Spatial biases in approximate arithmetic are subject to sequential dependency effects and dissociate from attentional biases
The notion that mental arithmetic is associated with shifts of spatial attention along a spatially organised mental number representation has received empirical support from three lines of research. First, participants tend to overestimate results of addition and underestimate those of subtraction p...
Saved in:
Published in | Journal of numerical cognition Vol. 9; no. 1; pp. 44 - 64 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
PsychOpen GOLD/ Leibniz Insitute for Psychology
31.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The notion that mental arithmetic is associated with shifts of spatial attention along a spatially organised mental number representation has received empirical support from three lines of research. First, participants tend to overestimate results of addition and underestimate those of subtraction problems in both exact and approximate formats. This has been termed the operational momentum (OM) effect. Second, participants are faster in detecting right-sided targets presented in the course of addition problems and left-sided targets in subtraction problems (attentional bias). Third, participants are biased toward choosing right-sided response alternatives to indicate the results of addition problems and left-sided response alternatives for subtraction problems (Spatial Association Of Responses [SOAR] effect). These effects potentially have their origin in operation-specific shifts of attention along a spatially organised mental number representation: rightward for addition and leftward for subtraction. Using a lateralised target detection task during the calculation phase of non-symbolic additions and subtractions, the current study measured the attentional focus, the OM and SOAR effects. In two experiments, we replicated the OM and SOAR effects but did not observe operation-specific biases in the lateralised target-detection task. We describe two new characteristics of the OM effect: First, a time-resolved, block-wise analysis of both experiments revealed sequential dependency effects in that the OM effect builds up over the course of the experiment, driven by the increasing underestimation of subtraction over time. Second, the OM effect was enhanced after arithmetic operation repetition compared to trials where arithmetic operation switched from one trial to the next. These results call into question the operation-specific attentional biases as the sole generator of the observed effects and point to the involvement of additional, potentially decisional processes that operate across trials. |
---|---|
AbstractList | The notion that mental arithmetic is associated with shifts of spatial attention along a spatially organised mental number representation has received empirical support from three lines of research. First, participants tend to overestimate results of addition and underestimate those of subtraction problems in both exact and approximate formats. This has been termed the operational momentum (OM) effect. Second, participants are faster in detecting right-sided targets presented in the course of addition problems and left-sided targets in subtraction problems (attentional bias). Third, participants are biased toward choosing right-sided response alternatives to indicate the results of addition problems and left-sided response alternatives for subtraction problems (Spatial Association Of Responses [SOAR] effect). These effects potentially have their origin in operation-specific shifts of attention along a spatially organised mental number representation: rightward for addition and leftward for subtraction. Using a lateralised target detection task during the calculation phase of non-symbolic additions and subtractions, the current study measured the attentional focus, the OM and SOAR effects. In two experiments, we replicated the OM and SOAR effects but did not observe operation-specific biases in the lateralised target-detection task. We describe two new characteristics of the OM effect: First, a time-resolved, block-wise analysis of both experiments revealed sequential dependency effects in that the OM effect builds up over the course of the experiment, driven by the increasing underestimation of subtraction over time. Second, the OM effect was enhanced after arithmetic operation repetition compared to trials where arithmetic operation switched from one trial to the next. These results call into question the operation-specific attentional biases as the sole generator of the observed effects and point to the involvement of additional, potentially decisional processes that operate across trials. |
Author | Glaser, Maria Knops, André |
Author_xml | – sequence: 1 givenname: Maria orcidid: 0000-0002-3934-9299 surname: Glaser fullname: Glaser, Maria – sequence: 2 givenname: André orcidid: 0000-0001-6357-9951 surname: Knops fullname: Knops, André |
BookMark | eNplkU1LJDEQhsPiwo6usD8hRy8zpjrd6c5RxI8BwYN6bqqTym6GmaQ3iaDgj7d7FBE9VVFV71NUvYfsIMRAjP0BsWq0qk83waw62cofbFFJJZddq-DgU_6LHee8EUKArhrVVQv2cjdi8bjlg8dMmfvAcRxTfPI7LMQx-fJvR8WbKSWeH4cNmcJL5Jn-P1LYSy2NFCwF88zJuamfOQbLrc85Gj9jXIo7jqXMghg-tv1mPx1uMx2_xyP2cHlxf369vLm9Wp-f3SxN1VVyWWNbgUay1ojBOQClSWuoASRhJawlIBhAu64hasFo1SkjHLWV1MKQlEds_ca1ETf9mKbb0nMf0ff7Qkx_e0zTjVvqB41qkEbUIOtaC0DdNA6MU8Y5bId6Yp28sUyKOSdyHzwQ_WxCP5nQzyZMo6svo8YXnD9QEvrtd8ErBPGOzQ |
CitedBy_id | crossref_primary_10_3758_s13423_024_02499_z crossref_primary_10_1007_s00426_024_02035_7 |
Cites_doi | 10.1007/s00221-022-06329-3 10.23668/psycharchives.12500 10.1038/nrn1684 10.1167/jov.21.1.12 10.1016/j.cognition.2007.06.004 10.3758/APP.71.4.803 10.1016/j.cognition.2016.01.005 10.1080/13546783.2017.1348987 10.1080/17470218.2014.903985 10.1007/s00426-015-0668-7 10.5964/jnc.6051 10.1371/journal.pone.0031180 10.1016/B978-0-12-811529-9.00011-X 10.3758/BF03205949 10.1016/j.bandc.2008.08.031 10.1163/156856897X00366 10.1371/journal.pone.0104777 10.1016/j.cognition.2006.09.001 10.1177/0956797613482944 10.3758/BF03192949 10.1167/jov.21.8.26 10.3389/fnhum.2018.00183 10.3389/fnhum.2013.00270 10.3758/PBR.15.2.413 10.1016/j.cognition.2014.06.011 10.1016/j.cognition.2015.10.002 10.1038/s41598-017-01037-3 10.1016/j.cognition.2020.104521 10.1016/j.cognition.2008.09.003 10.1163/156856897X00357 10.1080/00223980.1951.9712804 10.1016/j.jecp.2009.01.013 10.1073/pnas.1402785111 10.23668/psycharchives.8268 10.1016/j.cognition.2020.104250 10.3758/PBR.17.1.1 10.1038/s41598-020-59415-3 10.3758/s13428-011-0097-5 10.3758/BF03202334 10.1177/1747021820902917 10.1016/j.cognition.2021.104709 10.1007/s00426-015-0731-4 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.5964/jnc.8373 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2363-8761 |
EndPage | 64 |
ExternalDocumentID | oai_doaj_org_article_b9a6b3c041344901a955f1cf6cffa7b4 10_5964_jnc_8373 |
GroupedDBID | 5VS AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CHMOV CITATION GROUPED_DOAJ M~E OK1 |
ID | FETCH-LOGICAL-c2823-4a7219aeddc0bff1169e9914113ea20dde1e1b19f85ee71c9686c0fe72390ce33 |
IEDL.DBID | DOA |
ISSN | 2363-8761 |
IngestDate | Wed Aug 27 01:32:11 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Tue Jul 01 03:20:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2823-4a7219aeddc0bff1169e9914113ea20dde1e1b19f85ee71c9686c0fe72390ce33 |
ORCID | 0000-0002-3934-9299 0000-0001-6357-9951 |
OpenAccessLink | https://doaj.org/article/b9a6b3c041344901a955f1cf6cffa7b4 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b9a6b3c041344901a955f1cf6cffa7b4 crossref_primary_10_5964_jnc_8373 crossref_citationtrail_10_5964_jnc_8373 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230331 |
PublicationDateYYYYMMDD | 2023-03-31 |
PublicationDate_xml | – month: 03 year: 2023 text: 20230331 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Journal of numerical cognition |
PublicationYear | 2023 |
Publisher | PsychOpen GOLD/ Leibniz Insitute for Psychology |
Publisher_xml | – name: PsychOpen GOLD/ Leibniz Insitute for Psychology |
References | r2 r3 r4 r5 r6 r7 r8 r9 r30 r10 r32 r31 r12 r34 r11 r33 r36 sp1_r2 r13 r35 sp1_r1 r16 r38 r15 r37 r18 r17 r39 (r14) 2007 (r19) 2007 r41 r40 r21 r43 r20 r42 r23 r22 r25 r24 r27 r26 r29 r28 r1 |
References_xml | – ident: r41 doi: 10.1007/s00221-022-06329-3 – ident: r40 – ident: sp1_r2 doi: 10.23668/psycharchives.12500 – ident: r15 doi: 10.1038/nrn1684 – ident: r12 doi: 10.1167/jov.21.1.12 – ident: r16 doi: 10.1016/j.cognition.2007.06.004 – ident: r21 doi: 10.3758/APP.71.4.803 – ident: r25 doi: 10.1016/j.cognition.2016.01.005 – ident: r42 doi: 10.1080/13546783.2017.1348987 – ident: r28 doi: 10.1080/17470218.2014.903985 – ident: r29 doi: 10.1007/s00426-015-0668-7 – ident: r3 doi: 10.5964/jnc.6051 – ident: r6 doi: 10.1371/journal.pone.0031180 – ident: r20 doi: 10.1016/B978-0-12-811529-9.00011-X – ident: r23 doi: 10.3758/BF03205949 – ident: r18 doi: 10.1016/j.bandc.2008.08.031 – ident: r38 doi: 10.1163/156856897X00366 – ident: r17 doi: 10.1371/journal.pone.0104777 – ident: r4 doi: 10.1016/j.cognition.2006.09.001 – ident: r36 doi: 10.1177/0956797613482944 – ident: r31 doi: 10.3758/BF03192949 – ident: r13 doi: 10.1167/jov.21.8.26 – ident: r24 doi: 10.3389/fnhum.2018.00183 – ident: r26 doi: 10.3389/fnhum.2013.00270 – ident: r35 doi: 10.3758/PBR.15.2.413 – ident: r37 doi: 10.1016/j.cognition.2014.06.011 – start-page: 1 year: 2007 ident: r14 article-title: Relative importance for linear regression in R: The package relaimpo. publication-title: Journal of Statistical Software – ident: r30 doi: 10.1016/j.cognition.2015.10.002 – ident: r27 doi: 10.1038/s41598-017-01037-3 – ident: r43 doi: 10.1016/j.cognition.2020.104521 – ident: r39 doi: 10.1016/j.cognition.2008.09.003 – ident: r2 doi: 10.1163/156856897X00357 – ident: r33 doi: 10.1080/00223980.1951.9712804 – ident: r32 doi: 10.1016/j.jecp.2009.01.013 – ident: r7 doi: 10.1073/pnas.1402785111 – ident: sp1_r1 doi: 10.23668/psycharchives.8268 – ident: r9 doi: 10.1016/j.cognition.2020.104250 – ident: r22 doi: 10.3758/PBR.17.1.1 – ident: r8 doi: 10.1038/s41598-020-59415-3 – ident: r10 doi: 10.3758/s13428-011-0097-5 – ident: r1 doi: 10.3758/BF03202334 – start-page: 14 issue: ECVP Abstract Supplement year: 2007 ident: r19 article-title: What's new in Psychtoolbox-3? publication-title: Perception – ident: r11 doi: 10.1177/1747021820902917 – ident: r5 doi: 10.1016/j.cognition.2021.104709 – ident: r34 doi: 10.1007/s00426-015-0731-4 |
SSID | ssj0001925682 |
Score | 2.2153718 |
Snippet | The notion that mental arithmetic is associated with shifts of spatial attention along a spatially organised mental number representation has received... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 44 |
SubjectTerms | approximate arithmetic mnl numerical cognition operational momentum spatial biases |
Title | Spatial biases in approximate arithmetic are subject to sequential dependency effects and dissociate from attentional biases |
URI | https://doaj.org/article/b9a6b3c041344901a955f1cf6cffa7b4 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA_iSQ_iJ84vIgieypqmTZvj5hxDmBcd7FaS7AU7XCdbBQX_eF-abkwQvHgr7UsTfnl9H2nye4TcKG3RjYAMUmsxQcEAOZAT97sw44qJJJ1MjFvvGD6KwSh-GCfjjVJfbk-Ypwf2wLW1VEJzE6KxjWN0XkomiWXGCmOtSnXNBIo-byOZmvq4JRFZ5NlmEyni9hQ_N0zG-A__s0HTX_uT_j7ZawJB2vEDOCBbUB6S3eGaRXV5RL5cvWDUD9ot0NcsaVHSjqMA_yhQArBpUb3M3CFEvASKJsCtqdBqTp_q_dF1015T5NZ8Uk9UvKSqnNBe0UwL0P5iPqOdqlrtPW96Oyaj_v3z3SBoqiUEBtMmHsQKkzmpANENNQLPhAQM_mLGOKgoRDPGgGkmbZYApMxIkQkTWkgjLkMDnJ-Q7XJewimhSmQsjpRQ3AV0WqiMA_YhLEQJF1a0yO0Kw9w0VOKuosVrjimFQztHtHOHdotcryXfPH3GLzJdNw3r547wur6BapA3apD_pQZn__GSc7Ljqsn7I4cXZLtavMMlxhyVvqrV6xtPldel |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Biases+in+Approximate+Arithmetic+Are+Subject+to+Sequential+Dependency+Effects+and+Dissociate+From+Attentional+Biases&rft.jtitle=Journal+of+numerical+cognition&rft.au=Maria+Glaser&rft.au=Andr%C3%A9+Knops&rft.date=2023-03-31&rft.pub=PsychOpen+GOLD%2F+Leibniz+Insitute+for+Psychology&rft.eissn=2363-8761&rft.volume=9&rft.issue=1&rft.spage=44&rft.epage=64&rft_id=info:doi/10.5964%2Fjnc.8373&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b9a6b3c041344901a955f1cf6cffa7b4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-8761&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-8761&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-8761&client=summon |