Machine learning techniques for quality of transmission estimation in optical networks
The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We discuss the sources of inaccuracy in QoT estimation in general; we propose a taxonomy for ML-aided QoT estimation; we briefly review ML-aided...
Saved in:
Published in | Journal of optical communications and networking Vol. 13; no. 4; pp. B60 - B71 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Piscataway
Optica Publishing Group
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1943-0620 1943-0639 |
DOI | 10.1364/JOCN.417434 |
Cover
Abstract | The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We discuss the sources of inaccuracy in QoT estimation in general; we propose a taxonomy for ML-aided QoT estimation; we briefly review ML-aided optical performance monitoring, a tightly related topic; and we review and compare all recently published ML-aided QoT articles. |
---|---|
AbstractList | The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We discuss the sources of inaccuracy in QoT estimation in general; we propose a taxonomy for ML-aided QoT estimation; we briefly review ML-aided optical performance monitoring, a tightly related topic; and we review and compare all recently published ML-aided QoT articles. |
Author | Pointurier, Yvan |
Author_xml | – sequence: 1 givenname: Yvan orcidid: 0000-0002-7612-4814 surname: Pointurier fullname: Pointurier, Yvan organization: Huawei Technologies France, 20 quai du Point du Jour, 92100 Boulogne-Billancourt, France (yvan@ieee.org) |
BookMark | eNp1kDtPwzAUhS1UJNrCxMhiiRGl-BUnHlHFU4UuwBq5jk1dUru1XaH-exKCOiAx3TN8595zzwgMnHcagHOMJphydv00n75MGC4YZUdgiAWjGeJUDA6aoBMwinGFEC8wzofg_VmqpXUaNloGZ90HTFotnd3udITGB7jdycamPfQGpiBdXNsYrXdQx2TXMnXSOug3ySrZQKfTlw-f8RQcG9lEffY7x-Dt7vZ1-pDN5veP05tZpkiJU2bUwkihTS2KmkiTC66Y5ggrzJkUkpWoJkqwnNckX5RYliJXrFYESVkQTgQdg8t-7yb4LnKqVn4XXHuyIqwsC8Yppy2Fe0oFH2PQplI2_WRvX7JNhVHV1Vd19VV9fa3n6o9nE9qHw_4f-qKnrdb6QAqaE5Yj-g32qny2 |
CODEN | JOCNBB |
CitedBy_id | crossref_primary_10_1364_JOCN_461422 crossref_primary_10_1016_j_comnet_2022_108992 crossref_primary_10_1109_JSTQE_2022_3177004 crossref_primary_10_1364_OL_445345 crossref_primary_10_1016_j_yofte_2024_104063 crossref_primary_10_1109_JLT_2021_3129646 crossref_primary_10_1364_JOCN_465782 crossref_primary_10_1109_ACCESS_2024_3485999 crossref_primary_10_1109_COMST_2023_3247842 crossref_primary_10_1007_s12596_021_00807_7 crossref_primary_10_1016_j_yofte_2021_102804 crossref_primary_10_1109_JLT_2021_3106714 crossref_primary_10_1109_JLT_2023_3271860 crossref_primary_10_1364_JOCN_472632 crossref_primary_10_1364_JOCN_475460 crossref_primary_10_1364_JOCN_534525 crossref_primary_10_1109_ACCESS_2021_3107296 crossref_primary_10_1109_JLT_2022_3210769 crossref_primary_10_1364_JOCN_440214 crossref_primary_10_1109_JLT_2022_3160379 crossref_primary_10_1017_dce_2023_15 crossref_primary_10_3390_photonics9020073 crossref_primary_10_1016_j_yofte_2023_103304 crossref_primary_10_1109_JLT_2022_3182989 crossref_primary_10_3390_photonics9010030 crossref_primary_10_1515_joc_2025_0003 crossref_primary_10_1109_JPHOT_2023_3333420 crossref_primary_10_1109_JLT_2024_3372376 crossref_primary_10_1364_JOCN_480557 crossref_primary_10_1364_JOCN_433412 crossref_primary_10_1109_JLT_2024_3405812 crossref_primary_10_1109_JLT_2022_3184178 crossref_primary_10_1364_OE_537942 crossref_primary_10_1364_JOCN_487870 crossref_primary_10_1109_JLT_2022_3146025 crossref_primary_10_1364_JOCN_537734 crossref_primary_10_1364_JOCN_467949 crossref_primary_10_1364_JOCN_442733 crossref_primary_10_1016_j_yofte_2022_102895 crossref_primary_10_1109_JLT_2024_3451242 crossref_primary_10_1007_s11276_023_03599_9 crossref_primary_10_1364_JOCN_472605 crossref_primary_10_1007_s11227_024_06410_4 crossref_primary_10_1109_JLT_2024_3374895 crossref_primary_10_1364_JOCN_483600 crossref_primary_10_54105_ijdcn_B5028_023223 crossref_primary_10_1038_s41467_024_50307_y crossref_primary_10_1109_LPT_2022_3218611 crossref_primary_10_1007_s11082_023_05328_0 crossref_primary_10_1007_s00500_022_07181_x crossref_primary_10_1364_JOCN_449009 crossref_primary_10_1364_JOCN_514981 crossref_primary_10_1364_JOCN_531788 crossref_primary_10_1364_JOCN_512049 crossref_primary_10_1364_JOCN_534417 crossref_primary_10_3390_fib13030034 |
Cites_doi | 10.1109/ECOC.2018.8535397 10.1364/JOCN.10.00A102 10.1109/LPT.2010.2078804 10.1109/JLT.2019.2895730 10.1364/OE.25.002245 10.1109/JLT.2003.810084 10.1364/OE.388491 10.1109/JLT.2019.2896041 10.1364/OE.27.006936 10.1109/JLT.2018.2830973 10.1109/JLT.2015.2398873 10.1109/JLT.2020.2975081 10.1109/ECOC48923.2020.9333280 10.1364/JOCN.10.000D42 10.1364/OE.18.004931 10.1109/JLT.2016.2590989 10.1364/JOCN.11.000C76 10.1109/JLT.2013.2295208 10.1109/JLT.2019.2952179 10.1364/JOCN.387853 10.1109/JLT.2020.2977569 10.1109/JLT.2020.2985779 10.1109/ICC.2019.8761369 10.1109/JLT.2016.2522305 10.1109/ECOC.2017.8346216 10.1109/ECOC.2018.8535323 10.1364/OE.25.017767 10.1364/JOCN.382557 10.1109/ECOC48923.2020.9333399 10.1364/JOCN.10.0000D1 10.1364/OE.406294 10.1109/JLT.2020.2975179 10.1109/JLT.2019.2910143 10.1109/JLT.2020.3014810 10.1364/JOCN.11.0000A1 10.1364/JOCN.12.000A38 10.1364/JOCN.411979 10.1109/ACP.2018.8596233 10.1364/JOCN.10.00A286 10.1109/JLT.2019.2904263 10.1016/j.osn.2017.12.006 10.1364/OE.21.025685 10.1364/JOCN.401915 10.1364/JOCN.9.0000A9 10.1109/JLT.2018.2873949 10.1109/ICTON.2019.8840453 10.1364/OFC.2017.Tu3D.7 10.1364/JOCN.9.000098 10.1364/JOCN.8.000676 10.1364/JOCN.401918 10.1364/JOCN.11.000C48 10.1109/JLT.2020.2971104 10.3390/app10010363 10.1364/JOCN.382906 10.1364/JOCN.10.00D126 10.1109/JLT.2003.822828 10.1364/JOCN.10.00A298 10.1007/s11432-020-2874-y 10.1109/COMST.2018.2880039 10.1364/JOCN.10.000D84 10.1364/OE.27.019398 10.1364/JOCN.11.000140 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1364/JOCN.417434 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1943-0639 |
EndPage | B71 |
ExternalDocumentID | 10_1364_JOCN_417434 9352450 |
Genre | review |
GroupedDBID | 0R~ 29L 29N 4.4 5VS 6IK 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACIWK AEDJG AENEX AETIX AGQYO AGSQL AHBIQ AKGWG AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR AZYMN BEFXN BFFAM BGNUA BKEBE BPEOZ DSZJF DU5 EBS EJD HZ~ IES IFIPE IPLJI JAVBF M43 O9- OCL ODPQJ OFLFD OPJBK RIA RIE RNS ROL ROS TR6 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c281t-fcbfa9efd97d2af596c4e601c164a9a480d2c9456d25b81a895c4dc20aa726293 |
IEDL.DBID | RIE |
ISSN | 1943-0620 |
IngestDate | Mon Jun 30 03:53:45 EDT 2025 Tue Jul 01 01:09:31 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Wed Aug 27 02:17:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c281t-fcbfa9efd97d2af596c4e601c164a9a480d2c9456d25b81a895c4dc20aa726293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7612-4814 |
PQID | 2488746363 |
PQPubID | 85498 |
ParticipantIDs | crossref_citationtrail_10_1364_JOCN_417434 crossref_primary_10_1364_JOCN_417434 ieee_primary_9352450 proquest_journals_2488746363 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | Journal of optical communications and networking |
PublicationTitleAbbrev | jocn |
PublicationYear | 2021 |
Publisher | Optica Publishing Group The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: Optica Publishing Group – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Sartzetakis (jocn-13-4-B60-R74) 2019; 11 Brusin (jocn-13-4-B60-R51) 2020; 38 Serena (jocn-13-4-B60-R25) 2015; 33 Gao (jocn-13-4-B60-R5) 2020; 63 Fan (jocn-13-4-B60-R26) 2020 Aladin (jocn-13-4-B60-R63) 2020; 38 Morais (jocn-13-4-B60-R11) 2020 Ayassi (jocn-13-4-B60-R13) 2020 Khan (jocn-13-4-B60-R36) 2017; 25 Pesic (jocn-13-4-B60-R83) 2020 Zhu (jocn-13-4-B60-R46) 2018 D’Amico (jocn-13-4-B60-R57) 2020; 12 Panayiotou (jocn-13-4-B60-R61) 2017; 9 Seve (jocn-13-4-B60-R72) 2018; 10 Wass (jocn-13-4-B60-R55) 2017 Lonardi (jocn-13-4-B60-R33) 2020 Pointurier (jocn-13-4-B60-R14) 2020 Freire (jocn-13-4-B60-R48) 2018 Salani (jocn-13-4-B60-R69) 2019 Dar (jocn-13-4-B60-R24) 2013; 21 Gao (jocn-13-4-B60-R78) 2020; 38 Lonardi (jocn-13-4-B60-R45) 2020; 38 Mata (jocn-13-4-B60-R1) 2018; 28 Musumeci (jocn-13-4-B60-R3) 2019; 21 Proietti (jocn-13-4-B60-R73) 2019; 11 Bouda (jocn-13-4-B60-R19) 2018; 10 Panayiotou (jocn-13-4-B60-R68) 2020; 12 Caballero (jocn-13-4-B60-R43) 2018; 10 Poggiolini (jocn-13-4-B60-R23) 2014; 32 Pointurier (jocn-13-4-B60-R16) 2017; 9 Wang (jocn-13-4-B60-R31) 2019; 37 Shiner (jocn-13-4-B60-R44) 2020 Khan (jocn-13-4-B60-R81) 2020 Shen (jocn-13-4-B60-R35) 2010; 22 Azzimonti (jocn-13-4-B60-R62) 2020; 12 Mahajan (jocn-13-4-B60-R79) 2020; 38 Bromage (jocn-13-4-B60-R53) 2004; 22 Pesic (jocn-13-4-B60-R77) 2020 Rottondi (jocn-13-4-B60-R32) 2018; 10 Jargon (jocn-13-4-B60-R34) 2010; 18 Cheng (jocn-13-4-B60-R42) 2020; 28 Morais (jocn-13-4-B60-R76) 2020 Gordon (jocn-13-4-B60-R8) 2020 Azzimonti (jocn-13-4-B60-R70) 2021; 13 Moura (jocn-13-4-B60-R20) 2016; 34 Zibar (jocn-13-4-B60-R54) 2020; 38 Liu (jocn-13-4-B60-R6) 2020; 10 Cho (jocn-13-4-B60-R56) 2020; 38 Seve (jocn-13-4-B60-R80) 2021; 13 Mata (jocn-13-4-B60-R60) 2017 Liu (jocn-13-4-B60-R82) 2020 Savory (jocn-13-4-B60-R17) 2019; 11 You (jocn-13-4-B60-R47) 2018 Rafique (jocn-13-4-B60-R2) 2018; 10 Khan (jocn-13-4-B60-R12) 2020 Diaz-Montiel (jocn-13-4-B60-R66) 2019 Seve (jocn-13-4-B60-R30) 2019; 37 Bolshtyansky (jocn-13-4-B60-R52) 2003; 21 Thrane (jocn-13-4-B60-R41) 2017; 35 Wang (jocn-13-4-B60-R40) 2019; 27 Ferrari (jocn-13-4-B60-R27) 2020; 12 Tanimura (jocn-13-4-B60-R38) 2019; 37 Xia (jocn-13-4-B60-R58) 2019; 27 Panayiotou (jocn-13-4-B60-R67) 2019 Mo (jocn-13-4-B60-R22) 2018; 10 Kashi (jocn-13-4-B60-R37) 2018; 36 Ferrari (jocn-13-4-B60-R28) 2020 Semrau (jocn-13-4-B60-R29) 2018; 36 Huang (jocn-13-4-B60-R21) 2017; 25 Morais (jocn-13-4-B60-R64) 2018; 10 Samadi (jocn-13-4-B60-R71) 2017 Sartzetakis (jocn-13-4-B60-R18) 2016; 8 Rottondi (jocn-13-4-B60-R65) 2021; 13 Zhu (jocn-13-4-B60-R49) 2020 Ionescu (jocn-13-4-B60-R50) 2019 Yu (jocn-13-4-B60-R59) 2019; 11 Cho (jocn-13-4-B60-R39) 2020; 28 Augé (jocn-13-4-B60-R15) 2013 Zhuge (jocn-13-4-B60-R75) 2019; 37 |
References_xml | – start-page: 4795 volume-title: IEEE BigData year: 2017 ident: jocn-13-4-B60-R60 article-title: A SVM approach for lightpath QoT estimation in optical transport networks – volume-title: International Conference on Transparent Optical Networks (ICTON) year: 2020 ident: jocn-13-4-B60-R81 – start-page: Tu2E.2 volume-title: Optical Fiber Communication Conference (OFC) year: 2019 ident: jocn-13-4-B60-R67 article-title: Machine learning for QoT estimation of unseen optical network states – volume-title: European Conference on Optical Communication (ECOC) year: 2018 ident: jocn-13-4-B60-R47 article-title: Machine learning-based EDFA gain model doi: 10.1109/ECOC.2018.8535397 – start-page: Th3D.3 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R76 article-title: Fast and high-precision optical performance evaluation for cognitive optical networks – volume: 10 start-page: A102 year: 2018 ident: jocn-13-4-B60-R19 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.00A102 – volume: 22 start-page: 1665 year: 2010 ident: jocn-13-4-B60-R35 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2010.2078804 – volume: 37 start-page: 1717 year: 2019 ident: jocn-13-4-B60-R38 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2895730 – start-page: 1738 volume-title: IEEE INFOCOM year: 2019 ident: jocn-13-4-B60-R69 article-title: Routing and spectrum assignment integrating machine-learning-based QoT estimation in elastic optical networks – volume: 25 start-page: 2245 year: 2017 ident: jocn-13-4-B60-R21 publication-title: Opt. Express doi: 10.1364/OE.25.002245 – volume: 21 start-page: 1032 year: 2003 ident: jocn-13-4-B60-R52 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.810084 – volume: 28 start-page: 7607 year: 2020 ident: jocn-13-4-B60-R42 publication-title: Opt. Express doi: 10.1364/OE.388491 – volume: 37 start-page: 1724 year: 2019 ident: jocn-13-4-B60-R30 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2896041 – volume: 27 start-page: 6936 year: 2019 ident: jocn-13-4-B60-R40 publication-title: Opt. Express doi: 10.1364/OE.27.006936 – start-page: M1 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R11 article-title: Machine learning in multi-layer optical networks: why and how – start-page: M4 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R44 article-title: Neural network training for OSNR estimation from prototype to product – volume: 36 start-page: 3046 year: 2018 ident: jocn-13-4-B60-R29 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2830973 – start-page: M2 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R26 article-title: Experimental comparisons between machine learning and analytical models for QoT estimations in WDM systems – volume-title: Advanced Photonics Congress year: 2020 ident: jocn-13-4-B60-R33 article-title: The perks of using machine learning for QoT estimation with uncertain network parameters – volume: 33 start-page: 1459 year: 2015 ident: jocn-13-4-B60-R25 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2398873 – volume: 38 start-page: 2616 year: 2020 ident: jocn-13-4-B60-R79 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2975081 – volume-title: European Conference on Optical Communication (ECOC) year: 2020 ident: jocn-13-4-B60-R28 article-title: Softwarized optical transport QoT in production optical network: a brownfield validation doi: 10.1109/ECOC48923.2020.9333280 – volume: 10 start-page: D42 year: 2018 ident: jocn-13-4-B60-R43 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.000D42 – volume: 18 start-page: 4931 year: 2010 ident: jocn-13-4-B60-R34 publication-title: Opt. Express doi: 10.1364/OE.18.004931 – volume: 35 start-page: 868 year: 2017 ident: jocn-13-4-B60-R41 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2590989 – volume: 11 start-page: C76 year: 2019 ident: jocn-13-4-B60-R17 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.11.000C76 – volume: 32 start-page: 694 year: 2014 ident: jocn-13-4-B60-R23 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2013.2295208 – volume: 38 start-page: 736 year: 2020 ident: jocn-13-4-B60-R54 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2952179 – volume: 12 start-page: 146 year: 2020 ident: jocn-13-4-B60-R68 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.387853 – volume: 38 start-page: 3652 year: 2020 ident: jocn-13-4-B60-R56 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2977569 – volume: 38 start-page: 2637 year: 2020 ident: jocn-13-4-B60-R45 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2985779 – volume-title: IEEE International Conference on Communications (ICC) year: 2019 ident: jocn-13-4-B60-R66 article-title: Active wavelength load as a feature for QoT estimation based on support vector machine doi: 10.1109/ICC.2019.8761369 – volume: 34 start-page: 1971 year: 2016 ident: jocn-13-4-B60-R20 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2016.2522305 – volume-title: European Conference on Optical Communication (ECOC) year: 2017 ident: jocn-13-4-B60-R71 article-title: Quality of transmission prediction with machine learning for dynamic operation of optical WDM networks doi: 10.1109/ECOC.2017.8346216 – volume-title: European Conference on Optical Communication (ECOC) year: 2018 ident: jocn-13-4-B60-R46 article-title: Machine learning based prediction of erbium-doped fiber WDM line amplifier gain spectra doi: 10.1109/ECOC.2018.8535323 – volume: 25 start-page: 17767 year: 2017 ident: jocn-13-4-B60-R36 publication-title: Opt. Express doi: 10.1364/OE.25.017767 – volume: 12 start-page: D84 year: 2020 ident: jocn-13-4-B60-R57 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.382557 – volume-title: European Conference on Optical Communication (ECOC) year: 2020 ident: jocn-13-4-B60-R83 article-title: Transfer learning from unbiased training data sets for QoT estimation in WDM networks doi: 10.1109/ECOC48923.2020.9333399 – volume: 10 start-page: D1 year: 2018 ident: jocn-13-4-B60-R22 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.0000D1 – start-page: M1 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R12 article-title: Applications of machine learning in optical communications and networks – volume: 28 start-page: 32087 year: 2020 ident: jocn-13-4-B60-R39 publication-title: Opt. Express doi: 10.1364/OE.406294 – volume: 38 start-page: 2807 year: 2020 ident: jocn-13-4-B60-R63 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2975179 – volume: 37 start-page: 3055 year: 2019 ident: jocn-13-4-B60-R75 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2910143 – volume: 38 start-page: 6481 year: 2020 ident: jocn-13-4-B60-R51 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.3014810 – volume: 11 start-page: A1 year: 2019 ident: jocn-13-4-B60-R73 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.11.0000A1 – volume: 12 start-page: A38 year: 2020 ident: jocn-13-4-B60-R62 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.12.000A38 – volume: 13 start-page: C21 year: 2021 ident: jocn-13-4-B60-R80 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.411979 – start-page: Th3D.1 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R82 article-title: Evol-TL: evolutionary transfer learning for QoT estimation in multi-domain networks – volume-title: Asia Communications Conference (ACP) year: 2018 ident: jocn-13-4-B60-R48 article-title: Predicting optical power excursions in erbium doped fiber amplifiers using neural networks doi: 10.1109/ACP.2018.8596233 – start-page: OTu2A.1 volume-title: Optical Fiber Communication Conference (OFC) year: 2013 ident: jocn-13-4-B60-R15 article-title: Can we use flexible transponders to reduce margins? – volume: 10 start-page: A286 year: 2018 ident: jocn-13-4-B60-R32 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.00A286 – start-page: M3 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R8 article-title: Workshop on machine learning for optical communication systems: a summary – volume: 37 start-page: 4140 year: 2019 ident: jocn-13-4-B60-R31 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2904263 – volume: 28 start-page: 43 year: 2018 ident: jocn-13-4-B60-R1 publication-title: Opt. Switching Netw. doi: 10.1016/j.osn.2017.12.006 – volume: 21 start-page: 25685 year: 2013 ident: jocn-13-4-B60-R24 publication-title: Opt. Express doi: 10.1364/OE.21.025685 – start-page: T4 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R49 article-title: Hybrid machine learning EDFA model – start-page: Th3D.5 volume-title: Optical Fiber Communication Conference (OFC) year: 2020 ident: jocn-13-4-B60-R77 article-title: How uncertainty on the fiber span lengths influences QoT estimation using machine learning in WDM networks – volume: 13 start-page: A34 year: 2021 ident: jocn-13-4-B60-R65 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.401915 – volume: 9 start-page: A9 year: 2017 ident: jocn-13-4-B60-R16 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.9.0000A9 – volume: 36 start-page: 5424 year: 2018 ident: jocn-13-4-B60-R37 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2873949 – volume-title: International Conference on Transparent Optical Networks (ICTON) year: 2019 ident: jocn-13-4-B60-R50 article-title: Machine learning for ultrawide bandwidth amplifier configuration doi: 10.1109/ICTON.2019.8840453 – start-page: Tu3D.7 volume-title: Optical Fiber Communication Conference (OFC) year: 2017 ident: jocn-13-4-B60-R55 article-title: Gaussian process regression for WDM system performance prediction doi: 10.1364/OFC.2017.Tu3D.7 – volume: 9 start-page: 98 year: 2017 ident: jocn-13-4-B60-R61 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.9.000098 – volume: 8 start-page: 676 year: 2016 ident: jocn-13-4-B60-R18 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.8.000676 – volume: 13 start-page: A56 year: 2021 ident: jocn-13-4-B60-R70 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.401918 – volume: 11 start-page: C48 year: 2019 ident: jocn-13-4-B60-R59 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.11.000C48 – volume: 38 start-page: 2646 year: 2020 ident: jocn-13-4-B60-R78 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2020.2971104 – start-page: We.A3.1 volume-title: International Conference on Transparent Optical Networks (ICTON) year: 2020 ident: jocn-13-4-B60-R13 article-title: An overview on machine learning-based solutions to improve lightpath QoT estimation (Invited) – volume: 10 start-page: 363 year: 2020 ident: jocn-13-4-B60-R6 publication-title: Appl. Sci. doi: 10.3390/app10010363 – volume: 12 start-page: C31 year: 2020 ident: jocn-13-4-B60-R27 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.382906 – volume: 10 start-page: D126 year: 2018 ident: jocn-13-4-B60-R2 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.00D126 – volume: 22 start-page: 73 year: 2004 ident: jocn-13-4-B60-R53 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.822828 – volume: 10 start-page: A298 year: 2018 ident: jocn-13-4-B60-R72 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.00A298 – volume: 63 start-page: 160302 year: 2020 ident: jocn-13-4-B60-R5 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-020-2874-y – volume: 21 start-page: 1383 year: 2019 ident: jocn-13-4-B60-R3 publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2018.2880039 – volume: 10 start-page: D84 year: 2018 ident: jocn-13-4-B60-R64 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.10.000D84 – volume: 27 start-page: 19398 year: 2019 ident: jocn-13-4-B60-R58 publication-title: Opt. Express doi: 10.1364/OE.27.019398 – start-page: We.D2.2 volume-title: International Conference on Transparent Optical Networks (ICTON) year: 2020 ident: jocn-13-4-B60-R14 article-title: Machine learning-aided quality of transmission (QoT) estimation (Invited) – volume: 11 start-page: 140 year: 2019 ident: jocn-13-4-B60-R74 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.11.000140 |
SSID | ssj0067115 |
Score | 2.5050726 |
SecondaryResourceType | review_article |
Snippet | The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | B60 |
SubjectTerms | Machine learning Optical communication Taxonomy |
Title | Machine learning techniques for quality of transmission estimation in optical networks |
URI | https://ieeexplore.ieee.org/document/9352450 https://www.proquest.com/docview/2488746363 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA-dEEkT13HsEVVUVaWWhaJukeMHQqCkoukAvx4_0ojXwJbhIln22fedfd93APSNG8Samw1IMJEBlpwH1IT5gOaY6BRFWjBLcJ7NyWSBp8tk2QI3DRdGKeWKz1RoP91bvizFxl6VDZhBC9gm6DvGzTxXa3vqkjR23QpMTm67FaCo5uINCR5M70fzEFvojb9FH9dO5dcZ7ALL-ADMtkPy9SQv4abKQ_HxQ63xv2M-BPs1woS33iWOQEsVx2Dvi-5gBzzOXAmlgnXPiCfYSLmuoUGx0FMt32GpYWWDmXEGe6sGrSSH5zrC5wKWK3cRDgtfSr4-AYvx3cNoEtQNFgKBaFwFWuSaM6UlSyXiOmFEYGUyNGFyKM44ppFEghmIJVGS05hTlggsBYo4TxExQOEUtIuyUGcASkK40rlUChtMYJIQlNCUW549wVSxqAuutxOfiVp93DbBeM3ckxrBmV2lzK9SF_Qb45UX3fjbrGPnuzGpp7oLetsVzeoNuc6QOahSK442PP_7rwuwi2y5iivK6YF29bZRlwZvVPmVc7RPBQzT-Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4QPKgHX2hEUXvgZFxYSre7PRoiQQS8gOG26fZhjGYhshz019t2F-KDg7c9zCZNO-180873DUDduEFLc7MBKaHSI5JzLzJh3osSQnWIfS2YJTgPR7Q3If1pMC3BzZoLo5RyxWeqYT_dW76ciaW9KmsygxaITdC3TNwnQc7WWp27NGy5fgUmK7f9CrBfsPHalDT7j51Rg1jwTX7EH9dQ5c8p7EJLdx-Gq0HlFSWvjWWWNMTnL73G_476APYKjIluc6c4hJJKj2D3m_JgBZ6GrohSoaJrxDNai7kukMGxKCdbfqCZRpkNZ8Yd7L0asqIcOdsRvaRoNndX4SjNi8kXxzDp3o07Pa9oseAJHLUyT4tEc6a0ZKHEXAeMCqJMjiZMFsUZJ5EvsWAGZEkcJFGLRywQRArscx5iaqDCCZTTWapOAUlKudKJVIoYVGDSEBxEIbdMe0oixfwqXK8mPhaF_rhtg_EWu0c1SmK7SnG-SlWor43nuezGZrOKne-1STHVVaitVjQutuQixuaoCq08Wvts819XsN0bDwfx4H70cA472BavuBKdGpSz96W6MOgjSy6d030BRXfXRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+techniques+for+quality+of+transmission+estimation+in+optical+networks&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Pointurier%2C+Yvan&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1943-0620&rft.eissn=1943-0639&rft.volume=13&rft.issue=4&rft.spage=B60&rft_id=info:doi/10.1364%2FJOCN.417434&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon |