Building fast and selective Zn ion channels for highly stable quasi-solid-state Zn-ion batteries
Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle lif...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 44; pp. 23881 - 23887 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle life of QSSZIBs. Herein, a Zn ion channel was constructed by confining the gel electrolyte in intercalated halloysite nanotubes. The resultant Zn ion channels show fast and highly selective Zn ion transportation and therefore suppress hydrogen evolution, Zn dendrite growth and formation of Zn
4
SO
4
(OH)
6
·
χ
H
2
O during cycling. The QSSZIBs exhibit an excellent Zn plating/stripping coulombic efficiency of ∼99.7% in 400 cycles and over 1600 h cycle life at a current density of 1 mA cm
−2
and a corresponding areal capacity of 1 mA h cm
−2
. Building Zn ion channels for fast and selective Zn ion transportation can direct development of QSSZIBs with high cycling stability. Based on the aforementioned advantages, the assembled Zn/i-HNTs@PAM/I
2
full battery exhibits an exceptionally long cycle life of 8000 cycles at a high current density of 8 C.
Ordered ion channels constructed by confining a gel electrolyte in intercalated halloysite nanotubes exhibit fast and selective Zn ion transportation and therefore enhance the cycling stability of the quasi-solid-state Zn-ion batteries. |
---|---|
AbstractList | Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle life of QSSZIBs. Herein, a Zn ion channel was constructed by confining the gel electrolyte in intercalated halloysite nanotubes. The resultant Zn ion channels show fast and highly selective Zn ion transportation and therefore suppress hydrogen evolution, Zn dendrite growth and formation of Zn4SO4(OH)6·χH2O during cycling. The QSSZIBs exhibit an excellent Zn plating/stripping coulombic efficiency of ∼99.7% in 400 cycles and over 1600 h cycle life at a current density of 1 mA cm−2 and a corresponding areal capacity of 1 mA h cm−2. Building Zn ion channels for fast and selective Zn ion transportation can direct development of QSSZIBs with high cycling stability. Based on the aforementioned advantages, the assembled Zn/i-HNTs@PAM/I2 full battery exhibits an exceptionally long cycle life of 8000 cycles at a high current density of 8 C. Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle life of QSSZIBs. Herein, a Zn ion channel was constructed by confining the gel electrolyte in intercalated halloysite nanotubes. The resultant Zn ion channels show fast and highly selective Zn ion transportation and therefore suppress hydrogen evolution, Zn dendrite growth and formation of Zn 4 SO 4 (OH) 6 · χ H 2 O during cycling. The QSSZIBs exhibit an excellent Zn plating/stripping coulombic efficiency of ∼99.7% in 400 cycles and over 1600 h cycle life at a current density of 1 mA cm −2 and a corresponding areal capacity of 1 mA h cm −2 . Building Zn ion channels for fast and selective Zn ion transportation can direct development of QSSZIBs with high cycling stability. Based on the aforementioned advantages, the assembled Zn/i-HNTs@PAM/I 2 full battery exhibits an exceptionally long cycle life of 8000 cycles at a high current density of 8 C. Ordered ion channels constructed by confining a gel electrolyte in intercalated halloysite nanotubes exhibit fast and selective Zn ion transportation and therefore enhance the cycling stability of the quasi-solid-state Zn-ion batteries. Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and ionic conductivity of gel electrolytes. However, the sluggish and the low selectivity of Zn ion transportation leads to unsatisfactory cycle life of QSSZIBs. Herein, a Zn ion channel was constructed by confining the gel electrolyte in intercalated halloysite nanotubes. The resultant Zn ion channels show fast and highly selective Zn ion transportation and therefore suppress hydrogen evolution, Zn dendrite growth and formation of Zn 4 SO 4 (OH) 6 · χ H 2 O during cycling. The QSSZIBs exhibit an excellent Zn plating/stripping coulombic efficiency of ∼99.7% in 400 cycles and over 1600 h cycle life at a current density of 1 mA cm −2 and a corresponding areal capacity of 1 mA h cm −2 . Building Zn ion channels for fast and selective Zn ion transportation can direct development of QSSZIBs with high cycling stability. Based on the aforementioned advantages, the assembled Zn/i-HNTs@PAM/I 2 full battery exhibits an exceptionally long cycle life of 8000 cycles at a high current density of 8 C. |
Author | Liu, Jiahao Hao, Junnan Kao, Chun-Chuan Zhang, Shao-Jian Ye, Chao Qiao, Shi-Zhang |
AuthorAffiliation | School of Chemical Engineering and Advanced Materials The University of Adelaide |
AuthorAffiliation_xml | – sequence: 0 name: The University of Adelaide – sequence: 0 name: School of Chemical Engineering and Advanced Materials |
Author_xml | – sequence: 1 givenname: Chun-Chuan surname: Kao fullname: Kao, Chun-Chuan – sequence: 2 givenname: Jiahao surname: Liu fullname: Liu, Jiahao – sequence: 3 givenname: Chao surname: Ye fullname: Ye, Chao – sequence: 4 givenname: Shao-Jian surname: Zhang fullname: Zhang, Shao-Jian – sequence: 5 givenname: Junnan surname: Hao fullname: Hao, Junnan – sequence: 6 givenname: Shi-Zhang surname: Qiao fullname: Qiao, Shi-Zhang |
BookMark | eNptkU1LAzEQhoNUsNZevAsBb8JqPuxucqzVqlDwUi9e1mw-2pSYbZOs0H9vaqWCmMuEzPNO3pk5BT3feg3AOUbXGFF-o2gSiLCyNEegT9AIFdUtL3uHO2MnYBjjCuXDECo574P3u846Zf0CGhETFF7BqJ2WyX5q-OahbT2US-G9dhGaNsClXSzdFsYkGqfhphPRFrF1VhX5Ke00xU7TiJR0sDqegWMjXNTDnzgAr9OH-eSpmL08Pk_Gs0IShlNheFUJQQhStEQUK44akzsZIaURwSVBmnKqBJVmR2BWaawlzbmSNVQ3gg7A5b7uOrSbTsdUr9ou-PxlTRjjo7JiBGcK7SkZ2hiDNrW02XZ2nIKwrsao3o2yvqfz8fcop1ly9UeyDvZDhO3_8MUeDlEeuN-90C_lGH-r |
CitedBy_id | crossref_primary_10_1002_adma_202404011 crossref_primary_10_1002_adma_202412447 crossref_primary_10_1016_j_jmst_2024_11_030 crossref_primary_10_1002_adfm_202400517 crossref_primary_10_1002_aenm_202406139 crossref_primary_10_1016_j_electacta_2024_145515 crossref_primary_10_1002_batt_202400776 crossref_primary_10_1002_adfm_202419153 crossref_primary_10_35534_sbe_2024_10012 crossref_primary_10_1002_adfm_202407050 crossref_primary_10_1007_s12274_024_6912_y crossref_primary_10_1021_acsnano_4c10901 crossref_primary_10_1002_aenm_202401328 crossref_primary_10_1016_j_clay_2024_107661 crossref_primary_10_1016_j_cej_2023_147762 crossref_primary_10_1016_j_ensm_2024_103903 crossref_primary_10_1038_s41467_024_55656_2 crossref_primary_10_1002_cssc_202400479 |
Cites_doi | 10.1039/C9TA11759H 10.1021/j150668a043 10.1039/C7EE03232C 10.1021/acsami.1c11489 10.1002/smll.202206655 10.1080/00150198008209489 10.1016/j.matt.2020.08.011 10.1021/acsaem.0c03229 10.1002/adma.202102415 10.1039/D1TA06745A 10.1039/a904051j 10.1126/science.aay8672 10.1021/cr990054v 10.1016/j.joule.2020.03.002 10.1007/s11051-017-4048-7 10.1038/s41563-019-0431-3 10.1016/j.clay.2013.07.008 10.1002/adma.201502341 10.1016/S0924-2031(96)00049-5 10.1016/j.jpowsour.2021.230196 10.1002/adma.201603038 10.1039/D1CS00582K 10.1021/acsami.2c10517 10.1002/pol.1981.180190214 10.1002/aenm.202102010 10.1016/j.mattod.2020.11.025 10.1016/0032-3861(87)90394-6 10.1002/adma.202007548 10.1039/C6EE01674J 10.1016/j.apsusc.2016.12.053 10.1016/j.cej.2022.139605 10.1021/acsami.1c18256 10.1346/CCMN.1998.0460307 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d3ta02866f |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 23887 |
ExternalDocumentID | 10_1039_D3TA02866F d3ta02866f |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-f977aa220d36031d90bf86650de021620e393da3cf0d36187e1ec3e0268b3eba3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:07:11 EDT 2025 Tue Jul 01 01:13:46 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Tue Dec 17 20:58:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-f977aa220d36031d90bf86650de021620e393da3cf0d36187e1ec3e0268b3eba3 |
Notes | https://doi.org/10.1039/d3ta02866f Electronic supplementary information (ESI) available. See DOI Chao Ye received his PhD in chemical engineering from The University of Adelaide in 2020. He is currently a DECRA Fellow in Professor Shi-Zhang Qiao's group at The University of Adelaide, Australia. His research area is energy storage and conversion, including metal-sulfur batteries, aqueous Zn-ion batteries, and computational electrochemistry. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5777-7844 0000-0002-4568-8422 |
PQID | 2889567821 |
PQPubID | 2047523 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1039_D3TA02866F proquest_journals_2889567821 crossref_primary_10_1039_D3TA02866F rsc_primary_d3ta02866f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-14 |
PublicationDateYYYYMMDD | 2023-11-14 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (D3TA02866F/cit9/1) 2022; 51 Rudolph (D3TA02866F/cit27/1) 1999; 1 Hao (D3TA02866F/cit17/1) 2021; 9 Xiao (D3TA02866F/cit5/1) 2019; 366 Li (D3TA02866F/cit6/1) 2018; 11 Blanc (D3TA02866F/cit7/1) 2020; 4 Liu (D3TA02866F/cit19/1) 2023; 19 Liu (D3TA02866F/cit2/1) 2016; 28 Cheng (D3TA02866F/cit10/1) 2021; 13 Wang (D3TA02866F/cit8/1) 2021; 4 Matusik (D3TA02866F/cit23/1) 2013; 83–84 Frost (D3TA02866F/cit28/1) 1997; 13 Evans (D3TA02866F/cit30/1) 1987; 28 Man (D3TA02866F/cit3/1) 2019; 7 Li (D3TA02866F/cit13/1) 2021; 13 Xu (D3TA02866F/cit4/1) 2020; 3 Bai (D3TA02866F/cit15/1) 2016; 9 Yang (D3TA02866F/cit25/1) 2017; 19 Liu (D3TA02866F/cit26/1) 2023; 452 Buck (D3TA02866F/cit33/1) 2000; 100 Bansil (D3TA02866F/cit29/1) 1980; 30 Lvov (D3TA02866F/cit20/1) 2016; 28 Zsirka (D3TA02866F/cit21/1) 2017; 399 Famprikis (D3TA02866F/cit14/1) 2019; 18 Gupta (D3TA02866F/cit31/1) 1981; 19 Johnston (D3TA02866F/cit22/1) 1984; 88 Frost (D3TA02866F/cit24/1) 1998; 46 Qiu (D3TA02866F/cit12/1) 2022; 14 Zhang (D3TA02866F/cit11/1) 2021; 11 Xu (D3TA02866F/cit18/1) 2021; 506 Dong (D3TA02866F/cit1/1) 2021; 33 Stolz (D3TA02866F/cit16/1) 2021; 44 Yang (D3TA02866F/cit32/1) 2021; 33 |
References_xml | – volume: 7 start-page: 27217 year: 2019 ident: D3TA02866F/cit3/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11759H – volume: 88 start-page: 5959 year: 1984 ident: D3TA02866F/cit22/1 publication-title: J. Phys. Chem. doi: 10.1021/j150668a043 – volume: 11 start-page: 941 year: 2018 ident: D3TA02866F/cit6/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03232C – volume: 13 start-page: 48525 year: 2021 ident: D3TA02866F/cit13/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11489 – volume: 19 start-page: 2206655 year: 2023 ident: D3TA02866F/cit19/1 publication-title: Small doi: 10.1002/smll.202206655 – volume: 30 start-page: 63 year: 1980 ident: D3TA02866F/cit29/1 publication-title: Ferroelectrics doi: 10.1080/00150198008209489 – volume: 3 start-page: 1685 year: 2020 ident: D3TA02866F/cit4/1 publication-title: Matter doi: 10.1016/j.matt.2020.08.011 – volume: 4 start-page: 2808 year: 2021 ident: D3TA02866F/cit8/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c03229 – volume: 33 start-page: 2102415 year: 2021 ident: D3TA02866F/cit32/1 publication-title: Adv. Mater. doi: 10.1002/adma.202102415 – volume: 9 start-page: 25325 year: 2021 ident: D3TA02866F/cit17/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06745A – volume: 1 start-page: 4583 year: 1999 ident: D3TA02866F/cit27/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/a904051j – volume: 366 start-page: 426 year: 2019 ident: D3TA02866F/cit5/1 publication-title: Science doi: 10.1126/science.aay8672 – volume: 100 start-page: 3863 year: 2000 ident: D3TA02866F/cit33/1 publication-title: Chem. Rev. doi: 10.1021/cr990054v – volume: 4 start-page: 771 year: 2020 ident: D3TA02866F/cit7/1 publication-title: Joule doi: 10.1016/j.joule.2020.03.002 – volume: 19 start-page: 350 year: 2017 ident: D3TA02866F/cit25/1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-017-4048-7 – volume: 18 start-page: 1278 year: 2019 ident: D3TA02866F/cit14/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0431-3 – volume: 83–84 start-page: 426 year: 2013 ident: D3TA02866F/cit23/1 publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2013.07.008 – volume: 28 start-page: 1227 year: 2016 ident: D3TA02866F/cit20/1 publication-title: Adv. Mater. doi: 10.1002/adma.201502341 – volume: 13 start-page: 175 year: 1997 ident: D3TA02866F/cit28/1 publication-title: Vib. Spectrosc. doi: 10.1016/S0924-2031(96)00049-5 – volume: 506 start-page: 230196 year: 2021 ident: D3TA02866F/cit18/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230196 – volume: 28 start-page: 8732 year: 2016 ident: D3TA02866F/cit2/1 publication-title: Adv. Mater. doi: 10.1002/adma.201603038 – volume: 51 start-page: 2224 year: 2022 ident: D3TA02866F/cit9/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00582K – volume: 14 start-page: 40951 year: 2022 ident: D3TA02866F/cit12/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c10517 – volume: 19 start-page: 353 year: 1981 ident: D3TA02866F/cit31/1 publication-title: J. Polym. Sci., Polym. Phys. Ed. doi: 10.1002/pol.1981.180190214 – volume: 11 start-page: 2102010 year: 2021 ident: D3TA02866F/cit11/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102010 – volume: 44 start-page: 9 year: 2021 ident: D3TA02866F/cit16/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.11.025 – volume: 28 start-page: 2324 year: 1987 ident: D3TA02866F/cit30/1 publication-title: Polymer doi: 10.1016/0032-3861(87)90394-6 – volume: 33 start-page: e2007548 year: 2021 ident: D3TA02866F/cit1/1 publication-title: Adv. Mater. doi: 10.1002/adma.202007548 – volume: 9 start-page: 3221 year: 2016 ident: D3TA02866F/cit15/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01674J – volume: 399 start-page: 245 year: 2017 ident: D3TA02866F/cit21/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.12.053 – volume: 452 start-page: 139605 year: 2023 ident: D3TA02866F/cit26/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139605 – volume: 13 start-page: 54096 year: 2021 ident: D3TA02866F/cit10/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c18256 – volume: 46 start-page: 280 year: 1998 ident: D3TA02866F/cit24/1 publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1998.0460307 |
SSID | ssj0000800699 |
Score | 2.4907215 |
Snippet | Quasi-solid-state Zn-ion batteries (QSSZIBs) with gel electrolytes hold practical promise to deliver a high energy density because of their high safety and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23881 |
SubjectTerms | Batteries Current density Electrolytes Hydrogen evolution Ion channels Ion currents Nanotechnology Nanotubes Rechargeable batteries Solid state Transportation Zinc |
Title | Building fast and selective Zn ion channels for highly stable quasi-solid-state Zn-ion batteries |
URI | https://www.proquest.com/docview/2889567821 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLbS9AIHxFYRKMgSXFDkMrFnPQZoVcpySqWql8Ge8aiRqmlpZg7wT_i3vOdtBjVIwGWUeJPj98X-_OYthLyqYuChhUpZVuNrRuDUTOk0YZi6CBFUKeMu9vlLenwan5wlZ5PJz5HVUt-pg-rHVr-S_5EqlIFc0Uv2HyQbBoUC-AzyhSdIGJ5_JeO3Lqf1vJEbaym-MWlt0BrovJ2jZNGxt4Xzz5gTYmziy--oPkB_qW-93KwZzHBdM-NXBH0Y9lEm5qa3LrzNXIHk2l8Ho7t0cQfzpfX88TUmkrj1KzTz8n5aaIobtPgfpVXUXvQtg8fIPGjdG3it5YW8GtS6zj4glAzabihkJx7pTonBBXrzWedRu9fxKIkwrKndivW4zCa8DZv1YgTKOB5vvSK3yV_cOY7fs62HRCQwxmotOgnkKk2b4SgMBopD5Q7Z5XAD4VOyuzxcffgUFHhItVOTnzRM3oe_FcWbYYDfCc9wi9m58SlmDJVZ3Sf3nCTp0gLqAZno9iG5O4pM-Yh89dCiCC0KIqQBWvS8pQAT6qFFQdbUQotaaNFb0KIWWjRA6zE5PTpcvTtmLhkHq3i-6FgDFwUpOY9qgYnJ6yJSDcZKjGoNNDHlkRaFqKWoGmyxyDO90JWAujRXQisp9si0vWr1E0JVXaELXZHxvImljBVcWoFYV1mdFE0qixl57VesrFykekyYclkaiwlRlO_FamlW92hGXoa21zY-y9ZW-37hS_f_3ZQ8z4sEuBpfzMgeCCP0H2T39E8Vz8idAcb7ZNrd9Po5sNNOvXA4-QVGLJHM |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+fast+and+selective+Zn+ion+channels+for+highly+stable+quasi-solid-state+Zn-ion+batteries&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Kao%2C+Chun-Chuan&rft.au=Liu%2C+Jiahao&rft.au=Ye%2C+Chao&rft.au=Zhang%2C+Shao-Jian&rft.date=2023-11-14&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=44&rft.spage=23881&rft.epage=23887&rft_id=info:doi/10.1039%2Fd3ta02866f&rft.externalDocID=d3ta02866f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |