Atomic spectrometry update - a review of advances in environmental analysis

Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particl...

Full description

Saved in:
Bibliographic Details
Published inJournal of analytical atomic spectrometry Vol. 39; no. 1; pp. 11 - 65
Main Authors Bacon, Jeffrey R, Butler, Owen T, Cairns, Warren R. L, Cavoura, Olga, Cook, Jennifer M, Davidson, Christine M, Mertz-Kraus, Regina
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 03.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particles. Workers have explored further the full capabilities of ICP-MS/MS, which continued to dominate water analysis, including the speciation analysis of non-metallic elements in environmental samples. By far the largest number of papers on water analysis involved preconcentration. The growing interest in reagents for green chemistry was evidenced by the publication of several reviews. Novelties included the direct introduction of magnetic nanoparticles into FAAS to boost sensitivity, and the simultaneous dual-drop preconcentration of oxidation state species that avoided the need for a sequence of elution steps by preconcentrating the analytes into specific reagents contained in the drops. Although the total reflection XRFS and LIBS techniques are close to achieving the detection limits needed to screen contaminated waters, users of these instruments often neglect to validate their methods adequately through the use of reference materials. In methods for the analysis of soils, plants and related materials, sustainable digestion, extraction and preconcentration methods featured strongly. The development of AAS, AES and AFS methods for the direct analysis of solid samples and for increasing sensitivity through analyte enrichment continued to be of considerable interest. The nitrogen-microwave inductively coupled atmospheric-pressure plasma showed promise for ICP-MS analyses. Applications of LIBS have increased dramatically in number with noteworthy developments including single-chamber laser-ablation LIBS and the analysis of plant leaves without the need for grinding and pelleting. However, many published studies lacked validation through e.g. analysis of CRMs or comparison with results obtained by other techniques. Efforts have continued on the characterisation of natural and synthetic materials that are sufficiently homogeneous to act as reference materials (RMs) in the analysis of geological materials. In particular, application of microanalytical techniques, such as LA-ICP-MS and SIMS, led to the availability of a variety of new RMs for in situ isotope ratio determinations. The application of portable LIBS instrumentation to mineral prospecting and ore processing has received much attention, with the development of new chemometric models to improve data quality. The enormous amount of analytical data produced by modern instrumentation prompted the development of software, most of which has been made freely available, for facilitating the processing and reduction of isotopic data. This review covers advances in the analysis of air, water, plants, soils and geological materials by a range of atomic spectrometric techniques including atomic emission, absorption, fluorescence and mass spectrometry.
AbstractList Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particles. Workers have explored further the full capabilities of ICP-MS/MS, which continued to dominate water analysis, including the speciation analysis of non-metallic elements in environmental samples. By far the largest number of papers on water analysis involved preconcentration. The growing interest in reagents for green chemistry was evidenced by the publication of several reviews. Novelties included the direct introduction of magnetic nanoparticles into FAAS to boost sensitivity, and the simultaneous dual-drop preconcentration of oxidation state species that avoided the need for a sequence of elution steps by preconcentrating the analytes into specific reagents contained in the drops. Although the total reflection XRFS and LIBS techniques are close to achieving the detection limits needed to screen contaminated waters, users of these instruments often neglect to validate their methods adequately through the use of reference materials. In methods for the analysis of soils, plants and related materials, sustainable digestion, extraction and preconcentration methods featured strongly. The development of AAS, AES and AFS methods for the direct analysis of solid samples and for increasing sensitivity through analyte enrichment continued to be of considerable interest. The nitrogen-microwave inductively coupled atmospheric-pressure plasma showed promise for ICP-MS analyses. Applications of LIBS have increased dramatically in number with noteworthy developments including single-chamber laser-ablation LIBS and the analysis of plant leaves without the need for grinding and pelleting. However, many published studies lacked validation through e.g. analysis of CRMs or comparison with results obtained by other techniques. Efforts have continued on the characterisation of natural and synthetic materials that are sufficiently homogeneous to act as reference materials (RMs) in the analysis of geological materials. In particular, application of microanalytical techniques, such as LA-ICP-MS and SIMS, led to the availability of a variety of new RMs for in situ isotope ratio determinations. The application of portable LIBS instrumentation to mineral prospecting and ore processing has received much attention, with the development of new chemometric models to improve data quality. The enormous amount of analytical data produced by modern instrumentation prompted the development of software, most of which has been made freely available, for facilitating the processing and reduction of isotopic data.
Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particles. Workers have explored further the full capabilities of ICP-MS/MS, which continued to dominate water analysis, including the speciation analysis of non-metallic elements in environmental samples. By far the largest number of papers on water analysis involved preconcentration. The growing interest in reagents for green chemistry was evidenced by the publication of several reviews. Novelties included the direct introduction of magnetic nanoparticles into FAAS to boost sensitivity, and the simultaneous dual-drop preconcentration of oxidation state species that avoided the need for a sequence of elution steps by preconcentrating the analytes into specific reagents contained in the drops. Although the total reflection XRFS and LIBS techniques are close to achieving the detection limits needed to screen contaminated waters, users of these instruments often neglect to validate their methods adequately through the use of reference materials. In methods for the analysis of soils, plants and related materials, sustainable digestion, extraction and preconcentration methods featured strongly. The development of AAS, AES and AFS methods for the direct analysis of solid samples and for increasing sensitivity through analyte enrichment continued to be of considerable interest. The nitrogen-microwave inductively coupled atmospheric-pressure plasma showed promise for ICP-MS analyses. Applications of LIBS have increased dramatically in number with noteworthy developments including single-chamber laser-ablation LIBS and the analysis of plant leaves without the need for grinding and pelleting. However, many published studies lacked validation through e.g. analysis of CRMs or comparison with results obtained by other techniques. Efforts have continued on the characterisation of natural and synthetic materials that are sufficiently homogeneous to act as reference materials (RMs) in the analysis of geological materials. In particular, application of microanalytical techniques, such as LA-ICP-MS and SIMS, led to the availability of a variety of new RMs for in situ isotope ratio determinations. The application of portable LIBS instrumentation to mineral prospecting and ore processing has received much attention, with the development of new chemometric models to improve data quality. The enormous amount of analytical data produced by modern instrumentation prompted the development of software, most of which has been made freely available, for facilitating the processing and reduction of isotopic data.
Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for sampling purposes and an increased use of ICP-MS for measuring halogenated volatile organics, metals sampled directly from air and single particles. Workers have explored further the full capabilities of ICP-MS/MS, which continued to dominate water analysis, including the speciation analysis of non-metallic elements in environmental samples. By far the largest number of papers on water analysis involved preconcentration. The growing interest in reagents for green chemistry was evidenced by the publication of several reviews. Novelties included the direct introduction of magnetic nanoparticles into FAAS to boost sensitivity, and the simultaneous dual-drop preconcentration of oxidation state species that avoided the need for a sequence of elution steps by preconcentrating the analytes into specific reagents contained in the drops. Although the total reflection XRFS and LIBS techniques are close to achieving the detection limits needed to screen contaminated waters, users of these instruments often neglect to validate their methods adequately through the use of reference materials. In methods for the analysis of soils, plants and related materials, sustainable digestion, extraction and preconcentration methods featured strongly. The development of AAS, AES and AFS methods for the direct analysis of solid samples and for increasing sensitivity through analyte enrichment continued to be of considerable interest. The nitrogen-microwave inductively coupled atmospheric-pressure plasma showed promise for ICP-MS analyses. Applications of LIBS have increased dramatically in number with noteworthy developments including single-chamber laser-ablation LIBS and the analysis of plant leaves without the need for grinding and pelleting. However, many published studies lacked validation through e.g. analysis of CRMs or comparison with results obtained by other techniques. Efforts have continued on the characterisation of natural and synthetic materials that are sufficiently homogeneous to act as reference materials (RMs) in the analysis of geological materials. In particular, application of microanalytical techniques, such as LA-ICP-MS and SIMS, led to the availability of a variety of new RMs for in situ isotope ratio determinations. The application of portable LIBS instrumentation to mineral prospecting and ore processing has received much attention, with the development of new chemometric models to improve data quality. The enormous amount of analytical data produced by modern instrumentation prompted the development of software, most of which has been made freely available, for facilitating the processing and reduction of isotopic data. This review covers advances in the analysis of air, water, plants, soils and geological materials by a range of atomic spectrometric techniques including atomic emission, absorption, fluorescence and mass spectrometry.
Author Bacon, Jeffrey R
Butler, Owen T
Davidson, Christine M
Mertz-Kraus, Regina
Cairns, Warren R. L
Cavoura, Olga
Cook, Jennifer M
AuthorAffiliation Institut für Geowissenschaften
British Geological Survey
Department of Pure and Applied Chemistry
University of Strathclyde
59 Arnhall Drive
University of West Attica
Health and Safety Executive
Johannes Gutenberg-Universität
CNR-ISP and Universita Ca' Foscari
School of Public Health
AuthorAffiliation_xml – sequence: 0
  name: University of West Attica
– sequence: 0
  name: Department of Pure and Applied Chemistry
– sequence: 0
  name: 59 Arnhall Drive
– sequence: 0
  name: Health and Safety Executive
– sequence: 0
  name: British Geological Survey
– sequence: 0
  name: University of Strathclyde
– sequence: 0
  name: School of Public Health
– sequence: 0
  name: CNR-ISP and Universita Ca' Foscari
– sequence: 0
  name: Johannes Gutenberg-Universität
– sequence: 0
  name: Institut für Geowissenschaften
Author_xml – sequence: 1
  givenname: Jeffrey R
  surname: Bacon
  fullname: Bacon, Jeffrey R
– sequence: 2
  givenname: Owen T
  surname: Butler
  fullname: Butler, Owen T
– sequence: 3
  givenname: Warren R. L
  surname: Cairns
  fullname: Cairns, Warren R. L
– sequence: 4
  givenname: Olga
  surname: Cavoura
  fullname: Cavoura, Olga
– sequence: 5
  givenname: Jennifer M
  surname: Cook
  fullname: Cook, Jennifer M
– sequence: 6
  givenname: Christine M
  surname: Davidson
  fullname: Davidson, Christine M
– sequence: 7
  givenname: Regina
  surname: Mertz-Kraus
  fullname: Mertz-Kraus, Regina
BookMark eNptkEtLAzEUhYNUsK1u3AsBd8JoXtNplqX1XXCj6-Ga3IGUmaQmaaX_3tGKgri6cPjO4fKNyMAHj4SccnbJmdRXVq5AM6aUPSBDLieqKEulBmTIxKQqtKqqIzJKacV6phTlkDzOcuicoWmNJsfQYY47ullbyEgLCjTi1uE7DQ0FuwVvMFHnKfqti8F36DO0FDy0u-TSMTlsoE148n3H5OXm-nl-Vyyfbu_ns2VhxJTnorESpDZcoAFrpiiRcTMFg0YpxAo5CKnLPlbSGqYmphJSaaZLY4V-FSDH5Hy_u47hbYMp16uwif0TqRY9xyrNNeupiz1lYkgpYlOvo-sg7mrO6k9Z9UI-zL5kLXqY_YGNy5Bd8DmCa_-vnO0rMZmf6V__8gMdcXh0
CitedBy_id crossref_primary_10_1039_D4JA00468J
crossref_primary_10_1039_D4JA90034K
crossref_primary_10_1039_D5JA90008E
crossref_primary_10_60084_ljes_v2i1_176
crossref_primary_10_1016_j_aca_2024_343464
crossref_primary_10_1039_D4JA90056A
crossref_primary_10_1039_D4JA00199K
crossref_primary_10_1007_s10661_024_13412_5
crossref_primary_10_1080_02603594_2024_2369101
Cites_doi 10.1016/j.sab.2022.106527
10.1039/D2JA00357K
10.3390/chemosensors10070242
10.1016/j.jaerosci.2023.106144
10.1007/s44211-023-00346-0
10.1016/j.jhazmat.2021.127963
10.1111/ggr.12474
10.1016/j.atmosenv.2023.119825
10.1016/j.sab.2022.106486
10.1111/ggr.12468
10.1039/D2JA00171C
10.1007/s44211-023-00347-z
10.5194/amt-15-5207-2022
10.1016/j.chemgeo.2022.121041
10.1007/s13738-022-02662-0
10.1016/j.marpolbul.2022.113787
10.1016/j.aca.2023.341006
10.1016/j.molliq.2023.121801
10.1039/D2JA00101B
10.1016/j.sab.2023.106616
10.1016/j.chemgeo.2022.121213
10.1039/D3JA00022B
10.1016/j.atmosenv.2022.119285
10.1007/s44211-023-00367-9
10.1039/D2JA00120A
10.1111/ggr.12430
10.3390/su141912370
10.1039/D2JA00206J
10.1007/s44211-022-00194-4
10.3390/life13020511
10.1039/D2JA00148A
10.3389/fphar.2022.891273
10.1039/D2JA00403H
10.1016/j.microc.2022.108200
10.1111/ggr.12483
10.1016/j.jics.2022.100684
10.1039/D2JA00215A
10.1016/j.ijms.2022.116995
10.1039/D3JA90013D
10.1016/j.forsciint.2022.111202
10.1039/D3JA00010A
10.1002/jssc.202200575
10.1016/j.sab.2022.106478
10.1039/D2JA00010E
10.1039/D3JA00091E
10.1016/j.aca.2023.340859
10.1134/S1061934823030073
10.1007/s44211-022-00180-w
10.1016/j.cjac.2022.100176
10.1021/acs.analchem.2c04660
10.1021/acs.analchem.2c03784
10.1080/02786826.2022.2070055
10.1039/D2JA00266C
10.1038/s41598-022-19600-y
10.1111/ggr.12471
10.3390/molecules28031223
10.1002/rcm.9533
10.1039/D2JA00404F
10.1134/S1061934823030061
10.1039/D3JA00083D
10.1111/ggr.12463
10.1111/ggr.12444
10.1016/j.trac.2022.116566
10.1016/j.sab.2022.106541
10.1039/D2JA00147K
10.1007/s10812-022-01452-z
10.1007/s10661-023-11058-3
10.1039/D2JA00221C
10.1111/ggr.12447
10.1039/D2JA00250G
10.1016/j.gca.2023.01.014
10.1002/rcm.9508
10.1016/j.jvolgeores.2022.107675
10.46770/AS.2022.235
10.1080/10408347.2022.2111655
10.1007/s00216-022-04497-3
10.1016/j.gsf.2022.101523
10.1039/D2AY00593J
10.1021/acs.est.2c03737
10.3390/separations10010040
10.1039/D2AY00604A
10.1016/j.chemgeo.2022.121221
10.1016/j.atmosenv.2022.119522
10.1111/ggr.12452
10.1007/s13369-022-07465-2
10.1007/s00216-023-04695-7
10.1007/s44211-022-00181-9
10.1016/j.chemgeo.2022.121236
10.5194/amt-16-955-2023
10.1016/j.sab.2023.106665
10.1016/j.sab.2022.106518
10.1002/rcm.9494
10.1016/j.chemgeo.2023.121457
10.1039/D3JA00059A
10.1111/ggr.12464
10.3390/membranes13020152
10.1039/D3JA00009E
10.1002/rcm.9383
10.1021/acs.analchem.2c03280
10.1039/D2JA00394E
10.1111/ggr.12495
10.1016/j.aca.2022.340444
10.1016/j.mex.2022.101625
10.3390/chemosensors10080312
10.1080/00032719.2023.2212092
10.1016/j.gexplo.2022.106979
10.1111/ggr.12477
10.1016/j.talanta.2023.124262
10.1016/j.sab.2022.106523
10.1016/j.talanta.2022.124072
10.1039/D2JA00188H
10.1039/D2JA00314G
10.1080/02786826.2022.2114311
10.1016/j.sab.2022.106482
10.1021/acs.analchem.3c00207
10.1016/j.atmosenv.2023.119597
10.1134/S1061934822120152
10.1002/slct.202203887
10.1039/D3JA90022C
10.1039/D2AY00804A
10.1016/j.sab.2022.106504
10.1111/ggr.12486
10.1016/j.aca.2022.340709
10.1039/D2AN01290A
10.1364/OE.470782
10.1177/00037028221141102
10.1016/j.measurement.2022.111614
10.1039/D2JA00103A
10.1016/j.microc.2023.108622
10.1039/D2JA00238H
10.1111/ggr.12488
10.1039/D2JA00243D
10.3390/molecules28062549
10.3390/nano13101582
10.1007/s00216-022-04184-3
10.1039/D3JA00047H
10.1134/S1061934822090076
10.2343/geochemj.GJ23006
10.1039/D2JA00170E
10.1080/03067319.2022.2118591
10.3390/chemosensors10070259
10.1111/ggr.12443
10.1016/j.gexplo.2023.107160
10.1021/acs.analchem.2c01490
10.1016/j.sab.2022.106570
10.1016/j.jhazmat.2022.128823
10.3390/molecules28083601
10.1039/D2JA00150K
10.1177/00037028221146804
10.1002/jssc.202200347
10.1016/j.gexplo.2022.107090
10.1039/D2JA00233G
10.1016/j.optlastec.2022.108714
10.1016/j.jaerosci.2023.106160
10.1016/j.trac.2012.03.013
10.1093/annweh/wxac015
10.1016/j.trac.2022.116859
10.1039/D2JA00194B
10.1016/j.jfca.2022.104965
10.1111/ggr.12480
10.1016/j.sab.2022.106532
10.1039/D2JA00242F
10.1016/j.sab.2023.106648
10.1039/D2JA00197G
10.1039/D2JA00208F
10.1080/10408347.2023.2197495
10.1111/ggr.12458
10.1016/j.ijms.2022.116849
10.1039/D2JA00245K
10.1016/j.trac.2022.116866
10.1007/s10661-022-10888-x
10.1111/ggr.12491
10.1177/00037028221141709
10.1002/xrs.3352
10.1111/ggr.12470
10.1111/ggr.12446
10.1111/ggr.12479
10.1039/D2JA00274D
10.1016/j.chemosphere.2022.137206
10.1039/D2JA00412G
10.1016/j.chemosphere.2023.138053
10.1039/D2RA02980D
10.1039/D2JA00084A
10.1016/j.talanta.2022.124082
10.1016/j.chroma.2022.463458
10.19756/j.issn.0253-3820.211067
10.3390/foods12040895
10.1039/D2JA90055F
10.1039/D2JA00340F
10.1021/acs.jafc.2c02782
10.1111/ggr.12496
10.1021/acs.estlett.2c00835
10.1039/D2JA00248E
10.1016/j.chemosphere.2022.135661
10.1039/D2JA00339B
10.1016/j.atmosenv.2022.119493
10.1039/D2JA00082B
10.1039/D2JA00244B
10.1111/ggr.12456
10.1016/j.microc.2022.107951
10.3390/min12101326
10.1016/j.ijms.2022.116897
10.1039/D2JA00002D
10.1039/D2JA00362G
10.1080/00387010.2023.2165505
10.1039/D2JA00231K
10.1111/ggr.12476
10.1039/D2JA00273F
10.1111/ggr.12473
10.1016/j.scitotenv.2022.155460
10.3390/chemosensors11030193
10.1111/ggr.12513
10.1039/D2JA00137C
10.1111/ggr.12428
10.1007/s11270-022-05898-x
10.1039/D2JA00189F
10.1039/D2JA00360K
10.1039/D2JA00405D
10.1016/j.scitotenv.2021.152657
10.1039/D3AY00057E
10.1111/ggr.12440
10.1016/j.sab.2022.106549
10.3390/molecules28030994
10.1109/TPS.2022.3231985
10.1021/acs.analchem.2c03420
10.1039/D2AN00752E
10.1039/D2JA00371F
10.1039/D3JA90026F
10.1039/D2AY01424F
10.1016/j.optlastec.2022.108386
10.46770/AS.2022.186
10.1111/ggr.12500
10.1016/j.envpol.2022.120761
10.1016/j.microc.2022.107927
10.1007/s44211-023-00277-w
10.1016/j.talanta.2022.123501
10.1039/D2JA00270A
10.1039/D2JA00106C
10.1016/j.envint.2020.106264
10.1007/s44211-023-00327-3
10.1021/acs.est.2c02908
10.1016/j.atmosenv.2022.119301
10.1016/j.atmosenv.2023.119759
10.1039/D2JA00202G
10.1111/ggr.12466
10.3390/nano12193307
10.1039/D2JA00317A
10.1016/j.aca.2022.340378
10.1038/s41596-022-00701-x
10.1039/D3JA00095H
10.1080/00032719.2022.2092632
10.1002/rcm.9404
10.1016/j.sab.2022.106561
10.1021/acs.analchem.2c01379
10.1039/D2JA00407K
10.1007/s11356-023-25513-8
10.1111/ggr.12482
10.1016/j.atmosenv.2023.119607
10.1016/j.atmosenv.2022.119360
10.1039/D2JA00370H
10.1039/D2JA00251E
10.30744/brjac.2179-3425.RV-119-2021
10.1016/j.chemgeo.2022.121016
10.1016/j.atmosenv.2022.119486
10.1111/ggr.12460
10.1016/j.talanta.2022.123694
10.1111/ggr.12478
10.1111/ggr.12455
10.1016/j.jenvrad.2022.106944
10.1039/D2JA00234E
10.1016/j.sab.2022.106470
10.1016/j.aca.2023.340799
10.1016/j.talanta.2022.123818
10.1016/j.aca.2022.340497
10.1021/acs.analchem.2c03989
10.1016/j.aca.2022.340744
10.1111/ggr.12457
10.1039/D2JA00424K
10.1039/D2JA00278G
10.1016/j.chemgeo.2022.121078
10.1016/j.jaerosci.2022.106118
10.1016/j.atmosenv.2022.119463
10.1016/j.aca.2022.339980
10.1016/j.sab.2022.106564
10.1016/j.chemgeo.2023.121395
10.1016/j.jfca.2023.105163
10.1111/ggr.12454
10.1038/s41598-022-18349-8
10.5194/amt-16-825-2023
10.1016/j.sab.2022.106517
10.1002/gj.4773
10.1021/acs.analchem.2c01685
10.1039/D3JA00012E
10.1039/D2JA00399F
10.1111/ggr.12472
10.1016/j.talanta.2022.123516
10.1111/ggr.12492
10.1111/ggr.12469
10.1111/ggr.12499
10.5004/dwt.2022.28989
10.1111/ggr.12451
10.1134/S1061934823030152
10.1111/ggr.12485
10.1111/ggr.12484
10.1002/jms.4905
10.1039/D2JA00174H
10.1039/D2JA00071G
10.1039/D2JA00283C
10.1016/j.sab.2022.106505
10.1080/00032719.2023.2185250
10.1016/j.chemgeo.2023.121365
10.1039/D2AY00559J
10.1111/ggr.12439
10.1016/j.mne.2022.100108
10.1039/D3JA00026E
10.1039/D2JA00151A
10.1080/05704928.2022.2130350
10.1021/acs.analchem.2c04401
10.1039/D2JA00127F
10.1017/rdc.2023.18
10.1111/ggr.12442
10.1002/xrs.3303
10.1039/D3JA00015J
10.3390/separations10020093
10.1039/D2JA00163B
10.1039/D3JA00068K
10.1039/D2JA90054H
10.1002/rcm.9538
10.3390/en.16010177
10.1016/j.envres.2022.113841
10.1039/D3JA00057E
10.1039/D2JA00411A
10.1186/s12302-022-00677-1
10.1039/D2JA00213B
10.1016/j.anucene.2022.109523
10.1039/D2JA00068G
10.1007/s10812-022-01396-4
10.1016/j.jaerosci.2022.106119
10.1111/ggr.12501
10.1007/s00216-023-04641-7
10.1016/j.talanta.2022.123902
10.1016/j.jhazmat.2023.130885
10.1039/D3JA90008H
10.3390/met12111798
10.1111/ggr.12459
10.1016/j.trac.2022.116746
10.1039/D2JA00181K
10.1007/s40995-022-01376-5
10.1039/D2JA00145D
10.1111/ggr.12490
10.1364/OE.471563
10.1039/D2JA00341D
10.1007/s10337-022-04203-6
10.1016/j.jfca.2023.105330
10.1016/j.sab.2023.106689
10.1111/ggr.12493
10.1039/D2JA00348A
10.1111/ggr.12467
10.1016/j.talanta.2023.124710
10.1111/ggr.12453
10.1016/j.ijms.2022.116893
10.1039/D3RA00789H
10.1134/S1061934822110168
10.1016/j.atmosenv.2023.119700
10.1080/10739149.2022.2156535
10.1080/03067319.2022.2115896
10.1016/j.sab.2023.106643
10.1007/s13738-022-02669-7
10.1016/j.envint.2022.107607
10.3390/ijerph20010267
10.1039/D2JA00301E
10.1016/j.chemgeo.2023.121351
10.1016/j.chemgeo.2022.121185
10.1155/2022/2080600
10.1021/acs.analchem.2c00759
10.1016/j.atmosenv.2022.119504
10.3389/fchem.2022.912938
10.2351/7.0000901
10.1039/D2JA90050E
10.3389/fchem.2022.967158
10.1016/j.chemgeo.2022.121073
10.1186/s40543-022-00342-5
10.1039/D2JA00311B
10.1111/ggr.12449
10.1039/D2JA00291D
10.1039/D3JA00007A
10.1039/D2JA00135G
10.1021/acs.analchem.2c01736
10.1111/ggr.12497
10.1111/ggr.12487
10.1016/j.talanta.2022.123846
10.1016/j.talanta.2023.124390
10.1021/acs.analchem.2c04751
10.1039/D2JA00332E
10.1016/j.sab.2023.106646
10.3390/molecules28083360
10.1039/D2JA00136E
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/d3ja90044d
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1364-5544
EndPage 65
ExternalDocumentID 10_1039_D3JA90044D
d3ja90044d
GroupedDBID -JG
0-7
0R~
29J
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CS3
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
R7E
RAOCF
RCNCU
RPMJG
RRA
RRC
RSCEA
SKM
SLF
TN5
TWZ
UPT
VH6
YQT
~02
AAYXX
AFRZK
AKMSF
CITATION
R56
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c281t-fd3a39c12ecadc8e3e01c8acec44ee7e1a2395e3e43dc046c72349095cd29b2a3
ISSN 0267-9477
IngestDate Mon Jun 30 03:49:14 EDT 2025
Thu Apr 24 22:51:55 EDT 2025
Tue Jul 01 02:56:27 EDT 2025
Tue Dec 17 20:58:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-fd3a39c12ecadc8e3e01c8acec44ee7e1a2395e3e43dc046c72349095cd29b2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7128-7753
0000-0003-2125-1936
0000-0002-8556-9225
0000-0002-8045-3530
0000-0002-5122-4480
PQID 2909079190
PQPubID 2047501
PageCount 55
ParticipantIDs crossref_primary_10_1039_D3JA90044D
crossref_citationtrail_10_1039_D3JA90044D
rsc_primary_d3ja90044d
proquest_journals_2909079190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-03
PublicationDateYYYYMMDD 2024-01-03
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of analytical atomic spectrometry
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gelman (D3JA90044D/cit273/1) 2022; 37
Inobeme (D3JA90044D/cit51/1) 2023; 195
Zeng (D3JA90044D/cit129/1) 2022; 246
Huang (D3JA90044D/cit413/1) 2022; 37
Zhang (D3JA90044D/cit396/1) 2022; 37
Ibourki (D3JA90044D/cit96/1) 2023; 120
Magre (D3JA90044D/cit143/1) 2023; 95
Ozalp (D3JA90044D/cit330/1) 2023; 253
King (D3JA90044D/cit52/1) 2023; 25
Cesur (D3JA90044D/cit331/1) 2023; 8
Harrison (D3JA90044D/cit8/1) 2023; 298
Torregrosa (D3JA90044D/cit30/1) 2023; 252
Zhang (D3JA90044D/cit262/1) 2022; 10
Liang (D3JA90044D/cit346/1) 2023; 38
Vlastelic (D3JA90044D/cit189/1) 2022; 46
Sánchez-Cachero (D3JA90044D/cit272/1) 2023; 203
Morales-Benitez (D3JA90044D/cit302/1) 2023; 256
Dauphas (D3JA90044D/cit404/1) 2022; 37
Wang (D3JA90044D/cit367/1) 2023
Alvarez (D3JA90044D/cit199/1) 2022; 37
Hedmer (D3JA90044D/cit287/1) 2022; 66
Fabre (D3JA90044D/cit208/1) 2022; 194
Chen (D3JA90044D/cit334/1) 2022; 37
Rao (D3JA90044D/cit212/1) 2023; 38
Yang (D3JA90044D/cit338/1) 2023; 47
Fontana (D3JA90044D/cit195/1) 2023; 246
Zhou (D3JA90044D/cit361/1) 2022; 46
Meng (D3JA90044D/cit152/1) 2023; 56
Sorouraddin (D3JA90044D/cit316/1) 2023; 39
Kuznetsova (D3JA90044D/cit81/1) 2023; 28
Yokoyama (D3JA90044D/cit382/1) 2023; 47
Prufert (D3JA90044D/cit35/1) 2022; 197
Zhang (D3JA90044D/cit366/1) 2023; 38
Liu (D3JA90044D/cit392/1) 2023; 38
Amador-Mejia (D3JA90044D/cit153/1) 2023; 11
Carrier (D3JA90044D/cit269/1) 2022; 37
Dawood (D3JA90044D/cit28/1) 2022; 37
Cheng (D3JA90044D/cit18/1) 2023; 3
Khatkar (D3JA90044D/cit49/1) 2023; 195
Serbest (D3JA90044D/cit332/1) 2023
Silva (D3JA90044D/cit256/1) 2023; 47
Vigna (D3JA90044D/cit42/1) 2022; 14
Potts (D3JA90044D/cit240/1) 2022; 37
Robaina (D3JA90044D/cit311/1) 2023; 34
Krata (D3JA90044D/cit109/1) 2022; 45
Aslan (D3JA90044D/cit293/1) 2022; 307
Chen (D3JA90044D/cit322/1) 2022; 19
Luu (D3JA90044D/cit397/1) 2022; 611
Zhang (D3JA90044D/cit292/1) 2023; 78
Ishida (D3JA90044D/cit372/1) 2023; 47
Evans (D3JA90044D/cit3/1) 2023; 38
Lei (D3JA90044D/cit385/1) 2022; 43
Elhamdaoui (D3JA90044D/cit207/1) 2022; 37
Nie (D3JA90044D/cit343/1) 2023; 38
Ji (D3JA90044D/cit39/1) 2022; 170
Valskys (D3JA90044D/cit100/1) 2022; 12
Trimmel (D3JA90044D/cit108/1) 2023; 415
Liu (D3JA90044D/cit257/1) 2023; 38
Yang (D3JA90044D/cit333/1) 2023; 37
Yang (D3JA90044D/cit85/1) 2022; 37
Hartel (D3JA90044D/cit353/1) 2023; 47
Lu (D3JA90044D/cit326/1) 2023; 1247
Hoang (D3JA90044D/cit21/1) 2023; 3
Russell (D3JA90044D/cit270/1) 2023; 38
Wang (D3JA90044D/cit215/1) 2022; 610
He (D3JA90044D/cit119/1) 2022; 43
Zhang (D3JA90044D/cit390/1) 2023; 38
Mazoz (D3JA90044D/cit349/1) 2022; 46
Yu (D3JA90044D/cit400/1) 2022; 36
Wang (D3JA90044D/cit410/1) 2023; 621
Yang (D3JA90044D/cit411/1) 2022; 198
Qiu (D3JA90044D/cit358/1) 2022; 46
Liu (D3JA90044D/cit365/1) 2023; 47
Ren (D3JA90044D/cit124/1) 2022; 835
Huang (D3JA90044D/cit175/1) 2022; 214
Morgan (D3JA90044D/cit222/1) 2023; 47
Liu (D3JA90044D/cit280/1) 2023; 37
De Giacomo (D3JA90044D/cit267/1) 2022; 432
He (D3JA90044D/cit34/1) 2023; 312
Rodiouchkina (D3JA90044D/cit104/1) 2023; 1240
Jablonska-Czapla (D3JA90044D/cit138/1) 2022; 48
Zhang (D3JA90044D/cit243/1) 2023; 58
Grotti (D3JA90044D/cit271/1) 2023; 38
Zuo (D3JA90044D/cit11/1) 2023; 158
Selmani (D3JA90044D/cit206/1) 2022; 196
Rahim (D3JA90044D/cit155/1) 2023; 48
Lednev (D3JA90044D/cit170/1) 2022; 37
Chen (D3JA90044D/cit238/1) 2022; 37
Clough (D3JA90044D/cit4/1) 2023; 38
Jordan (D3JA90044D/cit266/1) 2023; 181
Yokota (D3JA90044D/cit296/1) 2023; 39
Vanhoof (D3JA90044D/cit5/1) 2023; 38
Lerner (D3JA90044D/cit72/1) 2023; 15
Liu (D3JA90044D/cit83/1) 2023; 39
Kennedy (D3JA90044D/cit183/1) 2023; 47
Zhong (D3JA90044D/cit118/1) 2022; 1681
Li (D3JA90044D/cit401/1) 2023; 257
Chatoutsidou (D3JA90044D/cit41/1) 2022; 196
Bopp (D3JA90044D/cit281/1) 2022; 414
Jegal (D3JA90044D/cit357/1) 2022; 46
Ren (D3JA90044D/cit165/1) 2022; 30
Zhang (D3JA90044D/cit75/1) 2022; 77
Zhang (D3JA90044D/cit7/1) 2023; 297
Hanlon (D3JA90044D/cit12/1) 2022; 20
Xia (D3JA90044D/cit86/1) 2023; 38
Phillips (D3JA90044D/cit229/1) 2023; 616
Anand (D3JA90044D/cit285/1) 2023; 3
Liebmann (D3JA90044D/cit216/1) 2022; 608
Zeng (D3JA90044D/cit82/1) 2022
Hu (D3JA90044D/cit288/1) 2023; 294
Liu (D3JA90044D/cit191/1) 2023; 38
Liu (D3JA90044D/cit192/1) 2023; 38
Su (D3JA90044D/cit279/1) 2023; 303
Belkouteb (D3JA90044D/cit76/1) 2023; 320
Khan (D3JA90044D/cit307/1) 2023; 185
Liu (D3JA90044D/cit130/1) 2022; 1232
Wang (D3JA90044D/cit32/1) 2023; 302
Soylak (D3JA90044D/cit306/1) 2023; 51
Espina-Martin (D3JA90044D/cit48/1) 2022; 287
dos Santos (D3JA90044D/cit327/1) 2023; 38
Ahmed (D3JA90044D/cit329/1) 2023; 118
Le (D3JA90044D/cit47/1) 2023; 170
Minaberry (D3JA90044D/cit294/1) 2022; 14
Belgrano (D3JA90044D/cit228/1) 2022; 46
Li (D3JA90044D/cit105/1) 2022; 14
Raneri (D3JA90044D/cit209/1) 2022; 194
Mortada (D3JA90044D/cit321/1) 2022; 38
Zhou (D3JA90044D/cit149/1) 2022; 155
Xu (D3JA90044D/cit167/1) 2023; 38
Nguyen (D3JA90044D/cit297/1) 2022; 12
Anderson (D3JA90044D/cit380/1) 2022; 477
Garcia-Figueroa (D3JA90044D/cit79/1) 2022; 94
Saylan (D3JA90044D/cit328/1) 2023; 115
Yue (D3JA90044D/cit156/1) 2021; 49
Rujido-Santos (D3JA90044D/cit268/1) 2022; 195
Liu (D3JA90044D/cit132/1) 2022; 37
Wu (D3JA90044D/cit180/1) 2022; 46
Bankaji (D3JA90044D/cit116/1) 2023; 10
Yang (D3JA90044D/cit260/1) 2022; 197
Gilbert (D3JA90044D/cit304/1) 2023; 1241
Delgado-Saborit (D3JA90044D/cit286/1) 2022; 289
Ma (D3JA90044D/cit354/1) 2023
Honda (D3JA90044D/cit177/1) 2022; 14
Li (D3JA90044D/cit151/1) 2023; 35
Ramezani (D3JA90044D/cit55/1) 2022; 149
Zhang (D3JA90044D/cit226/1) 2023; 38
Patel (D3JA90044D/cit99/1) 2023; 13
D’Amore (D3JA90044D/cit137/1) 2023; 13
Sarkar (D3JA90044D/cit27/1) 2023; 293
Pathak (D3JA90044D/cit255/1) 2023; 47
Rauber (D3JA90044D/cit45/1) 2023; 16
Kim (D3JA90044D/cit340/1) 2022; 13
Lv (D3JA90044D/cit342/1) 2022; 46
Zhang (D3JA90044D/cit234/1) 2022; 608
Borduchi (D3JA90044D/cit157/1) 2022; 198
Zhang (D3JA90044D/cit370/1) 2022; 37
Greda (D3JA90044D/cit131/1) 2023; 253
Zhang (D3JA90044D/cit15/1) 2022; 37
Droubi (D3JA90044D/cit364/1) 2023; 47
Patriarca (D3JA90044D/cit2/1) 2023; 38
Alard (D3JA90044D/cit359/1) 2023; 47
Shafer (D3JA90044D/cit16/1) 2022; 814
Feng (D3JA90044D/cit54/1) 2022; 40
Ni (D3JA90044D/cit308/1) 2023; 262
Li (D3JA90044D/cit202/1) 2022; 37
Feng (D3JA90044D/cit59/1) 2023; 46
Pashkova (D3JA90044D/cit244/1) 2022; 198
Michaliszyn (D3JA90044D/cit227/1) 2022; 37
Pacesila (D3JA90044D/cit178/1) 2022; 37
Wang (D3JA90044D/cit184/1) 2023; 47
Zhao (D3JA90044D/cit210/1) 2023; 38
Amico (D3JA90044D/cit53/1) 2022; 433
Greda (D3JA90044D/cit70/1) 2022; 249
Li (D3JA90044D/cit223/1) 2023; 47
Xiong (D3JA90044D/cit102/1) 2023; 28
Sliwinski (D3JA90044D/cit220/1) 2022; 46
Natori (D3JA90044D/cit10/1) 2023; 294
Wang (D3JA90044D/cit388/1) 2022; 37
Musil (D3JA90044D/cit325/1) 2023; 95
Wang (D3JA90044D/cit384/1) 2022; 37
Yuan (D3JA90044D/cit247/1) 2022; 37
Kim (D3JA90044D/cit176/1) 2022; 14
Zhou (D3JA90044D/cit174/1) 2022; 37
MacLeod (D3JA90044D/cit19/1) 2023; 169
Martins (D3JA90044D/cit74/1) 2023; 38
Wu (D3JA90044D/cit92/1) 2023; 43
Li (D3JA90044D/cit289/1) 2022; 56
Tang (D3JA90044D/cit218/1) 2022; 37
She (D3JA90044D/cit407/1) 2023; 38
Monikh (D3JA90044D/cit146/1) 2022; 17
Snow (D3JA90044D/cit22/1) 2021; 146
Li (D3JA90044D/cit299/1) 2022; 2022
Wang (D3JA90044D/cit23/1) 2023; 294
Li (D3JA90044D/cit182/1) 2023; 47
Pinto (D3JA90044D/cit319/1) 2023; 13
Carr (D3JA90044D/cit363/1) 2023; 47
Bland (D3JA90044D/cit276/1) 2022
Liebmann (D3JA90044D/cit341/1) 2023; 47
El Himri (D3JA90044D/cit136/1) 2022; 99
Shao (D3JA90044D/cit91/1) 2023; 38
Prasad (D3JA90044D/cit185/1) 2023; 47
Yan (D3JA90044D/cit214/1) 2022; 37
Kump (D3JA90044D/cit246/1) 2023
Rashid (D3JA90044D/cit43/1) 2022; 2
Su (D3JA90044D/cit200/1) 2023; 77
Weigl (D3JA90044D/cit274/1) 2022; 37
An (D3JA90044D/cit389/1) 2023; 95
Wu (D3JA90044D/cit50/1) 2023; 28
Chen (D3JA90044D/cit335/1) 2023; 44
Li (D3JA90044D/cit166/1) 2023; 448
Zhang (D3JA90044D/cit225/1) 2022; 37
Taskula (D3JA90044D/cit117/1) 2022; 12
Su (D3JA90044D/cit324/1) 2022; 94
Yang (D3JA90044D/cit387/1) 2023; 38
Gu (D3JA90044D/cit106/1) 2022; 46
Lewis (D3JA90044D/cit373/1) 2022; 614
Morimoto (D3JA90044D/cit61/1) 2023; 39
Xie (D3JA90044D/cit368/1) 2023; 484
Wang (D3JA90044D/cit141/1) 2022; 43
Vasil’eva (D3JA90044D/cit73/1) 2022; 77
Mihucz (D3JA90044D/cit101/1) 2022; 9
Bacon (D3JA90044D/cit1/1) 2023; 38
He (D3JA90044D/cit67/1) 2022; 37
Lv (D3JA90044D/cit125/1) 2022; 1231
Rush (D3JA90044D/cit402/1) 2022; 37
Logue (D3JA90044D/cit188/1) 2022; 46
Kinase (D3JA90044D/cit38/1) 2022; 290
Zhong (D3JA90044D/cit377/1) 2023; 38
Wu (D3JA90044D/cit352/1) 2023; 38
Costa (D3JA90044D/cit64/1) 2023; 1251
Shao (D3JA90044D/cit111/1) 2022; 251
Zhao (D3JA90044D/cit164/1) 2023; 51
Katsuta (D3JA90044D/cit318/1) 2023; 39
He (D3JA90044D/cit160/1) 2023; 157
Dey (D3JA90044D/cit398/1) 2023; 57
Baghaei (D3JA90044D/cit312/1) 2023; 20
Yuan (D3JA90044D/cit403/1) 2023; 620
Latty (D3JA90044D/cit261/1) 2023; 202
Fleischer (D3JA90044D/cit29/1) 2021
Al-Najjar (D3JA90044D/cit147/1) 2022
Searle-Barnes (D3JA90044D/cit258/1) 2023; 37
Tiihonen (D3JA90044D/cit94/1) 2022; 94
Sichler (D3JA90044D/cit110/1) 2022; 34
Lu (D3JA90044D/cit395/1) 2022; 37
Behbahani (D3JA90044D/cit300/1) 2022; 183
Wan (D3JA90044D/cit265/1) 2023; 56
Heikkila (D3JA90044D/cit264/1) 2022; 12
Dong (D3JA90044D/cit135/1) 2023; 1251
Li (D3JA90044D/cit237/1) 2023; 38
Cheng (D3JA90044D/cit371/1) 2022; 43
Ferreira (D3JA90044D/cit205/1) 2022; 195
Ge (D3JA90044D/cit89/1) 2022; 37
Weis (D3JA90044D/cit186/1) 2022; 46
Fang (D3JA90044D/cit169/1) 2022; 10
Aljboor (D3JA90044D/cit44/1) 2023; 38
Ghosh (D3JA90044D/cit248/1) 2023; 39
Liu (D3JA90044D/cit103/1) 2022; 46
Bai (D3JA90044D/cit107/1) 2022; 46
Huang (D3JA90044D/cit148/1) 2023; 51
Xu (D3JA90044D/cit235/1) 2022; 94
Wang (D3JA90044D/cit362/1) 2023
Guo (D3JA90044D/cit376/1) 2022; 37
Keerthi (D3JA90044D/cit88/1) 2022; 37
Djuric (D3JA90044D/cit58/1) 2022; 12
Cheng (D3JA90044D/cit20/1) 2022; 2
Wen (D3JA90044D/cit90/1) 2023; 38
Bland (D3JA90044D/cit145/1) 2022; 56
Sun (D3JA90044D/cit375/1) 2022; 43
Zhang (D3JA90044D/cit416/1) 2023; 47
Borduchi (D3JA90044D/cit158/1) 2023; 38
Xu (D3JA90044D/cit190/1) 2022; 242
Yildiz (D3JA90044D/cit63/1) 2022
Brunnbauer (D3JA90044D/cit193/1) 2023; 159
Da Silva (D3JA90044D/cit241/1) 2023; 623
Cheng (D3JA90044D/cit68/1) 2022; 1230
Zhang (D3JA90044D/cit87/1) 2023;
References_xml – issn: 2021
  publication-title: IEEE, presented at IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
  doi: Fleischer Widmer Statkevych Stoll Roddelkopf Thurow
– volume: 197
  start-page: 106527
  year: 2022
  ident: D3JA90044D/cit35/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106527
– volume: 38
  start-page: 359
  issue: 2
  year: 2023
  ident: D3JA90044D/cit86/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00357K
– volume: 10
  start-page: 242
  issue: 7
  year: 2022
  ident: D3JA90044D/cit169/1
  publication-title: Chemosensors
  doi: 10.3390/chemosensors10070242
– volume: 170
  start-page: 106144
  year: 2023
  ident: D3JA90044D/cit24/1
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2023.106144
– volume: 39
  start-page: 1047
  year: 2023
  ident: D3JA90044D/cit61/1
  publication-title: Anal. Sci.
  doi: 10.1007/s44211-023-00346-0
– volume: 425
  start-page: 127963
  year: 2022
  ident: D3JA90044D/cit120/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127963
– volume: 47
  start-page: 49
  issue: 1
  year: 2023
  ident: D3JA90044D/cit256/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12474
– volume: 307
  start-page: 119825
  year: 2023
  ident: D3JA90044D/cit290/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.119825
– volume: 194
  start-page: 106486
  year: 2022
  ident: D3JA90044D/cit386/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106486
– volume: 47
  start-page: 143
  issue: 1
  year: 2023
  ident: D3JA90044D/cit337/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12468
– volume: 37
  start-page: 1928
  issue: 10
  year: 2022
  ident: D3JA90044D/cit240/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00171C
– volume: 95
  start-page: 594
  issue: 2
  year: 2023
  ident: D3JA90044D/cit133/1
  publication-title: Anal. Chem.
– volume: 39
  start-page: 1349
  year: 2023
  ident: D3JA90044D/cit83/1
  publication-title: Anal. Sci.
  doi: 10.1007/s44211-023-00347-z
– volume: 15
  start-page: 5207
  issue: 18
  year: 2022
  ident: D3JA90044D/cit46/1
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-15-5207-2022
– volume: 608
  start-page: 121041
  year: 2022
  ident: D3JA90044D/cit216/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2022.121041
– volume: 20
  start-page: 339
  issue: 2
  year: 2023
  ident: D3JA90044D/cit312/1
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-022-02662-0
– volume: 180
  start-page: 113787
  year: 2022
  ident: D3JA90044D/cit298/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2022.113787
– volume: 43
  start-page: 236
  issue: 3
  year: 2022
  ident: D3JA90044D/cit371/1
  publication-title: At. Spectrosc.
– volume: 1251
  start-page: 341006
  year: 2023
  ident: D3JA90044D/cit135/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2023.341006
– volume: 381
  start-page: 121801
  year: 2023
  ident: D3JA90044D/cit121/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2023.121801
– volume: 37
  start-page: 1642
  issue: 8
  year: 2022
  ident: D3JA90044D/cit194/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00101B
– volume: 201
  start-page: 106616
  year: 2023
  ident: D3JA90044D/cit126/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2023.106616
– volume: 615
  start-page: 121213
  year: 2023
  ident: D3JA90044D/cit236/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2022.121213
– volume: 38
  start-page: 603
  issue: 3
  year: 2023
  ident: D3JA90044D/cit391/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00022B
– volume: 287
  start-page: 119285
  year: 2022
  ident: D3JA90044D/cit48/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119285
– volume: 39
  start-page: 1531
  issue: 9
  year: 2023
  ident: D3JA90044D/cit248/1
  publication-title: Anal. Sci.
  doi: 10.1007/s44211-023-00367-9
– volume: 37
  start-page: 2537
  issue: 12
  year: 2022
  ident: D3JA90044D/cit207/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00120A
– volume: 46
  start-page: 535
  issue: 3
  year: 2022
  ident: D3JA90044D/cit103/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12430
– volume: 14
  start-page: 12370
  issue: 19
  year: 2022
  ident: D3JA90044D/cit176/1
  publication-title: Sustainability
  doi: 10.3390/su141912370
– volume: 37
  start-page: 2176
  issue: 10
  year: 2022
  ident: D3JA90044D/cit202/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00206J
– volume: 39
  start-page: 23
  issue: 1
  year: 2023
  ident: D3JA90044D/cit316/1
  publication-title: Anal. Sci.
  doi: 10.1007/s44211-022-00194-4
– volume: 13
  start-page: 511
  issue: 2
  year: 2023
  ident: D3JA90044D/cit137/1
  publication-title: Life
  doi: 10.3390/life13020511
– volume: 37
  start-page: 2480
  issue: 11
  year: 2022
  ident: D3JA90044D/cit85/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00148A
– volume: 13
  year: 2022
  ident: D3JA90044D/cit134/1
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2022.891273
– volume: 38
  start-page: 827
  issue: 4
  year: 2023
  ident: D3JA90044D/cit275/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00403H
– volume: 185
  start-page: 108200
  year: 2023
  ident: D3JA90044D/cit307/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.108200
– volume: 47
  start-page: 629
  issue: 3
  year: 2023
  ident: D3JA90044D/cit185/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12483
– volume: 99
  start-page: 100684
  issue: 10
  year: 2022
  ident: D3JA90044D/cit136/1
  publication-title: J. Indian Chem. Soc.
  doi: 10.1016/j.jics.2022.100684
– volume: 37
  start-page: 2282
  issue: 11
  year: 2022
  ident: D3JA90044D/cit273/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00215A
– volume: 484
  start-page: 116995
  year: 2023
  ident: D3JA90044D/cit368/1
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2022.116995
– volume: 38
  start-page: 974
  issue: 5
  year: 2023
  ident: D3JA90044D/cit3/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA90013D
– volume: 332
  start-page: 111202
  year: 2022
  ident: D3JA90044D/cit277/1
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2022.111202
– volume: 38
  start-page: 1043
  issue: 5
  year: 2023
  ident: D3JA90044D/cit408/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00010A
– volume: 46
  start-page: 2200575
  issue: 4
  year: 2023
  ident: D3JA90044D/cit59/1
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.202200575
– volume: 194
  start-page: 106478
  year: 2022
  ident: D3JA90044D/cit213/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106478
– volume: 37
  start-page: 1862
  issue: 9
  year: 2022
  ident: D3JA90044D/cit214/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00010E
– volume: 38
  start-page: 1192
  issue: 6
  year: 2023
  ident: D3JA90044D/cit412/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00091E
– volume: 1247
  start-page: 340859
  year: 2023
  ident: D3JA90044D/cit326/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2023.340859
– volume: 78
  start-page: 303
  issue: 3
  year: 2023
  ident: D3JA90044D/cit317/1
  publication-title: J. Anal. Chem.
  doi: 10.1134/S1061934823030073
– volume: 38
  start-page: 1371
  issue: 11
  year: 2022
  ident: D3JA90044D/cit77/1
  publication-title: Anal. Sci.
  doi: 10.1007/s44211-022-00180-w
– volume: 51
  start-page: 100176
  issue: 2
  year: 2023
  ident: D3JA90044D/cit164/1
  publication-title: Chin. J. Anal. Chem.
  doi: 10.1016/j.cjac.2022.100176
– volume: 95
  start-page: 3694
  issue: 7
  year: 2023
  ident: D3JA90044D/cit325/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c04660
– volume: 94
  start-page: 17514
  issue: 50
  year: 2022
  ident: D3JA90044D/cit69/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c03784
– start-page: 1
  year: 2022
  ident: D3JA90044D/cit147/1
  publication-title: Appl. Spectrosc. Rev.
– volume: 56
  start-page: 732
  issue: 8
  year: 2022
  ident: D3JA90044D/cit25/1
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2022.2070055
– volume: 37
  start-page: 2286
  issue: 11
  year: 2022
  ident: D3JA90044D/cit224/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00266C
– volume: 12
  start-page: 15186
  year: 2022
  ident: D3JA90044D/cit58/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-19600-y
– volume: 47
  start-page: 199
  issue: 1
  year: 2023
  ident: D3JA90044D/cit182/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12471
– volume: 28
  start-page: 1223
  issue: 3
  year: 2023
  ident: D3JA90044D/cit102/1
  publication-title: Molecules
  doi: 10.3390/molecules28031223
– volume: 37
  start-page: e9533
  issue: 15
  year: 2023
  ident: D3JA90044D/cit258/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.9533
– volume: 38
  start-page: 638
  issue: 3
  year: 2023
  ident: D3JA90044D/cit91/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00404F
– volume: 78
  start-page: 324
  issue: 3
  year: 2023
  ident: D3JA90044D/cit115/1
  publication-title: J. Anal. Chem.
  doi: 10.1134/S1061934823030061
– volume: 67
  start-page: 259
  issue: 3
  year: 2022
  ident: D3JA90044D/cit112/1
  publication-title: J. Geosci.
– volume: 38
  start-page: 1213
  issue: 6
  year: 2023
  ident: D3JA90044D/cit66/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00083D
– volume: 47
  start-page: 125
  issue: 1
  year: 2023
  ident: D3JA90044D/cit239/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12463
– volume: 46
  start-page: 701
  issue: 4
  year: 2022
  ident: D3JA90044D/cit349/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12444
– volume: 149
  start-page: 116566
  year: 2022
  ident: D3JA90044D/cit55/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116566
– volume: 197
  start-page: 106541
  year: 2022
  ident: D3JA90044D/cit260/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106541
– volume: 37
  start-page: 1981
  issue: 10
  year: 2022
  ident: D3JA90044D/cit198/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00147K
– volume: 89
  start-page: 944
  issue: 5
  year: 2022
  ident: D3JA90044D/cit197/1
  publication-title: J. Appl. Spectrosc.
  doi: 10.1007/s10812-022-01452-z
– volume: 195
  start-page: 452
  issue: 4
  year: 2023
  ident: D3JA90044D/cit51/1
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-023-11058-3
– volume: 37
  start-page: 2510
  issue: 12
  year: 2022
  ident: D3JA90044D/cit89/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00221C
– volume: 46
  start-page: 465
  issue: 3
  year: 2022
  ident: D3JA90044D/cit217/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12447
– volume: 37
  start-page: 2470
  issue: 11
  year: 2022
  ident: D3JA90044D/cit376/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00250G
– volume: 344
  start-page: 40
  year: 2023
  ident: D3JA90044D/cit409/1
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2023.01.014
– volume: 37
  start-page: e9508
  year: 2023
  ident: D3JA90044D/cit369/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.9508
– volume: 432
  start-page: 107675
  year: 2022
  ident: D3JA90044D/cit267/1
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2022.107675
– volume: 43
  start-page: 364
  issue: 5
  year: 2022
  ident: D3JA90044D/cit141/1
  publication-title: At. Spectrosc.
  doi: 10.46770/AS.2022.235
– start-page: 1
  year: 2022
  ident: D3JA90044D/cit56/1
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408347.2022.2111655
– volume: 415
  start-page: 1159
  issue: 6
  year: 2023
  ident: D3JA90044D/cit108/1
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-022-04497-3
– volume: 14
  start-page: 101523
  issue: 2
  year: 2023
  ident: D3JA90044D/cit233/1
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2022.101523
– volume: 14
  start-page: 3944
  issue: 40
  year: 2022
  ident: D3JA90044D/cit171/1
  publication-title: Anal. Methods
  doi: 10.1039/D2AY00593J
– volume: 56
  start-page: 15584
  issue: 22
  year: 2022
  ident: D3JA90044D/cit145/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c03737
– volume: 10
  start-page: 40
  issue: 1
  year: 2023
  ident: D3JA90044D/cit116/1
  publication-title: Separations
  doi: 10.3390/separations10010040
– volume: 14
  start-page: 2732
  issue: 28
  year: 2022
  ident: D3JA90044D/cit177/1
  publication-title: Anal. Methods
  doi: 10.1039/D2AY00604A
– volume: 618
  start-page: 121221
  year: 2023
  ident: D3JA90044D/cit259/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2022.121221
– volume: 2
  start-page: 1263
  issue: 6
  year: 2022
  ident: D3JA90044D/cit20/1
  publication-title: Environ. Sci.: Atmos.
– volume: 294
  start-page: 119522
  year: 2023
  ident: D3JA90044D/cit23/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119522
– volume: 46
  start-page: 621
  issue: 4
  year: 2022
  ident: D3JA90044D/cit228/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12452
– volume: 48
  start-page: 8089
  year: 2023
  ident: D3JA90044D/cit155/1
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-022-07465-2
– volume-title: IEEE, presented at IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
  year: 2021
  ident: D3JA90044D/cit29/1
– volume: 415
  start-page: 2831
  issue: 14
  year: 2023
  ident: D3JA90044D/cit113/1
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-023-04695-7
– volume: 38
  start-page: 1489
  issue: 12
  year: 2022
  ident: D3JA90044D/cit321/1
  publication-title: Anal. Sci.
  doi: 10.1007/s44211-022-00181-9
– volume: 616
  start-page: 121236
  year: 2023
  ident: D3JA90044D/cit229/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2022.121236
– volume: 16
  start-page: 955
  issue: 4
  year: 2023
  ident: D3JA90044D/cit278/1
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-16-955-2023
– volume: 203
  start-page: 106665
  year: 2023
  ident: D3JA90044D/cit272/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2023.106665
– volume: 196
  start-page: 106518
  year: 2022
  ident: D3JA90044D/cit245/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106518
– volume: 37
  start-page: e9494
  issue: 9
  year: 2023
  ident: D3JA90044D/cit280/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.9494
– volume: 627
  start-page: 121457
  year: 2023
  ident: D3JA90044D/cit415/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2023.121457
– volume: 38
  start-page: 1461
  issue: 7
  year: 2023
  ident: D3JA90044D/cit390/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00059A
– volume: 47
  start-page: 91
  issue: 1
  year: 2023
  ident: D3JA90044D/cit222/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12464
– volume: 13
  start-page: 152
  issue: 2
  year: 2023
  ident: D3JA90044D/cit319/1
  publication-title: Membranes
  doi: 10.3390/membranes13020152
– volume: 38
  start-page: 1016
  issue: 5
  year: 2023
  ident: D3JA90044D/cit237/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00009E
– volume: 36
  start-page: e9383
  issue: 22
  year: 2022
  ident: D3JA90044D/cit400/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.9383
– volume: 94
  start-page: 13995
  issue: 40
  year: 2022
  ident: D3JA90044D/cit79/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c03280
– volume: 38
  start-page: 1065
  issue: 5
  year: 2023
  ident: D3JA90044D/cit343/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00394E
– volume: 47
  start-page: 509
  issue: 3
  year: 2023
  ident: D3JA90044D/cit351/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12495
– volume: 1231
  start-page: 340444
  year: 2022
  ident: D3JA90044D/cit125/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340444
– volume: 9
  start-page: 101625
  year: 2022
  ident: D3JA90044D/cit309/1
  publication-title: MethodsX
  doi: 10.1016/j.mex.2022.101625
– volume: 10
  start-page: 312
  issue: 8
  year: 2022
  ident: D3JA90044D/cit161/1
  publication-title: Chemosensors
  doi: 10.3390/chemosensors10080312
– start-page: 1
  year: 2023
  ident: D3JA90044D/cit332/1
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2023.2212092
– volume: 236
  start-page: 106979
  year: 2022
  ident: D3JA90044D/cit204/1
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2022.106979
– volume: 47
  start-page: 373
  issue: 2
  year: 2023
  ident: D3JA90044D/cit183/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12477
– volume: 256
  start-page: 124262
  year: 2023
  ident: D3JA90044D/cit302/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.124262
– volume: 196
  start-page: 106523
  year: 2022
  ident: D3JA90044D/cit206/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106523
– volume: 253
  start-page: 124072
  year: 2023
  ident: D3JA90044D/cit131/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.124072
– volume: 37
  start-page: 2330
  issue: 11
  year: 2022
  ident: D3JA90044D/cit203/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00188H
– volume: 38
  start-page: 716
  issue: 3
  year: 2023
  ident: D3JA90044D/cit62/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00314G
– volume: 56
  start-page: 980
  issue: 11
  year: 2022
  ident: D3JA90044D/cit289/1
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786826.2022.2114311
– volume: 194
  start-page: 106482
  year: 2022
  ident: D3JA90044D/cit209/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106482
– volume: 95
  start-page: 6923
  issue: 17
  year: 2023
  ident: D3JA90044D/cit143/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.3c00207
– volume: 297
  start-page: 119597
  year: 2023
  ident: D3JA90044D/cit7/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.119597
– volume: 77
  start-page: 1526
  issue: 12
  year: 2022
  ident: D3JA90044D/cit73/1
  publication-title: J. Anal. Chem.
  doi: 10.1134/S1061934822120152
– volume: 8
  start-page: e202203887
  issue: 19
  year: 2023
  ident: D3JA90044D/cit331/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202203887
– volume: 38
  start-page: 1339
  issue: 7
  year: 2023
  ident: D3JA90044D/cit4/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA90022C
– volume: 14
  start-page: 2920
  issue: 30
  year: 2022
  ident: D3JA90044D/cit294/1
  publication-title: Anal. Methods
  doi: 10.1039/D2AY00804A
– volume: 195
  start-page: 106504
  year: 2022
  ident: D3JA90044D/cit205/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106504
– volume: 47
  start-page: 595
  issue: 3
  year: 2023
  ident: D3JA90044D/cit365/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12486
– volume: 1251
  start-page: 340709
  year: 2023
  ident: D3JA90044D/cit64/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340709
– volume: 147
  start-page: 5130
  issue: 22
  year: 2022
  ident: D3JA90044D/cit93/1
  publication-title: Analyst
  doi: 10.1039/D2AN01290A
– volume: 30
  start-page: 37470
  issue: 21
  year: 2022
  ident: D3JA90044D/cit162/1
  publication-title: Opt. Express
  doi: 10.1364/OE.470782
– volume: 77
  start-page: 140
  issue: 2
  year: 2023
  ident: D3JA90044D/cit200/1
  publication-title: Appl. Spectrosc.
  doi: 10.1177/00037028221141102
– volume: 200
  start-page: 111614
  year: 2022
  ident: D3JA90044D/cit33/1
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111614
– volume: 37
  start-page: 1824
  issue: 9
  year: 2022
  ident: D3JA90044D/cit250/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00103A
– volume: 190
  start-page: 108622
  year: 2023
  ident: D3JA90044D/cit123/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2023.108622
– volume: 37
  start-page: 2351
  issue: 11
  year: 2022
  ident: D3JA90044D/cit249/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00238H
– volume: 47
  start-page: 337
  issue: 2
  year: 2023
  ident: D3JA90044D/cit364/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12488
– volume: 3
  start-page: 268
  issue: 2
  year: 2023
  ident: D3JA90044D/cit21/1
  publication-title: Environ. Sci.: Atmos.
– volume: 37
  start-page: 2442
  issue: 11
  year: 2022
  ident: D3JA90044D/cit227/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00243D
– volume: 28
  start-page: 2549
  issue: 6
  year: 2023
  ident: D3JA90044D/cit305/1
  publication-title: Molecules
  doi: 10.3390/molecules28062549
– volume: 13
  start-page: 1582
  issue: 10
  year: 2023
  ident: D3JA90044D/cit84/1
  publication-title: Nanomaterials
  doi: 10.3390/nano13101582
– volume: 414
  start-page: 6177
  issue: 20
  year: 2022
  ident: D3JA90044D/cit281/1
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-022-04184-3
– volume: 38
  start-page: 950
  issue: 4
  year: 2023
  ident: D3JA90044D/cit378/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00047H
– volume: 77
  start-page: 1155
  issue: 9
  year: 2022
  ident: D3JA90044D/cit127/1
  publication-title: J. Anal. Chem.
  doi: 10.1134/S1061934822090076
– volume: 57
  start-page: 73
  issue: 2
  year: 2023
  ident: D3JA90044D/cit398/1
  publication-title: Geochem. J.
  doi: 10.2343/geochemj.GJ23006
– volume: 37
  start-page: 2410
  issue: 11
  year: 2022
  ident: D3JA90044D/cit388/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00170E
– year: 2022
  ident: D3JA90044D/cit63/1
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067319.2022.2118591
– volume: 10
  start-page: 259
  issue: 7
  year: 2022
  ident: D3JA90044D/cit262/1
  publication-title: Chemosensors
  doi: 10.3390/chemosensors10070259
– volume: 46
  start-page: 547
  issue: 3
  year: 2022
  ident: D3JA90044D/cit360/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12443
– volume: 246
  start-page: 107160
  year: 2023
  ident: D3JA90044D/cit195/1
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2023.107160
– volume: 94
  start-page: 11739
  issue: 34
  year: 2022
  ident: D3JA90044D/cit94/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c01490
– volume: 199
  start-page: 106570
  year: 2023
  ident: D3JA90044D/cit36/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106570
– volume: 433
  start-page: 128823
  year: 2022
  ident: D3JA90044D/cit53/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128823
– volume: 28
  start-page: 3601
  issue: 8
  year: 2023
  ident: D3JA90044D/cit50/1
  publication-title: Molecules
  doi: 10.3390/molecules28083601
– volume: 37
  start-page: 2111
  issue: 10
  year: 2022
  ident: D3JA90044D/cit374/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00150K
– volume: 77
  start-page: 261
  year: 2023
  ident: D3JA90044D/cit263/1
  publication-title: Appl. Spectrosc.
  doi: 10.1177/00037028221146804
– volume: 45
  start-page: 3624
  issue: 18
  year: 2022
  ident: D3JA90044D/cit109/1
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.202200347
– volume: 242
  start-page: 107090
  year: 2022
  ident: D3JA90044D/cit190/1
  publication-title: J. Geochem. Explor.
  doi: 10.1016/j.gexplo.2022.107090
– volume: 37
  start-page: 2599
  issue: 12
  year: 2022
  ident: D3JA90044D/cit218/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00233G
– volume: 157
  start-page: 108714
  year: 2023
  ident: D3JA90044D/cit160/1
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.108714
– volume: 170
  start-page: 106160
  year: 2023
  ident: D3JA90044D/cit47/1
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2023.106160
– volume: 37
  start-page: 61
  year: 2012
  ident: D3JA90044D/cit122/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2012.03.013
– volume: 66
  start-page: 878
  issue: 7
  year: 2022
  ident: D3JA90044D/cit287/1
  publication-title: Ann. Work Exposures Health
  doi: 10.1093/annweh/wxac015
– volume: 159
  start-page: 116859
  year: 2023
  ident: D3JA90044D/cit193/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116859
– volume: 37
  start-page: 1902
  issue: 9
  year: 2022
  ident: D3JA90044D/cit402/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00194B
– volume: 115
  start-page: 104965
  year: 2023
  ident: D3JA90044D/cit328/1
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2022.104965
– volume: 47
  start-page: 311
  issue: 2
  year: 2023
  ident: D3JA90044D/cit345/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12480
– volume: 197
  start-page: 106532
  year: 2022
  ident: D3JA90044D/cit399/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106532
– volume: 37
  start-page: 2713
  issue: 12
  year: 2022
  ident: D3JA90044D/cit15/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00242F
– volume: 202
  start-page: 106648
  year: 2023
  ident: D3JA90044D/cit261/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2023.106648
– volume: 37
  start-page: 2589
  issue: 12
  year: 2022
  ident: D3JA90044D/cit383/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00197G
– volume: 37
  start-page: 2401
  issue: 11
  year: 2022
  ident: D3JA90044D/cit254/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00208F
– year: 2023
  ident: D3JA90044D/cit57/1
  publication-title: Crit. Rev. Anal. Chem.
  doi: 10.1080/10408347.2023.2197495
– volume: 46
  start-page: 589
  issue: 4
  year: 2022
  ident: D3JA90044D/cit219/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12458
– volume: 477
  start-page: 116849
  year: 2022
  ident: D3JA90044D/cit380/1
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2022.116849
– volume: 37
  start-page: 2517
  issue: 12
  year: 2022
  ident: D3JA90044D/cit65/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00245K
– volume: 158
  start-page: 116866
  year: 2023
  ident: D3JA90044D/cit11/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116866
– volume: 195
  start-page: 325
  issue: 2
  year: 2023
  ident: D3JA90044D/cit49/1
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-022-10888-x
– volume: 47
  start-page: 535
  issue: 3
  year: 2023
  ident: D3JA90044D/cit338/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12491
– volume: 77
  start-page: 131
  issue: 2
  year: 2023
  ident: D3JA90044D/cit128/1
  publication-title: Appl. Spectrosc.
  doi: 10.1177/00037028221141709
– year: 2023
  ident: D3JA90044D/cit246/1
  publication-title: X-Ray Spectrom.
  doi: 10.1002/xrs.3352
– volume: 47
  start-page: 155
  issue: 1
  year: 2023
  ident: D3JA90044D/cit114/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12470
– volume: 46
  start-page: 603
  issue: 4
  year: 2022
  ident: D3JA90044D/cit232/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12446
– volume: 47
  start-page: 415
  issue: 2
  year: 2023
  ident: D3JA90044D/cit382/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12479
– volume: 37
  start-page: 2392
  issue: 11
  year: 2022
  ident: D3JA90044D/cit247/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00274D
– volume: 43
  start-page: 246
  issue: 3
  year: 2022
  ident: D3JA90044D/cit119/1
  publication-title: At. Spectrosc.
– volume: 312
  start-page: 137206
  year: 2023
  ident: D3JA90044D/cit34/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.137206
– volume: 38
  start-page: 629
  issue: 3
  year: 2023
  ident: D3JA90044D/cit406/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00412G
– volume: 320
  start-page: 138053
  year: 2023
  ident: D3JA90044D/cit76/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.138053
– volume: 12
  start-page: 19741
  issue: 31
  year: 2022
  ident: D3JA90044D/cit297/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA02980D
– volume: 40
  start-page: 953
  issue: 11
  year: 2022
  ident: D3JA90044D/cit54/1
  publication-title: Chin. J. Chromatogr.
– volume: 37
  start-page: 1869
  issue: 9
  year: 2022
  ident: D3JA90044D/cit384/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00084A
– volume: 253
  start-page: 124082
  year: 2023
  ident: D3JA90044D/cit330/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.124082
– volume: 1681
  start-page: 463458
  year: 2022
  ident: D3JA90044D/cit118/1
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2022.463458
– volume: 49
  start-page: 1410
  issue: 8
  year: 2021
  ident: D3JA90044D/cit156/1
  publication-title: Chin. J. Anal. Chem.
  doi: 10.19756/j.issn.0253-3820.211067
– volume: 12
  start-page: 895
  issue: 4
  year: 2023
  ident: D3JA90044D/cit95/1
  publication-title: Foods
  doi: 10.3390/foods12040895
– volume: 38
  start-page: 10
  issue: 1
  year: 2023
  ident: D3JA90044D/cit1/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA90055F
– volume: 38
  start-page: 437
  issue: 2
  year: 2023
  ident: D3JA90044D/cit387/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00340F
– volume: 70
  start-page: 10349
  issue: 33
  year: 2022
  ident: D3JA90044D/cit139/1
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.2c02782
– volume: 47
  start-page: 683
  issue: 3
  year: 2023
  ident: D3JA90044D/cit184/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12496
– year: 2022
  ident: D3JA90044D/cit276/1
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.2c00835
– volume: 37
  start-page: 2529
  issue: 12
  year: 2022
  ident: D3JA90044D/cit238/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00248E
– volume: 307
  start-page: 135661
  year: 2022
  ident: D3JA90044D/cit293/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135661
– volume: 38
  start-page: 142
  issue: 1
  year: 2023
  ident: D3JA90044D/cit407/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00339B
– volume: 294
  start-page: 119493
  year: 2023
  ident: D3JA90044D/cit14/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119493
– volume: 37
  start-page: 1618
  issue: 8
  year: 2022
  ident: D3JA90044D/cit379/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00082B
– volume: 37
  start-page: 2556
  issue: 12
  year: 2022
  ident: D3JA90044D/cit142/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00244B
– volume: 46
  start-page: 645
  issue: 4
  year: 2022
  ident: D3JA90044D/cit357/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12456
– volume: 183
  start-page: 107951
  year: 2022
  ident: D3JA90044D/cit300/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.107951
– volume: 12
  start-page: 1326
  issue: 10
  year: 2022
  ident: D3JA90044D/cit100/1
  publication-title: Minerals
  doi: 10.3390/min12101326
– volume: 480
  start-page: 116897
  year: 2022
  ident: D3JA90044D/cit381/1
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2022.116897
– volume: 37
  start-page: 2300
  issue: 11
  year: 2022
  ident: D3JA90044D/cit334/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00002D
– volume: 38
  start-page: 204
  issue: 1
  year: 2023
  ident: D3JA90044D/cit344/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00362G
– volume: 56
  start-page: 62
  year: 2023
  ident: D3JA90044D/cit265/1
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387010.2023.2165505
– volume: 37
  start-page: 2089
  issue: 10
  year: 2022
  ident: D3JA90044D/cit283/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00231K
– volume: 47
  start-page: 185
  issue: 1
  year: 2023
  ident: D3JA90044D/cit255/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12476
– volume: 3
  start-page: 842
  issue: 5
  year: 2023
  ident: D3JA90044D/cit285/1
  publication-title: Environ. Sci.: Atmos.
– volume: 38
  start-page: 315
  issue: 2
  year: 2023
  ident: D3JA90044D/cit327/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00273F
– volume: 47
  start-page: 437
  issue: 2
  year: 2023
  ident: D3JA90044D/cit359/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12473
– volume: 835
  start-page: 155460
  year: 2022
  ident: D3JA90044D/cit124/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155460
– volume: 11
  start-page: 193
  issue: 3
  year: 2023
  ident: D3JA90044D/cit153/1
  publication-title: Chemosensors
  doi: 10.3390/chemosensors11030193
– year: 2023
  ident: D3JA90044D/cit354/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12513
– volume: 37
  start-page: 1894
  issue: 9
  year: 2022
  ident: D3JA90044D/cit67/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00137C
– volume: 46
  start-page: 519
  issue: 3
  year: 2022
  ident: D3JA90044D/cit189/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12428
– volume: 2
  start-page: 1338
  issue: 6
  year: 2022
  ident: D3JA90044D/cit43/1
  publication-title: Environ. Sci.: Atmos.
– volume: 233
  start-page: 428
  issue: 11
  year: 2022
  ident: D3JA90044D/cit320/1
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-022-05898-x
– volume: 37
  start-page: 2165
  issue: 10
  year: 2022
  ident: D3JA90044D/cit413/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00189F
– volume: 38
  start-page: 792
  issue: 4
  year: 2023
  ident: D3JA90044D/cit210/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00360K
– volume: 38
  start-page: 1478
  issue: 7
  year: 2023
  ident: D3JA90044D/cit350/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00405D
– volume: 814
  start-page: 152657
  year: 2022
  ident: D3JA90044D/cit16/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.152657
– volume: 15
  start-page: 1594
  issue: 12
  year: 2023
  ident: D3JA90044D/cit72/1
  publication-title: Anal. Methods
  doi: 10.1039/D3AY00057E
– volume: 46
  start-page: 451
  issue: 3
  year: 2022
  ident: D3JA90044D/cit342/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12440
– volume: 198
  start-page: 106549
  year: 2022
  ident: D3JA90044D/cit244/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106549
– volume: 28
  start-page: 994
  issue: 3
  year: 2023
  ident: D3JA90044D/cit81/1
  publication-title: Molecules
  doi: 10.3390/molecules28030994
– volume: 51
  start-page: 1729
  issue: 7
  year: 2023
  ident: D3JA90044D/cit148/1
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2022.3231985
– volume: 94
  start-page: 16746
  issue: 48
  year: 2022
  ident: D3JA90044D/cit405/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c03420
– volume: 147
  start-page: 3628
  issue: 16
  year: 2022
  ident: D3JA90044D/cit173/1
  publication-title: Analyst
  doi: 10.1039/D2AN00752E
– volume: 38
  start-page: 656
  issue: 3
  year: 2023
  ident: D3JA90044D/cit392/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00371F
– volume: 38
  start-page: 1730
  issue: 9
  year: 2023
  ident: D3JA90044D/cit5/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA90026F
– volume: 14
  start-page: 4219
  issue: 42
  year: 2022
  ident: D3JA90044D/cit163/1
  publication-title: Anal. Methods
  doi: 10.1039/D2AY01424F
– volume: 155
  start-page: 108386
  year: 2022
  ident: D3JA90044D/cit149/1
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2022.108386
– volume: 44
  start-page: 14
  issue: 1
  year: 2023
  ident: D3JA90044D/cit335/1
  publication-title: At. Spectrosc.
  doi: 10.46770/AS.2022.186
– volume: 47
  start-page: 609
  issue: 3
  year: 2023
  ident: D3JA90044D/cit347/1
  publication-title: Geostand. Geoanal.Res.
  doi: 10.1111/ggr.12500
– volume: 317
  start-page: 120761
  year: 2023
  ident: D3JA90044D/cit31/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.120761
– volume: 182
  start-page: 107927
  year: 2022
  ident: D3JA90044D/cit323/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.107927
– volume: 39
  start-page: 589
  issue: 4
  year: 2023
  ident: D3JA90044D/cit296/1
  publication-title: Anal. Sci.
  doi: 10.1007/s44211-023-00277-w
– volume: 246
  start-page: 123501
  year: 2022
  ident: D3JA90044D/cit310/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123501
– volume: 37
  start-page: 2637
  issue: 12
  year: 2022
  ident: D3JA90044D/cit370/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00270A
– volume: 37
  start-page: 1611
  issue: 8
  year: 2022
  ident: D3JA90044D/cit132/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00106C
– volume: 146
  start-page: 106264
  year: 2021
  ident: D3JA90044D/cit22/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.106264
– volume: 39
  start-page: 785
  issue: 6
  year: 2023
  ident: D3JA90044D/cit318/1
  publication-title: Anal. Sci.
  doi: 10.1007/s44211-023-00327-3
– volume: 56
  start-page: 13076
  issue: 18
  year: 2022
  ident: D3JA90044D/cit60/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c02908
– volume: 289
  start-page: 119301
  year: 2022
  ident: D3JA90044D/cit286/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119301
– volume: 303
  start-page: 119759
  year: 2023
  ident: D3JA90044D/cit279/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.119759
– volume: 37
  start-page: 2625
  issue: 12
  year: 2022
  ident: D3JA90044D/cit88/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00202G
– volume: 46
  start-page: 753
  issue: 4
  year: 2022
  ident: D3JA90044D/cit186/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12466
– volume: 12
  start-page: 3307
  issue: 19
  year: 2022
  ident: D3JA90044D/cit117/1
  publication-title: Nanomaterials
  doi: 10.3390/nano12193307
– volume: 38
  start-page: 369
  issue: 2
  year: 2023
  ident: D3JA90044D/cit230/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00317A
– volume: 1230
  start-page: 340378
  year: 2022
  ident: D3JA90044D/cit68/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340378
– volume: 17
  start-page: 1926
  issue: 9
  year: 2022
  ident: D3JA90044D/cit146/1
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-022-00701-x
– volume: 38
  start-page: 1442
  issue: 7
  year: 2023
  ident: D3JA90044D/cit167/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00095H
– volume: 56
  start-page: 517
  issue: 3
  year: 2023
  ident: D3JA90044D/cit303/1
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2022.2092632
– volume: 36
  start-page: e9404
  issue: 24
  year: 2022
  ident: D3JA90044D/cit282/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.9404
– volume: 198
  start-page: 106561
  year: 2022
  ident: D3JA90044D/cit157/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106561
– volume: 94
  start-page: 10745
  issue: 30
  year: 2022
  ident: D3JA90044D/cit144/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c01379
– volume: 38
  start-page: 1285
  issue: 6
  year: 2023
  ident: D3JA90044D/cit394/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00407K
– volume: 30
  start-page: 44671
  issue: 15
  year: 2023
  ident: D3JA90044D/cit87/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-25513-8
– volume: 47
  start-page: 243
  issue: 2
  year: 2023
  ident: D3JA90044D/cit231/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12482
– volume: 298
  start-page: 119607
  year: 2023
  ident: D3JA90044D/cit8/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.119607
– volume: 290
  start-page: 119360
  year: 2022
  ident: D3JA90044D/cit38/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119360
– volume: 38
  start-page: 693
  issue: 3
  year: 2023
  ident: D3JA90044D/cit212/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00370H
– volume: 37
  start-page: 2701
  issue: 12
  year: 2022
  ident: D3JA90044D/cit28/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00251E
– volume: 9
  start-page: 14
  issue: 36
  year: 2022
  ident: D3JA90044D/cit101/1
  publication-title: Braz. J. Anal. Chem.
  doi: 10.30744/brjac.2179-3425.RV-119-2021
– volume: 608
  start-page: 121016
  year: 2022
  ident: D3JA90044D/cit234/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2022.121016
– volume: 294
  start-page: 119486
  year: 2023
  ident: D3JA90044D/cit288/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119486
– volume: 47
  start-page: 7
  issue: 1
  year: 2023
  ident: D3JA90044D/cit181/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12460
– volume: 249
  start-page: 123694
  year: 2022
  ident: D3JA90044D/cit70/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123694
– volume: 47
  start-page: 267
  issue: 2
  year: 2023
  ident: D3JA90044D/cit221/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12478
– volume: 46
  start-page: 811
  issue: 4
  year: 2022
  ident: D3JA90044D/cit106/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12455
– volume: 251
  start-page: 106944
  year: 2022
  ident: D3JA90044D/cit111/1
  publication-title: J. Environ. Radioact.
  doi: 10.1016/j.jenvrad.2022.106944
– volume: 37
  start-page: 2563
  issue: 12
  year: 2022
  ident: D3JA90044D/cit170/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00234E
– volume: 194
  start-page: 106470
  year: 2022
  ident: D3JA90044D/cit208/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106470
– volume: 1241
  start-page: 340799
  year: 2023
  ident: D3JA90044D/cit304/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2023.340799
– volume: 252
  start-page: 123818
  year: 2023
  ident: D3JA90044D/cit30/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123818
– volume: 1232
  start-page: 340497
  year: 2022
  ident: D3JA90044D/cit130/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340497
– volume: 95
  start-page: 2140
  issue: 4
  year: 2023
  ident: D3JA90044D/cit389/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c03989
– volume: 1240
  start-page: 340744
  year: 2023
  ident: D3JA90044D/cit104/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340744
– volume: 34
  start-page: 949
  issue: 7
  year: 2023
  ident: D3JA90044D/cit311/1
  publication-title: J. Braz. Chem. Soc.
– volume: 46
  start-page: 735
  issue: 4
  year: 2022
  ident: D3JA90044D/cit361/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12457
– volume: 38
  start-page: 1057
  issue: 5
  year: 2023
  ident: D3JA90044D/cit271/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00424K
– volume: 38
  start-page: 121
  issue: 1
  year: 2023
  ident: D3JA90044D/cit150/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00278G
– volume: 611
  start-page: 121078
  year: 2022
  ident: D3JA90044D/cit397/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2022.121078
– volume: 169
  start-page: 106118
  year: 2023
  ident: D3JA90044D/cit13/1
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2022.106118
– volume: 293
  start-page: 119463
  year: 2023
  ident: D3JA90044D/cit27/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119463
– volume: 1215
  start-page: 339980
  year: 2022
  ident: D3JA90044D/cit71/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.339980
– volume: 198
  start-page: 106564
  year: 2022
  ident: D3JA90044D/cit411/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106564
– volume: 623
  start-page: 121395
  year: 2023
  ident: D3JA90044D/cit241/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2023.121395
– volume: 118
  start-page: 105163
  year: 2023
  ident: D3JA90044D/cit329/1
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2023.105163
– volume: 46
  start-page: 851
  issue: 4
  year: 2022
  ident: D3JA90044D/cit251/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12454
– volume: 12
  start-page: 14657
  issue: 1
  year: 2022
  ident: D3JA90044D/cit264/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-18349-8
– volume: 16
  start-page: 825
  issue: 3
  year: 2023
  ident: D3JA90044D/cit45/1
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-16-825-2023
– volume: 196
  start-page: 106517
  year: 2022
  ident: D3JA90044D/cit41/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106517
– volume: 58
  start-page: 3220
  year: 2023
  ident: D3JA90044D/cit252/1
  publication-title: Geol. J.
  doi: 10.1002/gj.4773
– volume: 94
  start-page: 9835
  issue: 27
  year: 2022
  ident: D3JA90044D/cit17/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c01685
– volume: 38
  start-page: 1146
  issue: 5
  year: 2023
  ident: D3JA90044D/cit191/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00012E
– volume: 38
  start-page: 1155
  issue: 5
  year: 2023
  ident: D3JA90044D/cit158/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00399F
– volume: 47
  start-page: 169
  issue: 1
  year: 2023
  ident: D3JA90044D/cit416/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12472
– volume: 246
  start-page: 123516
  year: 2022
  ident: D3JA90044D/cit129/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123516
– volume: 47
  start-page: 669
  issue: 3
  year: 2023
  ident: D3JA90044D/cit353/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12492
– volume: 47
  start-page: 67
  issue: 1
  year: 2023
  ident: D3JA90044D/cit363/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12469
– year: 2023
  ident: D3JA90044D/cit367/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12499
– volume: 276
  start-page: 214
  year: 2022
  ident: D3JA90044D/cit295/1
  publication-title: Desalin. Water Treat.
  doi: 10.5004/dwt.2022.28989
– volume: 46
  start-page: 825
  issue: 4
  year: 2022
  ident: D3JA90044D/cit107/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12451
– volume: 78
  start-page: 310
  issue: 3
  year: 2023
  ident: D3JA90044D/cit292/1
  publication-title: J. Anal. Chem.
  doi: 10.1134/S1061934823030152
– volume: 47
  start-page: 569
  issue: 3
  year: 2023
  ident: D3JA90044D/cit372/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12485
– volume: 47
  start-page: 697
  issue: 3
  year: 2023
  ident: D3JA90044D/cit355/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12484
– volume: 58
  start-page: e4905
  issue: 2
  year: 2023
  ident: D3JA90044D/cit26/1
  publication-title: J. Mass Spectrom.
  doi: 10.1002/jms.4905
– volume: 38
  start-page: 97
  issue: 1
  year: 2023
  ident: D3JA90044D/cit270/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00174H
– volume: 37
  start-page: 1855
  issue: 9
  year: 2022
  ident: D3JA90044D/cit196/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00071G
– volume: 37
  start-page: 2581
  issue: 12
  year: 2022
  ident: D3JA90044D/cit178/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00283C
– volume: 25
  start-page: 351
  issue: 3
  year: 2023
  ident: D3JA90044D/cit52/1
  publication-title: Environ. Sci.: Processes Impacts
– volume: 195
  start-page: 106505
  year: 2022
  ident: D3JA90044D/cit268/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2022.106505
– volume: 56
  start-page: 2792
  issue: 17
  year: 2023
  ident: D3JA90044D/cit152/1
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2023.2185250
– volume: 621
  start-page: 121365
  year: 2023
  ident: D3JA90044D/cit410/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2023.121365
– volume: 14
  start-page: 2782
  issue: 28
  year: 2022
  ident: D3JA90044D/cit105/1
  publication-title: Anal. Methods
  doi: 10.1039/D2AY00559J
– volume: 46
  start-page: 477
  issue: 3
  year: 2022
  ident: D3JA90044D/cit187/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12439
– volume: 43
  start-page: 214
  issue: 3
  year: 2022
  ident: D3JA90044D/cit385/1
  publication-title: At. Spectrosc.
– volume: 3
  start-page: 328
  issue: 2
  year: 2023
  ident: D3JA90044D/cit18/1
  publication-title: Environ. Sci.: Atmos.
– volume: 14
  start-page: 100108
  year: 2022
  ident: D3JA90044D/cit42/1
  publication-title: Micro Nano Eng.
  doi: 10.1016/j.mne.2022.100108
– volume: 38
  start-page: 1387
  issue: 7
  year: 2023
  ident: D3JA90044D/cit226/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00026E
– volume: 37
  start-page: 1835
  issue: 9
  year: 2022
  ident: D3JA90044D/cit336/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00151A
– volume: 58
  start-page: 428
  issue: 6
  year: 2023
  ident: D3JA90044D/cit243/1
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2022.2130350
– volume: 94
  start-page: 16265
  issue: 46
  year: 2022
  ident: D3JA90044D/cit324/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c04401
– volume: 43
  start-page: 337
  issue: 4
  year: 2022
  ident: D3JA90044D/cit375/1
  publication-title: At. Spectrosc.
– volume: 37
  start-page: 2144
  issue: 10
  year: 2022
  ident: D3JA90044D/cit201/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00127F
– start-page: 1
  year: 2023
  ident: D3JA90044D/cit179/1
  publication-title: Radiocarbon
  doi: 10.1017/rdc.2023.18
– volume: 46
  start-page: 401
  issue: 3
  year: 2022
  ident: D3JA90044D/cit220/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12442
– volume: 52
  start-page: 182
  issue: 4
  year: 2023
  ident: D3JA90044D/cit242/1
  publication-title: X-Ray Spectrom.
  doi: 10.1002/xrs.3303
– volume: 38
  start-page: 1421
  issue: 7
  year: 2023
  ident: D3JA90044D/cit211/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00015J
– volume: 10
  start-page: 93
  issue: 2
  year: 2023
  ident: D3JA90044D/cit315/1
  publication-title: Separations
  doi: 10.3390/separations10020093
– volume: 37
  start-page: 1665
  issue: 8
  year: 2022
  ident: D3JA90044D/cit395/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00163B
– volume: 38
  start-page: 1007
  issue: 5
  year: 2023
  ident: D3JA90044D/cit74/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00068K
– volume: 37
  start-page: 2490
  issue: 11
  year: 2022
  ident: D3JA90044D/cit269/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA90054H
– volume: 37
  start-page: e9538
  issue: 15
  year: 2023
  ident: D3JA90044D/cit333/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.9538
– volume: 16
  issue: 1
  year: 2023
  ident: D3JA90044D/cit9/1
  publication-title: Energies
  doi: 10.3390/en.16010177
– volume: 214
  start-page: 113841
  year: 2022
  ident: D3JA90044D/cit175/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113841
– volume: 38
  start-page: 1108
  issue: 5
  year: 2023
  ident: D3JA90044D/cit90/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00057E
– volume: 38
  start-page: 939
  issue: 4
  year: 2023
  ident: D3JA90044D/cit377/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00411A
– volume: 34
  start-page: 99
  year: 2022
  ident: D3JA90044D/cit110/1
  publication-title: Environ. Sci. Eur.
  doi: 10.1186/s12302-022-00677-1
– volume: 37
  start-page: 2461
  issue: 11
  year: 2022
  ident: D3JA90044D/cit174/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00213B
– volume: 181
  start-page: 109523
  year: 2023
  ident: D3JA90044D/cit266/1
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2022.109523
– volume: 37
  start-page: 2182
  issue: 10
  year: 2022
  ident: D3JA90044D/cit274/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00068G
– volume: 89
  start-page: 567
  issue: 3
  year: 2022
  ident: D3JA90044D/cit301/1
  publication-title: J. Appl. Spectrosc.
  doi: 10.1007/s10812-022-01396-4
– volume: 169
  start-page: 106119
  year: 2023
  ident: D3JA90044D/cit19/1
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2022.106119
– volume: 77
  start-page: 1
  issue: 2
  year: 2023
  ident: D3JA90044D/cit313/1
  publication-title: Chem. Pap.
– year: 2023
  ident: D3JA90044D/cit362/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12501
– volume: 415
  start-page: 4023
  issue: 18
  year: 2023
  ident: D3JA90044D/cit98/1
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-023-04641-7
– volume: 255
  start-page: 123902
  year: 2023
  ident: D3JA90044D/cit314/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123902
– volume: 448
  start-page: 130885
  year: 2023
  ident: D3JA90044D/cit166/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.130885
– volume: 38
  start-page: 496
  issue: 3
  year: 2023
  ident: D3JA90044D/cit2/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA90008H
– volume: 12
  start-page: 1798
  issue: 11
  year: 2022
  ident: D3JA90044D/cit172/1
  publication-title: Metals
  doi: 10.3390/met12111798
– volume: 46
  start-page: 789
  issue: 4
  year: 2022
  ident: D3JA90044D/cit188/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12459
– volume: 157
  start-page: 116746
  year: 2022
  ident: D3JA90044D/cit37/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116746
– volume: 37
  start-page: 1776
  issue: 9
  year: 2022
  ident: D3JA90044D/cit396/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00181K
– volume: 46
  start-page: 1727
  issue: 6
  year: 2022
  ident: D3JA90044D/cit154/1
  publication-title: Iran. J. Sci. Technol., Trans. A: Sci.
  doi: 10.1007/s40995-022-01376-5
– volume: 37
  start-page: 1994
  issue: 10
  year: 2022
  ident: D3JA90044D/cit199/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00145D
– volume: 47
  start-page: 549
  issue: 3
  year: 2023
  ident: D3JA90044D/cit253/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12490
– volume: 30
  start-page: 37711
  issue: 21
  year: 2022
  ident: D3JA90044D/cit165/1
  publication-title: Opt. Express
  doi: 10.1364/OE.471563
– volume: 38
  start-page: 578
  issue: 3
  year: 2023
  ident: D3JA90044D/cit257/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00341D
– volume: 85
  start-page: 871
  issue: 10–11
  year: 2022
  ident: D3JA90044D/cit284/1
  publication-title: Chromatographia
  doi: 10.1007/s10337-022-04203-6
– volume: 120
  start-page: 105330
  year: 2023
  ident: D3JA90044D/cit96/1
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2023.105330
– volume: 205
  start-page: 106689
  year: 2023
  ident: D3JA90044D/cit97/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2023.106689
– volume: 47
  start-page: 297
  issue: 2
  year: 2023
  ident: D3JA90044D/cit348/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12493
– volume: 38
  start-page: 642
  issue: 3
  year: 2023
  ident: D3JA90044D/cit352/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00348A
– volume: 47
  start-page: 23
  issue: 1
  year: 2023
  ident: D3JA90044D/cit356/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12467
– volume: 262
  start-page: 124710
  year: 2023
  ident: D3JA90044D/cit308/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.124710
– volume: 46
  start-page: 837
  issue: 4
  year: 2022
  ident: D3JA90044D/cit358/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12453
– volume: 480
  start-page: 116893
  year: 2022
  ident: D3JA90044D/cit393/1
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2022.116893
– volume: 13
  start-page: 8803
  issue: 13
  year: 2023
  ident: D3JA90044D/cit99/1
  publication-title: RSC Adv.
  doi: 10.1039/D3RA00789H
– volume: 77
  start-page: 1458
  issue: 11
  year: 2022
  ident: D3JA90044D/cit75/1
  publication-title: J. Anal. Chem.
  doi: 10.1134/S1061934822110168
– volume: 302
  start-page: 119700
  year: 2023
  ident: D3JA90044D/cit32/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2023.119700
– volume: 51
  start-page: 447
  issue: 4
  year: 2023
  ident: D3JA90044D/cit306/1
  publication-title: Instrum. Sci. Technol.
  doi: 10.1080/10739149.2022.2156535
– start-page: 1
  year: 2022
  ident: D3JA90044D/cit82/1
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067319.2022.2115896
– volume: 202
  start-page: 106643
  year: 2023
  ident: D3JA90044D/cit291/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2023.106643
– volume: 19
  start-page: 4389
  issue: 11
  year: 2022
  ident: D3JA90044D/cit322/1
  publication-title: J. Iran. Chem. Soc.
  doi: 10.1007/s13738-022-02669-7
– volume: 170
  start-page: 107607
  year: 2022
  ident: D3JA90044D/cit39/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2022.107607
– volume: 20
  start-page: 267
  year: 2022
  ident: D3JA90044D/cit12/1
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20010267
– volume: 38
  start-page: 221
  issue: 1
  year: 2023
  ident: D3JA90044D/cit339/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00301E
– volume: 620
  start-page: 121351
  year: 2023
  ident: D3JA90044D/cit403/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2023.121351
– volume: 614
  start-page: 121185
  year: 2022
  ident: D3JA90044D/cit373/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2022.121185
– volume: 2022
  start-page: 2080600
  year: 2022
  ident: D3JA90044D/cit299/1
  publication-title: J. Anal. Methods Chem.
  doi: 10.1155/2022/2080600
– volume: 94
  start-page: 7944
  issue: 22
  year: 2022
  ident: D3JA90044D/cit235/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c00759
– volume: 294
  start-page: 119504
  year: 2023
  ident: D3JA90044D/cit10/1
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2022.119504
– volume: 10
  year: 2022
  ident: D3JA90044D/cit78/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2022.912938
– volume: 35
  start-page: 012007
  issue: 1
  year: 2023
  ident: D3JA90044D/cit151/1
  publication-title: J. Laser Appl.
  doi: 10.2351/7.0000901
– volume: 37
  start-page: 2207
  issue: 11
  year: 2022
  ident: D3JA90044D/cit6/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA90050E
– volume: 10
  start-page: 967158
  year: 2022
  ident: D3JA90044D/cit159/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2022.967158
– volume: 610
  start-page: 121073
  year: 2022
  ident: D3JA90044D/cit215/1
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2022.121073
– volume: 13
  start-page: 34
  issue: 1
  year: 2022
  ident: D3JA90044D/cit340/1
  publication-title: J. Anal. Sci. Technol.
  doi: 10.1186/s40543-022-00342-5
– volume: 38
  start-page: 414
  issue: 2
  year: 2023
  ident: D3JA90044D/cit346/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00311B
– volume: 46
  start-page: 673
  issue: 4
  year: 2022
  ident: D3JA90044D/cit180/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12449
– volume: 38
  start-page: 57
  issue: 1
  year: 2023
  ident: D3JA90044D/cit44/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00291D
– volume: 38
  start-page: 609
  issue: 3
  year: 2023
  ident: D3JA90044D/cit366/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D3JA00007A
– volume: 37
  start-page: 2420
  issue: 11
  year: 2022
  ident: D3JA90044D/cit404/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00135G
– volume: 94
  start-page: 8547
  issue: 23
  year: 2022
  ident: D3JA90044D/cit140/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c01736
– volume: 47
  start-page: 657
  issue: 3
  year: 2023
  ident: D3JA90044D/cit223/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12497
– volume: 47
  start-page: 637
  issue: 3
  year: 2023
  ident: D3JA90044D/cit341/1
  publication-title: Geostand. Geoanal. Res.
  doi: 10.1111/ggr.12487
– volume: 252
  start-page: 123846
  year: 2023
  ident: D3JA90044D/cit80/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2022.123846
– volume: 257
  start-page: 124390
  year: 2023
  ident: D3JA90044D/cit401/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2023.124390
– volume: 95
  start-page: 2967
  issue: 5
  year: 2023
  ident: D3JA90044D/cit40/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c04751
– volume: 38
  start-page: 449
  issue: 2
  year: 2023
  ident: D3JA90044D/cit192/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00332E
– volume: 202
  start-page: 106646
  year: 2023
  ident: D3JA90044D/cit414/1
  publication-title: Spectrochim. Acta, Part B
  doi: 10.1016/j.sab.2023.106646
– volume: 28
  start-page: 3360
  issue: 8
  year: 2023
  ident: D3JA90044D/cit168/1
  publication-title: Molecules
  doi: 10.3390/molecules28083360
– volume: 48
  start-page: 42
  issue: 2
  year: 2022
  ident: D3JA90044D/cit138/1
  publication-title: Arch. Environ. Prot.
– volume: 37
  start-page: 1793
  issue: 9
  year: 2022
  ident: D3JA90044D/cit225/1
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/D2JA00136E
– volume: 43
  start-page: 990
  issue: 3
  year: 2023
  ident: D3JA90044D/cit92/1
  publication-title: Spectrosc. Spectral Anal.
SSID ssj0004525
Score 2.473818
SecondaryResourceType review_article
Snippet Highlights in the field of air analysis included: a new focus on measuring tyre-wear particle emissions; an interest in using unmanned aerial vehicles for...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Atmospheric models
Availability
Instruments
Isotope ratios
Laser ablation
Measuring instruments
Oxidation
Pelleting
Reagents
Reference materials
Sensitivity analysis
Soil analysis
Soil contamination
Speciation
Unmanned aerial vehicles
Valence
Water analysis
Wear particles
Title Atomic spectrometry update - a review of advances in environmental analysis
URI https://www.proquest.com/docview/2909079190
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TgheEAwmCmOyBC8o8khsp6kfq100xmAS6sTeIsd20NCUTV0KYr9-x5c0rrZJwEtU2Ulj-Xw5_nx8Lgi9H_OaGyULopS1VmmlSVUVnFBZpVWW1hOhbaDwl6_jw1N-dJafDQZ15LW0aKsddXNvXMn_SBXaQK42SvYfJLv8U2iA3yBfuIKE4fpXMp62NqY4cdGSNu1AO_-TLK7sHj4hiYzCUsJJv_N9jULbXJ4An5TkAZLqur25W959WW8GVf7wPsSFRV6I1t_IgeLkt2kij2x5PvcM_rv1FW6SbzvJcd_5C0bgWO3JxQ8ZGyYod4YJFukvCjpY8FClxXj9ysacAIPhsQL22YxWgOa1aVDDfl32JSXuaPyU2YSpmv2Uwh5O635dW3ob9p1raJ3CdoIO0fp0f_bpOM4rn3trnB9yl8iWiY_906vUpd-PrM27YjGOlMyeoadBUHjqofEcDUyzgR7vdkX8NtAj5-Grrl-gzx4sOJYf9mDBBEvswYIva9yBBZ83eAUsuAPLS3R6sD_bPSShkgZRdJK1pNZMMqEyCp-lVhPDTJqpiVRGcW5MYTJJmcihmTOtUj5WBWVcAPtWmoqKSraJhs1lY14hnNsSjsBhcqA5PGVSFjwHIiRhrdA2XnOEPnSTVKqQZt5WO7konbsDE-UeO5q6Cd0boXfLe698cpV779rq5roMH991SWF0aSGAzo7QJsz_8vleXK8f6niDnvR43ULDdr4wb4FattV2wMUtqQ97ow
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomic+spectrometry+update+-+a+review+of+advances+in+environmental+analysis&rft.jtitle=Journal+of+analytical+atomic+spectrometry&rft.au=Bacon%2C+Jeffrey+R&rft.au=Butler%2C+Owen+T&rft.au=Cairns%2C+Warren+R.+L&rft.au=Cavoura%2C+Olga&rft.date=2024-01-03&rft.issn=0267-9477&rft.eissn=1364-5544&rft.volume=39&rft.issue=1&rft.spage=11&rft.epage=65&rft_id=info:doi/10.1039%2Fd3ja90044d&rft.externalDocID=d3ja90044d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0267-9477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0267-9477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0267-9477&client=summon