Enhanced photocatalytic degradation of diclofenac by UiO-66/MgAl-LDH: excellent performances and mechanisms
The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) material...
Saved in:
Published in | Environmental science. Nano Vol. 11; no. 8; pp. 3286 - 3293 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
08.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2051-8153 2051-8161 |
DOI | 10.1039/d4en00266k |
Cover
Loading…
Abstract | The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) materials with layered MgAl-LDH in a hydrothermal synthesis strategy named UL
3
(wt%, UiO-66 : MgAl-LDH = 1 : 3) for the highly efficient photodegradation of diclofenac (DCF) was investigated in the study reported herein. The UL
3
/DCF photodegradation system under premium reaction conditions of 10 mg L
−1
of DCF, 0.1 g L
−1
of UL
3
and 25 °C reached 100% mineralization of DCF within 5 min at pH 4. Quench testing showed that dominant species in the photocatalysis was h
+
, which played synergetic roles during the degradation of DCF. Low metal ion leaching (under 0.25 mg L
−1
) and co-existing substrates certified the high stability of UL
3
and its good resistance to co-existing substances. This study identifies a viable photocatalyst system for water purification and solar energy utilization.
Light-activated UL
3
generates active species (h
+
) to attack DCF in a water environment, realizing efficient clean water purification. |
---|---|
AbstractList | The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) materials with layered MgAl-LDH in a hydrothermal synthesis strategy named UL3 (wt%, UiO-66 : MgAl-LDH = 1 : 3) for the highly efficient photodegradation of diclofenac (DCF) was investigated in the study reported herein. The UL3/DCF photodegradation system under premium reaction conditions of 10 mg L−1 of DCF, 0.1 g L−1 of UL3 and 25 °C reached 100% mineralization of DCF within 5 min at pH 4. Quench testing showed that dominant species in the photocatalysis was h+, which played synergetic roles during the degradation of DCF. Low metal ion leaching (under 0.25 mg L−1) and co-existing substrates certified the high stability of UL3 and its good resistance to co-existing substances. This study identifies a viable photocatalyst system for water purification and solar energy utilization. The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) materials with layered MgAl-LDH in a hydrothermal synthesis strategy named UL 3 (wt%, UiO-66 : MgAl-LDH = 1 : 3) for the highly efficient photodegradation of diclofenac (DCF) was investigated in the study reported herein. The UL 3 /DCF photodegradation system under premium reaction conditions of 10 mg L −1 of DCF, 0.1 g L −1 of UL 3 and 25 °C reached 100% mineralization of DCF within 5 min at pH 4. Quench testing showed that dominant species in the photocatalysis was h + , which played synergetic roles during the degradation of DCF. Low metal ion leaching (under 0.25 mg L −1 ) and co-existing substrates certified the high stability of UL 3 and its good resistance to co-existing substances. This study identifies a viable photocatalyst system for water purification and solar energy utilization. Light-activated UL 3 generates active species (h + ) to attack DCF in a water environment, realizing efficient clean water purification. The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) materials with layered MgAl-LDH in a hydrothermal synthesis strategy named UL 3 (wt%, UiO-66 : MgAl-LDH = 1 : 3) for the highly efficient photodegradation of diclofenac (DCF) was investigated in the study reported herein. The UL 3 /DCF photodegradation system under premium reaction conditions of 10 mg L −1 of DCF, 0.1 g L −1 of UL 3 and 25 °C reached 100% mineralization of DCF within 5 min at pH 4. Quench testing showed that dominant species in the photocatalysis was h + , which played synergetic roles during the degradation of DCF. Low metal ion leaching (under 0.25 mg L −1 ) and co-existing substrates certified the high stability of UL 3 and its good resistance to co-existing substances. This study identifies a viable photocatalyst system for water purification and solar energy utilization. |
Author | Ren, Nan-Qi Zhuo, Sheng-Nan Ren, Hong-Yu Wang, Jia-Hang Liu, Bing-Feng Kong, Fanying |
AuthorAffiliation | Northeast Agricultural University Harbin Institute of Technology State Key Laboratory of Urban Water Resource and Environment School of Water Conservancy and Civil Engineering |
AuthorAffiliation_xml | – sequence: 0 name: School of Water Conservancy and Civil Engineering – sequence: 0 name: Harbin Institute of Technology – sequence: 0 name: State Key Laboratory of Urban Water Resource and Environment – sequence: 0 name: Northeast Agricultural University |
Author_xml | – sequence: 1 givenname: Jia-Hang surname: Wang fullname: Wang, Jia-Hang – sequence: 2 givenname: Fanying surname: Kong fullname: Kong, Fanying – sequence: 3 givenname: Bing-Feng surname: Liu fullname: Liu, Bing-Feng – sequence: 4 givenname: Sheng-Nan surname: Zhuo fullname: Zhuo, Sheng-Nan – sequence: 5 givenname: Nan-Qi surname: Ren fullname: Ren, Nan-Qi – sequence: 6 givenname: Hong-Yu surname: Ren fullname: Ren, Hong-Yu |
BookMark | eNptkUFPwzAMhSM0JMbYhTtSJG5IZU7Tph03tA2GGOwyzlWauKPQJSPJJPbv6TYEEuJky_r8bD-fko6xBgk5Z3DNgA8HOkEDEAvxfkS6MaQsyplgnZ885Sek7_0bADAWp1xkXfI-Ma_SKNR0_WqDVTLIZhtqRTUundQy1NZQW1Fdq8ZWaKSi5Za-1PNIiMHT8raJZuPpDcVPhU2DJtA1usq61U7TU2k0XaFqJ9R-5c_IcSUbj_3v2COLu8liNI1m8_uH0e0sUnHOQlTlWQJlqkBnJfB26zJLBOOp5MMkExxlmaYV53HS3optGUWpsaVAxVoPS94jlwfZtbMfG_SheLMbZ9qJBYchpDmIPG-pqwOlnPXeYVWsXb2SblswKHZ2FuNk8ry387GF4Q-s6rD3JjhZN_-3XBxanFc_0r8f4l_C5oKD |
CitedBy_id | crossref_primary_10_3390_en18051016 crossref_primary_10_1016_j_jwpe_2025_107229 crossref_primary_10_1016_j_jenvman_2024_122401 crossref_primary_10_1016_j_bej_2024_109561 crossref_primary_10_1016_j_ccr_2025_216613 crossref_primary_10_1016_j_jwpe_2024_106924 crossref_primary_10_1016_j_seppur_2024_130807 crossref_primary_10_1016_j_psep_2024_12_075 crossref_primary_10_1016_j_ccr_2025_216534 crossref_primary_10_1016_j_energy_2024_133954 crossref_primary_10_1016_j_jwpe_2025_107102 crossref_primary_10_1016_j_algal_2024_103784 crossref_primary_10_1016_j_energy_2025_134638 crossref_primary_10_1186_s12934_024_02511_0 crossref_primary_10_1016_j_cej_2024_157578 crossref_primary_10_1016_j_colsurfa_2024_135474 crossref_primary_10_1016_j_ijhydene_2024_12_175 crossref_primary_10_1016_j_jallcom_2025_179818 crossref_primary_10_1016_j_jhazmat_2024_136555 crossref_primary_10_3390_app14219923 crossref_primary_10_1016_j_fuel_2025_135020 crossref_primary_10_1016_j_cej_2024_155818 crossref_primary_10_1016_j_jece_2025_116093 |
Cites_doi | 10.1021/es050794n 10.1016/j.biortech.2022.128515 10.1016/j.inoche.2022.109441 10.1016/j.apsusc.2017.05.158 10.1016/j.algal.2022.102925 10.1039/D2NJ04424B 10.1016/j.ese.2024.100420 10.1142/S1793292019500668 10.1016/j.apcatb.2021.120706 10.1016/j.jece.2023.111419 10.1016/j.chemosphere.2007.06.063 10.1016/j.watres.2024.121120 10.2166/wst.2022.197 10.1039/C7CC07527H 10.1021/acsami.1c00364 10.1016/j.diamond.2023.110143 10.1007/s40097-021-00405-w 10.1016/j.seppur.2022.121040 10.1039/D2CY00148A 10.1007/s42114-021-00346-6 10.1016/j.mssp.2022.106939 10.1016/j.dyepig.2020.108957 10.1016/j.cej.2021.133952 10.1002/aoc.7122 10.1016/j.inoche.2019.04.022 10.1016/j.scitotenv.2023.164345 10.1016/j.jallcom.2021.161960 10.1016/j.watres.2024.121134 10.1016/j.cej.2022.135033 10.1016/j.cej.2022.136186 10.1016/j.jhazmat.2019.121070 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/d4en00266k |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 3293 |
ExternalDocumentID | 10_1039_D4EN00266K d4en00266k |
GroupedDBID | -JG 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AETIL AFLYV AFOGI AFRAH AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c281t-f8740b5c0d7b03153b746135a394763eab55f3324002e35ae6bde53b0c2dd9b3 |
ISSN | 2051-8153 |
IngestDate | Sun Jul 13 04:25:12 EDT 2025 Tue Jul 01 02:35:45 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Tue Dec 17 20:57:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-f8740b5c0d7b03153b746135a394763eab55f3324002e35ae6bde53b0c2dd9b3 |
Notes | https://doi.org/10.1039/d4en00266k Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4733-7607 |
PQID | 3090580688 |
PQPubID | 2047519 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_D4EN00266K proquest_journals_3090580688 rsc_primary_d4en00266k crossref_citationtrail_10_1039_D4EN00266K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-08 |
PublicationDateYYYYMMDD | 2024-08-08 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhao (D4EN00266K/cit22/1) 2021; 185 Li (D4EN00266K/cit27/1) 2022; 891 Samuei (D4EN00266K/cit12/1) 2022; 12 Khajeh (D4EN00266K/cit15/1) 2022; 12 Wang (D4EN00266K/cit1/1) 2023; 892 Sun (D4EN00266K/cit23/1) 2022; 150 Chen (D4EN00266K/cit19/1) 2019; 104 Zhao (D4EN00266K/cit17/1) 2021; 13 Zhang (D4EN00266K/cit16/1) 2023; 37 Wang (D4EN00266K/cit9/1) 2022; 442 Gholami (D4EN00266K/cit11/1) 2020; 382 Zhang (D4EN00266K/cit21/1) 2021; 4 Song (D4EN00266K/cit4/1) 2024; 251 Li (D4EN00266K/cit24/1) 2019; 14 Song (D4EN00266K/cit3/1) 2024; 21 Song (D4EN00266K/cit7/1) 2024; 251 Dhawle (D4EN00266K/cit5/1) 2021; 299 Chakraborty (D4EN00266K/cit13/1) 2023; 47 Yuan (D4EN00266K/cit6/1) 2018; 54 Yu (D4EN00266K/cit10/1) 2022; 435 Tong (D4EN00266K/cit20/1) 2022; 86 Kumar (D4EN00266K/cit28/1) 2022; 292 Hartmann (D4EN00266K/cit31/1) 2008; 70 Song (D4EN00266K/cit14/1) 2023; 69 Pérez-Estrada (D4EN00266K/cit30/1) 2005; 39 Bi (D4EN00266K/cit29/1) 2023; 137 He (D4EN00266K/cit18/1) 2022; 140 Yang (D4EN00266K/cit25/1) 2017; 420 He (D4EN00266K/cit26/1) 2023; 11 Li (D4EN00266K/cit32/1) 2021; 37 Man (D4EN00266K/cit2/1) 2022; 431 Song (D4EN00266K/cit8/1) 2023; 370 |
References_xml | – volume: 39 start-page: 8300 year: 2005 ident: D4EN00266K/cit30/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es050794n – volume: 370 start-page: 128515 year: 2023 ident: D4EN00266K/cit8/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.128515 – volume: 140 start-page: 109441 year: 2022 ident: D4EN00266K/cit18/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2022.109441 – volume: 420 start-page: 276 year: 2017 ident: D4EN00266K/cit25/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.05.158 – volume: 69 start-page: 121070 year: 2023 ident: D4EN00266K/cit14/1 publication-title: Algal Res. doi: 10.1016/j.algal.2022.102925 – volume: 47 start-page: 1498 year: 2023 ident: D4EN00266K/cit13/1 publication-title: New J. Chem. doi: 10.1039/D2NJ04424B – volume: 21 start-page: 100420 year: 2024 ident: D4EN00266K/cit3/1 publication-title: Environ. Sci. Ecotechnology doi: 10.1016/j.ese.2024.100420 – volume: 14 start-page: 1950066 year: 2019 ident: D4EN00266K/cit24/1 publication-title: Nano doi: 10.1142/S1793292019500668 – volume: 299 start-page: 120706 year: 2021 ident: D4EN00266K/cit5/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120706 – volume: 37 start-page: 1465 year: 2021 ident: D4EN00266K/cit32/1 publication-title: Chin. J. Inorg. Chem. – volume: 11 start-page: 111419 year: 2023 ident: D4EN00266K/cit26/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2023.111419 – volume: 70 start-page: 453 year: 2008 ident: D4EN00266K/cit31/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.06.063 – volume: 251 start-page: 121120 year: 2024 ident: D4EN00266K/cit4/1 publication-title: Water Res. doi: 10.1016/j.watres.2024.121120 – volume: 86 start-page: 95 year: 2022 ident: D4EN00266K/cit20/1 publication-title: Water Sci. Technol. doi: 10.2166/wst.2022.197 – volume: 54 start-page: 370 year: 2018 ident: D4EN00266K/cit6/1 publication-title: Chem. Commun. doi: 10.1039/C7CC07527H – volume: 13 start-page: 16300 year: 2021 ident: D4EN00266K/cit17/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00364 – volume: 137 start-page: 110143 year: 2023 ident: D4EN00266K/cit29/1 publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2023.110143 – volume: 12 start-page: 105 year: 2022 ident: D4EN00266K/cit15/1 publication-title: J. Nanostruct. Chem. doi: 10.1007/s40097-021-00405-w – volume: 292 start-page: 161960 year: 2022 ident: D4EN00266K/cit28/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121040 – volume: 12 start-page: 3044 year: 2022 ident: D4EN00266K/cit12/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D2CY00148A – volume: 4 start-page: 1330 year: 2021 ident: D4EN00266K/cit21/1 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-021-00346-6 – volume: 150 start-page: 106939 year: 2022 ident: D4EN00266K/cit23/1 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2022.106939 – volume: 185 start-page: 109441 year: 2021 ident: D4EN00266K/cit22/1 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2020.108957 – volume: 431 start-page: 133952 year: 2022 ident: D4EN00266K/cit2/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133952 – volume: 37 start-page: e7122 year: 2023 ident: D4EN00266K/cit16/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.7122 – volume: 104 start-page: 223 year: 2019 ident: D4EN00266K/cit19/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2019.04.022 – volume: 892 start-page: 164345 year: 2023 ident: D4EN00266K/cit1/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.164345 – volume: 891 start-page: 161960 year: 2022 ident: D4EN00266K/cit27/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.161960 – volume: 251 start-page: 121134 year: 2024 ident: D4EN00266K/cit7/1 publication-title: Water Res. doi: 10.1016/j.watres.2024.121134 – volume: 435 start-page: 135033 year: 2022 ident: D4EN00266K/cit10/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135033 – volume: 442 start-page: 136186 year: 2022 ident: D4EN00266K/cit9/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136186 – volume: 382 start-page: 121070 year: 2020 ident: D4EN00266K/cit11/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121070 |
SSID | ssj0001125367 |
Score | 2.5012672 |
Snippet | The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3286 |
SubjectTerms | Aquatic environment Diclofenac Dominant species Energy utilization Environmental degradation Heavy metals Leaching Metal ions Mineralization Nonsteroidal anti-inflammatory drugs Photocatalysis Photodegradation Solar energy Substrates Water purification Zirconium |
Title | Enhanced photocatalytic degradation of diclofenac by UiO-66/MgAl-LDH: excellent performances and mechanisms |
URI | https://www.proquest.com/docview/3090580688 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa67oUXBIKJsoEswQtC7lLb-cVbYa0KdN1LKipeojhx1mojmbZWYvwr_LOc7TjOxISAlyg92VHl-3I-X-6-Q-g1D4NAeoIR8KUzwgMaEwE7IeGZDAWNSp4Xqjj5dBHMlvzTyl_1ej87WUu7rRjmP-6tK_kfrYIM9KqqZP9Bs-1DQQD3oF-4gobh-lc6nlRr8wH_al1vax2JuVUErIVigChaZ7CAeXUpqyxXzuZyc0YCdZQ-PR9fkvnJTDfn-a4j-JXmMbaVBIa--ZtUxcGbm4bW3EbxXYGcLavM5VAZ67pNytlkZNaEo79kzQ6pq2yMbAp2aOPE7-GewPKem1DBro39rEFG4MFvv653dTdKQbnOkYtaXJlYiE1E1YkmTTs7Z-8o2AcSjQx38FB2ZYavvTXYow4wo471ZdTSajc_TfPF33YJjymS1YLLSh1Bgwu3F9rv_4uzdLqcz9Nkskr20D6FMwjto_3xJPk4dyE8cA6Z7lHc_nVLgMviY_f4uy6PO8fsXdsmM9qZSR6hh80pBI8NpB6jnqyeoAsLJ3wXTrgDJ1yX2MEJi1ts4HRswfQOt1DCXShhgBJ2UHqKkukk-TAjTS8OktNotCWlat0o_NwrQqEagzARcvAE_YzF8LozmQnfL5lid_SoBLEMRCFhlJfToogFO0D9qq7kM4R5EAjhF4x7oeDSG2WjoAjzLPNpLkvhywF6Y1crzRueetUu5TLV-RIsTk_4ZKFX9vMAvWrHXhl2lntHHdlFT5u39yZlXuz5kWq5NEAHoIh2vtPb8z_PO0QPHNKPUH97vZMvwEPdipcNUn4BQKqTfA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+photocatalytic+degradation+of+diclofenac+by+UiO-66%2FMgAl-LDH%3A+excellent+performances+and+mechanisms&rft.jtitle=Environmental+science.+Nano&rft.au=Jia-Hang%2C+Wang&rft.au=Kong%2C+Fanying&rft.au=Bing-Feng%2C+Liu&rft.au=Sheng-Nan+Zhuo&rft.date=2024-08-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=11&rft.issue=8&rft.spage=3286&rft.epage=3293&rft_id=info:doi/10.1039%2Fd4en00266k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |