Building fast and selective Zn ion channels for highly stable quasi-solid-state Zn-ion batteries

Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle lif...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 44; pp. 23881 - 23887
Main Authors Kao, Chun-Chuan, Liu, Jiahao, Ye, Chao, Zhang, Shao-Jian, Hao, Junnan, Qiao, Shi-Zhang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle life of QSSZIBs. Herein, a Zn ion channel was constructed by confining the gel electrolyte in intercalated halloysite nanotubes. The resultant Zn ion channels show fast and highly selective Zn ion transportation and therefore suppress hydrogen evolution, Zn dendrite growth and formation of Zn 4 SO 4 (OH) 6 · χ H 2 O during cycling. The QSSZIBs exhibit an excellent Zn plating/stripping coulombic efficiency of ∼99.7% in 400 cycles and over 1600 h cycle life at a current density of 1 mA cm −2 and a corresponding areal capacity of 1 mA h cm −2 . Building Zn ion channels for fast and selective Zn ion transportation can direct development of QSSZIBs with high cycling stability. Based on the aforementioned advantages, the assembled Zn/i-HNTs@PAM/I 2 full battery exhibits an exceptionally long cycle life of 8000 cycles at a high current density of 8 C. Ordered ion channels constructed by confining a gel electrolyte in intercalated halloysite nanotubes exhibit fast and selective Zn ion transportation and therefore enhance the cycling stability of the quasi-solid-state Zn-ion batteries.
AbstractList Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle life of QSSZIBs. Herein, a Zn ion channel was constructed by confining the gel electrolyte in intercalated halloysite nanotubes. The resultant Zn ion channels show fast and highly selective Zn ion transportation and therefore suppress hydrogen evolution, Zn dendrite growth and formation of Zn4SO4(OH)6·χH2O during cycling. The QSSZIBs exhibit an excellent Zn plating/stripping coulombic efficiency of ∼99.7% in 400 cycles and over 1600 h cycle life at a current density of 1 mA cm−2 and a corresponding areal capacity of 1 mA h cm−2. Building Zn ion channels for fast and selective Zn ion transportation can direct development of QSSZIBs with high cycling stability. Based on the aforementioned advantages, the assembled Zn/i-HNTs@PAM/I2 full battery exhibits an exceptionally long cycle life of 8000 cycles at a high current density of 8 C.
Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle life of QSSZIBs. Herein, a Zn ion channel was constructed by confining the gel electrolyte in intercalated halloysite nanotubes. The resultant Zn ion channels show fast and highly selective Zn ion transportation and therefore suppress hydrogen evolution, Zn dendrite growth and formation of Zn 4 SO 4 (OH) 6 · χ H 2 O during cycling. The QSSZIBs exhibit an excellent Zn plating/stripping coulombic efficiency of ∼99.7% in 400 cycles and over 1600 h cycle life at a current density of 1 mA cm −2 and a corresponding areal capacity of 1 mA h cm −2 . Building Zn ion channels for fast and selective Zn ion transportation can direct development of QSSZIBs with high cycling stability. Based on the aforementioned advantages, the assembled Zn/i-HNTs@PAM/I 2 full battery exhibits an exceptionally long cycle life of 8000 cycles at a high current density of 8 C. Ordered ion channels constructed by confining a gel electrolyte in intercalated halloysite nanotubes exhibit fast and selective Zn ion transportation and therefore enhance the cycling stability of the quasi-solid-state Zn-ion batteries.
Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle life of QSSZIBs. Herein, a Zn ion channel was constructed by confining the gel electrolyte in intercalated halloysite nanotubes. The resultant Zn ion channels show fast and highly selective Zn ion transportation and therefore suppress hydrogen evolution, Zn dendrite growth and formation of Zn 4 SO 4 (OH) 6 · χ H 2 O during cycling. The QSSZIBs exhibit an excellent Zn plating/stripping coulombic efficiency of ∼99.7% in 400 cycles and over 1600 h cycle life at a current density of 1 mA cm −2 and a corresponding areal capacity of 1 mA h cm −2 . Building Zn ion channels for fast and selective Zn ion transportation can direct development of QSSZIBs with high cycling stability. Based on the aforementioned advantages, the assembled Zn/i-HNTs@PAM/I 2 full battery exhibits an exceptionally long cycle life of 8000 cycles at a high current density of 8 C.
Author Liu, Jiahao
Hao, Junnan
Kao, Chun-Chuan
Zhang, Shao-Jian
Ye, Chao
Qiao, Shi-Zhang
AuthorAffiliation School of Chemical Engineering and Advanced Materials
The University of Adelaide
AuthorAffiliation_xml – sequence: 0
  name: The University of Adelaide
– sequence: 0
  name: School of Chemical Engineering and Advanced Materials
Author_xml – sequence: 1
  givenname: Chun-Chuan
  surname: Kao
  fullname: Kao, Chun-Chuan
– sequence: 2
  givenname: Jiahao
  surname: Liu
  fullname: Liu, Jiahao
– sequence: 3
  givenname: Chao
  surname: Ye
  fullname: Ye, Chao
– sequence: 4
  givenname: Shao-Jian
  surname: Zhang
  fullname: Zhang, Shao-Jian
– sequence: 5
  givenname: Junnan
  surname: Hao
  fullname: Hao, Junnan
– sequence: 6
  givenname: Shi-Zhang
  surname: Qiao
  fullname: Qiao, Shi-Zhang
BookMark eNptkU1LAzEQhoNUsNZevAsBb8JqPuxucqzVqlDwUi9e1mw-2pSYbZOs0H9vaqWCmMuEzPNO3pk5BT3feg3AOUbXGFF-o2gSiLCyNEegT9AIFdUtL3uHO2MnYBjjCuXDECo574P3u846Zf0CGhETFF7BqJ2WyX5q-OahbT2US-G9dhGaNsClXSzdFsYkGqfhphPRFrF1VhX5Ke00xU7TiJR0sDqegWMjXNTDnzgAr9OH-eSpmL08Pk_Gs0IShlNheFUJQQhStEQUK44akzsZIaURwSVBmnKqBJVmR2BWaawlzbmSNVQ3gg7A5b7uOrSbTsdUr9ou-PxlTRjjo7JiBGcK7SkZ2hiDNrW02XZ2nIKwrsao3o2yvqfz8fcop1ly9UeyDvZDhO3_8MUeDlEeuN-90C_lGH-r
CitedBy_id crossref_primary_10_1002_adma_202404011
crossref_primary_10_1002_adma_202412447
crossref_primary_10_1016_j_jmst_2024_11_030
crossref_primary_10_1002_adfm_202400517
crossref_primary_10_1002_aenm_202406139
crossref_primary_10_1016_j_electacta_2024_145515
crossref_primary_10_1002_batt_202400776
crossref_primary_10_1002_adfm_202419153
crossref_primary_10_35534_sbe_2024_10012
crossref_primary_10_1002_adfm_202407050
crossref_primary_10_1007_s12274_024_6912_y
crossref_primary_10_1021_acsnano_4c10901
crossref_primary_10_1002_aenm_202401328
crossref_primary_10_1016_j_clay_2024_107661
crossref_primary_10_1016_j_cej_2023_147762
crossref_primary_10_1016_j_ensm_2024_103903
crossref_primary_10_1038_s41467_024_55656_2
crossref_primary_10_1002_cssc_202400479
Cites_doi 10.1039/C9TA11759H
10.1021/j150668a043
10.1039/C7EE03232C
10.1021/acsami.1c11489
10.1002/smll.202206655
10.1080/00150198008209489
10.1016/j.matt.2020.08.011
10.1021/acsaem.0c03229
10.1002/adma.202102415
10.1039/D1TA06745A
10.1039/a904051j
10.1126/science.aay8672
10.1021/cr990054v
10.1016/j.joule.2020.03.002
10.1007/s11051-017-4048-7
10.1038/s41563-019-0431-3
10.1016/j.clay.2013.07.008
10.1002/adma.201502341
10.1016/S0924-2031(96)00049-5
10.1016/j.jpowsour.2021.230196
10.1002/adma.201603038
10.1039/D1CS00582K
10.1021/acsami.2c10517
10.1002/pol.1981.180190214
10.1002/aenm.202102010
10.1016/j.mattod.2020.11.025
10.1016/0032-3861(87)90394-6
10.1002/adma.202007548
10.1039/C6EE01674J
10.1016/j.apsusc.2016.12.053
10.1016/j.cej.2022.139605
10.1021/acsami.1c18256
10.1346/CCMN.1998.0460307
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d3ta02866f
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 23887
ExternalDocumentID 10_1039_D3TA02866F
d3ta02866f
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-f977aa220d36031d90bf86650de021620e393da3cf0d36187e1ec3e0268b3eba3
ISSN 2050-7488
IngestDate Mon Jun 30 12:07:11 EDT 2025
Tue Jul 01 01:13:46 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Tue Dec 17 20:58:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-f977aa220d36031d90bf86650de021620e393da3cf0d36187e1ec3e0268b3eba3
Notes https://doi.org/10.1039/d3ta02866f
Electronic supplementary information (ESI) available. See DOI
Chao Ye received his PhD in chemical engineering from The University of Adelaide in 2020. He is currently a DECRA Fellow in Professor Shi-Zhang Qiao's group at The University of Adelaide, Australia. His research area is energy storage and conversion, including metal-sulfur batteries, aqueous Zn-ion batteries, and computational electrochemistry.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5777-7844
0000-0002-4568-8422
PQID 2889567821
PQPubID 2047523
PageCount 7
ParticipantIDs crossref_citationtrail_10_1039_D3TA02866F
proquest_journals_2889567821
crossref_primary_10_1039_D3TA02866F
rsc_primary_d3ta02866f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-14
PublicationDateYYYYMMDD 2023-11-14
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-14
  day: 14
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (D3TA02866F/cit9/1) 2022; 51
Rudolph (D3TA02866F/cit27/1) 1999; 1
Hao (D3TA02866F/cit17/1) 2021; 9
Xiao (D3TA02866F/cit5/1) 2019; 366
Li (D3TA02866F/cit6/1) 2018; 11
Blanc (D3TA02866F/cit7/1) 2020; 4
Liu (D3TA02866F/cit19/1) 2023; 19
Liu (D3TA02866F/cit2/1) 2016; 28
Cheng (D3TA02866F/cit10/1) 2021; 13
Wang (D3TA02866F/cit8/1) 2021; 4
Matusik (D3TA02866F/cit23/1) 2013; 83–84
Frost (D3TA02866F/cit28/1) 1997; 13
Evans (D3TA02866F/cit30/1) 1987; 28
Man (D3TA02866F/cit3/1) 2019; 7
Li (D3TA02866F/cit13/1) 2021; 13
Xu (D3TA02866F/cit4/1) 2020; 3
Bai (D3TA02866F/cit15/1) 2016; 9
Yang (D3TA02866F/cit25/1) 2017; 19
Liu (D3TA02866F/cit26/1) 2023; 452
Buck (D3TA02866F/cit33/1) 2000; 100
Bansil (D3TA02866F/cit29/1) 1980; 30
Lvov (D3TA02866F/cit20/1) 2016; 28
Zsirka (D3TA02866F/cit21/1) 2017; 399
Famprikis (D3TA02866F/cit14/1) 2019; 18
Gupta (D3TA02866F/cit31/1) 1981; 19
Johnston (D3TA02866F/cit22/1) 1984; 88
Frost (D3TA02866F/cit24/1) 1998; 46
Qiu (D3TA02866F/cit12/1) 2022; 14
Zhang (D3TA02866F/cit11/1) 2021; 11
Xu (D3TA02866F/cit18/1) 2021; 506
Dong (D3TA02866F/cit1/1) 2021; 33
Stolz (D3TA02866F/cit16/1) 2021; 44
Yang (D3TA02866F/cit32/1) 2021; 33
References_xml – volume: 7
  start-page: 27217
  year: 2019
  ident: D3TA02866F/cit3/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11759H
– volume: 88
  start-page: 5959
  year: 1984
  ident: D3TA02866F/cit22/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j150668a043
– volume: 11
  start-page: 941
  year: 2018
  ident: D3TA02866F/cit6/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03232C
– volume: 13
  start-page: 48525
  year: 2021
  ident: D3TA02866F/cit13/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c11489
– volume: 19
  start-page: 2206655
  year: 2023
  ident: D3TA02866F/cit19/1
  publication-title: Small
  doi: 10.1002/smll.202206655
– volume: 30
  start-page: 63
  year: 1980
  ident: D3TA02866F/cit29/1
  publication-title: Ferroelectrics
  doi: 10.1080/00150198008209489
– volume: 3
  start-page: 1685
  year: 2020
  ident: D3TA02866F/cit4/1
  publication-title: Matter
  doi: 10.1016/j.matt.2020.08.011
– volume: 4
  start-page: 2808
  year: 2021
  ident: D3TA02866F/cit8/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c03229
– volume: 33
  start-page: 2102415
  year: 2021
  ident: D3TA02866F/cit32/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102415
– volume: 9
  start-page: 25325
  year: 2021
  ident: D3TA02866F/cit17/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06745A
– volume: 1
  start-page: 4583
  year: 1999
  ident: D3TA02866F/cit27/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/a904051j
– volume: 366
  start-page: 426
  year: 2019
  ident: D3TA02866F/cit5/1
  publication-title: Science
  doi: 10.1126/science.aay8672
– volume: 100
  start-page: 3863
  year: 2000
  ident: D3TA02866F/cit33/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr990054v
– volume: 4
  start-page: 771
  year: 2020
  ident: D3TA02866F/cit7/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.002
– volume: 19
  start-page: 350
  year: 2017
  ident: D3TA02866F/cit25/1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-017-4048-7
– volume: 18
  start-page: 1278
  year: 2019
  ident: D3TA02866F/cit14/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0431-3
– volume: 83–84
  start-page: 426
  year: 2013
  ident: D3TA02866F/cit23/1
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2013.07.008
– volume: 28
  start-page: 1227
  year: 2016
  ident: D3TA02866F/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502341
– volume: 13
  start-page: 175
  year: 1997
  ident: D3TA02866F/cit28/1
  publication-title: Vib. Spectrosc.
  doi: 10.1016/S0924-2031(96)00049-5
– volume: 506
  start-page: 230196
  year: 2021
  ident: D3TA02866F/cit18/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230196
– volume: 28
  start-page: 8732
  year: 2016
  ident: D3TA02866F/cit2/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603038
– volume: 51
  start-page: 2224
  year: 2022
  ident: D3TA02866F/cit9/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00582K
– volume: 14
  start-page: 40951
  year: 2022
  ident: D3TA02866F/cit12/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c10517
– volume: 19
  start-page: 353
  year: 1981
  ident: D3TA02866F/cit31/1
  publication-title: J. Polym. Sci., Polym. Phys. Ed.
  doi: 10.1002/pol.1981.180190214
– volume: 11
  start-page: 2102010
  year: 2021
  ident: D3TA02866F/cit11/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102010
– volume: 44
  start-page: 9
  year: 2021
  ident: D3TA02866F/cit16/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.11.025
– volume: 28
  start-page: 2324
  year: 1987
  ident: D3TA02866F/cit30/1
  publication-title: Polymer
  doi: 10.1016/0032-3861(87)90394-6
– volume: 33
  start-page: e2007548
  year: 2021
  ident: D3TA02866F/cit1/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007548
– volume: 9
  start-page: 3221
  year: 2016
  ident: D3TA02866F/cit15/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01674J
– volume: 399
  start-page: 245
  year: 2017
  ident: D3TA02866F/cit21/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.12.053
– volume: 452
  start-page: 139605
  year: 2023
  ident: D3TA02866F/cit26/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139605
– volume: 13
  start-page: 54096
  year: 2021
  ident: D3TA02866F/cit10/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c18256
– volume: 46
  start-page: 280
  year: 1998
  ident: D3TA02866F/cit24/1
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1998.0460307
SSID ssj0000800699
Score 2.4907215
Snippet Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23881
SubjectTerms Batteries
Current density
Electrolytes
Hydrogen evolution
Ion channels
Ion currents
Nanotechnology
Nanotubes
Rechargeable batteries
Solid state
Transportation
Zinc
Title Building fast and selective Zn ion channels for highly stable quasi-solid-state Zn-ion batteries
URI https://www.proquest.com/docview/2889567821
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLbS9AIHxFYRKMgSXFDkMrFnPQZoVcpySqWql8Ge8aiRqmlpZg7wT_i3vOdtBjVIwGWUeJPj98X-_OYthLyqYuChhUpZVuNrRuDUTOk0YZi6CBFUKeMu9vlLenwan5wlZ5PJz5HVUt-pg-rHVr-S_5EqlIFc0Uv2HyQbBoUC-AzyhSdIGJ5_JeO3Lqf1vJEbaym-MWlt0BrovJ2jZNGxt4Xzz5gTYmziy--oPkB_qW-93KwZzHBdM-NXBH0Y9lEm5qa3LrzNXIHk2l8Ho7t0cQfzpfX88TUmkrj1KzTz8n5aaIobtPgfpVXUXvQtg8fIPGjdG3it5YW8GtS6zj4glAzabihkJx7pTonBBXrzWedRu9fxKIkwrKndivW4zCa8DZv1YgTKOB5vvSK3yV_cOY7fs62HRCQwxmotOgnkKk2b4SgMBopD5Q7Z5XAD4VOyuzxcffgUFHhItVOTnzRM3oe_FcWbYYDfCc9wi9m58SlmDJVZ3Sf3nCTp0gLqAZno9iG5O4pM-Yh89dCiCC0KIqQBWvS8pQAT6qFFQdbUQotaaNFb0KIWWjRA6zE5PTpcvTtmLhkHq3i-6FgDFwUpOY9qgYnJ6yJSDcZKjGoNNDHlkRaFqKWoGmyxyDO90JWAujRXQisp9si0vWr1E0JVXaELXZHxvImljBVcWoFYV1mdFE0qixl57VesrFykekyYclkaiwlRlO_FamlW92hGXoa21zY-y9ZW-37hS_f_3ZQ8z4sEuBpfzMgeCCP0H2T39E8Vz8idAcb7ZNrd9Po5sNNOvXA4-QVGLJHM
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+fast+and+selective+Zn+ion+channels+for+highly+stable+quasi-solid-state+Zn-ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Kao%2C+Chun-Chuan&rft.au=Liu%2C+Jiahao&rft.au=Ye%2C+Chao&rft.au=Zhang%2C+Shao-Jian&rft.date=2023-11-14&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=44&rft.spage=23881&rft.epage=23887&rft_id=info:doi/10.1039%2Fd3ta02866f&rft.externalDocID=d3ta02866f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon