Modulating electrolyte solvation structures with Fe-embedded carbon matrix substrates for robust lithium-metal plating

The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal-organic frameworks (MOFs), showcasing its efficac...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 13; no. 2; pp. 928 - 932
Main Authors Peng, Jiayue, Wang, Jinghan, Pu, Xiangjun, Xie, Jia
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 02.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal-organic frameworks (MOFs), showcasing its efficacy as a substrate for lithium plating. Increased anion participation occurs in the Li + solvation sheath within the Fe@C pores, leading to the formation of an anion-derived solid electrolyte interface (SEI). The Fe matrix serves as nucleation sites, and the pores optimize the electrolyte structure, effectively guiding Li deposition while inhibiting Li dendrite formation. This approach demonstrates outstanding electrochemical performance with extended cycling, presenting a promising strategy for stable lithium metal anodes. Carbonized Fe-BTC to Fe@C is utilized as a substrate to enhance lithium deposition by modulating the Li + solvation structure. This approach significantly improves cycling performance.
AbstractList The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal–organic frameworks (MOFs), showcasing its efficacy as a substrate for lithium plating. Increased anion participation occurs in the Li+ solvation sheath within the Fe@C pores, leading to the formation of an anion-derived solid electrolyte interface (SEI). The Fe matrix serves as nucleation sites, and the pores optimize the electrolyte structure, effectively guiding Li deposition while inhibiting Li dendrite formation. This approach demonstrates outstanding electrochemical performance with extended cycling, presenting a promising strategy for stable lithium metal anodes.
The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal-organic frameworks (MOFs), showcasing its efficacy as a substrate for lithium plating. Increased anion participation occurs in the Li + solvation sheath within the Fe@C pores, leading to the formation of an anion-derived solid electrolyte interface (SEI). The Fe matrix serves as nucleation sites, and the pores optimize the electrolyte structure, effectively guiding Li deposition while inhibiting Li dendrite formation. This approach demonstrates outstanding electrochemical performance with extended cycling, presenting a promising strategy for stable lithium metal anodes. Carbonized Fe-BTC to Fe@C is utilized as a substrate to enhance lithium deposition by modulating the Li + solvation structure. This approach significantly improves cycling performance.
The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal–organic frameworks (MOFs), showcasing its efficacy as a substrate for lithium plating. Increased anion participation occurs in the Li + solvation sheath within the Fe@C pores, leading to the formation of an anion-derived solid electrolyte interface (SEI). The Fe matrix serves as nucleation sites, and the pores optimize the electrolyte structure, effectively guiding Li deposition while inhibiting Li dendrite formation. This approach demonstrates outstanding electrochemical performance with extended cycling, presenting a promising strategy for stable lithium metal anodes.
Author Xie, Jia
Pu, Xiangjun
Peng, Jiayue
Wang, Jinghan
AuthorAffiliation School of Electrical and Electronic Engineering
State Key Laboratory of Advanced Electromagnetic Technology
Huazhong University of Science and Technology
Department of Materials Science and Engineering
Seoul National University
AuthorAffiliation_xml – name: Huazhong University of Science and Technology
– name: State Key Laboratory of Advanced Electromagnetic Technology
– name: School of Electrical and Electronic Engineering
– name: Seoul National University
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Jiayue
  surname: Peng
  fullname: Peng, Jiayue
– sequence: 2
  givenname: Jinghan
  surname: Wang
  fullname: Wang, Jinghan
– sequence: 3
  givenname: Xiangjun
  surname: Pu
  fullname: Pu, Xiangjun
– sequence: 4
  givenname: Jia
  surname: Xie
  fullname: Xie, Jia
BookMark eNptkdFLwzAQxoMoOOdefBcCvgnVtE3a5nHMTYWJL_O5pOlFO9JmJul0_71xlQnivdxx_L477rszdNyZDhC6iMlNTFJ-W1MvSM4ogyM0SggjUU55dnyoi-IUTZxbkxAFIRnnI7R9MnWvhW-6VwwapLdG7zxgZ_Q2dE2Hnbe99L0Fhz8a_4YXEEFbQV1DjaWwVUBa4W3ziV1fBVj4QCpjsTVV7zzWQdT0bdSCFxpvhl3n6EQJ7WDyk8foZTFfzR6i5fP942y6jGRSxD5SgiR1ThlLagglYUpkkgsGhaygIDmNqzymIFWeqVgUSiSKAuFAWVIBy3g6RlfD3I017z04X65Nb7uwskxjRjgnPKGBuh4oaY1zFlS5sU0r7K6MSfltbXlHV9O9tfMAkz-wbPzeqnB7o_-XXA4S6-Rh9O-30i9Ib4qJ
CitedBy_id crossref_primary_10_1002_adfm_202500212
crossref_primary_10_1016_j_cej_2025_161472
Cites_doi 10.1002/adfm.201807137
10.1002/aenm.201703505
10.1016/j.joule.2018.07.010
10.1021/jacs.7b11283
10.1021/acsami.7b15117
10.1002/anie.201811638
10.1002/adma.202002741
10.1038/nmat4113
10.1021/acsenergylett.8b00935
10.1038/nnano.2017.16
10.1039/C3EE40795K
10.1039/C9CS00906J
10.1002/anie.202210859
10.1002/smll.202206561
10.1073/pnas.1518188113
10.1002/adfm.201910777
10.1073/pnas.1712895115
10.1021/acsami.9b10551
10.1016/j.ensm.2019.12.027
10.1016/j.ensm.2018.10.015
10.1002/smll.202101881
10.1021/acs.chemrev.0c00275
10.1038/nenergy.2016.10
10.1002/anie.201814182
10.1002/adfm.202303667
10.1088/0957-4484/26/35/354003
10.1002/adma.201702714
10.1039/D0EE02769C
10.1039/D1EE01678D
10.1126/science.1152516
10.1002/eem2.12274
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d4ta07545e
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 932
ExternalDocumentID 10_1039_D4TA07545E
d4ta07545e
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-fa02d74552dea0205fa6c9a5e8cbe80741b714ecf76f1a8fa2f4e09e452be5693
ISSN 2050-7488
IngestDate Mon Jun 30 12:04:39 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Tue Jul 01 03:28:27 EDT 2025
Tue May 27 12:02:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-fa02d74552dea0205fa6c9a5e8cbe80741b714ecf76f1a8fa2f4e09e452be5693
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d4ta07545e
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8731-295X
PQID 3150990924
PQPubID 2047523
PageCount 5
ParticipantIDs proquest_journals_3150990924
crossref_citationtrail_10_1039_D4TA07545E
crossref_primary_10_1039_D4TA07545E
rsc_primary_d4ta07545e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (D4TA07545E/cit7/1) 2021; 17
Borodin (D4TA07545E/cit29/1) 2015; 26
Sun (D4TA07545E/cit25/1) 2019; 11
Xu (D4TA07545E/cit2/1) 2014; 7
Yu (D4TA07545E/cit11/1) 2018; 3
Ji (D4TA07545E/cit31/1) 2020; 32
Li (D4TA07545E/cit6/1) 2018; 10
Liang (D4TA07545E/cit8/1) 2016; 113
Jie (D4TA07545E/cit3/1) 2020; 30
Liu (D4TA07545E/cit27/1) 2023; 33
Hou (D4TA07545E/cit16/1) 2019; 58
Lin (D4TA07545E/cit1/1) 2017; 12
Chang (D4TA07545E/cit13/1) 2020; 13
Zheng (D4TA07545E/cit4/1) 2020; 29
Li (D4TA07545E/cit17/1) 2017; 139
Zhang (D4TA07545E/cit5/1) 2020; 120
Wang (D4TA07545E/cit20/1) 2020; 49
Rodenas (D4TA07545E/cit18/1) 2015; 14
Liu (D4TA07545E/cit23/1) 2019; 19
Yao (D4TA07545E/cit30/1) 2022; 61
Bai (D4TA07545E/cit12/1) 2018; 2
Yang (D4TA07545E/cit22/1) 2017; 29
Suo (D4TA07545E/cit10/1) 2018; 115
Li (D4TA07545E/cit9/1) 2023; 6
Kim (D4TA07545E/cit14/1) 2023; 19
Li (D4TA07545E/cit28/1) 2019; 29
Han (D4TA07545E/cit26/1) 2021; 14
Ji (D4TA07545E/cit19/1) 2019; 58
Zhu (D4TA07545E/cit24/1) 2018; 8
Yan (D4TA07545E/cit21/1) 2016; 1
Banerjee (D4TA07545E/cit15/1) 2008; 319
References_xml – volume: 29
  start-page: 1807137
  year: 2019
  ident: D4TA07545E/cit28/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807137
– volume: 8
  start-page: 1703505
  year: 2018
  ident: D4TA07545E/cit24/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703505
– volume: 2
  start-page: 2117
  year: 2018
  ident: D4TA07545E/cit12/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.07.010
– volume: 139
  start-page: 17771
  year: 2017
  ident: D4TA07545E/cit17/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11283
– volume: 10
  start-page: 2469
  year: 2018
  ident: D4TA07545E/cit6/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15117
– volume: 58
  start-page: 327
  year: 2019
  ident: D4TA07545E/cit16/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811638
– volume: 32
  start-page: 2002741
  year: 2020
  ident: D4TA07545E/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002741
– volume: 14
  start-page: 48
  year: 2015
  ident: D4TA07545E/cit18/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4113
– volume: 3
  start-page: 2059
  year: 2018
  ident: D4TA07545E/cit11/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00935
– volume: 12
  start-page: 194
  year: 2017
  ident: D4TA07545E/cit1/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 7
  start-page: 513
  year: 2014
  ident: D4TA07545E/cit2/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE40795K
– volume: 49
  start-page: 1414
  year: 2020
  ident: D4TA07545E/cit20/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00906J
– volume: 61
  start-page: e202210859
  year: 2022
  ident: D4TA07545E/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202210859
– volume: 19
  start-page: 2206561
  year: 2023
  ident: D4TA07545E/cit14/1
  publication-title: Small
  doi: 10.1002/smll.202206561
– volume: 113
  start-page: 2862
  year: 2016
  ident: D4TA07545E/cit8/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1518188113
– volume: 30
  start-page: 1910777
  year: 2020
  ident: D4TA07545E/cit3/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910777
– volume: 115
  start-page: 1156
  year: 2018
  ident: D4TA07545E/cit10/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1712895115
– volume: 11
  start-page: 32008
  year: 2019
  ident: D4TA07545E/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b10551
– volume: 29
  start-page: 377
  year: 2020
  ident: D4TA07545E/cit4/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.12.027
– volume: 19
  start-page: 24
  year: 2019
  ident: D4TA07545E/cit23/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.10.015
– volume: 17
  start-page: 2101881
  year: 2021
  ident: D4TA07545E/cit7/1
  publication-title: Small
  doi: 10.1002/smll.202101881
– volume: 120
  start-page: 13312
  year: 2020
  ident: D4TA07545E/cit5/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00275
– volume: 1
  start-page: 16010
  year: 2016
  ident: D4TA07545E/cit21/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.10
– volume: 58
  start-page: 4271
  year: 2019
  ident: D4TA07545E/cit19/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201814182
– volume: 33
  start-page: 2303667
  year: 2023
  ident: D4TA07545E/cit27/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202303667
– volume: 26
  start-page: 354003
  year: 2015
  ident: D4TA07545E/cit29/1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/35/354003
– volume: 29
  start-page: 1702714
  year: 2017
  ident: D4TA07545E/cit22/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702714
– volume: 13
  start-page: 4122
  year: 2020
  ident: D4TA07545E/cit13/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02769C
– volume: 14
  start-page: 4882
  year: 2021
  ident: D4TA07545E/cit26/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01678D
– volume: 319
  start-page: 939
  year: 2008
  ident: D4TA07545E/cit15/1
  publication-title: Science
  doi: 10.1126/science.1152516
– volume: 6
  start-page: e12274
  year: 2023
  ident: D4TA07545E/cit9/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12274
SSID ssj0000800699
Score 2.4609475
Snippet The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 928
SubjectTerms Anions
Anodes
Dendrites
Electrochemical analysis
Electrochemistry
Iron
Lithium
Metal-organic frameworks
Metals
Nucleation
Plating
Pores
Porous materials
Porous media
Pyrolysis
Sheaths
Solid electrolytes
Solvation
Substrates
Title Modulating electrolyte solvation structures with Fe-embedded carbon matrix substrates for robust lithium-metal plating
URI https://www.proquest.com/docview/3150990924
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa67QUeEL8mCgNZghcUZaSOncSPFXQaE0M8dFLfIttxtk5rO60JWvf38YdxtpM4Y0MavESRYztK7-v57uz7DqEPSSy4IGUZJuD_hFTFPJQyHoXgbNGUZIJnwuQOH39PDk_o0YzNBoNfvVNLdSX31c29eSX_I1VoA7maLNl_kGw3KTTAPcgXriBhuD5IxserwlbfAm-_KWdzsal0AC91gdbAscPW4FK7gOuBDvVCalA2heGkltBlYTj6r4M1KBBLVGv5GYKrlazXlUlQPpvXi3ChTc7kpXvXX-xZmMh9c6DaInL7wdjlA7VPLL-4yza0Afs2e8sc0N14Ld2cEp6LTe23jkTbujw985D-UZvGGYD89LzuWmdu1-VoLvpRDcJsVKMX6CQRiwzPqdPNut_mKuB22jvuoZT0VDFvks7dqs5dFPXOghHFhm_1C52OwXaibOKXxfYowB-rZXeG0e7exzz3Y7fQDgFnBbTtzngy_fqti_UZqzyxpUy7z2qZcmP-yU9w2zbyDs_WVVuNxlo906foSSNePHbYe4YGevkcPe6RWL5APz0KcQ-FuEMh9ijEBoW4h0LsUIgdCrFHIQaoYIdCfAuFuEHhS3RyMJl-Pgybah6hItmoCksRkSKljJFCw23ESpEoLpjOlNSGkmkk0xHVqkyTciSyEjQI1RHXlBGpWcLjXbS9XC31K4QpE1QyJVOtU5qQUqhCCZGUShIuwCcfoo_t75irhureVFy5yO8KbYjed30vHcHLvb32WnHkjQJY5zE4U2DMcUKHaBdE1I0vaCXsOP36QbO_QY_8f2APbYNU9FuwdSv5roHSb0GpsaE
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+electrolyte+solvation+structures+with+Fe-embedded+carbon+matrix+substrates+for+robust+lithium-metal+plating&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Peng%2C+Jiayue&rft.au=Wang%2C+Jinghan&rft.au=Pu%2C+Xiangjun&rft.au=Xie%2C+Jia&rft.date=2025-01-02&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=13&rft.issue=2&rft.spage=928&rft.epage=932&rft_id=info:doi/10.1039%2FD4TA07545E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4TA07545E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon