Na-site coordination environment regulation of Mn-based phosphate cathodes for sodium-ion batteries with elevated working voltage and energy density

Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na + mobility owing to rigid coordinated envir...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 11; pp. 6681 - 6692
Main Authors Wang, Kairong, Gao, Chenxi, Tu, Jian, Guo, Kunkun, Ding, Yuan-Li
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 12.03.2024
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
DOI10.1039/d3ta07300a

Cover

Loading…
Abstract Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na + mobility owing to rigid coordinated environments of Na + ions at Na(1) sites and low intrinsic electronic conductivity due to the blocked electronic pathways caused by the big size and isolating nature of PO 4 3− groups in the NASICON structure, leading to low utilization, poor rate capability and cycling performance. To address the above issues, a facile and efficient strategy to regulate the Na-site coordination environment in Na 4 MnV(PO 4 ) 3 (NMVP) has been reported by introducing K + at Na(1) sites for realizing a flexible Na-site coordinated environment and enhancing Na + diffusion. Combining theoretical calculation and experimental results, it is corroborated that the K + dopant at Na(1) sites can efficiently reduce the Na + diffusion energy barrier and increase structural stability and working voltage. By synergistically utilizing the modulation of the Na-site coordination environment and 3D conductive networks, the optimized Na 3.8 K 0.2 MnV(PO 4 ) 3 /carbon nanotube hybrids exhibit superior rate capability and cycling performance with 216% capacity improvement at 15C, and 52.5% increase in energy density in contrast to pristine counterparts, and a capacity retention of 81% after 2300 cycles at 10C, revealing their great potential for practical and cost-effective energy storage applications. The Na-site coordination environment of the Na 4 MnV(PO 4 ) 3 cathode is regulated for the first time for largely improving electrochemical properties via K + doping.
AbstractList Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na + mobility owing to rigid coordinated environments of Na + ions at Na(1) sites and low intrinsic electronic conductivity due to the blocked electronic pathways caused by the big size and isolating nature of PO 4 3− groups in the NASICON structure, leading to low utilization, poor rate capability and cycling performance. To address the above issues, a facile and efficient strategy to regulate the Na-site coordination environment in Na 4 MnV(PO 4 ) 3 (NMVP) has been reported by introducing K + at Na(1) sites for realizing a flexible Na-site coordinated environment and enhancing Na + diffusion. Combining theoretical calculation and experimental results, it is corroborated that the K + dopant at Na(1) sites can efficiently reduce the Na + diffusion energy barrier and increase structural stability and working voltage. By synergistically utilizing the modulation of the Na-site coordination environment and 3D conductive networks, the optimized Na 3.8 K 0.2 MnV(PO 4 ) 3 /carbon nanotube hybrids exhibit superior rate capability and cycling performance with 216% capacity improvement at 15C, and 52.5% increase in energy density in contrast to pristine counterparts, and a capacity retention of 81% after 2300 cycles at 10C, revealing their great potential for practical and cost-effective energy storage applications.
Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na+ mobility owing to rigid coordinated environments of Na+ ions at Na(1) sites and low intrinsic electronic conductivity due to the blocked electronic pathways caused by the big size and isolating nature of PO43− groups in the NASICON structure, leading to low utilization, poor rate capability and cycling performance. To address the above issues, a facile and efficient strategy to regulate the Na-site coordination environment in Na4MnV(PO4)3 (NMVP) has been reported by introducing K+ at Na(1) sites for realizing a flexible Na-site coordinated environment and enhancing Na+ diffusion. Combining theoretical calculation and experimental results, it is corroborated that the K+ dopant at Na(1) sites can efficiently reduce the Na+ diffusion energy barrier and increase structural stability and working voltage. By synergistically utilizing the modulation of the Na-site coordination environment and 3D conductive networks, the optimized Na3.8K0.2MnV(PO4)3/carbon nanotube hybrids exhibit superior rate capability and cycling performance with 216% capacity improvement at 15C, and 52.5% increase in energy density in contrast to pristine counterparts, and a capacity retention of 81% after 2300 cycles at 10C, revealing their great potential for practical and cost-effective energy storage applications.
Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively environmentally friendly sodium-ion batteries (SIBs). Such cathodes, however, suffer from limited Na + mobility owing to rigid coordinated environments of Na + ions at Na(1) sites and low intrinsic electronic conductivity due to the blocked electronic pathways caused by the big size and isolating nature of PO 4 3− groups in the NASICON structure, leading to low utilization, poor rate capability and cycling performance. To address the above issues, a facile and efficient strategy to regulate the Na-site coordination environment in Na 4 MnV(PO 4 ) 3 (NMVP) has been reported by introducing K + at Na(1) sites for realizing a flexible Na-site coordinated environment and enhancing Na + diffusion. Combining theoretical calculation and experimental results, it is corroborated that the K + dopant at Na(1) sites can efficiently reduce the Na + diffusion energy barrier and increase structural stability and working voltage. By synergistically utilizing the modulation of the Na-site coordination environment and 3D conductive networks, the optimized Na 3.8 K 0.2 MnV(PO 4 ) 3 /carbon nanotube hybrids exhibit superior rate capability and cycling performance with 216% capacity improvement at 15C, and 52.5% increase in energy density in contrast to pristine counterparts, and a capacity retention of 81% after 2300 cycles at 10C, revealing their great potential for practical and cost-effective energy storage applications. The Na-site coordination environment of the Na 4 MnV(PO 4 ) 3 cathode is regulated for the first time for largely improving electrochemical properties via K + doping.
Author Guo, Kunkun
Ding, Yuan-Li
Wang, Kairong
Tu, Jian
Gao, Chenxi
AuthorAffiliation College of Materials Science and Engineering
LI FUN Technol Corp Ltd
Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
College of Materials and Chemical Engineering
Hunan University
China Three Gorges University
AuthorAffiliation_xml – sequence: 0
  name: China Three Gorges University
– sequence: 0
  name: Hunan University
– sequence: 0
  name: Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
– sequence: 0
  name: College of Materials Science and Engineering
– sequence: 0
  name: College of Materials and Chemical Engineering
– sequence: 0
  name: LI FUN Technol Corp Ltd
Author_xml – sequence: 1
  givenname: Kairong
  surname: Wang
  fullname: Wang, Kairong
– sequence: 2
  givenname: Chenxi
  surname: Gao
  fullname: Gao, Chenxi
– sequence: 3
  givenname: Jian
  surname: Tu
  fullname: Tu, Jian
– sequence: 4
  givenname: Kunkun
  surname: Guo
  fullname: Guo, Kunkun
– sequence: 5
  givenname: Yuan-Li
  surname: Ding
  fullname: Ding, Yuan-Li
BookMark eNptkU1P4zAQhi0E0vLRy96RLHFDCoydJnGOFbALUtm9sOdoEo9bQ2oX2y3q_-AHk1IEElpfxpp53pnRO0ds33lHjP0UcCEgry91nhCqHAD32KGEArJqXJf7n3-lfrBRjI8wPAVQ1vUhe_2DWbSJeOd90NZhst5xcmsbvFuQSzzQbNXv0t7we5e1GEnz5dzH5Ry3Skxzryly4wOPXtvVItvSLaZEwQ6FF5vmnHpaD7jmLz48WTfja98nnBFHp4eBFGYbrskNy2xO2IHBPtLoIx6zf79uHq5us-nf33dXk2nWSSVSZrp2XLWV6bCoQIvWICGVCsVYk2oljIUs0dRtLaUCo0SupCqFlqqWGnNJ-TE72_VdBv-8opiaR78KbhjZyLooZAWigIGCHdUFH2Mg03Q2vRuSAtq-EdBs7W-u84fJu_2TQXL-TbIMdoFh83_4dAeH2H1yX7fM3wDZr5S_
CitedBy_id crossref_primary_10_1016_j_diamond_2024_111453
crossref_primary_10_1016_j_jcis_2024_12_230
crossref_primary_10_1007_s40820_024_01526_x
crossref_primary_10_1007_s40820_024_01436_y
crossref_primary_10_1016_j_jallcom_2024_176849
crossref_primary_10_1016_j_vacuum_2024_113947
crossref_primary_10_1016_j_jpowsour_2025_236531
crossref_primary_10_1002_adfm_202418642
crossref_primary_10_1016_j_ensm_2025_104133
crossref_primary_10_1016_j_jwpe_2025_107266
crossref_primary_10_1016_j_cclet_2024_110683
Cites_doi 10.1039/C5CP05323D
10.1016/j.jpowsour.2014.01.025
10.1016/j.carbon.2017.08.063
10.1007/s10008-007-0425-y
10.1002/smll.202003973
10.1002/smll.201805427
10.1002/smtd.201800169
10.1039/C1EE01263K
10.1016/j.gee.2021.01.001
10.1021/acs.jpcc.8b06120
10.1021/acs.nanolett.6b04044
10.1016/j.jallcom.2010.02.173
10.1038/natrevmats.2018.13
10.1016/j.electacta.2018.05.174
10.1016/j.jelechem.2018.10.040
10.1021/cm403728w
10.1002/aenm.202100729
10.1002/aenm.201801418
10.1038/natrevmats.2016.13
10.1021/jacs.8b11388
10.1016/j.nanoen.2021.106680
10.1039/D0TA03767B
10.1002/adma.201502018
10.1002/aenm.201402104
10.1002/aenm.201600389
10.1016/j.pmatsci.2023.101128
10.1021/acsenergylett.1c00426
10.1103/PhysRevLett.119.156801
10.1002/adfm.202305109
10.1002/anie.202104167
10.1016/j.ensm.2021.07.040
10.1021/acsaem.1c04061
10.1002/adfm.202209345
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d3ta07300a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 6692
ExternalDocumentID 10_1039_D3TA07300A
d3ta07300a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-fcb47b7fca570d1bfaeae68a14de8b204126af9b92280f81382861d2892da32e3
ISSN 2050-7488
IngestDate Mon Jun 30 11:55:46 EDT 2025
Tue Jul 01 03:28:12 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Tue Dec 17 20:58:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-fcb47b7fca570d1bfaeae68a14de8b204126af9b92280f81382861d2892da32e3
Notes https://doi.org/10.1039/d3ta07300a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3217-8183
0000-0002-1044-5025
PQID 2955270150
PQPubID 2047523
PageCount 12
ParticipantIDs crossref_citationtrail_10_1039_D3TA07300A
proquest_journals_2955270150
rsc_primary_d3ta07300a
crossref_primary_10_1039_D3TA07300A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-12
PublicationDateYYYYMMDD 2024-03-12
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-12
  day: 12
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhao (D3TA07300A/cit15/1) 2022; 91
Gao (D3TA07300A/cit10/1) 2018; 140
Xu (D3TA07300A/cit9/1) 2021; 11
Jiang (D3TA07300A/cit26/1) 2015; 5
Wang (D3TA07300A/cit17/1) 2018; 122
Kim (D3TA07300A/cit23/1) 2008; 12
Chen (D3TA07300A/cit33/1) 2017; 119
Choi (D3TA07300A/cit3/1) 2016; 1
Thirupathi (D3TA07300A/cit19/1) 2023; 137
Liu (D3TA07300A/cit32/1) 2014; 26
Ghosh (D3TA07300A/cit13/1) 2020; 16
Lee (D3TA07300A/cit2/1) 2014; 5
Hou (D3TA07300A/cit16/1) 2021; 42
Vaalma (D3TA07300A/cit1/1) 2018; 3
Xu (D3TA07300A/cit5/1) 2016; 6
Wang (D3TA07300A/cit21/1) 2012; 5
Soundharrajan (D3TA07300A/cit14/1) 2020; 8
Zhang (D3TA07300A/cit34/1) 2022; 7
Wang (D3TA07300A/cit27/1) 2019; 3
Song (D3TA07300A/cit20/1) 2014; 256
Guo (D3TA07300A/cit31/1) 2023; 33
Pu (D3TA07300A/cit6/1) 2021; 60
Zhi (D3TA07300A/cit22/1) 2010; 503
Liu (D3TA07300A/cit29/1) 2019; 832
Zhou (D3TA07300A/cit12/1) 2016; 16
Zhu (D3TA07300A/cit28/1) 2018; 281
Bui (D3TA07300A/cit18/1) 2015; 17
Chen (D3TA07300A/cit30/1) 2022; 5
Li (D3TA07300A/cit8/1) 2018; 8
Zhang (D3TA07300A/cit11/1) 2021; 6
Zhang (D3TA07300A/cit24/1) 2017; 124
Pu (D3TA07300A/cit4/1) 2019; 15
Huang (D3TA07300A/cit7/1) 2023; 33
Fang (D3TA07300A/cit25/1) 2015; 27
References_xml – volume: 17
  start-page: 30433
  year: 2015
  ident: D3TA07300A/cit18/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP05323D
– volume: 256
  start-page: 258
  year: 2014
  ident: D3TA07300A/cit20/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.025
– volume: 124
  start-page: 334
  year: 2017
  ident: D3TA07300A/cit24/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.08.063
– volume: 12
  start-page: 799
  year: 2008
  ident: D3TA07300A/cit23/1
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-007-0425-y
– volume: 16
  start-page: 2003973
  year: 2020
  ident: D3TA07300A/cit13/1
  publication-title: Small
  doi: 10.1002/smll.202003973
– volume: 15
  start-page: 1805427
  year: 2019
  ident: D3TA07300A/cit4/1
  publication-title: Small
  doi: 10.1002/smll.201805427
– volume: 3
  start-page: 1800169
  year: 2019
  ident: D3TA07300A/cit27/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800169
– volume: 5
  start-page: 1
  year: 2014
  ident: D3TA07300A/cit2/1
  publication-title: Nat. Commun.
– volume: 5
  start-page: 5163
  year: 2012
  ident: D3TA07300A/cit21/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C1EE01263K
– volume: 7
  start-page: 1253
  year: 2022
  ident: D3TA07300A/cit34/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2021.01.001
– volume: 122
  start-page: 16649
  year: 2018
  ident: D3TA07300A/cit17/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b06120
– volume: 16
  start-page: 7836
  year: 2016
  ident: D3TA07300A/cit12/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04044
– volume: 503
  start-page: 370
  year: 2010
  ident: D3TA07300A/cit22/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.02.173
– volume: 3
  start-page: 1
  year: 2018
  ident: D3TA07300A/cit1/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.13
– volume: 281
  start-page: 208
  year: 2018
  ident: D3TA07300A/cit28/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.05.174
– volume: 832
  start-page: 121
  year: 2019
  ident: D3TA07300A/cit29/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.10.040
– volume: 26
  start-page: 2513
  year: 2014
  ident: D3TA07300A/cit32/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm403728w
– volume: 11
  start-page: 2100729
  year: 2021
  ident: D3TA07300A/cit9/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100729
– volume: 8
  start-page: 1801418
  year: 2018
  ident: D3TA07300A/cit8/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801418
– volume: 1
  start-page: 16013
  year: 2016
  ident: D3TA07300A/cit3/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 140
  start-page: 18192
  year: 2018
  ident: D3TA07300A/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11388
– volume: 91
  start-page: 106680
  year: 2022
  ident: D3TA07300A/cit15/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106680
– volume: 8
  start-page: 12055
  year: 2020
  ident: D3TA07300A/cit14/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03767B
– volume: 27
  start-page: 5895
  year: 2015
  ident: D3TA07300A/cit25/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502018
– volume: 5
  start-page: 1402104
  year: 2015
  ident: D3TA07300A/cit26/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402104
– volume: 6
  start-page: 1600389
  year: 2016
  ident: D3TA07300A/cit5/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600389
– volume: 137
  start-page: 101128
  year: 2023
  ident: D3TA07300A/cit19/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101128
– volume: 6
  start-page: 2081
  year: 2021
  ident: D3TA07300A/cit11/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00426
– volume: 119
  start-page: 156801
  year: 2017
  ident: D3TA07300A/cit33/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.156801
– volume: 33
  start-page: 2305109
  year: 2023
  ident: D3TA07300A/cit7/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305109
– volume: 60
  start-page: 21310
  year: 2021
  ident: D3TA07300A/cit6/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104167
– volume: 42
  start-page: 307
  year: 2021
  ident: D3TA07300A/cit16/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.07.040
– volume: 5
  start-page: 2542
  year: 2022
  ident: D3TA07300A/cit30/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c04061
– volume: 33
  start-page: 2209345
  year: 2023
  ident: D3TA07300A/cit31/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209345
SSID ssj0000800699
Score 2.4919174
Snippet Mn-based sodium superionic conductor (NASICON) phosphate cathodes have been considered as new promising candidates for high-energy, low-cost and relatively...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6681
SubjectTerms Batteries
Carbon nanotubes
Cathodes
Coordination
Cycles
Diffusion barriers
Electric potential
Energy storage
Hybrids
Potassium
Sodium
Sodium channels (voltage-gated)
Sodium-ion batteries
Structural stability
Voltage
Title Na-site coordination environment regulation of Mn-based phosphate cathodes for sodium-ion batteries with elevated working voltage and energy density
URI https://www.proquest.com/docview/2955270150
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELa27QUOFX8VSwuyBBcUpWwcx0mOKyiUn_a0lXpbOYnDroDsajcRiOfgDXkRZmzHcWkPhUu0ytqW4vk8Ho9nviHkBU_KvKhYGqYTUYU8qTmsuSQJRcW5qlgGFjS6Bs7OxekF_3CZXI5Gv72opa4tjsufN-aV_I9U4R3IFbNk_0GyblB4Ab9BvvAECcPzVjI-lyFe_gblCo6QS-PX81PXgo2pNG-NwrMmxE2rCtaL1Xa9kNhTYgFppUkZgu2qWnbfQmxdaNpNOEUbRy0moUu0Tb8b33oASq3FaB90uyuTPlhhKHx75ZbYs3bBMDYzEpR9ibnjYGqyhfp_NPu4GUy78_vcLgzf9Tz_VjtJ_MrPLn5IGp_vQjU_lkPQiAaptwLedbrZx6750jW-x4NxDPmKPCcomyQT5EA1elv570x1XKfZmY_gyNPTQphCMXbPF8IU5Lu2n0xipGN9E8-mmtjfMbIOpN1_baYuxFFf7sf5fOi7Q_YYnGVg99ibnszef3KuQDTaha506r6sJ9KN81fDAFdNp-E8tLPpi9Voo2h2j-xb-dKpgeZ9MlLNA3LX47h8SH5ZkFIfpNQDKR1ASlc17UFKHUhpD1IKAKEDSKkDKUWQ0h6k1IKUWpBSABM1uKIWpI_IxduT2evT0JYCCUuWRW1YlwVPi7QuZZJOqqiopZJKZDLilcoKhqRxQtZ5kSO7U50hsWYmItA1OatkzFR8QHabVaMeExpleVnDhDKuIs5LsJDjJBZJLso6zWSejcnLfpbnpeXJx3ItX-fXRTomz13btWGHubHVUS-sudUe2znLkfsQ_Y1jcgACdP2ruJW6n3xyq9EPyZ1hkRyR3XbTqadgKLfFMwu0P5V3xE4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Na-site+coordination+environment+regulation+of+Mn-based+phosphate+cathodes+for+sodium-ion+batteries+with+elevated+working+voltage+and+energy+density&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Wang%2C+Kairong&rft.au=Gao%2C+Chenxi&rft.au=Tu%2C+Jian&rft.au=Guo%2C+Kunkun&rft.date=2024-03-12&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=11&rft.spage=6681&rft.epage=6692&rft_id=info:doi/10.1039%2FD3TA07300A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3TA07300A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon