whole‐brain specimens
  publication-title: Front Neuroanat
– volume: 69
  year: 2021
  article-title: Model‐informed machine learning for multi‐component T(2) relaxometry
  publication-title: Med Image Anal
– volume: 40
  start-page: 4952
  issue: 17
  year: 2019
  end-page: 4964
  article-title: Automated brain extraction of multisequence MRI using artificial neural networks
  publication-title: Hum Brain Mapp
– volume: 244
  year: 2021
  article-title: Complementing canonical fMRI with functional quantitative susceptibility mapping (fQSM) in modern neuroimaging research
  publication-title: Neuroimage
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 60
  start-page: 1003
  issue: 4
  year: 2008
  end-page: 1009
  article-title: Quantitative MR susceptibility mapping using piece‐wise constant regularized inversion of the magnetic field
  publication-title: Magn Reson Med
– volume: 145
  start-page: 2276
  issue: 7
  year: 2022
  end-page: 2292
  article-title: Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease
  publication-title: Brain
– volume: 17
  start-page: 1033
  issue: 10
  year: 2020
  end-page: 1039
  article-title: A temporal decomposition method for identifying venous effects in task‐based fMRI
  publication-title: Nat Methods
– volume: 2021
  start-page: 4190
– volume: 68
  start-page: 863
  issue: 3
  year: 2012
  end-page: 867
  article-title: Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification
  publication-title: Magn Reson Med
– volume: 14
  issue: 11
  year: 2019
  article-title: Comparison of SMS‐EPI and 3D‐EPI at 7T in an fMRI localizer study with matched spatiotemporal resolution and homogenized excitation profiles
  publication-title: PLoS ONE
– volume: 83
  start-page: 68
  issue: 1
  year: 2020
  end-page: 82
  article-title: Cerebral OEF quantification: a comparison study between quantitative susceptibility mapping and dual‐gas calibrated BOLD imaging
  publication-title: Magn Reson Med
– volume: 128
  start-page: 467
  year: 2021
  end-page: 478
  article-title: Linking cortical circuit models to human cognition with laminar fMRI
  publication-title: Neurosci Biobehav R
– year: 2006
– year: 2023
– volume: 227
  year: 2021
  article-title: SEPIA‐Susceptibility mapping pipeline tool for phase images
  publication-title: Neuroimage
– volume: 47
  start-page: 1
  issue: 1
  year: 2002
  end-page: 9
  article-title: Postacquisition suppression of large‐vessel BOLD signals in high‐resolution fMRI
  publication-title: Magn Reson Med
– volume: 84
  start-page: 2713
  issue: 5
  year: 2020
  end-page: 2723
  article-title: Origin of orientation‐dependent R1(=1/T1) relaxation in white matter
  publication-title: Magn Reson Med
– volume: 226
  year: 2021
  article-title: NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex‐valued parameter‐free locally low‐rank processing
  publication-title: Neuroimage
– volume: 12
  start-page: 5181
  issue: 1
  year: 2021
  article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging
  publication-title: Nat Commun
– volume: 121
  issue: Pt B
  year: 2021
  article-title: Epilepsy under the scope of ultra‐high field MRI
  publication-title: Epilepsy Behav
– volume: 100
  start-page: 51
  year: 2014
  end-page: 59
  article-title: Phase based venous suppression in resting‐state BOLD GE‐fMRI
  publication-title: Neuroimage
– ident: e_1_2_7_66_1
  doi: 10.1093/cercor/bhn053
– ident: e_1_2_7_58_1
  doi: 10.1038/s41467‐021‐25431‐8
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.29213
– ident: e_1_2_7_31_1
  doi: 10.1002/hbm.22320
– ident: e_1_2_7_38_1
  doi: 10.1016/j.neuroimage.2006.09.039
– ident: e_1_2_7_39_1
  doi: 10.1016/j.neuroimage.2005.01.007
– ident: e_1_2_7_34_1
  doi: 10.1002/nbm.3619
– ident: e_1_2_7_43_1
  doi: 10.1016/j.neuroimage.2020.117539
– ident: e_1_2_7_35_1
  doi: 10.1109/TRPMS.2019.2894262
– ident: e_1_2_7_63_1
  doi: 10.1002/mrm.10041
– ident: e_1_2_7_42_1
  doi: 10.1002/mrm.10065
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2018.06.025
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.27907
– ident: e_1_2_7_47_1
  doi: 10.1002/nbm.3383
– ident: e_1_2_7_48_1
  doi: 10.1002/hbm.24750
– ident: e_1_2_7_23_1
  doi: 10.3389/fneur.2023.1112312
– ident: e_1_2_7_3_1
  doi: 10.1016/j.yebeh.2019.06.010
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2010.01.108
– ident: e_1_2_7_19_1
– ident: e_1_2_7_16_1
  doi: 10.1101/2023.09.22.23295993
– ident: e_1_2_7_60_1
  doi: 10.2967/jnumed.122.264391
– ident: e_1_2_7_54_1
  doi: 10.1016/j.neuroimage.2022.118931
– ident: e_1_2_7_17_1
  doi: 10.1016/j.media.2020.101940
– ident: e_1_2_7_61_1
  doi: 10.1038/s41592‐023‐02068‐7
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.28486
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.25316
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.29867
– ident: e_1_2_7_65_1
  doi: 10.1038/s41592‐020‐0941‐6
– ident: e_1_2_7_2_1
  doi: 10.3389/fnana.2020.536838
– ident: e_1_2_7_59_1
  doi: 10.1093/brain/awac174
– ident: e_1_2_7_12_1
  doi: 10.1038/jcbfm.2012.23
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neuroimage.2021.118574
– ident: e_1_2_7_44_1
  doi: 10.1364/AO.46.006623
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.23282
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2014.06.011
– ident: e_1_2_7_40_1
– ident: e_1_2_7_24_1
  doi: 10.1002/nbm.4847
– ident: e_1_2_7_41_1
  doi: 10.1016/j.pneurobio.2020.101835
– ident: e_1_2_7_57_1
  doi: 10.1038/s41598‐021‐81249‐w
– ident: e_1_2_7_33_1
  doi: 10.1016/j.neuroimage.2016.05.013
– ident: e_1_2_7_46_1
  doi: 10.1016/j.neuroimage.2020.117611
– ident: e_1_2_7_4_1
  doi: 10.1016/j.neubiorev.2021.07.005
– ident: e_1_2_7_64_1
  doi: 10.1016/j.neuroimage.2014.05.079
– ident: e_1_2_7_55_1
  doi: 10.1002/mrm.1124
– ident: e_1_2_7_45_1
  doi: 10.1016/j.neuroimage.2010.11.088
– ident: e_1_2_7_5_1
  doi: 10.1371/journal.pone.0225286
– ident: e_1_2_7_7_1
– ident: e_1_2_7_8_1
  doi: 10.1177/1352458514525868
– ident: e_1_2_7_49_1
  doi: 10.1016/S1361‐8415(01)00036‐6
– ident: e_1_2_7_10_1
  doi: 10.1016/j.neuroimage.2014.11.046
– ident: e_1_2_7_22_1
  doi: 10.1016/j.neuroimage.2020.117358
– ident: e_1_2_7_56_1
  doi: 10.1016/j.neuroimage.2009.05.015
– volume-title: Statistical parametric mapping: the analysis of functional brain images
  year: 2006
  ident: e_1_2_7_51_1
– ident: e_1_2_7_50_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.28277
– ident: e_1_2_7_37_1
  doi: 10.1002/nbm.3501
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.28390
– ident: e_1_2_7_53_1
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.21710
– ident: e_1_2_7_21_1
  doi: 10.1016/j.pnmrs.2018.06.001
– ident: e_1_2_7_62_1
  doi: 10.1016/j.neuron.2017.11.005
– ident: e_1_2_7_25_1
  doi: 10.1002/jnr.24701
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jmr.2021.107033
– ident: e_1_2_7_26_1
  doi: 10.1177/0271678X20973951
– ident: e_1_2_7_52_1
  doi: 10.1111/j.2517‐6161.1995.tb02031.x
SSID ssj0008432
Score 2.4366229
Snippet Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e5263
SubjectTerms Adult
Algorithms
Brain - diagnostic imaging
Brain Mapping
Echo-Planar Imaging
Feasibility Studies
Female
functional MRI (fMRI)
functional QSM
Humans
Imaging, Three-Dimensional
Magnetic Resonance Imaging - methods
Male
Oxygen - blood
quantitative susceptibility mapping (QSM)
submillimeter fMRI
ultra‐high field
Title Feasibility of submillimeter functional quantitative susceptibility mapping using 3D echo planar imaging at 7 T
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5263
https://www.ncbi.nlm.nih.gov/pubmed/39401773
https://www.proquest.com/docview/3116675662
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqpD4uFLYvykOuVPWWJXZsxxx5ClVaDtVWQuohGjsOQrBZILsHOHHt3-wv6YyTQCmqhHrKxbZij-35ZjzzDWOfSw0gqpAlACATJYNPnPNotXrU5cHaSnvyd4yOzOF39fVYH3dRlZQL0_JD3Dnc6GTE-5oOOLhm8w_SUDcZammI6FNkhmjz977dM0dZFWuTIYCQSaZs2vPOpnKz7_hQEz2Clw_RalQ3B6_Zj_5H2yiTs-F85ob-5i8Ox_-byRJb7FAo3263zTJ7FuoBe7nbF38bsBej7s19wJ7HIFHfvGGXiBe7aNprPq14gzMgd82EQmo4acjWscgv51DH5DW8SrFVE0Nnun4TIEaIE04B9yc82-MBL2B-cQ41XPHTSSyaxGHG81-3P8dv2fhgf7x7mHQlGxKPtluW5GVZIqDQVigdbFVWVQ7OkNuEDLvcUq62E0og6vQZ2may1KkHoyuRI5Ry2Tu2UE_r8IHxdEuCr4yymixEAFs6rRF9KuXCli3TFfapl15x0RJzFC0FsyxwQQtaUGzTi7XA9aOnEKjDdN4UmRAGTSVj5Ap738r7bhSqFS_yHHt_iVL75_DF0c6Ivh-f2nCVvZJUPjh6cNbYwuxqHtYR08zcRty9vwGKCfOD
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUIELtAvl1Ycrod6yJI6dGPVEoWjbsnuoFolDpch2HFTBZoHdPcCJK3-TX9IZJ6EFVAn1lIttxR7b88145huArVxqHRUuDrTWPBDc2cAYi1arRV3ulCqkJX9Ht5d0jsS3Y3k8BZ-aXJiKH-Le4UYnw9_XdMDJIb39F2uoGbQlT-JpmBWIM8jy2v_xhztKCV-dDCEED2KhwoZ5NuTbTc-HuugJwHyIV73COViCn82vVnEmp-3J2LTt9SMWx_-cy0tYrIEo2612ziuYcmUL5vea-m8tmOvWz-4teOHjRO1oGS4QMtYBtVdsWLARToE8NgOKqmGkJCvfIruY6NLnr-Ftiq1GPnqm7jfQRApxwijm_oTF-8zhHczOz3SpL9mvga-bxPSYpXc3t_0V6B986e91grpqQ2DRfIuDNM9zxBRSRUI6VeRFkWqTkOeEbLtUUbq2iUSEwNPGaJ7xXIZWJ7KIUkRTJn4NM-WwdGvAwh2ubZEIJclI1FrlRkoEoEIYt6PycB0-NOLLzitujqxiYeYZLmhGC4ptGrlmuH70GqJLN5yMsjiKErSWkoSvw2ol8PtRqFx8lKbY-6MX2z-Hz3qfu_TdeG7D9zDf6XcPs8Ovve-bsMCpmrB36LyBmfHlxL1FiDM27_xW_g3Gn_ei
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYULj6VAeRoJccs2cWzHPULLqjx2hdAiVeIQ-Vkh2Oy2u3uAE1f-Jr-EGScpFISEOOViW7HH9nwznvkG4LGXxhQxlJkxhmeCB5dZ69BqdajLg9ZROvJ3jCfq4J14eSgPu6hKyoVp-SFOHW50MtJ9TQd84ePOL6ShdjaUXJXn4YJQCCQIEL39SR2lRSpOhgiCZ6XQeU88m_OdvudZVfQHvjwLV5O-GV2F9_2ftmEmH4frlR26L7-ROP7fVK7BlQ6GsqftvrkO50IzgEt7ffW3AWyOu0f3AVxMUaJueQOOETB24bSf2TyyJc6A_DUziqlhpCJbzyI7XpsmZa_hXYqtlil2pus3M0QJccQo4v6Ilfss4A3MFp9MY07Yh1mqmsTMilXfv36bbsF09Hy6d5B1NRsyh8ZbmVXee0QUUhdCBh19jJWxivwmZNlVmpK1bSEKhJ2uROOMe5k7o2QsKsRStrwJG828CbeB5bvcuKiElmQiGqO9lRLhpxA27Gqfb8OjXnr1omXmqFsOZl7jgta0oNimF2uN60dvIaYJ8_WyLotCoa2kFN-GW628T0ehYvFFVWHvJ0lqfx2-njwb0_fOvzZ8CJtv9kf16xeTV3fhMqdSwsmbcw82VifrcB_xzco-SBv5B-5m9lE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+submillimeter+functional+quantitative+susceptibility+mapping+using+3D+echo+planar+imaging+at+7%E2%80%89T&rft.jtitle=NMR+in+biomedicine&rft.au=Straub%2C+Sina&rft.au=Zhou%2C+Xiangzhi&rft.au=Tao%2C+Shengzhen&rft.au=Westerhold%2C+Erin+M&rft.date=2025-01-01&rft.eissn=1099-1492&rft.volume=38&rft.issue=1&rft.spage=e5263&rft_id=info:doi/10.1002%2Fnbm.5263&rft_id=info%3Apmid%2F39401773&rft.externalDocID=39401773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon