Atomic spectrometry update - a review of advances in environmental analysis
Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particl...
Saved in:
Published in | Journal of analytical atomic spectrometry Vol. 39; no. 1; pp. 11 - 65 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
03.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particles. Workers have explored further the full capabilities of ICP-MS/MS, which continued to dominate water analysis, including the speciation analysis of non-metallic elements in environmental samples. By far the largest number of papers on water analysis involved preconcentration. The growing interest in reagents for green chemistry was evidenced by the publication of several reviews. Novelties included the direct introduction of magnetic nanoparticles into FAAS to boost sensitivity, and the simultaneous dual-drop preconcentration of oxidation state species that avoided the need for a sequence of elution steps by preconcentrating the analytes into specific reagents contained in the drops. Although the total reflection XRFS and LIBS techniques are close to achieving the detection limits needed to screen contaminated waters, users of these instruments often neglect to validate their methods adequately through the use of reference materials. In methods for the analysis of soils, plants and related materials, sustainable digestion, extraction and preconcentration methods featured strongly. The development of AAS, AES and AFS methods for the direct analysis of solid samples and for increasing sensitivity through analyte enrichment continued to be of considerable interest. The nitrogen-microwave inductively coupled atmospheric-pressure plasma showed promise for ICP-MS analyses. Applications of LIBS have increased dramatically in number with noteworthy developments including single-chamber laser-ablation LIBS and the analysis of plant leaves without the need for grinding and pelleting. However, many published studies lacked validation through
e.g.
analysis of CRMs or comparison with results obtained by other techniques. Efforts have continued on the characterisation of natural and synthetic materials that are sufficiently homogeneous to act as reference materials (RMs) in the analysis of geological materials. In particular, application of microanalytical techniques, such as LA-ICP-MS and SIMS, led to the availability of a variety of new RMs for
in situ
isotope ratio determinations. The application of portable LIBS instrumentation to mineral prospecting and ore processing has received much attention, with the development of new chemometric models to improve data quality. The enormous amount of analytical data produced by modern instrumentation prompted the development of software, most of which has been made freely available, for facilitating the processing and reduction of isotopic data.
This review covers advances in the analysis of air, water, plants, soils and geological materials by a range of atomic spectrometric techniques including atomic emission, absorption, fluorescence and mass spectrometry. |
---|---|
AbstractList | Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particles. Workers have explored further the full capabilities of ICP-MS/MS, which continued to dominate water analysis, including the speciation analysis of non-metallic elements in environmental samples. By far the largest number of papers on water analysis involved preconcentration. The growing interest in reagents for green chemistry was evidenced by the publication of several reviews. Novelties included the direct introduction of magnetic nanoparticles into FAAS to boost sensitivity, and the simultaneous dual-drop preconcentration of oxidation state species that avoided the need for a sequence of elution steps by preconcentrating the analytes into specific reagents contained in the drops. Although the total reflection XRFS and LIBS techniques are close to achieving the detection limits needed to screen contaminated waters, users of these instruments often neglect to validate their methods adequately through the use of reference materials. In methods for the analysis of soils, plants and related materials, sustainable digestion, extraction and preconcentration methods featured strongly. The development of AAS, AES and AFS methods for the direct analysis of solid samples and for increasing sensitivity through analyte enrichment continued to be of considerable interest. The nitrogen-microwave inductively coupled atmospheric-pressure plasma showed promise for ICP-MS analyses. Applications of LIBS have increased dramatically in number with noteworthy developments including single-chamber laser-ablation LIBS and the analysis of plant leaves without the need for grinding and pelleting. However, many published studies lacked validation through
e.g.
analysis of CRMs or comparison with results obtained by other techniques. Efforts have continued on the characterisation of natural and synthetic materials that are sufficiently homogeneous to act as reference materials (RMs) in the analysis of geological materials. In particular, application of microanalytical techniques, such as LA-ICP-MS and SIMS, led to the availability of a variety of new RMs for
in situ
isotope ratio determinations. The application of portable LIBS instrumentation to mineral prospecting and ore processing has received much attention, with the development of new chemometric models to improve data quality. The enormous amount of analytical data produced by modern instrumentation prompted the development of software, most of which has been made freely available, for facilitating the processing and reduction of isotopic data. Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particles. Workers have explored further the full capabilities of ICP-MS/MS, which continued to dominate water analysis, including the speciation analysis of non-metallic elements in environmental samples. By far the largest number of papers on water analysis involved preconcentration. The growing interest in reagents for green chemistry was evidenced by the publication of several reviews. Novelties included the direct introduction of magnetic nanoparticles into FAAS to boost sensitivity, and the simultaneous dual-drop preconcentration of oxidation state species that avoided the need for a sequence of elution steps by preconcentrating the analytes into specific reagents contained in the drops. Although the total reflection XRFS and LIBS techniques are close to achieving the detection limits needed to screen contaminated waters, users of these instruments often neglect to validate their methods adequately through the use of reference materials. In methods for the analysis of soils, plants and related materials, sustainable digestion, extraction and preconcentration methods featured strongly. The development of AAS, AES and AFS methods for the direct analysis of solid samples and for increasing sensitivity through analyte enrichment continued to be of considerable interest. The nitrogen-microwave inductively coupled atmospheric-pressure plasma showed promise for ICP-MS analyses. Applications of LIBS have increased dramatically in number with noteworthy developments including single-chamber laser-ablation LIBS and the analysis of plant leaves without the need for grinding and pelleting. However, many published studies lacked validation through e.g. analysis of CRMs or comparison with results obtained by other techniques. Efforts have continued on the characterisation of natural and synthetic materials that are sufficiently homogeneous to act as reference materials (RMs) in the analysis of geological materials. In particular, application of microanalytical techniques, such as LA-ICP-MS and SIMS, led to the availability of a variety of new RMs for in situ isotope ratio determinations. The application of portable LIBS instrumentation to mineral prospecting and ore processing has received much attention, with the development of new chemometric models to improve data quality. The enormous amount of analytical data produced by modern instrumentation prompted the development of software, most of which has been made freely available, for facilitating the processing and reduction of isotopic data. Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particles. Workers have explored further the full capabilities of ICP-MS/MS, which continued to dominate water analysis, including the speciation analysis of non-metallic elements in environmental samples. By far the largest number of papers on water analysis involved preconcentration. The growing interest in reagents for green chemistry was evidenced by the publication of several reviews. Novelties included the direct introduction of magnetic nanoparticles into FAAS to boost sensitivity, and the simultaneous dual-drop preconcentration of oxidation state species that avoided the need for a sequence of elution steps by preconcentrating the analytes into specific reagents contained in the drops. Although the total reflection XRFS and LIBS techniques are close to achieving the detection limits needed to screen contaminated waters, users of these instruments often neglect to validate their methods adequately through the use of reference materials. In methods for the analysis of soils, plants and related materials, sustainable digestion, extraction and preconcentration methods featured strongly. The development of AAS, AES and AFS methods for the direct analysis of solid samples and for increasing sensitivity through analyte enrichment continued to be of considerable interest. The nitrogen-microwave inductively coupled atmospheric-pressure plasma showed promise for ICP-MS analyses. Applications of LIBS have increased dramatically in number with noteworthy developments including single-chamber laser-ablation LIBS and the analysis of plant leaves without the need for grinding and pelleting. However, many published studies lacked validation through e.g. analysis of CRMs or comparison with results obtained by other techniques. Efforts have continued on the characterisation of natural and synthetic materials that are sufficiently homogeneous to act as reference materials (RMs) in the analysis of geological materials. In particular, application of microanalytical techniques, such as LA-ICP-MS and SIMS, led to the availability of a variety of new RMs for in situ isotope ratio determinations. The application of portable LIBS instrumentation to mineral prospecting and ore processing has received much attention, with the development of new chemometric models to improve data quality. The enormous amount of analytical data produced by modern instrumentation prompted the development of software, most of which has been made freely available, for facilitating the processing and reduction of isotopic data. This review covers advances in the analysis of air, water, plants, soils and geological materials by a range of atomic spectrometric techniques including atomic emission, absorption, fluorescence and mass spectrometry. |
Author | Bacon, Jeffrey R Butler, Owen T Davidson, Christine M Mertz-Kraus, Regina Cairns, Warren R. L Cavoura, Olga Cook, Jennifer M |
AuthorAffiliation | Institut für Geowissenschaften British Geological Survey Department of Pure and Applied Chemistry University of Strathclyde 59 Arnhall Drive University of West Attica Health and Safety Executive Johannes Gutenberg-Universität CNR-ISP and Universita Ca' Foscari School of Public Health |
AuthorAffiliation_xml | – sequence: 0 name: University of West Attica – sequence: 0 name: Department of Pure and Applied Chemistry – sequence: 0 name: 59 Arnhall Drive – sequence: 0 name: Health and Safety Executive – sequence: 0 name: British Geological Survey – sequence: 0 name: University of Strathclyde – sequence: 0 name: School of Public Health – sequence: 0 name: CNR-ISP and Universita Ca' Foscari – sequence: 0 name: Johannes Gutenberg-Universität – sequence: 0 name: Institut für Geowissenschaften |
Author_xml | – sequence: 1 givenname: Jeffrey R surname: Bacon fullname: Bacon, Jeffrey R – sequence: 2 givenname: Owen T surname: Butler fullname: Butler, Owen T – sequence: 3 givenname: Warren R. L surname: Cairns fullname: Cairns, Warren R. L – sequence: 4 givenname: Olga surname: Cavoura fullname: Cavoura, Olga – sequence: 5 givenname: Jennifer M surname: Cook fullname: Cook, Jennifer M – sequence: 6 givenname: Christine M surname: Davidson fullname: Davidson, Christine M – sequence: 7 givenname: Regina surname: Mertz-Kraus fullname: Mertz-Kraus, Regina |
BookMark | eNptkEtLAzEUhYNUsK1u3AsBd8JoXtNplqX1XXCj6-Ga3IGUmaQmaaX_3tGKgri6cPjO4fKNyMAHj4SccnbJmdRXVq5AM6aUPSBDLieqKEulBmTIxKQqtKqqIzJKacV6phTlkDzOcuicoWmNJsfQYY47ullbyEgLCjTi1uE7DQ0FuwVvMFHnKfqti8F36DO0FDy0u-TSMTlsoE148n3H5OXm-nl-Vyyfbu_ns2VhxJTnorESpDZcoAFrpiiRcTMFg0YpxAo5CKnLPlbSGqYmphJSaaZLY4V-FSDH5Hy_u47hbYMp16uwif0TqRY9xyrNNeupiz1lYkgpYlOvo-sg7mrO6k9Z9UI-zL5kLXqY_YGNy5Bd8DmCa_-vnO0rMZmf6V__8gMdcXh0 |
CitedBy_id | crossref_primary_10_1039_D4JA00468J crossref_primary_10_1039_D4JA90034K crossref_primary_10_1039_D5JA90008E crossref_primary_10_60084_ljes_v2i1_176 crossref_primary_10_1016_j_aca_2024_343464 crossref_primary_10_1039_D4JA90056A crossref_primary_10_1039_D4JA00199K crossref_primary_10_1007_s10661_024_13412_5 crossref_primary_10_1080_02603594_2024_2369101 |
Cites_doi | 10.1016/j.sab.2022.106527 10.1039/D2JA00357K 10.3390/chemosensors10070242 10.1016/j.jaerosci.2023.106144 10.1007/s44211-023-00346-0 10.1016/j.jhazmat.2021.127963 10.1111/ggr.12474 10.1016/j.atmosenv.2023.119825 10.1016/j.sab.2022.106486 10.1111/ggr.12468 10.1039/D2JA00171C 10.1007/s44211-023-00347-z 10.5194/amt-15-5207-2022 10.1016/j.chemgeo.2022.121041 10.1007/s13738-022-02662-0 10.1016/j.marpolbul.2022.113787 10.1016/j.aca.2023.341006 10.1016/j.molliq.2023.121801 10.1039/D2JA00101B 10.1016/j.sab.2023.106616 10.1016/j.chemgeo.2022.121213 10.1039/D3JA00022B 10.1016/j.atmosenv.2022.119285 10.1007/s44211-023-00367-9 10.1039/D2JA00120A 10.1111/ggr.12430 10.3390/su141912370 10.1039/D2JA00206J 10.1007/s44211-022-00194-4 10.3390/life13020511 10.1039/D2JA00148A 10.3389/fphar.2022.891273 10.1039/D2JA00403H 10.1016/j.microc.2022.108200 10.1111/ggr.12483 10.1016/j.jics.2022.100684 10.1039/D2JA00215A 10.1016/j.ijms.2022.116995 10.1039/D3JA90013D 10.1016/j.forsciint.2022.111202 10.1039/D3JA00010A 10.1002/jssc.202200575 10.1016/j.sab.2022.106478 10.1039/D2JA00010E 10.1039/D3JA00091E 10.1016/j.aca.2023.340859 10.1134/S1061934823030073 10.1007/s44211-022-00180-w 10.1016/j.cjac.2022.100176 10.1021/acs.analchem.2c04660 10.1021/acs.analchem.2c03784 10.1080/02786826.2022.2070055 10.1039/D2JA00266C 10.1038/s41598-022-19600-y 10.1111/ggr.12471 10.3390/molecules28031223 10.1002/rcm.9533 10.1039/D2JA00404F 10.1134/S1061934823030061 10.1039/D3JA00083D 10.1111/ggr.12463 10.1111/ggr.12444 10.1016/j.trac.2022.116566 10.1016/j.sab.2022.106541 10.1039/D2JA00147K 10.1007/s10812-022-01452-z 10.1007/s10661-023-11058-3 10.1039/D2JA00221C 10.1111/ggr.12447 10.1039/D2JA00250G 10.1016/j.gca.2023.01.014 10.1002/rcm.9508 10.1016/j.jvolgeores.2022.107675 10.46770/AS.2022.235 10.1080/10408347.2022.2111655 10.1007/s00216-022-04497-3 10.1016/j.gsf.2022.101523 10.1039/D2AY00593J 10.1021/acs.est.2c03737 10.3390/separations10010040 10.1039/D2AY00604A 10.1016/j.chemgeo.2022.121221 10.1016/j.atmosenv.2022.119522 10.1111/ggr.12452 10.1007/s13369-022-07465-2 10.1007/s00216-023-04695-7 10.1007/s44211-022-00181-9 10.1016/j.chemgeo.2022.121236 10.5194/amt-16-955-2023 10.1016/j.sab.2023.106665 10.1016/j.sab.2022.106518 10.1002/rcm.9494 10.1016/j.chemgeo.2023.121457 10.1039/D3JA00059A 10.1111/ggr.12464 10.3390/membranes13020152 10.1039/D3JA00009E 10.1002/rcm.9383 10.1021/acs.analchem.2c03280 10.1039/D2JA00394E 10.1111/ggr.12495 10.1016/j.aca.2022.340444 10.1016/j.mex.2022.101625 10.3390/chemosensors10080312 10.1080/00032719.2023.2212092 10.1016/j.gexplo.2022.106979 10.1111/ggr.12477 10.1016/j.talanta.2023.124262 10.1016/j.sab.2022.106523 10.1016/j.talanta.2022.124072 10.1039/D2JA00188H 10.1039/D2JA00314G 10.1080/02786826.2022.2114311 10.1016/j.sab.2022.106482 10.1021/acs.analchem.3c00207 10.1016/j.atmosenv.2023.119597 10.1134/S1061934822120152 10.1002/slct.202203887 10.1039/D3JA90022C 10.1039/D2AY00804A 10.1016/j.sab.2022.106504 10.1111/ggr.12486 10.1016/j.aca.2022.340709 10.1039/D2AN01290A 10.1364/OE.470782 10.1177/00037028221141102 10.1016/j.measurement.2022.111614 10.1039/D2JA00103A 10.1016/j.microc.2023.108622 10.1039/D2JA00238H 10.1111/ggr.12488 10.1039/D2JA00243D 10.3390/molecules28062549 10.3390/nano13101582 10.1007/s00216-022-04184-3 10.1039/D3JA00047H 10.1134/S1061934822090076 10.2343/geochemj.GJ23006 10.1039/D2JA00170E 10.1080/03067319.2022.2118591 10.3390/chemosensors10070259 10.1111/ggr.12443 10.1016/j.gexplo.2023.107160 10.1021/acs.analchem.2c01490 10.1016/j.sab.2022.106570 10.1016/j.jhazmat.2022.128823 10.3390/molecules28083601 10.1039/D2JA00150K 10.1177/00037028221146804 10.1002/jssc.202200347 10.1016/j.gexplo.2022.107090 10.1039/D2JA00233G 10.1016/j.optlastec.2022.108714 10.1016/j.jaerosci.2023.106160 10.1016/j.trac.2012.03.013 10.1093/annweh/wxac015 10.1016/j.trac.2022.116859 10.1039/D2JA00194B 10.1016/j.jfca.2022.104965 10.1111/ggr.12480 10.1016/j.sab.2022.106532 10.1039/D2JA00242F 10.1016/j.sab.2023.106648 10.1039/D2JA00197G 10.1039/D2JA00208F 10.1080/10408347.2023.2197495 10.1111/ggr.12458 10.1016/j.ijms.2022.116849 10.1039/D2JA00245K 10.1016/j.trac.2022.116866 10.1007/s10661-022-10888-x 10.1111/ggr.12491 10.1177/00037028221141709 10.1002/xrs.3352 10.1111/ggr.12470 10.1111/ggr.12446 10.1111/ggr.12479 10.1039/D2JA00274D 10.1016/j.chemosphere.2022.137206 10.1039/D2JA00412G 10.1016/j.chemosphere.2023.138053 10.1039/D2RA02980D 10.1039/D2JA00084A 10.1016/j.talanta.2022.124082 10.1016/j.chroma.2022.463458 10.19756/j.issn.0253-3820.211067 10.3390/foods12040895 10.1039/D2JA90055F 10.1039/D2JA00340F 10.1021/acs.jafc.2c02782 10.1111/ggr.12496 10.1021/acs.estlett.2c00835 10.1039/D2JA00248E 10.1016/j.chemosphere.2022.135661 10.1039/D2JA00339B 10.1016/j.atmosenv.2022.119493 10.1039/D2JA00082B 10.1039/D2JA00244B 10.1111/ggr.12456 10.1016/j.microc.2022.107951 10.3390/min12101326 10.1016/j.ijms.2022.116897 10.1039/D2JA00002D 10.1039/D2JA00362G 10.1080/00387010.2023.2165505 10.1039/D2JA00231K 10.1111/ggr.12476 10.1039/D2JA00273F 10.1111/ggr.12473 10.1016/j.scitotenv.2022.155460 10.3390/chemosensors11030193 10.1111/ggr.12513 10.1039/D2JA00137C 10.1111/ggr.12428 10.1007/s11270-022-05898-x 10.1039/D2JA00189F 10.1039/D2JA00360K 10.1039/D2JA00405D 10.1016/j.scitotenv.2021.152657 10.1039/D3AY00057E 10.1111/ggr.12440 10.1016/j.sab.2022.106549 10.3390/molecules28030994 10.1109/TPS.2022.3231985 10.1021/acs.analchem.2c03420 10.1039/D2AN00752E 10.1039/D2JA00371F 10.1039/D3JA90026F 10.1039/D2AY01424F 10.1016/j.optlastec.2022.108386 10.46770/AS.2022.186 10.1111/ggr.12500 10.1016/j.envpol.2022.120761 10.1016/j.microc.2022.107927 10.1007/s44211-023-00277-w 10.1016/j.talanta.2022.123501 10.1039/D2JA00270A 10.1039/D2JA00106C 10.1016/j.envint.2020.106264 10.1007/s44211-023-00327-3 10.1021/acs.est.2c02908 10.1016/j.atmosenv.2022.119301 10.1016/j.atmosenv.2023.119759 10.1039/D2JA00202G 10.1111/ggr.12466 10.3390/nano12193307 10.1039/D2JA00317A 10.1016/j.aca.2022.340378 10.1038/s41596-022-00701-x 10.1039/D3JA00095H 10.1080/00032719.2022.2092632 10.1002/rcm.9404 10.1016/j.sab.2022.106561 10.1021/acs.analchem.2c01379 10.1039/D2JA00407K 10.1007/s11356-023-25513-8 10.1111/ggr.12482 10.1016/j.atmosenv.2023.119607 10.1016/j.atmosenv.2022.119360 10.1039/D2JA00370H 10.1039/D2JA00251E 10.30744/brjac.2179-3425.RV-119-2021 10.1016/j.chemgeo.2022.121016 10.1016/j.atmosenv.2022.119486 10.1111/ggr.12460 10.1016/j.talanta.2022.123694 10.1111/ggr.12478 10.1111/ggr.12455 10.1016/j.jenvrad.2022.106944 10.1039/D2JA00234E 10.1016/j.sab.2022.106470 10.1016/j.aca.2023.340799 10.1016/j.talanta.2022.123818 10.1016/j.aca.2022.340497 10.1021/acs.analchem.2c03989 10.1016/j.aca.2022.340744 10.1111/ggr.12457 10.1039/D2JA00424K 10.1039/D2JA00278G 10.1016/j.chemgeo.2022.121078 10.1016/j.jaerosci.2022.106118 10.1016/j.atmosenv.2022.119463 10.1016/j.aca.2022.339980 10.1016/j.sab.2022.106564 10.1016/j.chemgeo.2023.121395 10.1016/j.jfca.2023.105163 10.1111/ggr.12454 10.1038/s41598-022-18349-8 10.5194/amt-16-825-2023 10.1016/j.sab.2022.106517 10.1002/gj.4773 10.1021/acs.analchem.2c01685 10.1039/D3JA00012E 10.1039/D2JA00399F 10.1111/ggr.12472 10.1016/j.talanta.2022.123516 10.1111/ggr.12492 10.1111/ggr.12469 10.1111/ggr.12499 10.5004/dwt.2022.28989 10.1111/ggr.12451 10.1134/S1061934823030152 10.1111/ggr.12485 10.1111/ggr.12484 10.1002/jms.4905 10.1039/D2JA00174H 10.1039/D2JA00071G 10.1039/D2JA00283C 10.1016/j.sab.2022.106505 10.1080/00032719.2023.2185250 10.1016/j.chemgeo.2023.121365 10.1039/D2AY00559J 10.1111/ggr.12439 10.1016/j.mne.2022.100108 10.1039/D3JA00026E 10.1039/D2JA00151A 10.1080/05704928.2022.2130350 10.1021/acs.analchem.2c04401 10.1039/D2JA00127F 10.1017/rdc.2023.18 10.1111/ggr.12442 10.1002/xrs.3303 10.1039/D3JA00015J 10.3390/separations10020093 10.1039/D2JA00163B 10.1039/D3JA00068K 10.1039/D2JA90054H 10.1002/rcm.9538 10.3390/en.16010177 10.1016/j.envres.2022.113841 10.1039/D3JA00057E 10.1039/D2JA00411A 10.1186/s12302-022-00677-1 10.1039/D2JA00213B 10.1016/j.anucene.2022.109523 10.1039/D2JA00068G 10.1007/s10812-022-01396-4 10.1016/j.jaerosci.2022.106119 10.1111/ggr.12501 10.1007/s00216-023-04641-7 10.1016/j.talanta.2022.123902 10.1016/j.jhazmat.2023.130885 10.1039/D3JA90008H 10.3390/met12111798 10.1111/ggr.12459 10.1016/j.trac.2022.116746 10.1039/D2JA00181K 10.1007/s40995-022-01376-5 10.1039/D2JA00145D 10.1111/ggr.12490 10.1364/OE.471563 10.1039/D2JA00341D 10.1007/s10337-022-04203-6 10.1016/j.jfca.2023.105330 10.1016/j.sab.2023.106689 10.1111/ggr.12493 10.1039/D2JA00348A 10.1111/ggr.12467 10.1016/j.talanta.2023.124710 10.1111/ggr.12453 10.1016/j.ijms.2022.116893 10.1039/D3RA00789H 10.1134/S1061934822110168 10.1016/j.atmosenv.2023.119700 10.1080/10739149.2022.2156535 10.1080/03067319.2022.2115896 10.1016/j.sab.2023.106643 10.1007/s13738-022-02669-7 10.1016/j.envint.2022.107607 10.3390/ijerph20010267 10.1039/D2JA00301E 10.1016/j.chemgeo.2023.121351 10.1016/j.chemgeo.2022.121185 10.1155/2022/2080600 10.1021/acs.analchem.2c00759 10.1016/j.atmosenv.2022.119504 10.3389/fchem.2022.912938 10.2351/7.0000901 10.1039/D2JA90050E 10.3389/fchem.2022.967158 10.1016/j.chemgeo.2022.121073 10.1186/s40543-022-00342-5 10.1039/D2JA00311B 10.1111/ggr.12449 10.1039/D2JA00291D 10.1039/D3JA00007A 10.1039/D2JA00135G 10.1021/acs.analchem.2c01736 10.1111/ggr.12497 10.1111/ggr.12487 10.1016/j.talanta.2022.123846 10.1016/j.talanta.2023.124390 10.1021/acs.analchem.2c04751 10.1039/D2JA00332E 10.1016/j.sab.2023.106646 10.3390/molecules28083360 10.1039/D2JA00136E |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/d3ja90044d |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1364-5544 |
EndPage | 65 |
ExternalDocumentID | 10_1039_D3JA90044D d3ja90044d |
GroupedDBID | -JG 0-7 0R~ 29J 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CS3 DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B R7E RAOCF RCNCU RPMJG RRA RRC RSCEA SKM SLF TN5 TWZ UPT VH6 YQT ~02 AAYXX AFRZK AKMSF CITATION R56 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c281t-fd3a39c12ecadc8e3e01c8acec44ee7e1a2395e3e43dc046c72349095cd29b2a3 |
ISSN | 0267-9477 |
IngestDate | Mon Jun 30 03:49:14 EDT 2025 Thu Apr 24 22:51:55 EDT 2025 Tue Jul 01 02:56:27 EDT 2025 Tue Dec 17 20:58:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-fd3a39c12ecadc8e3e01c8acec44ee7e1a2395e3e43dc046c72349095cd29b2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7128-7753 0000-0003-2125-1936 0000-0002-8556-9225 0000-0002-8045-3530 0000-0002-5122-4480 |
PQID | 2909079190 |
PQPubID | 2047501 |
PageCount | 55 |
ParticipantIDs | crossref_primary_10_1039_D3JA90044D crossref_citationtrail_10_1039_D3JA90044D rsc_primary_d3ja90044d proquest_journals_2909079190 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-03 |
PublicationDateYYYYMMDD | 2024-01-03 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of analytical atomic spectrometry |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Gelman (D3JA90044D/cit273/1) 2022; 37 Inobeme (D3JA90044D/cit51/1) 2023; 195 Zeng (D3JA90044D/cit129/1) 2022; 246 Huang (D3JA90044D/cit413/1) 2022; 37 Zhang (D3JA90044D/cit396/1) 2022; 37 Ibourki (D3JA90044D/cit96/1) 2023; 120 Magre (D3JA90044D/cit143/1) 2023; 95 Ozalp (D3JA90044D/cit330/1) 2023; 253 King (D3JA90044D/cit52/1) 2023; 25 Cesur (D3JA90044D/cit331/1) 2023; 8 Harrison (D3JA90044D/cit8/1) 2023; 298 Torregrosa (D3JA90044D/cit30/1) 2023; 252 Zhang (D3JA90044D/cit262/1) 2022; 10 Liang (D3JA90044D/cit346/1) 2023; 38 Vlastelic (D3JA90044D/cit189/1) 2022; 46 Sánchez-Cachero (D3JA90044D/cit272/1) 2023; 203 Morales-Benitez (D3JA90044D/cit302/1) 2023; 256 Dauphas (D3JA90044D/cit404/1) 2022; 37 Wang (D3JA90044D/cit367/1) 2023 Alvarez (D3JA90044D/cit199/1) 2022; 37 Hedmer (D3JA90044D/cit287/1) 2022; 66 Fabre (D3JA90044D/cit208/1) 2022; 194 Chen (D3JA90044D/cit334/1) 2022; 37 Rao (D3JA90044D/cit212/1) 2023; 38 Yang (D3JA90044D/cit338/1) 2023; 47 Fontana (D3JA90044D/cit195/1) 2023; 246 Zhou (D3JA90044D/cit361/1) 2022; 46 Meng (D3JA90044D/cit152/1) 2023; 56 Sorouraddin (D3JA90044D/cit316/1) 2023; 39 Kuznetsova (D3JA90044D/cit81/1) 2023; 28 Yokoyama (D3JA90044D/cit382/1) 2023; 47 Prufert (D3JA90044D/cit35/1) 2022; 197 Zhang (D3JA90044D/cit366/1) 2023; 38 Liu (D3JA90044D/cit392/1) 2023; 38 Amador-Mejia (D3JA90044D/cit153/1) 2023; 11 Carrier (D3JA90044D/cit269/1) 2022; 37 Dawood (D3JA90044D/cit28/1) 2022; 37 Cheng (D3JA90044D/cit18/1) 2023; 3 Khatkar (D3JA90044D/cit49/1) 2023; 195 Serbest (D3JA90044D/cit332/1) 2023 Silva (D3JA90044D/cit256/1) 2023; 47 Vigna (D3JA90044D/cit42/1) 2022; 14 Potts (D3JA90044D/cit240/1) 2022; 37 Robaina (D3JA90044D/cit311/1) 2023; 34 Krata (D3JA90044D/cit109/1) 2022; 45 Aslan (D3JA90044D/cit293/1) 2022; 307 Chen (D3JA90044D/cit322/1) 2022; 19 Luu (D3JA90044D/cit397/1) 2022; 611 Zhang (D3JA90044D/cit292/1) 2023; 78 Ishida (D3JA90044D/cit372/1) 2023; 47 Evans (D3JA90044D/cit3/1) 2023; 38 Lei (D3JA90044D/cit385/1) 2022; 43 Elhamdaoui (D3JA90044D/cit207/1) 2022; 37 Nie (D3JA90044D/cit343/1) 2023; 38 Ji (D3JA90044D/cit39/1) 2022; 170 Valskys (D3JA90044D/cit100/1) 2022; 12 Trimmel (D3JA90044D/cit108/1) 2023; 415 Liu (D3JA90044D/cit257/1) 2023; 38 Yang (D3JA90044D/cit333/1) 2023; 37 Yang (D3JA90044D/cit85/1) 2022; 37 Hartel (D3JA90044D/cit353/1) 2023; 47 Lu (D3JA90044D/cit326/1) 2023; 1247 Hoang (D3JA90044D/cit21/1) 2023; 3 Russell (D3JA90044D/cit270/1) 2023; 38 Wang (D3JA90044D/cit215/1) 2022; 610 He (D3JA90044D/cit119/1) 2022; 43 Zhang (D3JA90044D/cit390/1) 2023; 38 Mazoz (D3JA90044D/cit349/1) 2022; 46 Yu (D3JA90044D/cit400/1) 2022; 36 Wang (D3JA90044D/cit410/1) 2023; 621 Yang (D3JA90044D/cit411/1) 2022; 198 Qiu (D3JA90044D/cit358/1) 2022; 46 Liu (D3JA90044D/cit365/1) 2023; 47 Ren (D3JA90044D/cit124/1) 2022; 835 Huang (D3JA90044D/cit175/1) 2022; 214 Morgan (D3JA90044D/cit222/1) 2023; 47 Liu (D3JA90044D/cit280/1) 2023; 37 De Giacomo (D3JA90044D/cit267/1) 2022; 432 He (D3JA90044D/cit34/1) 2023; 312 Rodiouchkina (D3JA90044D/cit104/1) 2023; 1240 Jablonska-Czapla (D3JA90044D/cit138/1) 2022; 48 Zhang (D3JA90044D/cit243/1) 2023; 58 Grotti (D3JA90044D/cit271/1) 2023; 38 Zuo (D3JA90044D/cit11/1) 2023; 158 Selmani (D3JA90044D/cit206/1) 2022; 196 Rahim (D3JA90044D/cit155/1) 2023; 48 Lednev (D3JA90044D/cit170/1) 2022; 37 Chen (D3JA90044D/cit238/1) 2022; 37 Clough (D3JA90044D/cit4/1) 2023; 38 Jordan (D3JA90044D/cit266/1) 2023; 181 Yokota (D3JA90044D/cit296/1) 2023; 39 Vanhoof (D3JA90044D/cit5/1) 2023; 38 Lerner (D3JA90044D/cit72/1) 2023; 15 Liu (D3JA90044D/cit83/1) 2023; 39 Kennedy (D3JA90044D/cit183/1) 2023; 47 Zhong (D3JA90044D/cit118/1) 2022; 1681 Li (D3JA90044D/cit401/1) 2023; 257 Chatoutsidou (D3JA90044D/cit41/1) 2022; 196 Bopp (D3JA90044D/cit281/1) 2022; 414 Jegal (D3JA90044D/cit357/1) 2022; 46 Ren (D3JA90044D/cit165/1) 2022; 30 Zhang (D3JA90044D/cit75/1) 2022; 77 Zhang (D3JA90044D/cit7/1) 2023; 297 Hanlon (D3JA90044D/cit12/1) 2022; 20 Xia (D3JA90044D/cit86/1) 2023; 38 Phillips (D3JA90044D/cit229/1) 2023; 616 Anand (D3JA90044D/cit285/1) 2023; 3 Liebmann (D3JA90044D/cit216/1) 2022; 608 Zeng (D3JA90044D/cit82/1) 2022 Hu (D3JA90044D/cit288/1) 2023; 294 Liu (D3JA90044D/cit191/1) 2023; 38 Liu (D3JA90044D/cit192/1) 2023; 38 Su (D3JA90044D/cit279/1) 2023; 303 Belkouteb (D3JA90044D/cit76/1) 2023; 320 Khan (D3JA90044D/cit307/1) 2023; 185 Liu (D3JA90044D/cit130/1) 2022; 1232 Wang (D3JA90044D/cit32/1) 2023; 302 Soylak (D3JA90044D/cit306/1) 2023; 51 Espina-Martin (D3JA90044D/cit48/1) 2022; 287 dos Santos (D3JA90044D/cit327/1) 2023; 38 Ahmed (D3JA90044D/cit329/1) 2023; 118 Le (D3JA90044D/cit47/1) 2023; 170 Minaberry (D3JA90044D/cit294/1) 2022; 14 Belgrano (D3JA90044D/cit228/1) 2022; 46 Li (D3JA90044D/cit105/1) 2022; 14 Raneri (D3JA90044D/cit209/1) 2022; 194 Mortada (D3JA90044D/cit321/1) 2022; 38 Zhou (D3JA90044D/cit149/1) 2022; 155 Xu (D3JA90044D/cit167/1) 2023; 38 Nguyen (D3JA90044D/cit297/1) 2022; 12 Anderson (D3JA90044D/cit380/1) 2022; 477 Garcia-Figueroa (D3JA90044D/cit79/1) 2022; 94 Saylan (D3JA90044D/cit328/1) 2023; 115 Yue (D3JA90044D/cit156/1) 2021; 49 Rujido-Santos (D3JA90044D/cit268/1) 2022; 195 Liu (D3JA90044D/cit132/1) 2022; 37 Wu (D3JA90044D/cit180/1) 2022; 46 Bankaji (D3JA90044D/cit116/1) 2023; 10 Yang (D3JA90044D/cit260/1) 2022; 197 Gilbert (D3JA90044D/cit304/1) 2023; 1241 Delgado-Saborit (D3JA90044D/cit286/1) 2022; 289 Ma (D3JA90044D/cit354/1) 2023 Honda (D3JA90044D/cit177/1) 2022; 14 Li (D3JA90044D/cit151/1) 2023; 35 Ramezani (D3JA90044D/cit55/1) 2022; 149 Zhang (D3JA90044D/cit226/1) 2023; 38 Patel (D3JA90044D/cit99/1) 2023; 13 D’Amore (D3JA90044D/cit137/1) 2023; 13 Sarkar (D3JA90044D/cit27/1) 2023; 293 Pathak (D3JA90044D/cit255/1) 2023; 47 Rauber (D3JA90044D/cit45/1) 2023; 16 Kim (D3JA90044D/cit340/1) 2022; 13 Lv (D3JA90044D/cit342/1) 2022; 46 Zhang (D3JA90044D/cit234/1) 2022; 608 Borduchi (D3JA90044D/cit157/1) 2022; 198 Zhang (D3JA90044D/cit370/1) 2022; 37 Greda (D3JA90044D/cit131/1) 2023; 253 Zhang (D3JA90044D/cit15/1) 2022; 37 Droubi (D3JA90044D/cit364/1) 2023; 47 Patriarca (D3JA90044D/cit2/1) 2023; 38 Alard (D3JA90044D/cit359/1) 2023; 47 Shafer (D3JA90044D/cit16/1) 2022; 814 Feng (D3JA90044D/cit54/1) 2022; 40 Ni (D3JA90044D/cit308/1) 2023; 262 Li (D3JA90044D/cit202/1) 2022; 37 Feng (D3JA90044D/cit59/1) 2023; 46 Pashkova (D3JA90044D/cit244/1) 2022; 198 Michaliszyn (D3JA90044D/cit227/1) 2022; 37 Pacesila (D3JA90044D/cit178/1) 2022; 37 Wang (D3JA90044D/cit184/1) 2023; 47 Zhao (D3JA90044D/cit210/1) 2023; 38 Amico (D3JA90044D/cit53/1) 2022; 433 Greda (D3JA90044D/cit70/1) 2022; 249 Li (D3JA90044D/cit223/1) 2023; 47 Xiong (D3JA90044D/cit102/1) 2023; 28 Sliwinski (D3JA90044D/cit220/1) 2022; 46 Natori (D3JA90044D/cit10/1) 2023; 294 Wang (D3JA90044D/cit388/1) 2022; 37 Musil (D3JA90044D/cit325/1) 2023; 95 Wang (D3JA90044D/cit384/1) 2022; 37 Yuan (D3JA90044D/cit247/1) 2022; 37 Kim (D3JA90044D/cit176/1) 2022; 14 Zhou (D3JA90044D/cit174/1) 2022; 37 MacLeod (D3JA90044D/cit19/1) 2023; 169 Martins (D3JA90044D/cit74/1) 2023; 38 Wu (D3JA90044D/cit92/1) 2023; 43 Li (D3JA90044D/cit289/1) 2022; 56 Tang (D3JA90044D/cit218/1) 2022; 37 She (D3JA90044D/cit407/1) 2023; 38 Monikh (D3JA90044D/cit146/1) 2022; 17 Snow (D3JA90044D/cit22/1) 2021; 146 Li (D3JA90044D/cit299/1) 2022; 2022 Wang (D3JA90044D/cit23/1) 2023; 294 Li (D3JA90044D/cit182/1) 2023; 47 Pinto (D3JA90044D/cit319/1) 2023; 13 Carr (D3JA90044D/cit363/1) 2023; 47 Bland (D3JA90044D/cit276/1) 2022 Liebmann (D3JA90044D/cit341/1) 2023; 47 El Himri (D3JA90044D/cit136/1) 2022; 99 Shao (D3JA90044D/cit91/1) 2023; 38 Prasad (D3JA90044D/cit185/1) 2023; 47 Yan (D3JA90044D/cit214/1) 2022; 37 Kump (D3JA90044D/cit246/1) 2023 Rashid (D3JA90044D/cit43/1) 2022; 2 Su (D3JA90044D/cit200/1) 2023; 77 Weigl (D3JA90044D/cit274/1) 2022; 37 An (D3JA90044D/cit389/1) 2023; 95 Wu (D3JA90044D/cit50/1) 2023; 28 Chen (D3JA90044D/cit335/1) 2023; 44 Li (D3JA90044D/cit166/1) 2023; 448 Zhang (D3JA90044D/cit225/1) 2022; 37 Taskula (D3JA90044D/cit117/1) 2022; 12 Su (D3JA90044D/cit324/1) 2022; 94 Yang (D3JA90044D/cit387/1) 2023; 38 Gu (D3JA90044D/cit106/1) 2022; 46 Lewis (D3JA90044D/cit373/1) 2022; 614 Morimoto (D3JA90044D/cit61/1) 2023; 39 Xie (D3JA90044D/cit368/1) 2023; 484 Wang (D3JA90044D/cit141/1) 2022; 43 Vasil’eva (D3JA90044D/cit73/1) 2022; 77 Mihucz (D3JA90044D/cit101/1) 2022; 9 Bacon (D3JA90044D/cit1/1) 2023; 38 He (D3JA90044D/cit67/1) 2022; 37 Lv (D3JA90044D/cit125/1) 2022; 1231 Rush (D3JA90044D/cit402/1) 2022; 37 Logue (D3JA90044D/cit188/1) 2022; 46 Kinase (D3JA90044D/cit38/1) 2022; 290 Zhong (D3JA90044D/cit377/1) 2023; 38 Wu (D3JA90044D/cit352/1) 2023; 38 Costa (D3JA90044D/cit64/1) 2023; 1251 Shao (D3JA90044D/cit111/1) 2022; 251 Zhao (D3JA90044D/cit164/1) 2023; 51 Katsuta (D3JA90044D/cit318/1) 2023; 39 He (D3JA90044D/cit160/1) 2023; 157 Dey (D3JA90044D/cit398/1) 2023; 57 Baghaei (D3JA90044D/cit312/1) 2023; 20 Yuan (D3JA90044D/cit403/1) 2023; 620 Latty (D3JA90044D/cit261/1) 2023; 202 Fleischer (D3JA90044D/cit29/1) 2021 Al-Najjar (D3JA90044D/cit147/1) 2022 Searle-Barnes (D3JA90044D/cit258/1) 2023; 37 Tiihonen (D3JA90044D/cit94/1) 2022; 94 Sichler (D3JA90044D/cit110/1) 2022; 34 Lu (D3JA90044D/cit395/1) 2022; 37 Behbahani (D3JA90044D/cit300/1) 2022; 183 Wan (D3JA90044D/cit265/1) 2023; 56 Heikkila (D3JA90044D/cit264/1) 2022; 12 Dong (D3JA90044D/cit135/1) 2023; 1251 Li (D3JA90044D/cit237/1) 2023; 38 Cheng (D3JA90044D/cit371/1) 2022; 43 Ferreira (D3JA90044D/cit205/1) 2022; 195 Ge (D3JA90044D/cit89/1) 2022; 37 Weis (D3JA90044D/cit186/1) 2022; 46 Fang (D3JA90044D/cit169/1) 2022; 10 Aljboor (D3JA90044D/cit44/1) 2023; 38 Ghosh (D3JA90044D/cit248/1) 2023; 39 Liu (D3JA90044D/cit103/1) 2022; 46 Bai (D3JA90044D/cit107/1) 2022; 46 Huang (D3JA90044D/cit148/1) 2023; 51 Xu (D3JA90044D/cit235/1) 2022; 94 Wang (D3JA90044D/cit362/1) 2023 Guo (D3JA90044D/cit376/1) 2022; 37 Keerthi (D3JA90044D/cit88/1) 2022; 37 Djuric (D3JA90044D/cit58/1) 2022; 12 Cheng (D3JA90044D/cit20/1) 2022; 2 Wen (D3JA90044D/cit90/1) 2023; 38 Bland (D3JA90044D/cit145/1) 2022; 56 Sun (D3JA90044D/cit375/1) 2022; 43 Zhang (D3JA90044D/cit416/1) 2023; 47 Borduchi (D3JA90044D/cit158/1) 2023; 38 Xu (D3JA90044D/cit190/1) 2022; 242 Yildiz (D3JA90044D/cit63/1) 2022 Brunnbauer (D3JA90044D/cit193/1) 2023; 159 Da Silva (D3JA90044D/cit241/1) 2023; 623 Cheng (D3JA90044D/cit68/1) 2022; 1230 Zhang (D3JA90044D/cit87/1) 2023; |
References_xml | – issn: 2021 publication-title: IEEE, presented at IEEE International Instrumentation and Measurement Technology Conference (I2MTC) doi: Fleischer Widmer Statkevych Stoll Roddelkopf Thurow – volume: 197 start-page: 106527 year: 2022 ident: D3JA90044D/cit35/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106527 – volume: 38 start-page: 359 issue: 2 year: 2023 ident: D3JA90044D/cit86/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00357K – volume: 10 start-page: 242 issue: 7 year: 2022 ident: D3JA90044D/cit169/1 publication-title: Chemosensors doi: 10.3390/chemosensors10070242 – volume: 170 start-page: 106144 year: 2023 ident: D3JA90044D/cit24/1 publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2023.106144 – volume: 39 start-page: 1047 year: 2023 ident: D3JA90044D/cit61/1 publication-title: Anal. Sci. doi: 10.1007/s44211-023-00346-0 – volume: 425 start-page: 127963 year: 2022 ident: D3JA90044D/cit120/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127963 – volume: 47 start-page: 49 issue: 1 year: 2023 ident: D3JA90044D/cit256/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12474 – volume: 307 start-page: 119825 year: 2023 ident: D3JA90044D/cit290/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2023.119825 – volume: 194 start-page: 106486 year: 2022 ident: D3JA90044D/cit386/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106486 – volume: 47 start-page: 143 issue: 1 year: 2023 ident: D3JA90044D/cit337/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12468 – volume: 37 start-page: 1928 issue: 10 year: 2022 ident: D3JA90044D/cit240/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00171C – volume: 95 start-page: 594 issue: 2 year: 2023 ident: D3JA90044D/cit133/1 publication-title: Anal. Chem. – volume: 39 start-page: 1349 year: 2023 ident: D3JA90044D/cit83/1 publication-title: Anal. Sci. doi: 10.1007/s44211-023-00347-z – volume: 15 start-page: 5207 issue: 18 year: 2022 ident: D3JA90044D/cit46/1 publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-5207-2022 – volume: 608 start-page: 121041 year: 2022 ident: D3JA90044D/cit216/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2022.121041 – volume: 20 start-page: 339 issue: 2 year: 2023 ident: D3JA90044D/cit312/1 publication-title: J. Iran. Chem. Soc. doi: 10.1007/s13738-022-02662-0 – volume: 180 start-page: 113787 year: 2022 ident: D3JA90044D/cit298/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2022.113787 – volume: 43 start-page: 236 issue: 3 year: 2022 ident: D3JA90044D/cit371/1 publication-title: At. Spectrosc. – volume: 1251 start-page: 341006 year: 2023 ident: D3JA90044D/cit135/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2023.341006 – volume: 381 start-page: 121801 year: 2023 ident: D3JA90044D/cit121/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.121801 – volume: 37 start-page: 1642 issue: 8 year: 2022 ident: D3JA90044D/cit194/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00101B – volume: 201 start-page: 106616 year: 2023 ident: D3JA90044D/cit126/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2023.106616 – volume: 615 start-page: 121213 year: 2023 ident: D3JA90044D/cit236/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2022.121213 – volume: 38 start-page: 603 issue: 3 year: 2023 ident: D3JA90044D/cit391/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00022B – volume: 287 start-page: 119285 year: 2022 ident: D3JA90044D/cit48/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119285 – volume: 39 start-page: 1531 issue: 9 year: 2023 ident: D3JA90044D/cit248/1 publication-title: Anal. Sci. doi: 10.1007/s44211-023-00367-9 – volume: 37 start-page: 2537 issue: 12 year: 2022 ident: D3JA90044D/cit207/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00120A – volume: 46 start-page: 535 issue: 3 year: 2022 ident: D3JA90044D/cit103/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12430 – volume: 14 start-page: 12370 issue: 19 year: 2022 ident: D3JA90044D/cit176/1 publication-title: Sustainability doi: 10.3390/su141912370 – volume: 37 start-page: 2176 issue: 10 year: 2022 ident: D3JA90044D/cit202/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00206J – volume: 39 start-page: 23 issue: 1 year: 2023 ident: D3JA90044D/cit316/1 publication-title: Anal. Sci. doi: 10.1007/s44211-022-00194-4 – volume: 13 start-page: 511 issue: 2 year: 2023 ident: D3JA90044D/cit137/1 publication-title: Life doi: 10.3390/life13020511 – volume: 37 start-page: 2480 issue: 11 year: 2022 ident: D3JA90044D/cit85/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00148A – volume: 13 year: 2022 ident: D3JA90044D/cit134/1 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2022.891273 – volume: 38 start-page: 827 issue: 4 year: 2023 ident: D3JA90044D/cit275/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00403H – volume: 185 start-page: 108200 year: 2023 ident: D3JA90044D/cit307/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2022.108200 – volume: 47 start-page: 629 issue: 3 year: 2023 ident: D3JA90044D/cit185/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12483 – volume: 99 start-page: 100684 issue: 10 year: 2022 ident: D3JA90044D/cit136/1 publication-title: J. Indian Chem. Soc. doi: 10.1016/j.jics.2022.100684 – volume: 37 start-page: 2282 issue: 11 year: 2022 ident: D3JA90044D/cit273/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00215A – volume: 484 start-page: 116995 year: 2023 ident: D3JA90044D/cit368/1 publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2022.116995 – volume: 38 start-page: 974 issue: 5 year: 2023 ident: D3JA90044D/cit3/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA90013D – volume: 332 start-page: 111202 year: 2022 ident: D3JA90044D/cit277/1 publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2022.111202 – volume: 38 start-page: 1043 issue: 5 year: 2023 ident: D3JA90044D/cit408/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00010A – volume: 46 start-page: 2200575 issue: 4 year: 2023 ident: D3JA90044D/cit59/1 publication-title: J. Sep. Sci. doi: 10.1002/jssc.202200575 – volume: 194 start-page: 106478 year: 2022 ident: D3JA90044D/cit213/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106478 – volume: 37 start-page: 1862 issue: 9 year: 2022 ident: D3JA90044D/cit214/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00010E – volume: 38 start-page: 1192 issue: 6 year: 2023 ident: D3JA90044D/cit412/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00091E – volume: 1247 start-page: 340859 year: 2023 ident: D3JA90044D/cit326/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2023.340859 – volume: 78 start-page: 303 issue: 3 year: 2023 ident: D3JA90044D/cit317/1 publication-title: J. Anal. Chem. doi: 10.1134/S1061934823030073 – volume: 38 start-page: 1371 issue: 11 year: 2022 ident: D3JA90044D/cit77/1 publication-title: Anal. Sci. doi: 10.1007/s44211-022-00180-w – volume: 51 start-page: 100176 issue: 2 year: 2023 ident: D3JA90044D/cit164/1 publication-title: Chin. J. Anal. Chem. doi: 10.1016/j.cjac.2022.100176 – volume: 95 start-page: 3694 issue: 7 year: 2023 ident: D3JA90044D/cit325/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04660 – volume: 94 start-page: 17514 issue: 50 year: 2022 ident: D3JA90044D/cit69/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03784 – start-page: 1 year: 2022 ident: D3JA90044D/cit147/1 publication-title: Appl. Spectrosc. Rev. – volume: 56 start-page: 732 issue: 8 year: 2022 ident: D3JA90044D/cit25/1 publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2022.2070055 – volume: 37 start-page: 2286 issue: 11 year: 2022 ident: D3JA90044D/cit224/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00266C – volume: 12 start-page: 15186 year: 2022 ident: D3JA90044D/cit58/1 publication-title: Sci. Rep. doi: 10.1038/s41598-022-19600-y – volume: 47 start-page: 199 issue: 1 year: 2023 ident: D3JA90044D/cit182/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12471 – volume: 28 start-page: 1223 issue: 3 year: 2023 ident: D3JA90044D/cit102/1 publication-title: Molecules doi: 10.3390/molecules28031223 – volume: 37 start-page: e9533 issue: 15 year: 2023 ident: D3JA90044D/cit258/1 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9533 – volume: 38 start-page: 638 issue: 3 year: 2023 ident: D3JA90044D/cit91/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00404F – volume: 78 start-page: 324 issue: 3 year: 2023 ident: D3JA90044D/cit115/1 publication-title: J. Anal. Chem. doi: 10.1134/S1061934823030061 – volume: 67 start-page: 259 issue: 3 year: 2022 ident: D3JA90044D/cit112/1 publication-title: J. Geosci. – volume: 38 start-page: 1213 issue: 6 year: 2023 ident: D3JA90044D/cit66/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00083D – volume: 47 start-page: 125 issue: 1 year: 2023 ident: D3JA90044D/cit239/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12463 – volume: 46 start-page: 701 issue: 4 year: 2022 ident: D3JA90044D/cit349/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12444 – volume: 149 start-page: 116566 year: 2022 ident: D3JA90044D/cit55/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2022.116566 – volume: 197 start-page: 106541 year: 2022 ident: D3JA90044D/cit260/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106541 – volume: 37 start-page: 1981 issue: 10 year: 2022 ident: D3JA90044D/cit198/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00147K – volume: 89 start-page: 944 issue: 5 year: 2022 ident: D3JA90044D/cit197/1 publication-title: J. Appl. Spectrosc. doi: 10.1007/s10812-022-01452-z – volume: 195 start-page: 452 issue: 4 year: 2023 ident: D3JA90044D/cit51/1 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-023-11058-3 – volume: 37 start-page: 2510 issue: 12 year: 2022 ident: D3JA90044D/cit89/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00221C – volume: 46 start-page: 465 issue: 3 year: 2022 ident: D3JA90044D/cit217/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12447 – volume: 37 start-page: 2470 issue: 11 year: 2022 ident: D3JA90044D/cit376/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00250G – volume: 344 start-page: 40 year: 2023 ident: D3JA90044D/cit409/1 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2023.01.014 – volume: 37 start-page: e9508 year: 2023 ident: D3JA90044D/cit369/1 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9508 – volume: 432 start-page: 107675 year: 2022 ident: D3JA90044D/cit267/1 publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/j.jvolgeores.2022.107675 – volume: 43 start-page: 364 issue: 5 year: 2022 ident: D3JA90044D/cit141/1 publication-title: At. Spectrosc. doi: 10.46770/AS.2022.235 – start-page: 1 year: 2022 ident: D3JA90044D/cit56/1 publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408347.2022.2111655 – volume: 415 start-page: 1159 issue: 6 year: 2023 ident: D3JA90044D/cit108/1 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-022-04497-3 – volume: 14 start-page: 101523 issue: 2 year: 2023 ident: D3JA90044D/cit233/1 publication-title: Geosci. Front. doi: 10.1016/j.gsf.2022.101523 – volume: 14 start-page: 3944 issue: 40 year: 2022 ident: D3JA90044D/cit171/1 publication-title: Anal. Methods doi: 10.1039/D2AY00593J – volume: 56 start-page: 15584 issue: 22 year: 2022 ident: D3JA90044D/cit145/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c03737 – volume: 10 start-page: 40 issue: 1 year: 2023 ident: D3JA90044D/cit116/1 publication-title: Separations doi: 10.3390/separations10010040 – volume: 14 start-page: 2732 issue: 28 year: 2022 ident: D3JA90044D/cit177/1 publication-title: Anal. Methods doi: 10.1039/D2AY00604A – volume: 618 start-page: 121221 year: 2023 ident: D3JA90044D/cit259/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2022.121221 – volume: 2 start-page: 1263 issue: 6 year: 2022 ident: D3JA90044D/cit20/1 publication-title: Environ. Sci.: Atmos. – volume: 294 start-page: 119522 year: 2023 ident: D3JA90044D/cit23/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119522 – volume: 46 start-page: 621 issue: 4 year: 2022 ident: D3JA90044D/cit228/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12452 – volume: 48 start-page: 8089 year: 2023 ident: D3JA90044D/cit155/1 publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-022-07465-2 – volume-title: IEEE, presented at IEEE International Instrumentation and Measurement Technology Conference (I2MTC) year: 2021 ident: D3JA90044D/cit29/1 – volume: 415 start-page: 2831 issue: 14 year: 2023 ident: D3JA90044D/cit113/1 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-023-04695-7 – volume: 38 start-page: 1489 issue: 12 year: 2022 ident: D3JA90044D/cit321/1 publication-title: Anal. Sci. doi: 10.1007/s44211-022-00181-9 – volume: 616 start-page: 121236 year: 2023 ident: D3JA90044D/cit229/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2022.121236 – volume: 16 start-page: 955 issue: 4 year: 2023 ident: D3JA90044D/cit278/1 publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-16-955-2023 – volume: 203 start-page: 106665 year: 2023 ident: D3JA90044D/cit272/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2023.106665 – volume: 196 start-page: 106518 year: 2022 ident: D3JA90044D/cit245/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106518 – volume: 37 start-page: e9494 issue: 9 year: 2023 ident: D3JA90044D/cit280/1 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9494 – volume: 627 start-page: 121457 year: 2023 ident: D3JA90044D/cit415/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2023.121457 – volume: 38 start-page: 1461 issue: 7 year: 2023 ident: D3JA90044D/cit390/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00059A – volume: 47 start-page: 91 issue: 1 year: 2023 ident: D3JA90044D/cit222/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12464 – volume: 13 start-page: 152 issue: 2 year: 2023 ident: D3JA90044D/cit319/1 publication-title: Membranes doi: 10.3390/membranes13020152 – volume: 38 start-page: 1016 issue: 5 year: 2023 ident: D3JA90044D/cit237/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00009E – volume: 36 start-page: e9383 issue: 22 year: 2022 ident: D3JA90044D/cit400/1 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9383 – volume: 94 start-page: 13995 issue: 40 year: 2022 ident: D3JA90044D/cit79/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03280 – volume: 38 start-page: 1065 issue: 5 year: 2023 ident: D3JA90044D/cit343/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00394E – volume: 47 start-page: 509 issue: 3 year: 2023 ident: D3JA90044D/cit351/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12495 – volume: 1231 start-page: 340444 year: 2022 ident: D3JA90044D/cit125/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340444 – volume: 9 start-page: 101625 year: 2022 ident: D3JA90044D/cit309/1 publication-title: MethodsX doi: 10.1016/j.mex.2022.101625 – volume: 10 start-page: 312 issue: 8 year: 2022 ident: D3JA90044D/cit161/1 publication-title: Chemosensors doi: 10.3390/chemosensors10080312 – start-page: 1 year: 2023 ident: D3JA90044D/cit332/1 publication-title: Anal. Lett. doi: 10.1080/00032719.2023.2212092 – volume: 236 start-page: 106979 year: 2022 ident: D3JA90044D/cit204/1 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2022.106979 – volume: 47 start-page: 373 issue: 2 year: 2023 ident: D3JA90044D/cit183/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12477 – volume: 256 start-page: 124262 year: 2023 ident: D3JA90044D/cit302/1 publication-title: Talanta doi: 10.1016/j.talanta.2023.124262 – volume: 196 start-page: 106523 year: 2022 ident: D3JA90044D/cit206/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106523 – volume: 253 start-page: 124072 year: 2023 ident: D3JA90044D/cit131/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.124072 – volume: 37 start-page: 2330 issue: 11 year: 2022 ident: D3JA90044D/cit203/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00188H – volume: 38 start-page: 716 issue: 3 year: 2023 ident: D3JA90044D/cit62/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00314G – volume: 56 start-page: 980 issue: 11 year: 2022 ident: D3JA90044D/cit289/1 publication-title: Aerosol Sci. Technol. doi: 10.1080/02786826.2022.2114311 – volume: 194 start-page: 106482 year: 2022 ident: D3JA90044D/cit209/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106482 – volume: 95 start-page: 6923 issue: 17 year: 2023 ident: D3JA90044D/cit143/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c00207 – volume: 297 start-page: 119597 year: 2023 ident: D3JA90044D/cit7/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2023.119597 – volume: 77 start-page: 1526 issue: 12 year: 2022 ident: D3JA90044D/cit73/1 publication-title: J. Anal. Chem. doi: 10.1134/S1061934822120152 – volume: 8 start-page: e202203887 issue: 19 year: 2023 ident: D3JA90044D/cit331/1 publication-title: ChemistrySelect doi: 10.1002/slct.202203887 – volume: 38 start-page: 1339 issue: 7 year: 2023 ident: D3JA90044D/cit4/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA90022C – volume: 14 start-page: 2920 issue: 30 year: 2022 ident: D3JA90044D/cit294/1 publication-title: Anal. Methods doi: 10.1039/D2AY00804A – volume: 195 start-page: 106504 year: 2022 ident: D3JA90044D/cit205/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106504 – volume: 47 start-page: 595 issue: 3 year: 2023 ident: D3JA90044D/cit365/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12486 – volume: 1251 start-page: 340709 year: 2023 ident: D3JA90044D/cit64/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340709 – volume: 147 start-page: 5130 issue: 22 year: 2022 ident: D3JA90044D/cit93/1 publication-title: Analyst doi: 10.1039/D2AN01290A – volume: 30 start-page: 37470 issue: 21 year: 2022 ident: D3JA90044D/cit162/1 publication-title: Opt. Express doi: 10.1364/OE.470782 – volume: 77 start-page: 140 issue: 2 year: 2023 ident: D3JA90044D/cit200/1 publication-title: Appl. Spectrosc. doi: 10.1177/00037028221141102 – volume: 200 start-page: 111614 year: 2022 ident: D3JA90044D/cit33/1 publication-title: Measurement doi: 10.1016/j.measurement.2022.111614 – volume: 37 start-page: 1824 issue: 9 year: 2022 ident: D3JA90044D/cit250/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00103A – volume: 190 start-page: 108622 year: 2023 ident: D3JA90044D/cit123/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2023.108622 – volume: 37 start-page: 2351 issue: 11 year: 2022 ident: D3JA90044D/cit249/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00238H – volume: 47 start-page: 337 issue: 2 year: 2023 ident: D3JA90044D/cit364/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12488 – volume: 3 start-page: 268 issue: 2 year: 2023 ident: D3JA90044D/cit21/1 publication-title: Environ. Sci.: Atmos. – volume: 37 start-page: 2442 issue: 11 year: 2022 ident: D3JA90044D/cit227/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00243D – volume: 28 start-page: 2549 issue: 6 year: 2023 ident: D3JA90044D/cit305/1 publication-title: Molecules doi: 10.3390/molecules28062549 – volume: 13 start-page: 1582 issue: 10 year: 2023 ident: D3JA90044D/cit84/1 publication-title: Nanomaterials doi: 10.3390/nano13101582 – volume: 414 start-page: 6177 issue: 20 year: 2022 ident: D3JA90044D/cit281/1 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-022-04184-3 – volume: 38 start-page: 950 issue: 4 year: 2023 ident: D3JA90044D/cit378/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00047H – volume: 77 start-page: 1155 issue: 9 year: 2022 ident: D3JA90044D/cit127/1 publication-title: J. Anal. Chem. doi: 10.1134/S1061934822090076 – volume: 57 start-page: 73 issue: 2 year: 2023 ident: D3JA90044D/cit398/1 publication-title: Geochem. J. doi: 10.2343/geochemj.GJ23006 – volume: 37 start-page: 2410 issue: 11 year: 2022 ident: D3JA90044D/cit388/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00170E – year: 2022 ident: D3JA90044D/cit63/1 publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2022.2118591 – volume: 10 start-page: 259 issue: 7 year: 2022 ident: D3JA90044D/cit262/1 publication-title: Chemosensors doi: 10.3390/chemosensors10070259 – volume: 46 start-page: 547 issue: 3 year: 2022 ident: D3JA90044D/cit360/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12443 – volume: 246 start-page: 107160 year: 2023 ident: D3JA90044D/cit195/1 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2023.107160 – volume: 94 start-page: 11739 issue: 34 year: 2022 ident: D3JA90044D/cit94/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c01490 – volume: 199 start-page: 106570 year: 2023 ident: D3JA90044D/cit36/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106570 – volume: 433 start-page: 128823 year: 2022 ident: D3JA90044D/cit53/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128823 – volume: 28 start-page: 3601 issue: 8 year: 2023 ident: D3JA90044D/cit50/1 publication-title: Molecules doi: 10.3390/molecules28083601 – volume: 37 start-page: 2111 issue: 10 year: 2022 ident: D3JA90044D/cit374/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00150K – volume: 77 start-page: 261 year: 2023 ident: D3JA90044D/cit263/1 publication-title: Appl. Spectrosc. doi: 10.1177/00037028221146804 – volume: 45 start-page: 3624 issue: 18 year: 2022 ident: D3JA90044D/cit109/1 publication-title: J. Sep. Sci. doi: 10.1002/jssc.202200347 – volume: 242 start-page: 107090 year: 2022 ident: D3JA90044D/cit190/1 publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2022.107090 – volume: 37 start-page: 2599 issue: 12 year: 2022 ident: D3JA90044D/cit218/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00233G – volume: 157 start-page: 108714 year: 2023 ident: D3JA90044D/cit160/1 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.108714 – volume: 170 start-page: 106160 year: 2023 ident: D3JA90044D/cit47/1 publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2023.106160 – volume: 37 start-page: 61 year: 2012 ident: D3JA90044D/cit122/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2012.03.013 – volume: 66 start-page: 878 issue: 7 year: 2022 ident: D3JA90044D/cit287/1 publication-title: Ann. Work Exposures Health doi: 10.1093/annweh/wxac015 – volume: 159 start-page: 116859 year: 2023 ident: D3JA90044D/cit193/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2022.116859 – volume: 37 start-page: 1902 issue: 9 year: 2022 ident: D3JA90044D/cit402/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00194B – volume: 115 start-page: 104965 year: 2023 ident: D3JA90044D/cit328/1 publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2022.104965 – volume: 47 start-page: 311 issue: 2 year: 2023 ident: D3JA90044D/cit345/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12480 – volume: 197 start-page: 106532 year: 2022 ident: D3JA90044D/cit399/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106532 – volume: 37 start-page: 2713 issue: 12 year: 2022 ident: D3JA90044D/cit15/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00242F – volume: 202 start-page: 106648 year: 2023 ident: D3JA90044D/cit261/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2023.106648 – volume: 37 start-page: 2589 issue: 12 year: 2022 ident: D3JA90044D/cit383/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00197G – volume: 37 start-page: 2401 issue: 11 year: 2022 ident: D3JA90044D/cit254/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00208F – year: 2023 ident: D3JA90044D/cit57/1 publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408347.2023.2197495 – volume: 46 start-page: 589 issue: 4 year: 2022 ident: D3JA90044D/cit219/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12458 – volume: 477 start-page: 116849 year: 2022 ident: D3JA90044D/cit380/1 publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2022.116849 – volume: 37 start-page: 2517 issue: 12 year: 2022 ident: D3JA90044D/cit65/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00245K – volume: 158 start-page: 116866 year: 2023 ident: D3JA90044D/cit11/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2022.116866 – volume: 195 start-page: 325 issue: 2 year: 2023 ident: D3JA90044D/cit49/1 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-022-10888-x – volume: 47 start-page: 535 issue: 3 year: 2023 ident: D3JA90044D/cit338/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12491 – volume: 77 start-page: 131 issue: 2 year: 2023 ident: D3JA90044D/cit128/1 publication-title: Appl. Spectrosc. doi: 10.1177/00037028221141709 – year: 2023 ident: D3JA90044D/cit246/1 publication-title: X-Ray Spectrom. doi: 10.1002/xrs.3352 – volume: 47 start-page: 155 issue: 1 year: 2023 ident: D3JA90044D/cit114/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12470 – volume: 46 start-page: 603 issue: 4 year: 2022 ident: D3JA90044D/cit232/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12446 – volume: 47 start-page: 415 issue: 2 year: 2023 ident: D3JA90044D/cit382/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12479 – volume: 37 start-page: 2392 issue: 11 year: 2022 ident: D3JA90044D/cit247/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00274D – volume: 43 start-page: 246 issue: 3 year: 2022 ident: D3JA90044D/cit119/1 publication-title: At. Spectrosc. – volume: 312 start-page: 137206 year: 2023 ident: D3JA90044D/cit34/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.137206 – volume: 38 start-page: 629 issue: 3 year: 2023 ident: D3JA90044D/cit406/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00412G – volume: 320 start-page: 138053 year: 2023 ident: D3JA90044D/cit76/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.138053 – volume: 12 start-page: 19741 issue: 31 year: 2022 ident: D3JA90044D/cit297/1 publication-title: RSC Adv. doi: 10.1039/D2RA02980D – volume: 40 start-page: 953 issue: 11 year: 2022 ident: D3JA90044D/cit54/1 publication-title: Chin. J. Chromatogr. – volume: 37 start-page: 1869 issue: 9 year: 2022 ident: D3JA90044D/cit384/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00084A – volume: 253 start-page: 124082 year: 2023 ident: D3JA90044D/cit330/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.124082 – volume: 1681 start-page: 463458 year: 2022 ident: D3JA90044D/cit118/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2022.463458 – volume: 49 start-page: 1410 issue: 8 year: 2021 ident: D3JA90044D/cit156/1 publication-title: Chin. J. Anal. Chem. doi: 10.19756/j.issn.0253-3820.211067 – volume: 12 start-page: 895 issue: 4 year: 2023 ident: D3JA90044D/cit95/1 publication-title: Foods doi: 10.3390/foods12040895 – volume: 38 start-page: 10 issue: 1 year: 2023 ident: D3JA90044D/cit1/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA90055F – volume: 38 start-page: 437 issue: 2 year: 2023 ident: D3JA90044D/cit387/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00340F – volume: 70 start-page: 10349 issue: 33 year: 2022 ident: D3JA90044D/cit139/1 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.2c02782 – volume: 47 start-page: 683 issue: 3 year: 2023 ident: D3JA90044D/cit184/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12496 – year: 2022 ident: D3JA90044D/cit276/1 publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.2c00835 – volume: 37 start-page: 2529 issue: 12 year: 2022 ident: D3JA90044D/cit238/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00248E – volume: 307 start-page: 135661 year: 2022 ident: D3JA90044D/cit293/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135661 – volume: 38 start-page: 142 issue: 1 year: 2023 ident: D3JA90044D/cit407/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00339B – volume: 294 start-page: 119493 year: 2023 ident: D3JA90044D/cit14/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119493 – volume: 37 start-page: 1618 issue: 8 year: 2022 ident: D3JA90044D/cit379/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00082B – volume: 37 start-page: 2556 issue: 12 year: 2022 ident: D3JA90044D/cit142/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00244B – volume: 46 start-page: 645 issue: 4 year: 2022 ident: D3JA90044D/cit357/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12456 – volume: 183 start-page: 107951 year: 2022 ident: D3JA90044D/cit300/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2022.107951 – volume: 12 start-page: 1326 issue: 10 year: 2022 ident: D3JA90044D/cit100/1 publication-title: Minerals doi: 10.3390/min12101326 – volume: 480 start-page: 116897 year: 2022 ident: D3JA90044D/cit381/1 publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2022.116897 – volume: 37 start-page: 2300 issue: 11 year: 2022 ident: D3JA90044D/cit334/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00002D – volume: 38 start-page: 204 issue: 1 year: 2023 ident: D3JA90044D/cit344/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00362G – volume: 56 start-page: 62 year: 2023 ident: D3JA90044D/cit265/1 publication-title: Spectrosc. Lett. doi: 10.1080/00387010.2023.2165505 – volume: 37 start-page: 2089 issue: 10 year: 2022 ident: D3JA90044D/cit283/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00231K – volume: 47 start-page: 185 issue: 1 year: 2023 ident: D3JA90044D/cit255/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12476 – volume: 3 start-page: 842 issue: 5 year: 2023 ident: D3JA90044D/cit285/1 publication-title: Environ. Sci.: Atmos. – volume: 38 start-page: 315 issue: 2 year: 2023 ident: D3JA90044D/cit327/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00273F – volume: 47 start-page: 437 issue: 2 year: 2023 ident: D3JA90044D/cit359/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12473 – volume: 835 start-page: 155460 year: 2022 ident: D3JA90044D/cit124/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155460 – volume: 11 start-page: 193 issue: 3 year: 2023 ident: D3JA90044D/cit153/1 publication-title: Chemosensors doi: 10.3390/chemosensors11030193 – year: 2023 ident: D3JA90044D/cit354/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12513 – volume: 37 start-page: 1894 issue: 9 year: 2022 ident: D3JA90044D/cit67/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00137C – volume: 46 start-page: 519 issue: 3 year: 2022 ident: D3JA90044D/cit189/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12428 – volume: 2 start-page: 1338 issue: 6 year: 2022 ident: D3JA90044D/cit43/1 publication-title: Environ. Sci.: Atmos. – volume: 233 start-page: 428 issue: 11 year: 2022 ident: D3JA90044D/cit320/1 publication-title: Water, Air, Soil Pollut. doi: 10.1007/s11270-022-05898-x – volume: 37 start-page: 2165 issue: 10 year: 2022 ident: D3JA90044D/cit413/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00189F – volume: 38 start-page: 792 issue: 4 year: 2023 ident: D3JA90044D/cit210/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00360K – volume: 38 start-page: 1478 issue: 7 year: 2023 ident: D3JA90044D/cit350/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00405D – volume: 814 start-page: 152657 year: 2022 ident: D3JA90044D/cit16/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152657 – volume: 15 start-page: 1594 issue: 12 year: 2023 ident: D3JA90044D/cit72/1 publication-title: Anal. Methods doi: 10.1039/D3AY00057E – volume: 46 start-page: 451 issue: 3 year: 2022 ident: D3JA90044D/cit342/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12440 – volume: 198 start-page: 106549 year: 2022 ident: D3JA90044D/cit244/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106549 – volume: 28 start-page: 994 issue: 3 year: 2023 ident: D3JA90044D/cit81/1 publication-title: Molecules doi: 10.3390/molecules28030994 – volume: 51 start-page: 1729 issue: 7 year: 2023 ident: D3JA90044D/cit148/1 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2022.3231985 – volume: 94 start-page: 16746 issue: 48 year: 2022 ident: D3JA90044D/cit405/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03420 – volume: 147 start-page: 3628 issue: 16 year: 2022 ident: D3JA90044D/cit173/1 publication-title: Analyst doi: 10.1039/D2AN00752E – volume: 38 start-page: 656 issue: 3 year: 2023 ident: D3JA90044D/cit392/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00371F – volume: 38 start-page: 1730 issue: 9 year: 2023 ident: D3JA90044D/cit5/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA90026F – volume: 14 start-page: 4219 issue: 42 year: 2022 ident: D3JA90044D/cit163/1 publication-title: Anal. Methods doi: 10.1039/D2AY01424F – volume: 155 start-page: 108386 year: 2022 ident: D3JA90044D/cit149/1 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.108386 – volume: 44 start-page: 14 issue: 1 year: 2023 ident: D3JA90044D/cit335/1 publication-title: At. Spectrosc. doi: 10.46770/AS.2022.186 – volume: 47 start-page: 609 issue: 3 year: 2023 ident: D3JA90044D/cit347/1 publication-title: Geostand. Geoanal.Res. doi: 10.1111/ggr.12500 – volume: 317 start-page: 120761 year: 2023 ident: D3JA90044D/cit31/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.120761 – volume: 182 start-page: 107927 year: 2022 ident: D3JA90044D/cit323/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2022.107927 – volume: 39 start-page: 589 issue: 4 year: 2023 ident: D3JA90044D/cit296/1 publication-title: Anal. Sci. doi: 10.1007/s44211-023-00277-w – volume: 246 start-page: 123501 year: 2022 ident: D3JA90044D/cit310/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.123501 – volume: 37 start-page: 2637 issue: 12 year: 2022 ident: D3JA90044D/cit370/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00270A – volume: 37 start-page: 1611 issue: 8 year: 2022 ident: D3JA90044D/cit132/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00106C – volume: 146 start-page: 106264 year: 2021 ident: D3JA90044D/cit22/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106264 – volume: 39 start-page: 785 issue: 6 year: 2023 ident: D3JA90044D/cit318/1 publication-title: Anal. Sci. doi: 10.1007/s44211-023-00327-3 – volume: 56 start-page: 13076 issue: 18 year: 2022 ident: D3JA90044D/cit60/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c02908 – volume: 289 start-page: 119301 year: 2022 ident: D3JA90044D/cit286/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119301 – volume: 303 start-page: 119759 year: 2023 ident: D3JA90044D/cit279/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2023.119759 – volume: 37 start-page: 2625 issue: 12 year: 2022 ident: D3JA90044D/cit88/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00202G – volume: 46 start-page: 753 issue: 4 year: 2022 ident: D3JA90044D/cit186/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12466 – volume: 12 start-page: 3307 issue: 19 year: 2022 ident: D3JA90044D/cit117/1 publication-title: Nanomaterials doi: 10.3390/nano12193307 – volume: 38 start-page: 369 issue: 2 year: 2023 ident: D3JA90044D/cit230/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00317A – volume: 1230 start-page: 340378 year: 2022 ident: D3JA90044D/cit68/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340378 – volume: 17 start-page: 1926 issue: 9 year: 2022 ident: D3JA90044D/cit146/1 publication-title: Nat. Protoc. doi: 10.1038/s41596-022-00701-x – volume: 38 start-page: 1442 issue: 7 year: 2023 ident: D3JA90044D/cit167/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00095H – volume: 56 start-page: 517 issue: 3 year: 2023 ident: D3JA90044D/cit303/1 publication-title: Anal. Lett. doi: 10.1080/00032719.2022.2092632 – volume: 36 start-page: e9404 issue: 24 year: 2022 ident: D3JA90044D/cit282/1 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9404 – volume: 198 start-page: 106561 year: 2022 ident: D3JA90044D/cit157/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106561 – volume: 94 start-page: 10745 issue: 30 year: 2022 ident: D3JA90044D/cit144/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c01379 – volume: 38 start-page: 1285 issue: 6 year: 2023 ident: D3JA90044D/cit394/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00407K – volume: 30 start-page: 44671 issue: 15 year: 2023 ident: D3JA90044D/cit87/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-25513-8 – volume: 47 start-page: 243 issue: 2 year: 2023 ident: D3JA90044D/cit231/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12482 – volume: 298 start-page: 119607 year: 2023 ident: D3JA90044D/cit8/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2023.119607 – volume: 290 start-page: 119360 year: 2022 ident: D3JA90044D/cit38/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119360 – volume: 38 start-page: 693 issue: 3 year: 2023 ident: D3JA90044D/cit212/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00370H – volume: 37 start-page: 2701 issue: 12 year: 2022 ident: D3JA90044D/cit28/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00251E – volume: 9 start-page: 14 issue: 36 year: 2022 ident: D3JA90044D/cit101/1 publication-title: Braz. J. Anal. Chem. doi: 10.30744/brjac.2179-3425.RV-119-2021 – volume: 608 start-page: 121016 year: 2022 ident: D3JA90044D/cit234/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2022.121016 – volume: 294 start-page: 119486 year: 2023 ident: D3JA90044D/cit288/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119486 – volume: 47 start-page: 7 issue: 1 year: 2023 ident: D3JA90044D/cit181/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12460 – volume: 249 start-page: 123694 year: 2022 ident: D3JA90044D/cit70/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.123694 – volume: 47 start-page: 267 issue: 2 year: 2023 ident: D3JA90044D/cit221/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12478 – volume: 46 start-page: 811 issue: 4 year: 2022 ident: D3JA90044D/cit106/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12455 – volume: 251 start-page: 106944 year: 2022 ident: D3JA90044D/cit111/1 publication-title: J. Environ. Radioact. doi: 10.1016/j.jenvrad.2022.106944 – volume: 37 start-page: 2563 issue: 12 year: 2022 ident: D3JA90044D/cit170/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00234E – volume: 194 start-page: 106470 year: 2022 ident: D3JA90044D/cit208/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106470 – volume: 1241 start-page: 340799 year: 2023 ident: D3JA90044D/cit304/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2023.340799 – volume: 252 start-page: 123818 year: 2023 ident: D3JA90044D/cit30/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.123818 – volume: 1232 start-page: 340497 year: 2022 ident: D3JA90044D/cit130/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340497 – volume: 95 start-page: 2140 issue: 4 year: 2023 ident: D3JA90044D/cit389/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03989 – volume: 1240 start-page: 340744 year: 2023 ident: D3JA90044D/cit104/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.340744 – volume: 34 start-page: 949 issue: 7 year: 2023 ident: D3JA90044D/cit311/1 publication-title: J. Braz. Chem. Soc. – volume: 46 start-page: 735 issue: 4 year: 2022 ident: D3JA90044D/cit361/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12457 – volume: 38 start-page: 1057 issue: 5 year: 2023 ident: D3JA90044D/cit271/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00424K – volume: 38 start-page: 121 issue: 1 year: 2023 ident: D3JA90044D/cit150/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00278G – volume: 611 start-page: 121078 year: 2022 ident: D3JA90044D/cit397/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2022.121078 – volume: 169 start-page: 106118 year: 2023 ident: D3JA90044D/cit13/1 publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2022.106118 – volume: 293 start-page: 119463 year: 2023 ident: D3JA90044D/cit27/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119463 – volume: 1215 start-page: 339980 year: 2022 ident: D3JA90044D/cit71/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.339980 – volume: 198 start-page: 106564 year: 2022 ident: D3JA90044D/cit411/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106564 – volume: 623 start-page: 121395 year: 2023 ident: D3JA90044D/cit241/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2023.121395 – volume: 118 start-page: 105163 year: 2023 ident: D3JA90044D/cit329/1 publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2023.105163 – volume: 46 start-page: 851 issue: 4 year: 2022 ident: D3JA90044D/cit251/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12454 – volume: 12 start-page: 14657 issue: 1 year: 2022 ident: D3JA90044D/cit264/1 publication-title: Sci. Rep. doi: 10.1038/s41598-022-18349-8 – volume: 16 start-page: 825 issue: 3 year: 2023 ident: D3JA90044D/cit45/1 publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-16-825-2023 – volume: 196 start-page: 106517 year: 2022 ident: D3JA90044D/cit41/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106517 – volume: 58 start-page: 3220 year: 2023 ident: D3JA90044D/cit252/1 publication-title: Geol. J. doi: 10.1002/gj.4773 – volume: 94 start-page: 9835 issue: 27 year: 2022 ident: D3JA90044D/cit17/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c01685 – volume: 38 start-page: 1146 issue: 5 year: 2023 ident: D3JA90044D/cit191/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00012E – volume: 38 start-page: 1155 issue: 5 year: 2023 ident: D3JA90044D/cit158/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00399F – volume: 47 start-page: 169 issue: 1 year: 2023 ident: D3JA90044D/cit416/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12472 – volume: 246 start-page: 123516 year: 2022 ident: D3JA90044D/cit129/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.123516 – volume: 47 start-page: 669 issue: 3 year: 2023 ident: D3JA90044D/cit353/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12492 – volume: 47 start-page: 67 issue: 1 year: 2023 ident: D3JA90044D/cit363/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12469 – year: 2023 ident: D3JA90044D/cit367/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12499 – volume: 276 start-page: 214 year: 2022 ident: D3JA90044D/cit295/1 publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2022.28989 – volume: 46 start-page: 825 issue: 4 year: 2022 ident: D3JA90044D/cit107/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12451 – volume: 78 start-page: 310 issue: 3 year: 2023 ident: D3JA90044D/cit292/1 publication-title: J. Anal. Chem. doi: 10.1134/S1061934823030152 – volume: 47 start-page: 569 issue: 3 year: 2023 ident: D3JA90044D/cit372/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12485 – volume: 47 start-page: 697 issue: 3 year: 2023 ident: D3JA90044D/cit355/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12484 – volume: 58 start-page: e4905 issue: 2 year: 2023 ident: D3JA90044D/cit26/1 publication-title: J. Mass Spectrom. doi: 10.1002/jms.4905 – volume: 38 start-page: 97 issue: 1 year: 2023 ident: D3JA90044D/cit270/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00174H – volume: 37 start-page: 1855 issue: 9 year: 2022 ident: D3JA90044D/cit196/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00071G – volume: 37 start-page: 2581 issue: 12 year: 2022 ident: D3JA90044D/cit178/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00283C – volume: 25 start-page: 351 issue: 3 year: 2023 ident: D3JA90044D/cit52/1 publication-title: Environ. Sci.: Processes Impacts – volume: 195 start-page: 106505 year: 2022 ident: D3JA90044D/cit268/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2022.106505 – volume: 56 start-page: 2792 issue: 17 year: 2023 ident: D3JA90044D/cit152/1 publication-title: Anal. Lett. doi: 10.1080/00032719.2023.2185250 – volume: 621 start-page: 121365 year: 2023 ident: D3JA90044D/cit410/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2023.121365 – volume: 14 start-page: 2782 issue: 28 year: 2022 ident: D3JA90044D/cit105/1 publication-title: Anal. Methods doi: 10.1039/D2AY00559J – volume: 46 start-page: 477 issue: 3 year: 2022 ident: D3JA90044D/cit187/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12439 – volume: 43 start-page: 214 issue: 3 year: 2022 ident: D3JA90044D/cit385/1 publication-title: At. Spectrosc. – volume: 3 start-page: 328 issue: 2 year: 2023 ident: D3JA90044D/cit18/1 publication-title: Environ. Sci.: Atmos. – volume: 14 start-page: 100108 year: 2022 ident: D3JA90044D/cit42/1 publication-title: Micro Nano Eng. doi: 10.1016/j.mne.2022.100108 – volume: 38 start-page: 1387 issue: 7 year: 2023 ident: D3JA90044D/cit226/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00026E – volume: 37 start-page: 1835 issue: 9 year: 2022 ident: D3JA90044D/cit336/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00151A – volume: 58 start-page: 428 issue: 6 year: 2023 ident: D3JA90044D/cit243/1 publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2022.2130350 – volume: 94 start-page: 16265 issue: 46 year: 2022 ident: D3JA90044D/cit324/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04401 – volume: 43 start-page: 337 issue: 4 year: 2022 ident: D3JA90044D/cit375/1 publication-title: At. Spectrosc. – volume: 37 start-page: 2144 issue: 10 year: 2022 ident: D3JA90044D/cit201/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00127F – start-page: 1 year: 2023 ident: D3JA90044D/cit179/1 publication-title: Radiocarbon doi: 10.1017/rdc.2023.18 – volume: 46 start-page: 401 issue: 3 year: 2022 ident: D3JA90044D/cit220/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12442 – volume: 52 start-page: 182 issue: 4 year: 2023 ident: D3JA90044D/cit242/1 publication-title: X-Ray Spectrom. doi: 10.1002/xrs.3303 – volume: 38 start-page: 1421 issue: 7 year: 2023 ident: D3JA90044D/cit211/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00015J – volume: 10 start-page: 93 issue: 2 year: 2023 ident: D3JA90044D/cit315/1 publication-title: Separations doi: 10.3390/separations10020093 – volume: 37 start-page: 1665 issue: 8 year: 2022 ident: D3JA90044D/cit395/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00163B – volume: 38 start-page: 1007 issue: 5 year: 2023 ident: D3JA90044D/cit74/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00068K – volume: 37 start-page: 2490 issue: 11 year: 2022 ident: D3JA90044D/cit269/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA90054H – volume: 37 start-page: e9538 issue: 15 year: 2023 ident: D3JA90044D/cit333/1 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9538 – volume: 16 issue: 1 year: 2023 ident: D3JA90044D/cit9/1 publication-title: Energies doi: 10.3390/en.16010177 – volume: 214 start-page: 113841 year: 2022 ident: D3JA90044D/cit175/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113841 – volume: 38 start-page: 1108 issue: 5 year: 2023 ident: D3JA90044D/cit90/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00057E – volume: 38 start-page: 939 issue: 4 year: 2023 ident: D3JA90044D/cit377/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00411A – volume: 34 start-page: 99 year: 2022 ident: D3JA90044D/cit110/1 publication-title: Environ. Sci. Eur. doi: 10.1186/s12302-022-00677-1 – volume: 37 start-page: 2461 issue: 11 year: 2022 ident: D3JA90044D/cit174/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00213B – volume: 181 start-page: 109523 year: 2023 ident: D3JA90044D/cit266/1 publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2022.109523 – volume: 37 start-page: 2182 issue: 10 year: 2022 ident: D3JA90044D/cit274/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00068G – volume: 89 start-page: 567 issue: 3 year: 2022 ident: D3JA90044D/cit301/1 publication-title: J. Appl. Spectrosc. doi: 10.1007/s10812-022-01396-4 – volume: 169 start-page: 106119 year: 2023 ident: D3JA90044D/cit19/1 publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2022.106119 – volume: 77 start-page: 1 issue: 2 year: 2023 ident: D3JA90044D/cit313/1 publication-title: Chem. Pap. – year: 2023 ident: D3JA90044D/cit362/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12501 – volume: 415 start-page: 4023 issue: 18 year: 2023 ident: D3JA90044D/cit98/1 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-023-04641-7 – volume: 255 start-page: 123902 year: 2023 ident: D3JA90044D/cit314/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.123902 – volume: 448 start-page: 130885 year: 2023 ident: D3JA90044D/cit166/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.130885 – volume: 38 start-page: 496 issue: 3 year: 2023 ident: D3JA90044D/cit2/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA90008H – volume: 12 start-page: 1798 issue: 11 year: 2022 ident: D3JA90044D/cit172/1 publication-title: Metals doi: 10.3390/met12111798 – volume: 46 start-page: 789 issue: 4 year: 2022 ident: D3JA90044D/cit188/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12459 – volume: 157 start-page: 116746 year: 2022 ident: D3JA90044D/cit37/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2022.116746 – volume: 37 start-page: 1776 issue: 9 year: 2022 ident: D3JA90044D/cit396/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00181K – volume: 46 start-page: 1727 issue: 6 year: 2022 ident: D3JA90044D/cit154/1 publication-title: Iran. J. Sci. Technol., Trans. A: Sci. doi: 10.1007/s40995-022-01376-5 – volume: 37 start-page: 1994 issue: 10 year: 2022 ident: D3JA90044D/cit199/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00145D – volume: 47 start-page: 549 issue: 3 year: 2023 ident: D3JA90044D/cit253/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12490 – volume: 30 start-page: 37711 issue: 21 year: 2022 ident: D3JA90044D/cit165/1 publication-title: Opt. Express doi: 10.1364/OE.471563 – volume: 38 start-page: 578 issue: 3 year: 2023 ident: D3JA90044D/cit257/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00341D – volume: 85 start-page: 871 issue: 10–11 year: 2022 ident: D3JA90044D/cit284/1 publication-title: Chromatographia doi: 10.1007/s10337-022-04203-6 – volume: 120 start-page: 105330 year: 2023 ident: D3JA90044D/cit96/1 publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2023.105330 – volume: 205 start-page: 106689 year: 2023 ident: D3JA90044D/cit97/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2023.106689 – volume: 47 start-page: 297 issue: 2 year: 2023 ident: D3JA90044D/cit348/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12493 – volume: 38 start-page: 642 issue: 3 year: 2023 ident: D3JA90044D/cit352/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00348A – volume: 47 start-page: 23 issue: 1 year: 2023 ident: D3JA90044D/cit356/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12467 – volume: 262 start-page: 124710 year: 2023 ident: D3JA90044D/cit308/1 publication-title: Talanta doi: 10.1016/j.talanta.2023.124710 – volume: 46 start-page: 837 issue: 4 year: 2022 ident: D3JA90044D/cit358/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12453 – volume: 480 start-page: 116893 year: 2022 ident: D3JA90044D/cit393/1 publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2022.116893 – volume: 13 start-page: 8803 issue: 13 year: 2023 ident: D3JA90044D/cit99/1 publication-title: RSC Adv. doi: 10.1039/D3RA00789H – volume: 77 start-page: 1458 issue: 11 year: 2022 ident: D3JA90044D/cit75/1 publication-title: J. Anal. Chem. doi: 10.1134/S1061934822110168 – volume: 302 start-page: 119700 year: 2023 ident: D3JA90044D/cit32/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2023.119700 – volume: 51 start-page: 447 issue: 4 year: 2023 ident: D3JA90044D/cit306/1 publication-title: Instrum. Sci. Technol. doi: 10.1080/10739149.2022.2156535 – start-page: 1 year: 2022 ident: D3JA90044D/cit82/1 publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319.2022.2115896 – volume: 202 start-page: 106643 year: 2023 ident: D3JA90044D/cit291/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2023.106643 – volume: 19 start-page: 4389 issue: 11 year: 2022 ident: D3JA90044D/cit322/1 publication-title: J. Iran. Chem. Soc. doi: 10.1007/s13738-022-02669-7 – volume: 170 start-page: 107607 year: 2022 ident: D3JA90044D/cit39/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2022.107607 – volume: 20 start-page: 267 year: 2022 ident: D3JA90044D/cit12/1 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph20010267 – volume: 38 start-page: 221 issue: 1 year: 2023 ident: D3JA90044D/cit339/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00301E – volume: 620 start-page: 121351 year: 2023 ident: D3JA90044D/cit403/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2023.121351 – volume: 614 start-page: 121185 year: 2022 ident: D3JA90044D/cit373/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2022.121185 – volume: 2022 start-page: 2080600 year: 2022 ident: D3JA90044D/cit299/1 publication-title: J. Anal. Methods Chem. doi: 10.1155/2022/2080600 – volume: 94 start-page: 7944 issue: 22 year: 2022 ident: D3JA90044D/cit235/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c00759 – volume: 294 start-page: 119504 year: 2023 ident: D3JA90044D/cit10/1 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2022.119504 – volume: 10 year: 2022 ident: D3JA90044D/cit78/1 publication-title: Front. Chem. doi: 10.3389/fchem.2022.912938 – volume: 35 start-page: 012007 issue: 1 year: 2023 ident: D3JA90044D/cit151/1 publication-title: J. Laser Appl. doi: 10.2351/7.0000901 – volume: 37 start-page: 2207 issue: 11 year: 2022 ident: D3JA90044D/cit6/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA90050E – volume: 10 start-page: 967158 year: 2022 ident: D3JA90044D/cit159/1 publication-title: Front. Chem. doi: 10.3389/fchem.2022.967158 – volume: 610 start-page: 121073 year: 2022 ident: D3JA90044D/cit215/1 publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2022.121073 – volume: 13 start-page: 34 issue: 1 year: 2022 ident: D3JA90044D/cit340/1 publication-title: J. Anal. Sci. Technol. doi: 10.1186/s40543-022-00342-5 – volume: 38 start-page: 414 issue: 2 year: 2023 ident: D3JA90044D/cit346/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00311B – volume: 46 start-page: 673 issue: 4 year: 2022 ident: D3JA90044D/cit180/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12449 – volume: 38 start-page: 57 issue: 1 year: 2023 ident: D3JA90044D/cit44/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00291D – volume: 38 start-page: 609 issue: 3 year: 2023 ident: D3JA90044D/cit366/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D3JA00007A – volume: 37 start-page: 2420 issue: 11 year: 2022 ident: D3JA90044D/cit404/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00135G – volume: 94 start-page: 8547 issue: 23 year: 2022 ident: D3JA90044D/cit140/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c01736 – volume: 47 start-page: 657 issue: 3 year: 2023 ident: D3JA90044D/cit223/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12497 – volume: 47 start-page: 637 issue: 3 year: 2023 ident: D3JA90044D/cit341/1 publication-title: Geostand. Geoanal. Res. doi: 10.1111/ggr.12487 – volume: 252 start-page: 123846 year: 2023 ident: D3JA90044D/cit80/1 publication-title: Talanta doi: 10.1016/j.talanta.2022.123846 – volume: 257 start-page: 124390 year: 2023 ident: D3JA90044D/cit401/1 publication-title: Talanta doi: 10.1016/j.talanta.2023.124390 – volume: 95 start-page: 2967 issue: 5 year: 2023 ident: D3JA90044D/cit40/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04751 – volume: 38 start-page: 449 issue: 2 year: 2023 ident: D3JA90044D/cit192/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00332E – volume: 202 start-page: 106646 year: 2023 ident: D3JA90044D/cit414/1 publication-title: Spectrochim. Acta, Part B doi: 10.1016/j.sab.2023.106646 – volume: 28 start-page: 3360 issue: 8 year: 2023 ident: D3JA90044D/cit168/1 publication-title: Molecules doi: 10.3390/molecules28083360 – volume: 48 start-page: 42 issue: 2 year: 2022 ident: D3JA90044D/cit138/1 publication-title: Arch. Environ. Prot. – volume: 37 start-page: 1793 issue: 9 year: 2022 ident: D3JA90044D/cit225/1 publication-title: J. Anal. At. Spectrom. doi: 10.1039/D2JA00136E – volume: 43 start-page: 990 issue: 3 year: 2023 ident: D3JA90044D/cit92/1 publication-title: Spectrosc. Spectral Anal. |
SSID | ssj0004525 |
Score | 2.473818 |
SecondaryResourceType | review_article |
Snippet | Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11 |
SubjectTerms | Atmospheric models Availability Instruments Isotope ratios Laser ablation Measuring instruments Oxidation Pelleting Reagents Reference materials Sensitivity analysis Soil analysis Soil contamination Speciation Unmanned aerial vehicles Valence Water analysis Wear particles |
Title | Atomic spectrometry update - a review of advances in environmental analysis |
URI | https://www.proquest.com/docview/2909079190 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TgheEAwmCmOyBC8o8khsp6kfq100xmAS6sTeIsd20NCUTV0KYr9-x5c0rrZJwEtU2Ulj-Xw5_nx8Lgi9H_OaGyULopS1VmmlSVUVnFBZpVWW1hOhbaDwl6_jw1N-dJafDQZ15LW0aKsddXNvXMn_SBXaQK42SvYfJLv8U2iA3yBfuIKE4fpXMp62NqY4cdGSNu1AO_-TLK7sHj4hiYzCUsJJv_N9jULbXJ4An5TkAZLqur25W959WW8GVf7wPsSFRV6I1t_IgeLkt2kij2x5PvcM_rv1FW6SbzvJcd_5C0bgWO3JxQ8ZGyYod4YJFukvCjpY8FClxXj9ysacAIPhsQL22YxWgOa1aVDDfl32JSXuaPyU2YSpmv2Uwh5O635dW3ob9p1raJ3CdoIO0fp0f_bpOM4rn3trnB9yl8iWiY_906vUpd-PrM27YjGOlMyeoadBUHjqofEcDUyzgR7vdkX8NtAj5-Grrl-gzx4sOJYf9mDBBEvswYIva9yBBZ83eAUsuAPLS3R6sD_bPSShkgZRdJK1pNZMMqEyCp-lVhPDTJqpiVRGcW5MYTJJmcihmTOtUj5WBWVcAPtWmoqKSraJhs1lY14hnNsSjsBhcqA5PGVSFjwHIiRhrdA2XnOEPnSTVKqQZt5WO7konbsDE-UeO5q6Cd0boXfLe698cpV779rq5roMH991SWF0aSGAzo7QJsz_8vleXK8f6niDnvR43ULDdr4wb4FattV2wMUtqQ97ow |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+spectrometry+update+-+a+review+of+advances+in+environmental+analysis&rft.jtitle=Journal+of+analytical+atomic+spectrometry&rft.au=Bacon%2C+Jeffrey+R&rft.au=Butler%2C+Owen+T&rft.au=Cairns%2C+Warren+R.+L&rft.au=Cavoura%2C+Olga&rft.date=2024-01-03&rft.issn=0267-9477&rft.eissn=1364-5544&rft.volume=39&rft.issue=1&rft.spage=11&rft.epage=65&rft_id=info:doi/10.1039%2Fd3ja90044d&rft.externalDocID=d3ja90044d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-9477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-9477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-9477&client=summon |