Machine learning techniques for quality of transmission estimation in optical networks

The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We discuss the sources of inaccuracy in QoT estimation in general; we propose a taxonomy for ML-aided QoT estimation; we briefly review ML-aided...

Full description

Saved in:
Bibliographic Details
Published inJournal of optical communications and networking Vol. 13; no. 4; pp. B60 - B71
Main Author Pointurier, Yvan
Format Journal Article
LanguageEnglish
Published Piscataway Optica Publishing Group 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1943-0620
1943-0639
DOI10.1364/JOCN.417434

Cover

Abstract The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We discuss the sources of inaccuracy in QoT estimation in general; we propose a taxonomy for ML-aided QoT estimation; we briefly review ML-aided optical performance monitoring, a tightly related topic; and we review and compare all recently published ML-aided QoT articles.
AbstractList The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We discuss the sources of inaccuracy in QoT estimation in general; we propose a taxonomy for ML-aided QoT estimation; we briefly review ML-aided optical performance monitoring, a tightly related topic; and we review and compare all recently published ML-aided QoT articles.
Author Pointurier, Yvan
Author_xml – sequence: 1
  givenname: Yvan
  orcidid: 0000-0002-7612-4814
  surname: Pointurier
  fullname: Pointurier, Yvan
  organization: Huawei Technologies France, 20 quai du Point du Jour, 92100 Boulogne-Billancourt, France (yvan@ieee.org)
BookMark eNp1kDtPwzAUhS1UJNrCxMhiiRGl-BUnHlHFU4UuwBq5jk1dUru1XaH-exKCOiAx3TN8595zzwgMnHcagHOMJphydv00n75MGC4YZUdgiAWjGeJUDA6aoBMwinGFEC8wzofg_VmqpXUaNloGZ90HTFotnd3udITGB7jdycamPfQGpiBdXNsYrXdQx2TXMnXSOug3ySrZQKfTlw-f8RQcG9lEffY7x-Dt7vZ1-pDN5veP05tZpkiJU2bUwkihTS2KmkiTC66Y5ggrzJkUkpWoJkqwnNckX5RYliJXrFYESVkQTgQdg8t-7yb4LnKqVn4XXHuyIqwsC8Yppy2Fe0oFH2PQplI2_WRvX7JNhVHV1Vd19VV9fa3n6o9nE9qHw_4f-qKnrdb6QAqaE5Yj-g32qny2
CODEN JOCNBB
CitedBy_id crossref_primary_10_1364_JOCN_461422
crossref_primary_10_1016_j_comnet_2022_108992
crossref_primary_10_1109_JSTQE_2022_3177004
crossref_primary_10_1364_OL_445345
crossref_primary_10_1016_j_yofte_2024_104063
crossref_primary_10_1109_JLT_2021_3129646
crossref_primary_10_1364_JOCN_465782
crossref_primary_10_1109_ACCESS_2024_3485999
crossref_primary_10_1109_COMST_2023_3247842
crossref_primary_10_1007_s12596_021_00807_7
crossref_primary_10_1016_j_yofte_2021_102804
crossref_primary_10_1109_JLT_2021_3106714
crossref_primary_10_1109_JLT_2023_3271860
crossref_primary_10_1364_JOCN_472632
crossref_primary_10_1364_JOCN_475460
crossref_primary_10_1364_JOCN_534525
crossref_primary_10_1109_ACCESS_2021_3107296
crossref_primary_10_1109_JLT_2022_3210769
crossref_primary_10_1364_JOCN_440214
crossref_primary_10_1109_JLT_2022_3160379
crossref_primary_10_1017_dce_2023_15
crossref_primary_10_3390_photonics9020073
crossref_primary_10_1016_j_yofte_2023_103304
crossref_primary_10_1109_JLT_2022_3182989
crossref_primary_10_3390_photonics9010030
crossref_primary_10_1515_joc_2025_0003
crossref_primary_10_1109_JPHOT_2023_3333420
crossref_primary_10_1109_JLT_2024_3372376
crossref_primary_10_1364_JOCN_480557
crossref_primary_10_1364_JOCN_433412
crossref_primary_10_1109_JLT_2024_3405812
crossref_primary_10_1109_JLT_2022_3184178
crossref_primary_10_1364_OE_537942
crossref_primary_10_1364_JOCN_487870
crossref_primary_10_1109_JLT_2022_3146025
crossref_primary_10_1364_JOCN_537734
crossref_primary_10_1364_JOCN_467949
crossref_primary_10_1364_JOCN_442733
crossref_primary_10_1016_j_yofte_2022_102895
crossref_primary_10_1109_JLT_2024_3451242
crossref_primary_10_1007_s11276_023_03599_9
crossref_primary_10_1364_JOCN_472605
crossref_primary_10_1007_s11227_024_06410_4
crossref_primary_10_1109_JLT_2024_3374895
crossref_primary_10_1364_JOCN_483600
crossref_primary_10_54105_ijdcn_B5028_023223
crossref_primary_10_1038_s41467_024_50307_y
crossref_primary_10_1109_LPT_2022_3218611
crossref_primary_10_1007_s11082_023_05328_0
crossref_primary_10_1007_s00500_022_07181_x
crossref_primary_10_1364_JOCN_449009
crossref_primary_10_1364_JOCN_514981
crossref_primary_10_1364_JOCN_531788
crossref_primary_10_1364_JOCN_512049
crossref_primary_10_1364_JOCN_534417
crossref_primary_10_3390_fib13030034
Cites_doi 10.1109/ECOC.2018.8535397
10.1364/JOCN.10.00A102
10.1109/LPT.2010.2078804
10.1109/JLT.2019.2895730
10.1364/OE.25.002245
10.1109/JLT.2003.810084
10.1364/OE.388491
10.1109/JLT.2019.2896041
10.1364/OE.27.006936
10.1109/JLT.2018.2830973
10.1109/JLT.2015.2398873
10.1109/JLT.2020.2975081
10.1109/ECOC48923.2020.9333280
10.1364/JOCN.10.000D42
10.1364/OE.18.004931
10.1109/JLT.2016.2590989
10.1364/JOCN.11.000C76
10.1109/JLT.2013.2295208
10.1109/JLT.2019.2952179
10.1364/JOCN.387853
10.1109/JLT.2020.2977569
10.1109/JLT.2020.2985779
10.1109/ICC.2019.8761369
10.1109/JLT.2016.2522305
10.1109/ECOC.2017.8346216
10.1109/ECOC.2018.8535323
10.1364/OE.25.017767
10.1364/JOCN.382557
10.1109/ECOC48923.2020.9333399
10.1364/JOCN.10.0000D1
10.1364/OE.406294
10.1109/JLT.2020.2975179
10.1109/JLT.2019.2910143
10.1109/JLT.2020.3014810
10.1364/JOCN.11.0000A1
10.1364/JOCN.12.000A38
10.1364/JOCN.411979
10.1109/ACP.2018.8596233
10.1364/JOCN.10.00A286
10.1109/JLT.2019.2904263
10.1016/j.osn.2017.12.006
10.1364/OE.21.025685
10.1364/JOCN.401915
10.1364/JOCN.9.0000A9
10.1109/JLT.2018.2873949
10.1109/ICTON.2019.8840453
10.1364/OFC.2017.Tu3D.7
10.1364/JOCN.9.000098
10.1364/JOCN.8.000676
10.1364/JOCN.401918
10.1364/JOCN.11.000C48
10.1109/JLT.2020.2971104
10.3390/app10010363
10.1364/JOCN.382906
10.1364/JOCN.10.00D126
10.1109/JLT.2003.822828
10.1364/JOCN.10.00A298
10.1007/s11432-020-2874-y
10.1109/COMST.2018.2880039
10.1364/JOCN.10.000D84
10.1364/OE.27.019398
10.1364/JOCN.11.000140
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1364/JOCN.417434
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-0639
EndPage B71
ExternalDocumentID 10_1364_JOCN_417434
9352450
Genre review
GroupedDBID 0R~
29L
29N
4.4
5VS
6IK
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AEDJG
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKGWG
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
AZYMN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DSZJF
DU5
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
ODPQJ
OFLFD
OPJBK
RIA
RIE
RNS
ROL
ROS
TR6
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c281t-fcbfa9efd97d2af596c4e601c164a9a480d2c9456d25b81a895c4dc20aa726293
IEDL.DBID RIE
ISSN 1943-0620
IngestDate Mon Jun 30 03:53:45 EDT 2025
Tue Jul 01 01:09:31 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
Wed Aug 27 02:17:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-fcbfa9efd97d2af596c4e601c164a9a480d2c9456d25b81a895c4dc20aa726293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7612-4814
PQID 2488746363
PQPubID 85498
ParticipantIDs crossref_citationtrail_10_1364_JOCN_417434
crossref_primary_10_1364_JOCN_417434
ieee_primary_9352450
proquest_journals_2488746363
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle Journal of optical communications and networking
PublicationTitleAbbrev jocn
PublicationYear 2021
Publisher Optica Publishing Group
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: Optica Publishing Group
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Sartzetakis (jocn-13-4-B60-R74) 2019; 11
Brusin (jocn-13-4-B60-R51) 2020; 38
Serena (jocn-13-4-B60-R25) 2015; 33
Gao (jocn-13-4-B60-R5) 2020; 63
Fan (jocn-13-4-B60-R26) 2020
Aladin (jocn-13-4-B60-R63) 2020; 38
Morais (jocn-13-4-B60-R11) 2020
Ayassi (jocn-13-4-B60-R13) 2020
Khan (jocn-13-4-B60-R36) 2017; 25
Pesic (jocn-13-4-B60-R83) 2020
Zhu (jocn-13-4-B60-R46) 2018
D’Amico (jocn-13-4-B60-R57) 2020; 12
Panayiotou (jocn-13-4-B60-R61) 2017; 9
Seve (jocn-13-4-B60-R72) 2018; 10
Wass (jocn-13-4-B60-R55) 2017
Lonardi (jocn-13-4-B60-R33) 2020
Pointurier (jocn-13-4-B60-R14) 2020
Freire (jocn-13-4-B60-R48) 2018
Salani (jocn-13-4-B60-R69) 2019
Dar (jocn-13-4-B60-R24) 2013; 21
Gao (jocn-13-4-B60-R78) 2020; 38
Lonardi (jocn-13-4-B60-R45) 2020; 38
Mata (jocn-13-4-B60-R1) 2018; 28
Musumeci (jocn-13-4-B60-R3) 2019; 21
Proietti (jocn-13-4-B60-R73) 2019; 11
Bouda (jocn-13-4-B60-R19) 2018; 10
Panayiotou (jocn-13-4-B60-R68) 2020; 12
Caballero (jocn-13-4-B60-R43) 2018; 10
Poggiolini (jocn-13-4-B60-R23) 2014; 32
Pointurier (jocn-13-4-B60-R16) 2017; 9
Wang (jocn-13-4-B60-R31) 2019; 37
Shiner (jocn-13-4-B60-R44) 2020
Khan (jocn-13-4-B60-R81) 2020
Shen (jocn-13-4-B60-R35) 2010; 22
Azzimonti (jocn-13-4-B60-R62) 2020; 12
Mahajan (jocn-13-4-B60-R79) 2020; 38
Bromage (jocn-13-4-B60-R53) 2004; 22
Pesic (jocn-13-4-B60-R77) 2020
Rottondi (jocn-13-4-B60-R32) 2018; 10
Jargon (jocn-13-4-B60-R34) 2010; 18
Cheng (jocn-13-4-B60-R42) 2020; 28
Morais (jocn-13-4-B60-R76) 2020
Gordon (jocn-13-4-B60-R8) 2020
Azzimonti (jocn-13-4-B60-R70) 2021; 13
Moura (jocn-13-4-B60-R20) 2016; 34
Zibar (jocn-13-4-B60-R54) 2020; 38
Liu (jocn-13-4-B60-R6) 2020; 10
Cho (jocn-13-4-B60-R56) 2020; 38
Seve (jocn-13-4-B60-R80) 2021; 13
Mata (jocn-13-4-B60-R60) 2017
Liu (jocn-13-4-B60-R82) 2020
Savory (jocn-13-4-B60-R17) 2019; 11
You (jocn-13-4-B60-R47) 2018
Rafique (jocn-13-4-B60-R2) 2018; 10
Khan (jocn-13-4-B60-R12) 2020
Diaz-Montiel (jocn-13-4-B60-R66) 2019
Seve (jocn-13-4-B60-R30) 2019; 37
Bolshtyansky (jocn-13-4-B60-R52) 2003; 21
Thrane (jocn-13-4-B60-R41) 2017; 35
Wang (jocn-13-4-B60-R40) 2019; 27
Ferrari (jocn-13-4-B60-R27) 2020; 12
Tanimura (jocn-13-4-B60-R38) 2019; 37
Xia (jocn-13-4-B60-R58) 2019; 27
Panayiotou (jocn-13-4-B60-R67) 2019
Mo (jocn-13-4-B60-R22) 2018; 10
Kashi (jocn-13-4-B60-R37) 2018; 36
Ferrari (jocn-13-4-B60-R28) 2020
Semrau (jocn-13-4-B60-R29) 2018; 36
Huang (jocn-13-4-B60-R21) 2017; 25
Morais (jocn-13-4-B60-R64) 2018; 10
Samadi (jocn-13-4-B60-R71) 2017
Sartzetakis (jocn-13-4-B60-R18) 2016; 8
Rottondi (jocn-13-4-B60-R65) 2021; 13
Zhu (jocn-13-4-B60-R49) 2020
Ionescu (jocn-13-4-B60-R50) 2019
Yu (jocn-13-4-B60-R59) 2019; 11
Cho (jocn-13-4-B60-R39) 2020; 28
Augé (jocn-13-4-B60-R15) 2013
Zhuge (jocn-13-4-B60-R75) 2019; 37
References_xml – start-page: 4795
  volume-title: IEEE BigData
  year: 2017
  ident: jocn-13-4-B60-R60
  article-title: A SVM approach for lightpath QoT estimation in optical transport networks
– volume-title: International Conference on Transparent Optical Networks (ICTON)
  year: 2020
  ident: jocn-13-4-B60-R81
– start-page: Tu2E.2
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2019
  ident: jocn-13-4-B60-R67
  article-title: Machine learning for QoT estimation of unseen optical network states
– volume-title: European Conference on Optical Communication (ECOC)
  year: 2018
  ident: jocn-13-4-B60-R47
  article-title: Machine learning-based EDFA gain model
  doi: 10.1109/ECOC.2018.8535397
– start-page: Th3D.3
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R76
  article-title: Fast and high-precision optical performance evaluation for cognitive optical networks
– volume: 10
  start-page: A102
  year: 2018
  ident: jocn-13-4-B60-R19
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.00A102
– volume: 22
  start-page: 1665
  year: 2010
  ident: jocn-13-4-B60-R35
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2010.2078804
– volume: 37
  start-page: 1717
  year: 2019
  ident: jocn-13-4-B60-R38
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2895730
– start-page: 1738
  volume-title: IEEE INFOCOM
  year: 2019
  ident: jocn-13-4-B60-R69
  article-title: Routing and spectrum assignment integrating machine-learning-based QoT estimation in elastic optical networks
– volume: 25
  start-page: 2245
  year: 2017
  ident: jocn-13-4-B60-R21
  publication-title: Opt. Express
  doi: 10.1364/OE.25.002245
– volume: 21
  start-page: 1032
  year: 2003
  ident: jocn-13-4-B60-R52
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.810084
– volume: 28
  start-page: 7607
  year: 2020
  ident: jocn-13-4-B60-R42
  publication-title: Opt. Express
  doi: 10.1364/OE.388491
– volume: 37
  start-page: 1724
  year: 2019
  ident: jocn-13-4-B60-R30
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2896041
– volume: 27
  start-page: 6936
  year: 2019
  ident: jocn-13-4-B60-R40
  publication-title: Opt. Express
  doi: 10.1364/OE.27.006936
– start-page: M1
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R11
  article-title: Machine learning in multi-layer optical networks: why and how
– start-page: M4
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R44
  article-title: Neural network training for OSNR estimation from prototype to product
– volume: 36
  start-page: 3046
  year: 2018
  ident: jocn-13-4-B60-R29
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2830973
– start-page: M2
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R26
  article-title: Experimental comparisons between machine learning and analytical models for QoT estimations in WDM systems
– volume-title: Advanced Photonics Congress
  year: 2020
  ident: jocn-13-4-B60-R33
  article-title: The perks of using machine learning for QoT estimation with uncertain network parameters
– volume: 33
  start-page: 1459
  year: 2015
  ident: jocn-13-4-B60-R25
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2398873
– volume: 38
  start-page: 2616
  year: 2020
  ident: jocn-13-4-B60-R79
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.2975081
– volume-title: European Conference on Optical Communication (ECOC)
  year: 2020
  ident: jocn-13-4-B60-R28
  article-title: Softwarized optical transport QoT in production optical network: a brownfield validation
  doi: 10.1109/ECOC48923.2020.9333280
– volume: 10
  start-page: D42
  year: 2018
  ident: jocn-13-4-B60-R43
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.000D42
– volume: 18
  start-page: 4931
  year: 2010
  ident: jocn-13-4-B60-R34
  publication-title: Opt. Express
  doi: 10.1364/OE.18.004931
– volume: 35
  start-page: 868
  year: 2017
  ident: jocn-13-4-B60-R41
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2590989
– volume: 11
  start-page: C76
  year: 2019
  ident: jocn-13-4-B60-R17
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.11.000C76
– volume: 32
  start-page: 694
  year: 2014
  ident: jocn-13-4-B60-R23
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2013.2295208
– volume: 38
  start-page: 736
  year: 2020
  ident: jocn-13-4-B60-R54
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2952179
– volume: 12
  start-page: 146
  year: 2020
  ident: jocn-13-4-B60-R68
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.387853
– volume: 38
  start-page: 3652
  year: 2020
  ident: jocn-13-4-B60-R56
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.2977569
– volume: 38
  start-page: 2637
  year: 2020
  ident: jocn-13-4-B60-R45
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.2985779
– volume-title: IEEE International Conference on Communications (ICC)
  year: 2019
  ident: jocn-13-4-B60-R66
  article-title: Active wavelength load as a feature for QoT estimation based on support vector machine
  doi: 10.1109/ICC.2019.8761369
– volume: 34
  start-page: 1971
  year: 2016
  ident: jocn-13-4-B60-R20
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2016.2522305
– volume-title: European Conference on Optical Communication (ECOC)
  year: 2017
  ident: jocn-13-4-B60-R71
  article-title: Quality of transmission prediction with machine learning for dynamic operation of optical WDM networks
  doi: 10.1109/ECOC.2017.8346216
– volume-title: European Conference on Optical Communication (ECOC)
  year: 2018
  ident: jocn-13-4-B60-R46
  article-title: Machine learning based prediction of erbium-doped fiber WDM line amplifier gain spectra
  doi: 10.1109/ECOC.2018.8535323
– volume: 25
  start-page: 17767
  year: 2017
  ident: jocn-13-4-B60-R36
  publication-title: Opt. Express
  doi: 10.1364/OE.25.017767
– volume: 12
  start-page: D84
  year: 2020
  ident: jocn-13-4-B60-R57
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.382557
– volume-title: European Conference on Optical Communication (ECOC)
  year: 2020
  ident: jocn-13-4-B60-R83
  article-title: Transfer learning from unbiased training data sets for QoT estimation in WDM networks
  doi: 10.1109/ECOC48923.2020.9333399
– volume: 10
  start-page: D1
  year: 2018
  ident: jocn-13-4-B60-R22
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.0000D1
– start-page: M1
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R12
  article-title: Applications of machine learning in optical communications and networks
– volume: 28
  start-page: 32087
  year: 2020
  ident: jocn-13-4-B60-R39
  publication-title: Opt. Express
  doi: 10.1364/OE.406294
– volume: 38
  start-page: 2807
  year: 2020
  ident: jocn-13-4-B60-R63
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.2975179
– volume: 37
  start-page: 3055
  year: 2019
  ident: jocn-13-4-B60-R75
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2910143
– volume: 38
  start-page: 6481
  year: 2020
  ident: jocn-13-4-B60-R51
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.3014810
– volume: 11
  start-page: A1
  year: 2019
  ident: jocn-13-4-B60-R73
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.11.0000A1
– volume: 12
  start-page: A38
  year: 2020
  ident: jocn-13-4-B60-R62
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.12.000A38
– volume: 13
  start-page: C21
  year: 2021
  ident: jocn-13-4-B60-R80
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.411979
– start-page: Th3D.1
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R82
  article-title: Evol-TL: evolutionary transfer learning for QoT estimation in multi-domain networks
– volume-title: Asia Communications Conference (ACP)
  year: 2018
  ident: jocn-13-4-B60-R48
  article-title: Predicting optical power excursions in erbium doped fiber amplifiers using neural networks
  doi: 10.1109/ACP.2018.8596233
– start-page: OTu2A.1
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2013
  ident: jocn-13-4-B60-R15
  article-title: Can we use flexible transponders to reduce margins?
– volume: 10
  start-page: A286
  year: 2018
  ident: jocn-13-4-B60-R32
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.00A286
– start-page: M3
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R8
  article-title: Workshop on machine learning for optical communication systems: a summary
– volume: 37
  start-page: 4140
  year: 2019
  ident: jocn-13-4-B60-R31
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2904263
– volume: 28
  start-page: 43
  year: 2018
  ident: jocn-13-4-B60-R1
  publication-title: Opt. Switching Netw.
  doi: 10.1016/j.osn.2017.12.006
– volume: 21
  start-page: 25685
  year: 2013
  ident: jocn-13-4-B60-R24
  publication-title: Opt. Express
  doi: 10.1364/OE.21.025685
– start-page: T4
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R49
  article-title: Hybrid machine learning EDFA model
– start-page: Th3D.5
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2020
  ident: jocn-13-4-B60-R77
  article-title: How uncertainty on the fiber span lengths influences QoT estimation using machine learning in WDM networks
– volume: 13
  start-page: A34
  year: 2021
  ident: jocn-13-4-B60-R65
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.401915
– volume: 9
  start-page: A9
  year: 2017
  ident: jocn-13-4-B60-R16
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.9.0000A9
– volume: 36
  start-page: 5424
  year: 2018
  ident: jocn-13-4-B60-R37
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2873949
– volume-title: International Conference on Transparent Optical Networks (ICTON)
  year: 2019
  ident: jocn-13-4-B60-R50
  article-title: Machine learning for ultrawide bandwidth amplifier configuration
  doi: 10.1109/ICTON.2019.8840453
– start-page: Tu3D.7
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2017
  ident: jocn-13-4-B60-R55
  article-title: Gaussian process regression for WDM system performance prediction
  doi: 10.1364/OFC.2017.Tu3D.7
– volume: 9
  start-page: 98
  year: 2017
  ident: jocn-13-4-B60-R61
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.9.000098
– volume: 8
  start-page: 676
  year: 2016
  ident: jocn-13-4-B60-R18
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.8.000676
– volume: 13
  start-page: A56
  year: 2021
  ident: jocn-13-4-B60-R70
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.401918
– volume: 11
  start-page: C48
  year: 2019
  ident: jocn-13-4-B60-R59
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.11.000C48
– volume: 38
  start-page: 2646
  year: 2020
  ident: jocn-13-4-B60-R78
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2020.2971104
– start-page: We.A3.1
  volume-title: International Conference on Transparent Optical Networks (ICTON)
  year: 2020
  ident: jocn-13-4-B60-R13
  article-title: An overview on machine learning-based solutions to improve lightpath QoT estimation (Invited)
– volume: 10
  start-page: 363
  year: 2020
  ident: jocn-13-4-B60-R6
  publication-title: Appl. Sci.
  doi: 10.3390/app10010363
– volume: 12
  start-page: C31
  year: 2020
  ident: jocn-13-4-B60-R27
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.382906
– volume: 10
  start-page: D126
  year: 2018
  ident: jocn-13-4-B60-R2
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.00D126
– volume: 22
  start-page: 73
  year: 2004
  ident: jocn-13-4-B60-R53
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.822828
– volume: 10
  start-page: A298
  year: 2018
  ident: jocn-13-4-B60-R72
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.00A298
– volume: 63
  start-page: 160302
  year: 2020
  ident: jocn-13-4-B60-R5
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-020-2874-y
– volume: 21
  start-page: 1383
  year: 2019
  ident: jocn-13-4-B60-R3
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2018.2880039
– volume: 10
  start-page: D84
  year: 2018
  ident: jocn-13-4-B60-R64
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.10.000D84
– volume: 27
  start-page: 19398
  year: 2019
  ident: jocn-13-4-B60-R58
  publication-title: Opt. Express
  doi: 10.1364/OE.27.019398
– start-page: We.D2.2
  volume-title: International Conference on Transparent Optical Networks (ICTON)
  year: 2020
  ident: jocn-13-4-B60-R14
  article-title: Machine learning-aided quality of transmission (QoT) estimation (Invited)
– volume: 11
  start-page: 140
  year: 2019
  ident: jocn-13-4-B60-R74
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.11.000140
SSID ssj0067115
Score 2.5050726
SecondaryResourceType review_article
Snippet The estimation of the quality of transmission (QoT) in optical systems with machine learning (ML) has recently been the focus of a large body of research. We...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage B60
SubjectTerms Machine learning
Optical communication
Taxonomy
Title Machine learning techniques for quality of transmission estimation in optical networks
URI https://ieeexplore.ieee.org/document/9352450
https://www.proquest.com/docview/2488746363
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA-dEEkT13HsEVVUVaWWhaJukeMHQqCkoukAvx4_0ojXwJbhIln22fedfd93APSNG8Samw1IMJEBlpwH1IT5gOaY6BRFWjBLcJ7NyWSBp8tk2QI3DRdGKeWKz1RoP91bvizFxl6VDZhBC9gm6DvGzTxXa3vqkjR23QpMTm67FaCo5uINCR5M70fzEFvojb9FH9dO5dcZ7ALL-ADMtkPy9SQv4abKQ_HxQ63xv2M-BPs1woS33iWOQEsVx2Dvi-5gBzzOXAmlgnXPiCfYSLmuoUGx0FMt32GpYWWDmXEGe6sGrSSH5zrC5wKWK3cRDgtfSr4-AYvx3cNoEtQNFgKBaFwFWuSaM6UlSyXiOmFEYGUyNGFyKM44ppFEghmIJVGS05hTlggsBYo4TxExQOEUtIuyUGcASkK40rlUChtMYJIQlNCUW549wVSxqAuutxOfiVp93DbBeM3ckxrBmV2lzK9SF_Qb45UX3fjbrGPnuzGpp7oLetsVzeoNuc6QOahSK442PP_7rwuwi2y5iivK6YF29bZRlwZvVPmVc7RPBQzT-Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4QPKgHX2hEUXvgZFxYSre7PRoiQQS8gOG26fZhjGYhshz019t2F-KDg7c9zCZNO-180873DUDduEFLc7MBKaHSI5JzLzJh3osSQnWIfS2YJTgPR7Q3If1pMC3BzZoLo5RyxWeqYT_dW76ciaW9KmsygxaITdC3TNwnQc7WWp27NGy5fgUmK7f9CrBfsPHalDT7j51Rg1jwTX7EH9dQ5c8p7EJLdx-Gq0HlFSWvjWWWNMTnL73G_476APYKjIluc6c4hJJKj2D3m_JgBZ6GrohSoaJrxDNai7kukMGxKCdbfqCZRpkNZ8Yd7L0asqIcOdsRvaRoNndX4SjNi8kXxzDp3o07Pa9oseAJHLUyT4tEc6a0ZKHEXAeMCqJMjiZMFsUZJ5EvsWAGZEkcJFGLRywQRArscx5iaqDCCZTTWapOAUlKudKJVIoYVGDSEBxEIbdMe0oixfwqXK8mPhaF_rhtg_EWu0c1SmK7SnG-SlWor43nuezGZrOKne-1STHVVaitVjQutuQixuaoCq08Wvts819XsN0bDwfx4H70cA472BavuBKdGpSz96W6MOgjSy6d030BRXfXRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+techniques+for+quality+of+transmission+estimation+in+optical+networks&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Pointurier%2C+Yvan&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1943-0620&rft.eissn=1943-0639&rft.volume=13&rft.issue=4&rft.spage=B60&rft_id=info:doi/10.1364%2FJOCN.417434&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon