Modulating electrolyte solvation structures with Fe-embedded carbon matrix substrates for robust lithium-metal plating
The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal-organic frameworks (MOFs), showcasing its efficac...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 13; no. 2; pp. 928 - 932 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
02.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal-organic frameworks (MOFs), showcasing its efficacy as a substrate for lithium plating. Increased anion participation occurs in the Li
+
solvation sheath within the Fe@C pores, leading to the formation of an anion-derived solid electrolyte interface (SEI). The Fe matrix serves as nucleation sites, and the pores optimize the electrolyte structure, effectively guiding Li deposition while inhibiting Li dendrite formation. This approach demonstrates outstanding electrochemical performance with extended cycling, presenting a promising strategy for stable lithium metal anodes.
Carbonized Fe-BTC to Fe@C is utilized as a substrate to enhance lithium deposition by modulating the Li
+
solvation structure. This approach significantly improves cycling performance. |
---|---|
AbstractList | The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal–organic frameworks (MOFs), showcasing its efficacy as a substrate for lithium plating. Increased anion participation occurs in the Li+ solvation sheath within the Fe@C pores, leading to the formation of an anion-derived solid electrolyte interface (SEI). The Fe matrix serves as nucleation sites, and the pores optimize the electrolyte structure, effectively guiding Li deposition while inhibiting Li dendrite formation. This approach demonstrates outstanding electrochemical performance with extended cycling, presenting a promising strategy for stable lithium metal anodes. The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal-organic frameworks (MOFs), showcasing its efficacy as a substrate for lithium plating. Increased anion participation occurs in the Li + solvation sheath within the Fe@C pores, leading to the formation of an anion-derived solid electrolyte interface (SEI). The Fe matrix serves as nucleation sites, and the pores optimize the electrolyte structure, effectively guiding Li deposition while inhibiting Li dendrite formation. This approach demonstrates outstanding electrochemical performance with extended cycling, presenting a promising strategy for stable lithium metal anodes. Carbonized Fe-BTC to Fe@C is utilized as a substrate to enhance lithium deposition by modulating the Li + solvation structure. This approach significantly improves cycling performance. The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion. In this study, we synthesized a porous Fe@C material through the pyrolysis of Fe-based metal–organic frameworks (MOFs), showcasing its efficacy as a substrate for lithium plating. Increased anion participation occurs in the Li + solvation sheath within the Fe@C pores, leading to the formation of an anion-derived solid electrolyte interface (SEI). The Fe matrix serves as nucleation sites, and the pores optimize the electrolyte structure, effectively guiding Li deposition while inhibiting Li dendrite formation. This approach demonstrates outstanding electrochemical performance with extended cycling, presenting a promising strategy for stable lithium metal anodes. |
Author | Xie, Jia Pu, Xiangjun Peng, Jiayue Wang, Jinghan |
AuthorAffiliation | School of Electrical and Electronic Engineering State Key Laboratory of Advanced Electromagnetic Technology Huazhong University of Science and Technology Department of Materials Science and Engineering Seoul National University |
AuthorAffiliation_xml | – name: Huazhong University of Science and Technology – name: State Key Laboratory of Advanced Electromagnetic Technology – name: School of Electrical and Electronic Engineering – name: Seoul National University – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Jiayue surname: Peng fullname: Peng, Jiayue – sequence: 2 givenname: Jinghan surname: Wang fullname: Wang, Jinghan – sequence: 3 givenname: Xiangjun surname: Pu fullname: Pu, Xiangjun – sequence: 4 givenname: Jia surname: Xie fullname: Xie, Jia |
BookMark | eNptkdFLwzAQxoMoOOdefBcCvgnVtE3a5nHMTYWJL_O5pOlFO9JmJul0_71xlQnivdxx_L477rszdNyZDhC6iMlNTFJ-W1MvSM4ogyM0SggjUU55dnyoi-IUTZxbkxAFIRnnI7R9MnWvhW-6VwwapLdG7zxgZ_Q2dE2Hnbe99L0Fhz8a_4YXEEFbQV1DjaWwVUBa4W3ziV1fBVj4QCpjsTVV7zzWQdT0bdSCFxpvhl3n6EQJ7WDyk8foZTFfzR6i5fP942y6jGRSxD5SgiR1ThlLagglYUpkkgsGhaygIDmNqzymIFWeqVgUSiSKAuFAWVIBy3g6RlfD3I017z04X65Nb7uwskxjRjgnPKGBuh4oaY1zFlS5sU0r7K6MSfltbXlHV9O9tfMAkz-wbPzeqnB7o_-XXA4S6-Rh9O-30i9Ib4qJ |
CitedBy_id | crossref_primary_10_1002_adfm_202500212 crossref_primary_10_1016_j_cej_2025_161472 |
Cites_doi | 10.1002/adfm.201807137 10.1002/aenm.201703505 10.1016/j.joule.2018.07.010 10.1021/jacs.7b11283 10.1021/acsami.7b15117 10.1002/anie.201811638 10.1002/adma.202002741 10.1038/nmat4113 10.1021/acsenergylett.8b00935 10.1038/nnano.2017.16 10.1039/C3EE40795K 10.1039/C9CS00906J 10.1002/anie.202210859 10.1002/smll.202206561 10.1073/pnas.1518188113 10.1002/adfm.201910777 10.1073/pnas.1712895115 10.1021/acsami.9b10551 10.1016/j.ensm.2019.12.027 10.1016/j.ensm.2018.10.015 10.1002/smll.202101881 10.1021/acs.chemrev.0c00275 10.1038/nenergy.2016.10 10.1002/anie.201814182 10.1002/adfm.202303667 10.1088/0957-4484/26/35/354003 10.1002/adma.201702714 10.1039/D0EE02769C 10.1039/D1EE01678D 10.1126/science.1152516 10.1002/eem2.12274 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d4ta07545e |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 932 |
ExternalDocumentID | 10_1039_D4TA07545E d4ta07545e |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-fa02d74552dea0205fa6c9a5e8cbe80741b714ecf76f1a8fa2f4e09e452be5693 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:04:39 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Tue Jul 01 03:28:27 EDT 2025 Tue May 27 12:02:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-fa02d74552dea0205fa6c9a5e8cbe80741b714ecf76f1a8fa2f4e09e452be5693 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d4ta07545e ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8731-295X |
PQID | 3150990924 |
PQPubID | 2047523 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3150990924 crossref_citationtrail_10_1039_D4TA07545E crossref_primary_10_1039_D4TA07545E rsc_primary_d4ta07545e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-02 |
PublicationDateYYYYMMDD | 2025-01-02 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (D4TA07545E/cit7/1) 2021; 17 Borodin (D4TA07545E/cit29/1) 2015; 26 Sun (D4TA07545E/cit25/1) 2019; 11 Xu (D4TA07545E/cit2/1) 2014; 7 Yu (D4TA07545E/cit11/1) 2018; 3 Ji (D4TA07545E/cit31/1) 2020; 32 Li (D4TA07545E/cit6/1) 2018; 10 Liang (D4TA07545E/cit8/1) 2016; 113 Jie (D4TA07545E/cit3/1) 2020; 30 Liu (D4TA07545E/cit27/1) 2023; 33 Hou (D4TA07545E/cit16/1) 2019; 58 Lin (D4TA07545E/cit1/1) 2017; 12 Chang (D4TA07545E/cit13/1) 2020; 13 Zheng (D4TA07545E/cit4/1) 2020; 29 Li (D4TA07545E/cit17/1) 2017; 139 Zhang (D4TA07545E/cit5/1) 2020; 120 Wang (D4TA07545E/cit20/1) 2020; 49 Rodenas (D4TA07545E/cit18/1) 2015; 14 Liu (D4TA07545E/cit23/1) 2019; 19 Yao (D4TA07545E/cit30/1) 2022; 61 Bai (D4TA07545E/cit12/1) 2018; 2 Yang (D4TA07545E/cit22/1) 2017; 29 Suo (D4TA07545E/cit10/1) 2018; 115 Li (D4TA07545E/cit9/1) 2023; 6 Kim (D4TA07545E/cit14/1) 2023; 19 Li (D4TA07545E/cit28/1) 2019; 29 Han (D4TA07545E/cit26/1) 2021; 14 Ji (D4TA07545E/cit19/1) 2019; 58 Zhu (D4TA07545E/cit24/1) 2018; 8 Yan (D4TA07545E/cit21/1) 2016; 1 Banerjee (D4TA07545E/cit15/1) 2008; 319 |
References_xml | – volume: 29 start-page: 1807137 year: 2019 ident: D4TA07545E/cit28/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807137 – volume: 8 start-page: 1703505 year: 2018 ident: D4TA07545E/cit24/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703505 – volume: 2 start-page: 2117 year: 2018 ident: D4TA07545E/cit12/1 publication-title: Joule doi: 10.1016/j.joule.2018.07.010 – volume: 139 start-page: 17771 year: 2017 ident: D4TA07545E/cit17/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11283 – volume: 10 start-page: 2469 year: 2018 ident: D4TA07545E/cit6/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15117 – volume: 58 start-page: 327 year: 2019 ident: D4TA07545E/cit16/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811638 – volume: 32 start-page: 2002741 year: 2020 ident: D4TA07545E/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002741 – volume: 14 start-page: 48 year: 2015 ident: D4TA07545E/cit18/1 publication-title: Nat. Mater. doi: 10.1038/nmat4113 – volume: 3 start-page: 2059 year: 2018 ident: D4TA07545E/cit11/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00935 – volume: 12 start-page: 194 year: 2017 ident: D4TA07545E/cit1/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 7 start-page: 513 year: 2014 ident: D4TA07545E/cit2/1 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE40795K – volume: 49 start-page: 1414 year: 2020 ident: D4TA07545E/cit20/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00906J – volume: 61 start-page: e202210859 year: 2022 ident: D4TA07545E/cit30/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202210859 – volume: 19 start-page: 2206561 year: 2023 ident: D4TA07545E/cit14/1 publication-title: Small doi: 10.1002/smll.202206561 – volume: 113 start-page: 2862 year: 2016 ident: D4TA07545E/cit8/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1518188113 – volume: 30 start-page: 1910777 year: 2020 ident: D4TA07545E/cit3/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910777 – volume: 115 start-page: 1156 year: 2018 ident: D4TA07545E/cit10/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1712895115 – volume: 11 start-page: 32008 year: 2019 ident: D4TA07545E/cit25/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b10551 – volume: 29 start-page: 377 year: 2020 ident: D4TA07545E/cit4/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.12.027 – volume: 19 start-page: 24 year: 2019 ident: D4TA07545E/cit23/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.10.015 – volume: 17 start-page: 2101881 year: 2021 ident: D4TA07545E/cit7/1 publication-title: Small doi: 10.1002/smll.202101881 – volume: 120 start-page: 13312 year: 2020 ident: D4TA07545E/cit5/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00275 – volume: 1 start-page: 16010 year: 2016 ident: D4TA07545E/cit21/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.10 – volume: 58 start-page: 4271 year: 2019 ident: D4TA07545E/cit19/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814182 – volume: 33 start-page: 2303667 year: 2023 ident: D4TA07545E/cit27/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303667 – volume: 26 start-page: 354003 year: 2015 ident: D4TA07545E/cit29/1 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/35/354003 – volume: 29 start-page: 1702714 year: 2017 ident: D4TA07545E/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.201702714 – volume: 13 start-page: 4122 year: 2020 ident: D4TA07545E/cit13/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02769C – volume: 14 start-page: 4882 year: 2021 ident: D4TA07545E/cit26/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01678D – volume: 319 start-page: 939 year: 2008 ident: D4TA07545E/cit15/1 publication-title: Science doi: 10.1126/science.1152516 – volume: 6 start-page: e12274 year: 2023 ident: D4TA07545E/cit9/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12274 |
SSID | ssj0000800699 |
Score | 2.4609475 |
Snippet | The practical application of lithium metal as an anode faces challenges due to the uncontrolled growth of lithium dendrites and substantial volume expansion.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 928 |
SubjectTerms | Anions Anodes Dendrites Electrochemical analysis Electrochemistry Iron Lithium Metal-organic frameworks Metals Nucleation Plating Pores Porous materials Porous media Pyrolysis Sheaths Solid electrolytes Solvation Substrates |
Title | Modulating electrolyte solvation structures with Fe-embedded carbon matrix substrates for robust lithium-metal plating |
URI | https://www.proquest.com/docview/3150990924 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa67QUeEL8mCgNZghcUZaSOncSPFXQaE0M8dFLfIttxtk5rO60JWvf38YdxtpM4Y0MavESRYztK7-v57uz7DqEPSSy4IGUZJuD_hFTFPJQyHoXgbNGUZIJnwuQOH39PDk_o0YzNBoNfvVNLdSX31c29eSX_I1VoA7maLNl_kGw3KTTAPcgXriBhuD5IxserwlbfAm-_KWdzsal0AC91gdbAscPW4FK7gOuBDvVCalA2heGkltBlYTj6r4M1KBBLVGv5GYKrlazXlUlQPpvXi3ChTc7kpXvXX-xZmMh9c6DaInL7wdjlA7VPLL-4yza0Afs2e8sc0N14Ld2cEp6LTe23jkTbujw985D-UZvGGYD89LzuWmdu1-VoLvpRDcJsVKMX6CQRiwzPqdPNut_mKuB22jvuoZT0VDFvks7dqs5dFPXOghHFhm_1C52OwXaibOKXxfYowB-rZXeG0e7exzz3Y7fQDgFnBbTtzngy_fqti_UZqzyxpUy7z2qZcmP-yU9w2zbyDs_WVVuNxlo906foSSNePHbYe4YGevkcPe6RWL5APz0KcQ-FuEMh9ijEBoW4h0LsUIgdCrFHIQaoYIdCfAuFuEHhS3RyMJl-Pgybah6hItmoCksRkSKljJFCw23ESpEoLpjOlNSGkmkk0xHVqkyTciSyEjQI1RHXlBGpWcLjXbS9XC31K4QpE1QyJVOtU5qQUqhCCZGUShIuwCcfoo_t75irhureVFy5yO8KbYjed30vHcHLvb32WnHkjQJY5zE4U2DMcUKHaBdE1I0vaCXsOP36QbO_QY_8f2APbYNU9FuwdSv5roHSb0GpsaE |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+electrolyte+solvation+structures+with+Fe-embedded+carbon+matrix+substrates+for+robust+lithium-metal+plating&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Peng%2C+Jiayue&rft.au=Wang%2C+Jinghan&rft.au=Pu%2C+Xiangjun&rft.au=Xie%2C+Jia&rft.date=2025-01-02&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=13&rft.issue=2&rft.spage=928&rft.epage=932&rft_id=info:doi/10.1039%2FD4TA07545E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4TA07545E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |