Na-site coordination environment regulation of Mn-based phosphate cathodes for sodium-ion batteries with elevated working voltage and energy density
Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na + mobility owing to rigid coordinated envir...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 11; pp. 6681 - 6692 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
12.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 |
DOI | 10.1039/d3ta07300a |
Cover
Loading…
Abstract | Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na
+
mobility owing to rigid coordinated environments of Na
+
ions at Na(1) sites and low intrinsic electronic conductivity due to the blocked electronic pathways caused by the big size and isolating nature of PO
4
3−
groups in the NASICON structure, leading to low utilization, poor rate capability and cycling performance. To address the above issues, a facile and efficient strategy to regulate the Na-site coordination environment in Na
4
MnV(PO
4
)
3
(NMVP) has been reported by introducing K
+
at Na(1) sites for realizing a flexible Na-site coordinated environment and enhancing Na
+
diffusion. Combining theoretical calculation and experimental results, it is corroborated that the K
+
dopant at Na(1) sites can efficiently reduce the Na
+
diffusion energy barrier and increase structural stability and working voltage. By synergistically utilizing the modulation of the Na-site coordination environment and 3D conductive networks, the optimized Na
3.8
K
0.2
MnV(PO
4
)
3
/carbon nanotube hybrids exhibit superior rate capability and cycling performance with 216% capacity improvement at 15C, and 52.5% increase in energy density in contrast to pristine counterparts, and a capacity retention of 81% after 2300 cycles at 10C, revealing their great potential for practical and cost-effective energy storage applications.
The Na-site coordination environment of the Na
4
MnV(PO
4
)
3
cathode is regulated for the first time for largely improving electrochemical properties
via
K
+
doping. |
---|---|
AbstractList | Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na
+
mobility owing to rigid coordinated environments of Na
+
ions at Na(1) sites and low intrinsic electronic conductivity due to the blocked electronic pathways caused by the big size and isolating nature of PO
4
3−
groups in the NASICON structure, leading to low utilization, poor rate capability and cycling performance. To address the above issues, a facile and efficient strategy to regulate the Na-site coordination environment in Na
4
MnV(PO
4
)
3
(NMVP) has been reported by introducing K
+
at Na(1) sites for realizing a flexible Na-site coordinated environment and enhancing Na
+
diffusion. Combining theoretical calculation and experimental results, it is corroborated that the K
+
dopant at Na(1) sites can efficiently reduce the Na
+
diffusion energy barrier and increase structural stability and working voltage. By synergistically utilizing the modulation of the Na-site coordination environment and 3D conductive networks, the optimized Na
3.8
K
0.2
MnV(PO
4
)
3
/carbon nanotube hybrids exhibit superior rate capability and cycling performance with 216% capacity improvement at 15C, and 52.5% increase in energy density in contrast to pristine counterparts, and a capacity retention of 81% after 2300 cycles at 10C, revealing their great potential for practical and cost-effective energy storage applications. Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na+ mobility owing to rigid coordinated environments of Na+ ions at Na(1) sites and low intrinsic electronic conductivity due to the blocked electronic pathways caused by the big size and isolating nature of PO43− groups in the NASICON structure, leading to low utilization, poor rate capability and cycling performance. To address the above issues, a facile and efficient strategy to regulate the Na-site coordination environment in Na4MnV(PO4)3 (NMVP) has been reported by introducing K+ at Na(1) sites for realizing a flexible Na-site coordinated environment and enhancing Na+ diffusion. Combining theoretical calculation and experimental results, it is corroborated that the K+ dopant at Na(1) sites can efficiently reduce the Na+ diffusion energy barrier and increase structural stability and working voltage. By synergistically utilizing the modulation of the Na-site coordination environment and 3D conductive networks, the optimized Na3.8K0.2MnV(PO4)3/carbon nanotube hybrids exhibit superior rate capability and cycling performance with 216% capacity improvement at 15C, and 52.5% increase in energy density in contrast to pristine counterparts, and a capacity retention of 81% after 2300 cycles at 10C, revealing their great potential for practical and cost-effective energy storage applications. Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na + mobility owing to rigid coordinated environments of Na + ions at Na(1) sites and low intrinsic electronic conductivity due to the blocked electronic pathways caused by the big size and isolating nature of PO 4 3− groups in the NASICON structure, leading to low utilization, poor rate capability and cycling performance. To address the above issues, a facile and efficient strategy to regulate the Na-site coordination environment in Na 4 MnV(PO 4 ) 3 (NMVP) has been reported by introducing K + at Na(1) sites for realizing a flexible Na-site coordinated environment and enhancing Na + diffusion. Combining theoretical calculation and experimental results, it is corroborated that the K + dopant at Na(1) sites can efficiently reduce the Na + diffusion energy barrier and increase structural stability and working voltage. By synergistically utilizing the modulation of the Na-site coordination environment and 3D conductive networks, the optimized Na 3.8 K 0.2 MnV(PO 4 ) 3 /carbon nanotube hybrids exhibit superior rate capability and cycling performance with 216% capacity improvement at 15C, and 52.5% increase in energy density in contrast to pristine counterparts, and a capacity retention of 81% after 2300 cycles at 10C, revealing their great potential for practical and cost-effective energy storage applications. The Na-site coordination environment of the Na 4 MnV(PO 4 ) 3 cathode is regulated for the first time for largely improving electrochemical properties via K + doping. |
Author | Guo, Kunkun Ding, Yuan-Li Wang, Kairong Tu, Jian Gao, Chenxi |
AuthorAffiliation | College of Materials Science and Engineering LI FUN Technol Corp Ltd Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering Hunan University China Three Gorges University |
AuthorAffiliation_xml | – sequence: 0 name: China Three Gorges University – sequence: 0 name: Hunan University – sequence: 0 name: Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials – sequence: 0 name: College of Materials Science and Engineering – sequence: 0 name: College of Materials and Chemical Engineering – sequence: 0 name: LI FUN Technol Corp Ltd |
Author_xml | – sequence: 1 givenname: Kairong surname: Wang fullname: Wang, Kairong – sequence: 2 givenname: Chenxi surname: Gao fullname: Gao, Chenxi – sequence: 3 givenname: Jian surname: Tu fullname: Tu, Jian – sequence: 4 givenname: Kunkun surname: Guo fullname: Guo, Kunkun – sequence: 5 givenname: Yuan-Li surname: Ding fullname: Ding, Yuan-Li |
BookMark | eNptkU1P4zAQhi0E0vLRy96RLHFDCoydJnGOFbALUtm9sOdoEo9bQ2oX2y3q_-AHk1IEElpfxpp53pnRO0ds33lHjP0UcCEgry91nhCqHAD32KGEArJqXJf7n3-lfrBRjI8wPAVQ1vUhe_2DWbSJeOd90NZhst5xcmsbvFuQSzzQbNXv0t7we5e1GEnz5dzH5Ry3Skxzryly4wOPXtvVItvSLaZEwQ6FF5vmnHpaD7jmLz48WTfja98nnBFHp4eBFGYbrskNy2xO2IHBPtLoIx6zf79uHq5us-nf33dXk2nWSSVSZrp2XLWV6bCoQIvWICGVCsVYk2oljIUs0dRtLaUCo0SupCqFlqqWGnNJ-TE72_VdBv-8opiaR78KbhjZyLooZAWigIGCHdUFH2Mg03Q2vRuSAtq-EdBs7W-u84fJu_2TQXL-TbIMdoFh83_4dAeH2H1yX7fM3wDZr5S_ |
CitedBy_id | crossref_primary_10_1016_j_diamond_2024_111453 crossref_primary_10_1016_j_jcis_2024_12_230 crossref_primary_10_1007_s40820_024_01526_x crossref_primary_10_1007_s40820_024_01436_y crossref_primary_10_1016_j_jallcom_2024_176849 crossref_primary_10_1016_j_vacuum_2024_113947 crossref_primary_10_1016_j_jpowsour_2025_236531 crossref_primary_10_1002_adfm_202418642 crossref_primary_10_1016_j_ensm_2025_104133 crossref_primary_10_1016_j_jwpe_2025_107266 crossref_primary_10_1016_j_cclet_2024_110683 |
Cites_doi | 10.1039/C5CP05323D 10.1016/j.jpowsour.2014.01.025 10.1016/j.carbon.2017.08.063 10.1007/s10008-007-0425-y 10.1002/smll.202003973 10.1002/smll.201805427 10.1002/smtd.201800169 10.1039/C1EE01263K 10.1016/j.gee.2021.01.001 10.1021/acs.jpcc.8b06120 10.1021/acs.nanolett.6b04044 10.1016/j.jallcom.2010.02.173 10.1038/natrevmats.2018.13 10.1016/j.electacta.2018.05.174 10.1016/j.jelechem.2018.10.040 10.1021/cm403728w 10.1002/aenm.202100729 10.1002/aenm.201801418 10.1038/natrevmats.2016.13 10.1021/jacs.8b11388 10.1016/j.nanoen.2021.106680 10.1039/D0TA03767B 10.1002/adma.201502018 10.1002/aenm.201402104 10.1002/aenm.201600389 10.1016/j.pmatsci.2023.101128 10.1021/acsenergylett.1c00426 10.1103/PhysRevLett.119.156801 10.1002/adfm.202305109 10.1002/anie.202104167 10.1016/j.ensm.2021.07.040 10.1021/acsaem.1c04061 10.1002/adfm.202209345 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d3ta07300a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 6692 |
ExternalDocumentID | 10_1039_D3TA07300A d3ta07300a |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-fcb47b7fca570d1bfaeae68a14de8b204126af9b92280f81382861d2892da32e3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 11:55:46 EDT 2025 Tue Jul 01 03:28:12 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Tue Dec 17 20:58:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-fcb47b7fca570d1bfaeae68a14de8b204126af9b92280f81382861d2892da32e3 |
Notes | https://doi.org/10.1039/d3ta07300a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3217-8183 0000-0002-1044-5025 |
PQID | 2955270150 |
PQPubID | 2047523 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1039_D3TA07300A proquest_journals_2955270150 rsc_primary_d3ta07300a crossref_primary_10_1039_D3TA07300A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-12 |
PublicationDateYYYYMMDD | 2024-03-12 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhao (D3TA07300A/cit15/1) 2022; 91 Gao (D3TA07300A/cit10/1) 2018; 140 Xu (D3TA07300A/cit9/1) 2021; 11 Jiang (D3TA07300A/cit26/1) 2015; 5 Wang (D3TA07300A/cit17/1) 2018; 122 Kim (D3TA07300A/cit23/1) 2008; 12 Chen (D3TA07300A/cit33/1) 2017; 119 Choi (D3TA07300A/cit3/1) 2016; 1 Thirupathi (D3TA07300A/cit19/1) 2023; 137 Liu (D3TA07300A/cit32/1) 2014; 26 Ghosh (D3TA07300A/cit13/1) 2020; 16 Lee (D3TA07300A/cit2/1) 2014; 5 Hou (D3TA07300A/cit16/1) 2021; 42 Vaalma (D3TA07300A/cit1/1) 2018; 3 Xu (D3TA07300A/cit5/1) 2016; 6 Wang (D3TA07300A/cit21/1) 2012; 5 Soundharrajan (D3TA07300A/cit14/1) 2020; 8 Zhang (D3TA07300A/cit34/1) 2022; 7 Wang (D3TA07300A/cit27/1) 2019; 3 Song (D3TA07300A/cit20/1) 2014; 256 Guo (D3TA07300A/cit31/1) 2023; 33 Pu (D3TA07300A/cit6/1) 2021; 60 Zhi (D3TA07300A/cit22/1) 2010; 503 Liu (D3TA07300A/cit29/1) 2019; 832 Zhou (D3TA07300A/cit12/1) 2016; 16 Zhu (D3TA07300A/cit28/1) 2018; 281 Bui (D3TA07300A/cit18/1) 2015; 17 Chen (D3TA07300A/cit30/1) 2022; 5 Li (D3TA07300A/cit8/1) 2018; 8 Zhang (D3TA07300A/cit11/1) 2021; 6 Zhang (D3TA07300A/cit24/1) 2017; 124 Pu (D3TA07300A/cit4/1) 2019; 15 Huang (D3TA07300A/cit7/1) 2023; 33 Fang (D3TA07300A/cit25/1) 2015; 27 |
References_xml | – volume: 17 start-page: 30433 year: 2015 ident: D3TA07300A/cit18/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP05323D – volume: 256 start-page: 258 year: 2014 ident: D3TA07300A/cit20/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.01.025 – volume: 124 start-page: 334 year: 2017 ident: D3TA07300A/cit24/1 publication-title: Carbon doi: 10.1016/j.carbon.2017.08.063 – volume: 12 start-page: 799 year: 2008 ident: D3TA07300A/cit23/1 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-007-0425-y – volume: 16 start-page: 2003973 year: 2020 ident: D3TA07300A/cit13/1 publication-title: Small doi: 10.1002/smll.202003973 – volume: 15 start-page: 1805427 year: 2019 ident: D3TA07300A/cit4/1 publication-title: Small doi: 10.1002/smll.201805427 – volume: 3 start-page: 1800169 year: 2019 ident: D3TA07300A/cit27/1 publication-title: Small Methods doi: 10.1002/smtd.201800169 – volume: 5 start-page: 1 year: 2014 ident: D3TA07300A/cit2/1 publication-title: Nat. Commun. – volume: 5 start-page: 5163 year: 2012 ident: D3TA07300A/cit21/1 publication-title: Energy Environ. Sci. doi: 10.1039/C1EE01263K – volume: 7 start-page: 1253 year: 2022 ident: D3TA07300A/cit34/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2021.01.001 – volume: 122 start-page: 16649 year: 2018 ident: D3TA07300A/cit17/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b06120 – volume: 16 start-page: 7836 year: 2016 ident: D3TA07300A/cit12/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04044 – volume: 503 start-page: 370 year: 2010 ident: D3TA07300A/cit22/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.02.173 – volume: 3 start-page: 1 year: 2018 ident: D3TA07300A/cit1/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.13 – volume: 281 start-page: 208 year: 2018 ident: D3TA07300A/cit28/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.174 – volume: 832 start-page: 121 year: 2019 ident: D3TA07300A/cit29/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.10.040 – volume: 26 start-page: 2513 year: 2014 ident: D3TA07300A/cit32/1 publication-title: Chem. Mater. doi: 10.1021/cm403728w – volume: 11 start-page: 2100729 year: 2021 ident: D3TA07300A/cit9/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100729 – volume: 8 start-page: 1801418 year: 2018 ident: D3TA07300A/cit8/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801418 – volume: 1 start-page: 16013 year: 2016 ident: D3TA07300A/cit3/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 140 start-page: 18192 year: 2018 ident: D3TA07300A/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11388 – volume: 91 start-page: 106680 year: 2022 ident: D3TA07300A/cit15/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106680 – volume: 8 start-page: 12055 year: 2020 ident: D3TA07300A/cit14/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03767B – volume: 27 start-page: 5895 year: 2015 ident: D3TA07300A/cit25/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502018 – volume: 5 start-page: 1402104 year: 2015 ident: D3TA07300A/cit26/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402104 – volume: 6 start-page: 1600389 year: 2016 ident: D3TA07300A/cit5/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600389 – volume: 137 start-page: 101128 year: 2023 ident: D3TA07300A/cit19/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101128 – volume: 6 start-page: 2081 year: 2021 ident: D3TA07300A/cit11/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00426 – volume: 119 start-page: 156801 year: 2017 ident: D3TA07300A/cit33/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.156801 – volume: 33 start-page: 2305109 year: 2023 ident: D3TA07300A/cit7/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305109 – volume: 60 start-page: 21310 year: 2021 ident: D3TA07300A/cit6/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104167 – volume: 42 start-page: 307 year: 2021 ident: D3TA07300A/cit16/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.07.040 – volume: 5 start-page: 2542 year: 2022 ident: D3TA07300A/cit30/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c04061 – volume: 33 start-page: 2209345 year: 2023 ident: D3TA07300A/cit31/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209345 |
SSID | ssj0000800699 |
Score | 2.4919174 |
Snippet | Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6681 |
SubjectTerms | Batteries Carbon nanotubes Cathodes Coordination Cycles Diffusion barriers Electric potential Energy storage Hybrids Potassium Sodium Sodium channels (voltage-gated) Sodium-ion batteries Structural stability Voltage |
Title | Na-site coordination environment regulation of Mn-based phosphate cathodes for sodium-ion batteries with elevated working voltage and energy density |
URI | https://www.proquest.com/docview/2955270150 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELa27QUOFX8VSwuyBBcUpWwcx0mOKyiUn_a0lXpbOYnDroDsajcRiOfgDXkRZmzHcWkPhUu0ytqW4vk8Ho9nviHkBU_KvKhYGqYTUYU8qTmsuSQJRcW5qlgGFjS6Bs7OxekF_3CZXI5Gv72opa4tjsufN-aV_I9U4R3IFbNk_0GyblB4Ab9BvvAECcPzVjI-lyFe_gblCo6QS-PX81PXgo2pNG-NwrMmxE2rCtaL1Xa9kNhTYgFppUkZgu2qWnbfQmxdaNpNOEUbRy0moUu0Tb8b33oASq3FaB90uyuTPlhhKHx75ZbYs3bBMDYzEpR9ibnjYGqyhfp_NPu4GUy78_vcLgzf9Tz_VjtJ_MrPLn5IGp_vQjU_lkPQiAaptwLedbrZx6750jW-x4NxDPmKPCcomyQT5EA1elv570x1XKfZmY_gyNPTQphCMXbPF8IU5Lu2n0xipGN9E8-mmtjfMbIOpN1_baYuxFFf7sf5fOi7Q_YYnGVg99ibnszef3KuQDTaha506r6sJ9KN81fDAFdNp-E8tLPpi9Voo2h2j-xb-dKpgeZ9MlLNA3LX47h8SH5ZkFIfpNQDKR1ASlc17UFKHUhpD1IKAKEDSKkDKUWQ0h6k1IKUWpBSABM1uKIWpI_IxduT2evT0JYCCUuWRW1YlwVPi7QuZZJOqqiopZJKZDLilcoKhqRxQtZ5kSO7U50hsWYmItA1OatkzFR8QHabVaMeExpleVnDhDKuIs5LsJDjJBZJLso6zWSejcnLfpbnpeXJx3ItX-fXRTomz13btWGHubHVUS-sudUe2znLkfsQ_Y1jcgACdP2ruJW6n3xyq9EPyZ1hkRyR3XbTqadgKLfFMwu0P5V3xE4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Na-site+coordination+environment+regulation+of+Mn-based+phosphate+cathodes+for+sodium-ion+batteries+with+elevated+working+voltage+and+energy+density&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wang%2C+Kairong&rft.au=Gao%2C+Chenxi&rft.au=Tu%2C+Jian&rft.au=Guo%2C+Kunkun&rft.date=2024-03-12&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=11&rft.spage=6681&rft.epage=6692&rft_id=info:doi/10.1039%2FD3TA07300A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3TA07300A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |