Feasibility of submillimeter functional quantitative susceptibility mapping using 3D echo planar imaging at 7 T
Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood‐oxygen‐level‐dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared t...
Saved in:
Published in | NMR in biomedicine Vol. 38; no. 1; pp. e5263 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0952-3480 1099-1492 1099-1492 |
DOI | 10.1002/nbm.5263 |
Cover
Abstract | Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood‐oxygen‐level‐dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient‐echo echo planar imaging (EPI) at ultra‐high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right‐hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path‐based unwrapping, the variable‐kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z‐scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z‐scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t‐values localized in the cortex was higher for fQSM (52%) than for positive or negative t‐values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole‐brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences.
Using quantitative susceptibility mapping (QSM) for functional brain mapping, blood‐oxygen‐level‐dependent (BOLD) susceptibility changes can be quantified directly. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI acquired with 3D echo planar imaging at ultra‐high field. High negative t‐values were better localized in the cortex for fQSM (52%) than positive or negative t‐values for fMRI (45%), and the feasibility of whole‐brain fQSM with voxel volume of 0.53 μL was demonstrated. |
---|---|
AbstractList | Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood-oxygen-level-dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient-echo echo planar imaging (EPI) at ultra-high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right-hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path-based unwrapping, the variable-kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z-scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z-scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t-values localized in the cortex was higher for fQSM (52%) than for positive or negative t-values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole-brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences. Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood‐oxygen‐level‐dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient‐echo echo planar imaging (EPI) at ultra‐high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right‐hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path‐based unwrapping, the variable‐kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z‐scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z‐scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t‐values localized in the cortex was higher for fQSM (52%) than for positive or negative t‐values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole‐brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences. Using quantitative susceptibility mapping (QSM) for functional brain mapping, blood‐oxygen‐level‐dependent (BOLD) susceptibility changes can be quantified directly. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI acquired with 3D echo planar imaging at ultra‐high field. High negative t‐values were better localized in the cortex for fQSM (52%) than positive or negative t‐values for fMRI (45%), and the feasibility of whole‐brain fQSM with voxel volume of 0.53 μL was demonstrated. Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood-oxygen-level-dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient-echo echo planar imaging (EPI) at ultra-high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right-hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path-based unwrapping, the variable-kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z-scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z-scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t-values localized in the cortex was higher for fQSM (52%) than for positive or negative t-values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole-brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences.Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly quantify blood-oxygen-level-dependent (BOLD) susceptibility changes. This study presents a submillimeter functional QSM (fQSM) approach compared to BOLD fMRI from data acquired with 3D gradient-echo echo planar imaging (EPI) at ultra-high field. Complex EPI data were acquired in nine healthy subjects with varying temporal and spatial resolutions and used for BOLD fMRI and for fQSM. Right-hand finger tapping experiments were performed as well as one measurement with intentional subject movement. Susceptibility maps were computed using 3D path-based unwrapping, the variable-kernel sophisticated harmonic artifact reduction for phase data, and the streaking artifact reduction for QSM algorithm. Functional data analysis included general linear modeling and computation of z-scores. Submillimeter data were denoised using NOise reduction with DIstribution Corrected (NORDIC), which improved z-scores in the motor cortex for fQSM and fMRI. An expected increase in BOLD fMRI signal and corresponding decrease in magnetic susceptibility was observed in sensorimotor areas during active periods. For all experiments, fQSM showed smaller activation regions compared with fMRI. The percentage of high negative t-values localized in the cortex was higher for fQSM (52%) than for positive or negative t-values for fMRI (45%). For the scans with intentional motion, movement exceeded the size of a voxel, but paradigm dependent signal evolution could be recovered using motion correction. In conclusion, this study demonstrates the feasibility of submillimeter whole-brain fQSM with voxel volume of 0.53 μL. In comparison to traditional BOLD fMRI, fQSM provided improved localization of brain activation within the cortex, especially in submillimeter 3D EPI sequences. |
Author | Tao, Shengzhen Jin, Jin Straub, Sina Zhou, Xiangzhi Middlebrooks, Erik H. Westerhold, Erin M. |
Author_xml | – sequence: 1 givenname: Sina orcidid: 0000-0002-9167-8778 surname: Straub fullname: Straub, Sina email: sina.straub@gmail.com organization: Mayo Clinic – sequence: 2 givenname: Xiangzhi surname: Zhou fullname: Zhou, Xiangzhi organization: Mayo Clinic – sequence: 3 givenname: Shengzhen surname: Tao fullname: Tao, Shengzhen organization: Mayo Clinic – sequence: 4 givenname: Erin M. surname: Westerhold fullname: Westerhold, Erin M. organization: Mayo Clinic – sequence: 5 givenname: Jin surname: Jin fullname: Jin, Jin organization: Siemens Healthcare – sequence: 6 givenname: Erik H. surname: Middlebrooks fullname: Middlebrooks, Erik H. organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39401773$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctOwzAQRS0Eog-Q-ALkJZsUP5I4XkKhgFRg073lJHYxSpw0dkDdseU3-RJc2sKKzYw0OjO6d-4IHNrGKgDOMJpghMilzetJQlJ6AIYYcR7hmJNDMEQ8IRGNMzQAI-deEUJZTMkxGFAeI8wYHYLVTElnclMZv4aNhq7Pa1NVplZedVD3tvCmsbKCq15ab7z05k0FyhWq9fu9WratsUvYu02lN1AVLw1sK2llB00tl5ux9JB9fXwuTsCRlpVTp7s-BovZ7WJ6H82f7x6mV_OoIBmhESvLEmOUZDhOVKZLrZnMU4Q4JRnnLKM4S3IcY85YQeNgtExQIdNEY5ZiltMxuNiebbtm1SvnRW2C6CqIUk3vBMU4TVmSpiSg5zs0mFelaLuguVuL_Zf-bhVd41yn9C-CkdgEIEIAYhNAQKMt-m4qtf6XE0_Xjz_8N2vJhv0 |
Cites_doi | 10.1093/cercor/bhn053 10.1038/s41467‐021‐25431‐8 10.1002/mrm.29213 10.1002/hbm.22320 10.1016/j.neuroimage.2006.09.039 10.1016/j.neuroimage.2005.01.007 10.1002/nbm.3619 10.1016/j.neuroimage.2020.117539 10.1109/TRPMS.2019.2894262 10.1002/mrm.10041 10.1002/mrm.10065 10.1016/j.neuroimage.2018.06.025 10.1002/mrm.27907 10.1002/nbm.3383 10.1002/hbm.24750 10.3389/fneur.2023.1112312 10.1016/j.yebeh.2019.06.010 10.1016/j.neuroimage.2010.01.108 10.1101/2023.09.22.23295993 10.2967/jnumed.122.264391 10.1016/j.neuroimage.2022.118931 10.1016/j.media.2020.101940 10.1038/s41592‐023‐02068‐7 10.1002/mrm.28486 10.1002/mrm.25316 10.1002/mrm.29867 10.1038/s41592‐020‐0941‐6 10.3389/fnana.2020.536838 10.1093/brain/awac174 10.1038/jcbfm.2012.23 10.1016/j.neuroimage.2021.118574 10.1364/AO.46.006623 10.1002/mrm.23282 10.1016/j.neuroimage.2014.06.011 10.1002/nbm.4847 10.1016/j.pneurobio.2020.101835 10.1038/s41598‐021‐81249‐w 10.1016/j.neuroimage.2016.05.013 10.1016/j.neuroimage.2020.117611 10.1016/j.neubiorev.2021.07.005 10.1016/j.neuroimage.2014.05.079 10.1002/mrm.1124 10.1016/j.neuroimage.2010.11.088 10.1371/journal.pone.0225286 10.1177/1352458514525868 10.1016/S1361‐8415(01)00036‐6 10.1016/j.neuroimage.2014.11.046 10.1016/j.neuroimage.2020.117358 10.1016/j.neuroimage.2009.05.015 10.1006/nimg.2002.1132 10.1002/mrm.28277 10.1002/nbm.3501 10.1002/mrm.28390 10.1002/mrm.21710 10.1016/j.pnmrs.2018.06.001 10.1016/j.neuron.2017.11.005 10.1002/jnr.24701 10.1016/j.jmr.2021.107033 10.1177/0271678X20973951 10.1111/j.2517‐6161.1995.tb02031.x |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/nbm.5263 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Physics |
EISSN | 1099-1492 |
EndPage | n/a |
ExternalDocumentID | 39401773 10_1002_nbm_5263 NBM5263 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c2823-7ddd11058145e8fdff7ab600932899783185b141977c34952d50ca65f17617b3 |
IEDL.DBID | DR2 |
ISSN | 0952-3480 1099-1492 |
IngestDate | Fri Jul 11 08:31:39 EDT 2025 Wed Feb 19 02:03:18 EST 2025 Tue Jul 01 05:29:42 EDT 2025 Wed Jan 22 17:13:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | functional QSM ultra‐high field functional MRI (fMRI) quantitative susceptibility mapping (QSM) submillimeter fMRI |
Language | English |
License | 2024 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2823-7ddd11058145e8fdff7ab600932899783185b141977c34952d50ca65f17617b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9167-8778 |
PMID | 39401773 |
PQID | 3116675662 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3116675662 pubmed_primary_39401773 crossref_primary_10_1002_nbm_5263 wiley_primary_10_1002_nbm_5263_NBM5263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 2025-Jan 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | NMR in biomedicine |
PublicationTitleAlternate | NMR Biomed |
PublicationYear | 2025 |
References | 2021; 69 2002; 17 2009; 47 2022; 250 2023; 36 2021; 0787 2021; 244 2015; 73 2021; 128 2021; 207 2019; 14 2020; 17 2011; 55 2020; 14 2021; 121 2015; 107 2020; 98 2024 2005; 26 2001; 45 2007; 34 2014; 20 2023; 64 2023; 20 2002; 47 2017; 30 2018; 178 2012; 68 2021; 85 2021; 41 2008; 60 2023; 14 2019; 3 2020; 84 2020; 83 2021; 227 1995; 57 2008; 18 2021; 226 2006 2018; 109 2022; 88 2020; 223 2012; 32 2022; 145 2017; 96 2015; 28 2019; 40 2021; 12 2021; 11 2023 2021 2001; 5 2014; 35 2016; 137 2021; 330 2014; 100 2007; 46 2010; 51 2023; 91 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 (e_1_2_7_51_1) 2006 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 3 start-page: 516 issue: 4 year: 2019 end-page: 522 article-title: Quantitative susceptibility mapping of brain function during auditory stimulation publication-title: IEEE T Radiat Plasma – volume: 0787 year: 2021 – volume: 34 start-page: 542 issue: 2 year: 2007 end-page: 549 article-title: Mapping the MRI voxel volume in which thermal noise matches physiological noise‐Implications for fMRI publication-title: Neuroimage – volume: 14 start-page: 14 year: 2023 article-title: Implications of quantitative susceptibility mapping at 7 Tesla MRI for microbleeds detection in cerebral small vessel disease publication-title: Front Neurol – volume: 64 start-page: 466 issue: 3 year: 2023 end-page: 471 article-title: Neurovascular uncoupling: multimodal imaging delineates the acute effects of 3,4‐methylenedioxymethamphetamine publication-title: J Nucl Med – volume: 51 start-page: 261 issue: 1 year: 2010 end-page: 266 article-title: Three dimensional echo‐planar imaging at 7 Tesla publication-title: Neuroimage – volume: 178 start-page: 769 year: 2018 end-page: 779 article-title: Ultra‐high resolution blood volume fMRI and BOLD fMRI in humans at 9.4 T: capabilities and challenges publication-title: Neuroimage – volume: 137 start-page: 52 year: 2016 end-page: 60 article-title: Probing neuronal activation by functional quantitative susceptibility mapping under a visual paradigm: a group level comparison with BOLD fMRI and PET publication-title: Neuroimage – volume: 5 start-page: 143 issue: 2 year: 2001 end-page: 156 article-title: A global optimisation method for robust affine registration of brain images publication-title: Med Image Anal – volume: 107 start-page: 23 year: 2015 end-page: 33 article-title: Cortical lamina‐dependent blood volume changes in human brain at 7 T publication-title: Neuroimage – volume: 96 start-page: 1253 issue: 6 year: 2017 end-page: 1263.e7 article-title: High‐resolution CBV‐fMRI allows mapping of laminar activity and connectivity of cortical input and output in human M1 publication-title: Neuron – volume: 20 start-page: 2048 issue: 12 year: 2023 end-page: 2057 article-title: Next‐generation MRI scanner designed for ultra‐high‐resolution human brain imaging at 7 Tesla publication-title: Nat Methods – year: 2024 – volume: 46 start-page: 6623 issue: 26 year: 2007 end-page: 6635 article-title: Fast and robust three‐dimensional best path phase unwrapping algorithm publication-title: Appl Optics – volume: 84 start-page: 3271 issue: 6 year: 2020 end-page: 3285 article-title: Quantification of brain oxygen extraction fraction using QSM and a hyperoxic challenge publication-title: Magn Reson Med – volume: 30 issue: 4 year: 2017 article-title: Structural and functional quantitative susceptibility mapping from standard fMRI studies publication-title: NMR Biomed – volume: 109 start-page: 1 year: 2018 end-page: 50 article-title: Pros and cons of ultra‐high‐field MRI/MRS for human application publication-title: Prog Nucl Mag Res Sp – volume: 41 start-page: 1658 issue: 7 year: 2021 end-page: 1668 article-title: Cerebral oxygen extraction fraction (OEF): comparison of challenge‐free gradient echo QSM+qBOLD (QQ) with (15)O PET in healthy adults publication-title: J Cereb Blood Flow Metab – volume: 85 start-page: 1540 issue: 3 year: 2021 end-page: 1551 article-title: Segmented K‐space blipped‐controlled aliasing in parallel imaging for high spatiotemporal resolution EPI publication-title: Magn Reson Med – volume: 98 start-page: 2219 issue: 11 year: 2020 end-page: 2231 article-title: Toward quantitative neuroimaging biomarkers for Friedreich's ataxia at 7 Tesla: susceptibility mapping, diffusion imaging, and relaxometry publication-title: J Neurosci Res – volume: 35 start-page: 2191 issue: 5 year: 2014 end-page: 2205 article-title: Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T publication-title: Hum Brain Mapp – volume: 223 start-page: 117358 year: 2020 article-title: Multi‐centre, multi‐vendor reproducibility of 7T QSM and R2* in the human brain: Results from the UK7T study publication-title: Neuroimage – volume: 47 start-page: 1425 issue: 4 year: 2009 end-page: 1434 article-title: fMRI at 1.5, 3 and 7 T: Characterising BOLD signal changes publication-title: Neuroimage – volume: 11 issue: 1 year: 2021 article-title: An in‐vivo study of BOLD laminar responses as a function of echo time and static magnetic field strength publication-title: Sci Rep‐Uk – volume: 100 start-page: 112 year: 2014 end-page: 124 article-title: Functional quantitative susceptibility mapping (fQSM) publication-title: Neuroimage – volume: 18 start-page: 2932 issue: 12 year: 2008 end-page: 2940 article-title: Hemispheric asymmetry of frequency‐dependent suppression in the ipsilateral primary motor cortex during finger movement: a functional magnetic resonance imaging study publication-title: Cereb Cortex – volume: 47 start-page: 344 issue: 2 year: 2002 end-page: 353 article-title: Correction of physiologically induced global off resonance effects in dynamic echo‐planar and spiral functional imaging publication-title: Magn Reson Med – volume: 28 start-page: 1294 issue: 10 year: 2015 end-page: 1303 article-title: Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range publication-title: NMR Biomed – volume: 73 start-page: 1932 issue: 5 year: 2015 end-page: 1938 article-title: Quantitative susceptibility mapping using single‐shot echo‐planar imaging publication-title: Magn Reson Med – volume: 36 issue: 3 year: 2023 article-title: Quantitative magnetic resonance imaging biomarkers for cortical pathology in multiple sclerosis at 7 T publication-title: NMR Biomed – volume: 207 year: 2021 article-title: Layer‐dependent functional connectivity methods publication-title: Prog Neurobiol – volume: 55 start-page: 1645 issue: 4 year: 2011 end-page: 1656 article-title: Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition publication-title: Neuroimage – volume: 330 year: 2021 article-title: On the separation of susceptibility sources in quantitative susceptibility mapping: theory and phantom validation with an in vivo application to multiple sclerosis lesions of different age publication-title: J Magn Reson – volume: 26 start-page: 243 issue: 1 year: 2005 end-page: 250 article-title: Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters publication-title: Neuroimage – volume: 250 year: 2022 article-title: A novel gradient echo data based vein segmentation algorithm and its application for the detection of regional cerebral differences in venous susceptibility publication-title: Neuroimage – volume: 91 start-page: 699 issue: 2 year: 2023 end-page: 715 article-title: Incorporating the effect of white matter microstructure in the estimation of magnetic susceptibility in ex vivo mouse brain publication-title: Magn Reson Med – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 article-title: Controlling the false discovery rate — a practical and powerful approach to multiple testing publication-title: J R Stat Soc B – volume: 88 start-page: 380 issue: 1 year: 2022 end-page: 390 article-title: Imaging white matter microstructure with gradient‐echo phase imaging: is ex vivo imaging with formalin‐fixed tissue a good approximation of the in vivo brain? publication-title: Magn Reson Med – volume: 45 start-page: 930 issue: 5 year: 2001 end-page: 933 article-title: Single‐shot T2(*) measurement to establish optimum echo time for fMRI: studies of the visual, motor, and auditory cortices at 3.0 T publication-title: Magn Reson Med – volume: 20 start-page: 1464 issue: 11 year: 2014 end-page: 1470 article-title: Rapid, high‐resolution, whole‐brain, susceptibility‐based MRI of multiple sclerosis publication-title: Mult Scler – volume: 30 issue: 4 year: 2017 article-title: Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo‐planar imaging publication-title: NMR Biomed – volume: 32 start-page: 1188 issue: 7 year: 2012 end-page: 1206 article-title: Biophysical and physiological origins of blood oxygenation level‐dependent fMRI signals publication-title: J Cerebr Blood F Met – volume: 14 start-page: 14 year: 2020 article-title: 7 Tesla MRI followed by histological 3D reconstructions in whole‐brain specimens publication-title: Front Neuroanat – volume: 69 year: 2021 article-title: Model‐informed machine learning for multi‐component T(2) relaxometry publication-title: Med Image Anal – volume: 40 start-page: 4952 issue: 17 year: 2019 end-page: 4964 article-title: Automated brain extraction of multisequence MRI using artificial neural networks publication-title: Hum Brain Mapp – volume: 244 year: 2021 article-title: Complementing canonical fMRI with functional quantitative susceptibility mapping (fQSM) in modern neuroimaging research publication-title: Neuroimage – volume: 17 start-page: 825 issue: 2 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 60 start-page: 1003 issue: 4 year: 2008 end-page: 1009 article-title: Quantitative MR susceptibility mapping using piece‐wise constant regularized inversion of the magnetic field publication-title: Magn Reson Med – volume: 145 start-page: 2276 issue: 7 year: 2022 end-page: 2292 article-title: Neurovascular coupling mechanisms in health and neurovascular uncoupling in Alzheimer's disease publication-title: Brain – volume: 17 start-page: 1033 issue: 10 year: 2020 end-page: 1039 article-title: A temporal decomposition method for identifying venous effects in task‐based fMRI publication-title: Nat Methods – volume: 2021 start-page: 4190 – volume: 68 start-page: 863 issue: 3 year: 2012 end-page: 867 article-title: Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification publication-title: Magn Reson Med – volume: 14 issue: 11 year: 2019 article-title: Comparison of SMS‐EPI and 3D‐EPI at 7T in an fMRI localizer study with matched spatiotemporal resolution and homogenized excitation profiles publication-title: PLoS ONE – volume: 83 start-page: 68 issue: 1 year: 2020 end-page: 82 article-title: Cerebral OEF quantification: a comparison study between quantitative susceptibility mapping and dual‐gas calibrated BOLD imaging publication-title: Magn Reson Med – volume: 128 start-page: 467 year: 2021 end-page: 478 article-title: Linking cortical circuit models to human cognition with laminar fMRI publication-title: Neurosci Biobehav R – year: 2006 – year: 2023 – volume: 227 year: 2021 article-title: SEPIA‐Susceptibility mapping pipeline tool for phase images publication-title: Neuroimage – volume: 47 start-page: 1 issue: 1 year: 2002 end-page: 9 article-title: Postacquisition suppression of large‐vessel BOLD signals in high‐resolution fMRI publication-title: Magn Reson Med – volume: 84 start-page: 2713 issue: 5 year: 2020 end-page: 2723 article-title: Origin of orientation‐dependent R1(=1/T1) relaxation in white matter publication-title: Magn Reson Med – volume: 226 year: 2021 article-title: NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex‐valued parameter‐free locally low‐rank processing publication-title: Neuroimage – volume: 12 start-page: 5181 issue: 1 year: 2021 article-title: Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging publication-title: Nat Commun – volume: 121 issue: Pt B year: 2021 article-title: Epilepsy under the scope of ultra‐high field MRI publication-title: Epilepsy Behav – volume: 100 start-page: 51 year: 2014 end-page: 59 article-title: Phase based venous suppression in resting‐state BOLD GE‐fMRI publication-title: Neuroimage – ident: e_1_2_7_66_1 doi: 10.1093/cercor/bhn053 – ident: e_1_2_7_58_1 doi: 10.1038/s41467‐021‐25431‐8 – ident: e_1_2_7_13_1 doi: 10.1002/mrm.29213 – ident: e_1_2_7_31_1 doi: 10.1002/hbm.22320 – ident: e_1_2_7_38_1 doi: 10.1016/j.neuroimage.2006.09.039 – ident: e_1_2_7_39_1 doi: 10.1016/j.neuroimage.2005.01.007 – ident: e_1_2_7_34_1 doi: 10.1002/nbm.3619 – ident: e_1_2_7_43_1 doi: 10.1016/j.neuroimage.2020.117539 – ident: e_1_2_7_35_1 doi: 10.1109/TRPMS.2019.2894262 – ident: e_1_2_7_63_1 doi: 10.1002/mrm.10041 – ident: e_1_2_7_42_1 doi: 10.1002/mrm.10065 – ident: e_1_2_7_11_1 doi: 10.1016/j.neuroimage.2018.06.025 – ident: e_1_2_7_27_1 doi: 10.1002/mrm.27907 – ident: e_1_2_7_47_1 doi: 10.1002/nbm.3383 – ident: e_1_2_7_48_1 doi: 10.1002/hbm.24750 – ident: e_1_2_7_23_1 doi: 10.3389/fneur.2023.1112312 – ident: e_1_2_7_3_1 doi: 10.1016/j.yebeh.2019.06.010 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroimage.2010.01.108 – ident: e_1_2_7_19_1 – ident: e_1_2_7_16_1 doi: 10.1101/2023.09.22.23295993 – ident: e_1_2_7_60_1 doi: 10.2967/jnumed.122.264391 – ident: e_1_2_7_54_1 doi: 10.1016/j.neuroimage.2022.118931 – ident: e_1_2_7_17_1 doi: 10.1016/j.media.2020.101940 – ident: e_1_2_7_61_1 doi: 10.1038/s41592‐023‐02068‐7 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.28486 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.25316 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.29867 – ident: e_1_2_7_65_1 doi: 10.1038/s41592‐020‐0941‐6 – ident: e_1_2_7_2_1 doi: 10.3389/fnana.2020.536838 – ident: e_1_2_7_59_1 doi: 10.1093/brain/awac174 – ident: e_1_2_7_12_1 doi: 10.1038/jcbfm.2012.23 – ident: e_1_2_7_36_1 doi: 10.1016/j.neuroimage.2021.118574 – ident: e_1_2_7_44_1 doi: 10.1364/AO.46.006623 – ident: e_1_2_7_29_1 doi: 10.1002/mrm.23282 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2014.06.011 – ident: e_1_2_7_40_1 – ident: e_1_2_7_24_1 doi: 10.1002/nbm.4847 – ident: e_1_2_7_41_1 doi: 10.1016/j.pneurobio.2020.101835 – ident: e_1_2_7_57_1 doi: 10.1038/s41598‐021‐81249‐w – ident: e_1_2_7_33_1 doi: 10.1016/j.neuroimage.2016.05.013 – ident: e_1_2_7_46_1 doi: 10.1016/j.neuroimage.2020.117611 – ident: e_1_2_7_4_1 doi: 10.1016/j.neubiorev.2021.07.005 – ident: e_1_2_7_64_1 doi: 10.1016/j.neuroimage.2014.05.079 – ident: e_1_2_7_55_1 doi: 10.1002/mrm.1124 – ident: e_1_2_7_45_1 doi: 10.1016/j.neuroimage.2010.11.088 – ident: e_1_2_7_5_1 doi: 10.1371/journal.pone.0225286 – ident: e_1_2_7_7_1 – ident: e_1_2_7_8_1 doi: 10.1177/1352458514525868 – ident: e_1_2_7_49_1 doi: 10.1016/S1361‐8415(01)00036‐6 – ident: e_1_2_7_10_1 doi: 10.1016/j.neuroimage.2014.11.046 – ident: e_1_2_7_22_1 doi: 10.1016/j.neuroimage.2020.117358 – ident: e_1_2_7_56_1 doi: 10.1016/j.neuroimage.2009.05.015 – volume-title: Statistical parametric mapping: the analysis of functional brain images year: 2006 ident: e_1_2_7_51_1 – ident: e_1_2_7_50_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.28277 – ident: e_1_2_7_37_1 doi: 10.1002/nbm.3501 – ident: e_1_2_7_28_1 doi: 10.1002/mrm.28390 – ident: e_1_2_7_53_1 – ident: e_1_2_7_20_1 doi: 10.1002/mrm.21710 – ident: e_1_2_7_21_1 doi: 10.1016/j.pnmrs.2018.06.001 – ident: e_1_2_7_62_1 doi: 10.1016/j.neuron.2017.11.005 – ident: e_1_2_7_25_1 doi: 10.1002/jnr.24701 – ident: e_1_2_7_14_1 doi: 10.1016/j.jmr.2021.107033 – ident: e_1_2_7_26_1 doi: 10.1177/0271678X20973951 – ident: e_1_2_7_52_1 doi: 10.1111/j.2517‐6161.1995.tb02031.x |
SSID | ssj0008432 |
Score | 2.4366229 |
Snippet | Quantitative susceptibility mapping (QSM) is a tool for mapping tissue susceptibility. Using QSM for functional brain mapping, it is possible to directly... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e5263 |
SubjectTerms | Adult Algorithms Brain - diagnostic imaging Brain Mapping Echo-Planar Imaging Feasibility Studies Female functional MRI (fMRI) functional QSM Humans Imaging, Three-Dimensional Magnetic Resonance Imaging - methods Male Oxygen - blood quantitative susceptibility mapping (QSM) submillimeter fMRI ultra‐high field |
Title | Feasibility of submillimeter functional quantitative susceptibility mapping using 3D echo planar imaging at 7 T |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.5263 https://www.ncbi.nlm.nih.gov/pubmed/39401773 https://www.proquest.com/docview/3116675662 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqpD4uFLYvykOuVPWWJXZsxxx5ClVaDtVWQuohGjsOQrBZILsHOHHt3-wv6YyTQCmqhHrKxbZij-35ZjzzDWOfSw0gqpAlACATJYNPnPNotXrU5cHaSnvyd4yOzOF39fVYH3dRlZQL0_JD3Dnc6GTE-5oOOLhm8w_SUDcZammI6FNkhmjz977dM0dZFWuTIYCQSaZs2vPOpnKz7_hQEz2Clw_RalQ3B6_Zj_5H2yiTs-F85ob-5i8Ox_-byRJb7FAo3263zTJ7FuoBe7nbF38bsBej7s19wJ7HIFHfvGGXiBe7aNprPq14gzMgd82EQmo4acjWscgv51DH5DW8SrFVE0Nnun4TIEaIE04B9yc82-MBL2B-cQ41XPHTSSyaxGHG81-3P8dv2fhgf7x7mHQlGxKPtluW5GVZIqDQVigdbFVWVQ7OkNuEDLvcUq62E0og6vQZ2may1KkHoyuRI5Ry2Tu2UE_r8IHxdEuCr4yymixEAFs6rRF9KuXCli3TFfapl15x0RJzFC0FsyxwQQtaUGzTi7XA9aOnEKjDdN4UmRAGTSVj5Ap738r7bhSqFS_yHHt_iVL75_DF0c6Ivh-f2nCVvZJUPjh6cNbYwuxqHtYR08zcRty9vwGKCfOD |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUIELtAvl1Ycrod6yJI6dGPVEoWjbsnuoFolDpch2HFTBZoHdPcCJK3-TX9IZJ6EFVAn1lIttxR7b88145huArVxqHRUuDrTWPBDc2cAYi1arRV3ulCqkJX9Ht5d0jsS3Y3k8BZ-aXJiKH-Le4UYnw9_XdMDJIb39F2uoGbQlT-JpmBWIM8jy2v_xhztKCV-dDCEED2KhwoZ5NuTbTc-HuugJwHyIV73COViCn82vVnEmp-3J2LTt9SMWx_-cy0tYrIEo2612ziuYcmUL5vea-m8tmOvWz-4teOHjRO1oGS4QMtYBtVdsWLARToE8NgOKqmGkJCvfIruY6NLnr-Ftiq1GPnqm7jfQRApxwijm_oTF-8zhHczOz3SpL9mvga-bxPSYpXc3t_0V6B986e91grpqQ2DRfIuDNM9zxBRSRUI6VeRFkWqTkOeEbLtUUbq2iUSEwNPGaJ7xXIZWJ7KIUkRTJn4NM-WwdGvAwh2ubZEIJclI1FrlRkoEoEIYt6PycB0-NOLLzitujqxiYeYZLmhGC4ptGrlmuH70GqJLN5yMsjiKErSWkoSvw2ol8PtRqFx8lKbY-6MX2z-Hz3qfu_TdeG7D9zDf6XcPs8Ovve-bsMCpmrB36LyBmfHlxL1FiDM27_xW_g3Gn_ei |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEYULj6VAeRoJccs2cWzHPULLqjx2hdAiVeIQ-Vkh2Oy2u3uAE1f-Jr-EGScpFISEOOViW7HH9nwznvkG4LGXxhQxlJkxhmeCB5dZ69BqdajLg9ZROvJ3jCfq4J14eSgPu6hKyoVp-SFOHW50MtJ9TQd84ePOL6ShdjaUXJXn4YJQCCQIEL39SR2lRSpOhgiCZ6XQeU88m_OdvudZVfQHvjwLV5O-GV2F9_2ftmEmH4frlR26L7-ROP7fVK7BlQ6GsqftvrkO50IzgEt7ffW3AWyOu0f3AVxMUaJueQOOETB24bSf2TyyJc6A_DUziqlhpCJbzyI7XpsmZa_hXYqtlil2pus3M0QJccQo4v6Ilfss4A3MFp9MY07Yh1mqmsTMilXfv36bbsF09Hy6d5B1NRsyh8ZbmVXee0QUUhdCBh19jJWxivwmZNlVmpK1bSEKhJ2uROOMe5k7o2QsKsRStrwJG828CbeB5bvcuKiElmQiGqO9lRLhpxA27Gqfb8OjXnr1omXmqFsOZl7jgta0oNimF2uN60dvIaYJ8_WyLotCoa2kFN-GW628T0ehYvFFVWHvJ0lqfx2-njwb0_fOvzZ8CJtv9kf16xeTV3fhMqdSwsmbcw82VifrcB_xzco-SBv5B-5m9lE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+submillimeter+functional+quantitative+susceptibility+mapping+using+3D+echo+planar+imaging+at+7%E2%80%89T&rft.jtitle=NMR+in+biomedicine&rft.au=Straub%2C+Sina&rft.au=Zhou%2C+Xiangzhi&rft.au=Tao%2C+Shengzhen&rft.au=Westerhold%2C+Erin+M&rft.date=2025-01-01&rft.eissn=1099-1492&rft.volume=38&rft.issue=1&rft.spage=e5263&rft_id=info:doi/10.1002%2Fnbm.5263&rft_id=info%3Apmid%2F39401773&rft.externalDocID=39401773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |