Enhanced photocatalytic degradation of diclofenac by UiO-66/MgAl-LDH: excellent performances and mechanisms

The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) material...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 11; no. 8; pp. 3286 - 3293
Main Authors Wang, Jia-Hang, Kong, Fanying, Liu, Bing-Feng, Zhuo, Sheng-Nan, Ren, Nan-Qi, Ren, Hong-Yu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 08.08.2024
Subjects
Online AccessGet full text
ISSN2051-8153
2051-8161
DOI10.1039/d4en00266k

Cover

Loading…
Abstract The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) materials with layered MgAl-LDH in a hydrothermal synthesis strategy named UL 3 (wt%, UiO-66 : MgAl-LDH = 1 : 3) for the highly efficient photodegradation of diclofenac (DCF) was investigated in the study reported herein. The UL 3 /DCF photodegradation system under premium reaction conditions of 10 mg L −1 of DCF, 0.1 g L −1 of UL 3 and 25 °C reached 100% mineralization of DCF within 5 min at pH 4. Quench testing showed that dominant species in the photocatalysis was h + , which played synergetic roles during the degradation of DCF. Low metal ion leaching (under 0.25 mg L −1 ) and co-existing substrates certified the high stability of UL 3 and its good resistance to co-existing substances. This study identifies a viable photocatalyst system for water purification and solar energy utilization. Light-activated UL 3 generates active species (h + ) to attack DCF in a water environment, realizing efficient clean water purification.
AbstractList The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) materials with layered MgAl-LDH in a hydrothermal synthesis strategy named UL3 (wt%, UiO-66 : MgAl-LDH = 1 : 3) for the highly efficient photodegradation of diclofenac (DCF) was investigated in the study reported herein. The UL3/DCF photodegradation system under premium reaction conditions of 10 mg L−1 of DCF, 0.1 g L−1 of UL3 and 25 °C reached 100% mineralization of DCF within 5 min at pH 4. Quench testing showed that dominant species in the photocatalysis was h+, which played synergetic roles during the degradation of DCF. Low metal ion leaching (under 0.25 mg L−1) and co-existing substrates certified the high stability of UL3 and its good resistance to co-existing substances. This study identifies a viable photocatalyst system for water purification and solar energy utilization.
The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) materials with layered MgAl-LDH in a hydrothermal synthesis strategy named UL 3 (wt%, UiO-66 : MgAl-LDH = 1 : 3) for the highly efficient photodegradation of diclofenac (DCF) was investigated in the study reported herein. The UL 3 /DCF photodegradation system under premium reaction conditions of 10 mg L −1 of DCF, 0.1 g L −1 of UL 3 and 25 °C reached 100% mineralization of DCF within 5 min at pH 4. Quench testing showed that dominant species in the photocatalysis was h + , which played synergetic roles during the degradation of DCF. Low metal ion leaching (under 0.25 mg L −1 ) and co-existing substrates certified the high stability of UL 3 and its good resistance to co-existing substances. This study identifies a viable photocatalyst system for water purification and solar energy utilization. Light-activated UL 3 generates active species (h + ) to attack DCF in a water environment, realizing efficient clean water purification.
The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a prerequisite to remit a pollution status of the process when exploiting new materials. The construction of functional Zr-MOF (UiO-66) materials with layered MgAl-LDH in a hydrothermal synthesis strategy named UL 3 (wt%, UiO-66 : MgAl-LDH = 1 : 3) for the highly efficient photodegradation of diclofenac (DCF) was investigated in the study reported herein. The UL 3 /DCF photodegradation system under premium reaction conditions of 10 mg L −1 of DCF, 0.1 g L −1 of UL 3 and 25 °C reached 100% mineralization of DCF within 5 min at pH 4. Quench testing showed that dominant species in the photocatalysis was h + , which played synergetic roles during the degradation of DCF. Low metal ion leaching (under 0.25 mg L −1 ) and co-existing substrates certified the high stability of UL 3 and its good resistance to co-existing substances. This study identifies a viable photocatalyst system for water purification and solar energy utilization.
Author Ren, Nan-Qi
Zhuo, Sheng-Nan
Ren, Hong-Yu
Wang, Jia-Hang
Liu, Bing-Feng
Kong, Fanying
AuthorAffiliation Northeast Agricultural University
Harbin Institute of Technology
State Key Laboratory of Urban Water Resource and Environment
School of Water Conservancy and Civil Engineering
AuthorAffiliation_xml – sequence: 0
  name: School of Water Conservancy and Civil Engineering
– sequence: 0
  name: Harbin Institute of Technology
– sequence: 0
  name: State Key Laboratory of Urban Water Resource and Environment
– sequence: 0
  name: Northeast Agricultural University
Author_xml – sequence: 1
  givenname: Jia-Hang
  surname: Wang
  fullname: Wang, Jia-Hang
– sequence: 2
  givenname: Fanying
  surname: Kong
  fullname: Kong, Fanying
– sequence: 3
  givenname: Bing-Feng
  surname: Liu
  fullname: Liu, Bing-Feng
– sequence: 4
  givenname: Sheng-Nan
  surname: Zhuo
  fullname: Zhuo, Sheng-Nan
– sequence: 5
  givenname: Nan-Qi
  surname: Ren
  fullname: Ren, Nan-Qi
– sequence: 6
  givenname: Hong-Yu
  surname: Ren
  fullname: Ren, Hong-Yu
BookMark eNptkUFPwzAMhSM0JMbYhTtSJG5IZU7Tph03tA2GGOwyzlWauKPQJSPJJPbv6TYEEuJky_r8bD-fko6xBgk5Z3DNgA8HOkEDEAvxfkS6MaQsyplgnZ885Sek7_0bADAWp1xkXfI-Ma_SKNR0_WqDVTLIZhtqRTUundQy1NZQW1Fdq8ZWaKSi5Za-1PNIiMHT8raJZuPpDcVPhU2DJtA1usq61U7TU2k0XaFqJ9R-5c_IcSUbj_3v2COLu8liNI1m8_uH0e0sUnHOQlTlWQJlqkBnJfB26zJLBOOp5MMkExxlmaYV53HS3optGUWpsaVAxVoPS94jlwfZtbMfG_SheLMbZ9qJBYchpDmIPG-pqwOlnPXeYVWsXb2SblswKHZ2FuNk8ry387GF4Q-s6rD3JjhZN_-3XBxanFc_0r8f4l_C5oKD
CitedBy_id crossref_primary_10_3390_en18051016
crossref_primary_10_1016_j_jwpe_2025_107229
crossref_primary_10_1016_j_jenvman_2024_122401
crossref_primary_10_1016_j_bej_2024_109561
crossref_primary_10_1016_j_ccr_2025_216613
crossref_primary_10_1016_j_jwpe_2024_106924
crossref_primary_10_1016_j_seppur_2024_130807
crossref_primary_10_1016_j_psep_2024_12_075
crossref_primary_10_1016_j_ccr_2025_216534
crossref_primary_10_1016_j_energy_2024_133954
crossref_primary_10_1016_j_jwpe_2025_107102
crossref_primary_10_1016_j_algal_2024_103784
crossref_primary_10_1016_j_energy_2025_134638
crossref_primary_10_1186_s12934_024_02511_0
crossref_primary_10_1016_j_cej_2024_157578
crossref_primary_10_1016_j_colsurfa_2024_135474
crossref_primary_10_1016_j_ijhydene_2024_12_175
crossref_primary_10_1016_j_jallcom_2025_179818
crossref_primary_10_1016_j_jhazmat_2024_136555
crossref_primary_10_3390_app14219923
crossref_primary_10_1016_j_fuel_2025_135020
crossref_primary_10_1016_j_cej_2024_155818
crossref_primary_10_1016_j_jece_2025_116093
Cites_doi 10.1021/es050794n
10.1016/j.biortech.2022.128515
10.1016/j.inoche.2022.109441
10.1016/j.apsusc.2017.05.158
10.1016/j.algal.2022.102925
10.1039/D2NJ04424B
10.1016/j.ese.2024.100420
10.1142/S1793292019500668
10.1016/j.apcatb.2021.120706
10.1016/j.jece.2023.111419
10.1016/j.chemosphere.2007.06.063
10.1016/j.watres.2024.121120
10.2166/wst.2022.197
10.1039/C7CC07527H
10.1021/acsami.1c00364
10.1016/j.diamond.2023.110143
10.1007/s40097-021-00405-w
10.1016/j.seppur.2022.121040
10.1039/D2CY00148A
10.1007/s42114-021-00346-6
10.1016/j.mssp.2022.106939
10.1016/j.dyepig.2020.108957
10.1016/j.cej.2021.133952
10.1002/aoc.7122
10.1016/j.inoche.2019.04.022
10.1016/j.scitotenv.2023.164345
10.1016/j.jallcom.2021.161960
10.1016/j.watres.2024.121134
10.1016/j.cej.2022.135033
10.1016/j.cej.2022.136186
10.1016/j.jhazmat.2019.121070
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/d4en00266k
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 3293
ExternalDocumentID 10_1039_D4EN00266K
d4en00266k
GroupedDBID -JG
0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRAH
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c281t-f8740b5c0d7b03153b746135a394763eab55f3324002e35ae6bde53b0c2dd9b3
ISSN 2051-8153
IngestDate Sun Jul 13 04:25:12 EDT 2025
Tue Jul 01 02:35:45 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Tue Dec 17 20:57:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-f8740b5c0d7b03153b746135a394763eab55f3324002e35ae6bde53b0c2dd9b3
Notes https://doi.org/10.1039/d4en00266k
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4733-7607
PQID 3090580688
PQPubID 2047519
PageCount 8
ParticipantIDs crossref_primary_10_1039_D4EN00266K
proquest_journals_3090580688
rsc_primary_d4en00266k
crossref_citationtrail_10_1039_D4EN00266K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-08
PublicationDateYYYYMMDD 2024-08-08
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-08
  day: 08
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science. Nano
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhao (D4EN00266K/cit22/1) 2021; 185
Li (D4EN00266K/cit27/1) 2022; 891
Samuei (D4EN00266K/cit12/1) 2022; 12
Khajeh (D4EN00266K/cit15/1) 2022; 12
Wang (D4EN00266K/cit1/1) 2023; 892
Sun (D4EN00266K/cit23/1) 2022; 150
Chen (D4EN00266K/cit19/1) 2019; 104
Zhao (D4EN00266K/cit17/1) 2021; 13
Zhang (D4EN00266K/cit16/1) 2023; 37
Wang (D4EN00266K/cit9/1) 2022; 442
Gholami (D4EN00266K/cit11/1) 2020; 382
Zhang (D4EN00266K/cit21/1) 2021; 4
Song (D4EN00266K/cit4/1) 2024; 251
Li (D4EN00266K/cit24/1) 2019; 14
Song (D4EN00266K/cit3/1) 2024; 21
Song (D4EN00266K/cit7/1) 2024; 251
Dhawle (D4EN00266K/cit5/1) 2021; 299
Chakraborty (D4EN00266K/cit13/1) 2023; 47
Yuan (D4EN00266K/cit6/1) 2018; 54
Yu (D4EN00266K/cit10/1) 2022; 435
Tong (D4EN00266K/cit20/1) 2022; 86
Kumar (D4EN00266K/cit28/1) 2022; 292
Hartmann (D4EN00266K/cit31/1) 2008; 70
Song (D4EN00266K/cit14/1) 2023; 69
Pérez-Estrada (D4EN00266K/cit30/1) 2005; 39
Bi (D4EN00266K/cit29/1) 2023; 137
He (D4EN00266K/cit18/1) 2022; 140
Yang (D4EN00266K/cit25/1) 2017; 420
He (D4EN00266K/cit26/1) 2023; 11
Li (D4EN00266K/cit32/1) 2021; 37
Man (D4EN00266K/cit2/1) 2022; 431
Song (D4EN00266K/cit8/1) 2023; 370
References_xml – volume: 39
  start-page: 8300
  year: 2005
  ident: D4EN00266K/cit30/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050794n
– volume: 370
  start-page: 128515
  year: 2023
  ident: D4EN00266K/cit8/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.128515
– volume: 140
  start-page: 109441
  year: 2022
  ident: D4EN00266K/cit18/1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2022.109441
– volume: 420
  start-page: 276
  year: 2017
  ident: D4EN00266K/cit25/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.05.158
– volume: 69
  start-page: 121070
  year: 2023
  ident: D4EN00266K/cit14/1
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2022.102925
– volume: 47
  start-page: 1498
  year: 2023
  ident: D4EN00266K/cit13/1
  publication-title: New J. Chem.
  doi: 10.1039/D2NJ04424B
– volume: 21
  start-page: 100420
  year: 2024
  ident: D4EN00266K/cit3/1
  publication-title: Environ. Sci. Ecotechnology
  doi: 10.1016/j.ese.2024.100420
– volume: 14
  start-page: 1950066
  year: 2019
  ident: D4EN00266K/cit24/1
  publication-title: Nano
  doi: 10.1142/S1793292019500668
– volume: 299
  start-page: 120706
  year: 2021
  ident: D4EN00266K/cit5/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120706
– volume: 37
  start-page: 1465
  year: 2021
  ident: D4EN00266K/cit32/1
  publication-title: Chin. J. Inorg. Chem.
– volume: 11
  start-page: 111419
  year: 2023
  ident: D4EN00266K/cit26/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2023.111419
– volume: 70
  start-page: 453
  year: 2008
  ident: D4EN00266K/cit31/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.06.063
– volume: 251
  start-page: 121120
  year: 2024
  ident: D4EN00266K/cit4/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2024.121120
– volume: 86
  start-page: 95
  year: 2022
  ident: D4EN00266K/cit20/1
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2022.197
– volume: 54
  start-page: 370
  year: 2018
  ident: D4EN00266K/cit6/1
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC07527H
– volume: 13
  start-page: 16300
  year: 2021
  ident: D4EN00266K/cit17/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c00364
– volume: 137
  start-page: 110143
  year: 2023
  ident: D4EN00266K/cit29/1
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2023.110143
– volume: 12
  start-page: 105
  year: 2022
  ident: D4EN00266K/cit15/1
  publication-title: J. Nanostruct. Chem.
  doi: 10.1007/s40097-021-00405-w
– volume: 292
  start-page: 161960
  year: 2022
  ident: D4EN00266K/cit28/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121040
– volume: 12
  start-page: 3044
  year: 2022
  ident: D4EN00266K/cit12/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D2CY00148A
– volume: 4
  start-page: 1330
  year: 2021
  ident: D4EN00266K/cit21/1
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-021-00346-6
– volume: 150
  start-page: 106939
  year: 2022
  ident: D4EN00266K/cit23/1
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2022.106939
– volume: 185
  start-page: 109441
  year: 2021
  ident: D4EN00266K/cit22/1
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2020.108957
– volume: 431
  start-page: 133952
  year: 2022
  ident: D4EN00266K/cit2/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133952
– volume: 37
  start-page: e7122
  year: 2023
  ident: D4EN00266K/cit16/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.7122
– volume: 104
  start-page: 223
  year: 2019
  ident: D4EN00266K/cit19/1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2019.04.022
– volume: 892
  start-page: 164345
  year: 2023
  ident: D4EN00266K/cit1/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.164345
– volume: 891
  start-page: 161960
  year: 2022
  ident: D4EN00266K/cit27/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.161960
– volume: 251
  start-page: 121134
  year: 2024
  ident: D4EN00266K/cit7/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2024.121134
– volume: 435
  start-page: 135033
  year: 2022
  ident: D4EN00266K/cit10/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135033
– volume: 442
  start-page: 136186
  year: 2022
  ident: D4EN00266K/cit9/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136186
– volume: 382
  start-page: 121070
  year: 2020
  ident: D4EN00266K/cit11/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121070
SSID ssj0001125367
Score 2.5012672
Snippet The expeditious augmentation of industry and economics has brought about an increase in the pollution of the aquatic environment, and as a result, there is a...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3286
SubjectTerms Aquatic environment
Diclofenac
Dominant species
Energy utilization
Environmental degradation
Heavy metals
Leaching
Metal ions
Mineralization
Nonsteroidal anti-inflammatory drugs
Photocatalysis
Photodegradation
Solar energy
Substrates
Water purification
Zirconium
Title Enhanced photocatalytic degradation of diclofenac by UiO-66/MgAl-LDH: excellent performances and mechanisms
URI https://www.proquest.com/docview/3090580688
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELa67oUXBIKJsoEswQtC7lLb-cVbYa0KdN1LKipeojhx1mojmbZWYvwr_LOc7TjOxISAlyg92VHl-3I-X-6-Q-g1D4NAeoIR8KUzwgMaEwE7IeGZDAWNSp4Xqjj5dBHMlvzTyl_1ej87WUu7rRjmP-6tK_kfrYIM9KqqZP9Bs-1DQQD3oF-4gobh-lc6nlRr8wH_al1vax2JuVUErIVigChaZ7CAeXUpqyxXzuZyc0YCdZQ-PR9fkvnJTDfn-a4j-JXmMbaVBIa--ZtUxcGbm4bW3EbxXYGcLavM5VAZ67pNytlkZNaEo79kzQ6pq2yMbAp2aOPE7-GewPKem1DBro39rEFG4MFvv653dTdKQbnOkYtaXJlYiE1E1YkmTTs7Z-8o2AcSjQx38FB2ZYavvTXYow4wo471ZdTSajc_TfPF33YJjymS1YLLSh1Bgwu3F9rv_4uzdLqcz9Nkskr20D6FMwjto_3xJPk4dyE8cA6Z7lHc_nVLgMviY_f4uy6PO8fsXdsmM9qZSR6hh80pBI8NpB6jnqyeoAsLJ3wXTrgDJ1yX2MEJi1ts4HRswfQOt1DCXShhgBJ2UHqKkukk-TAjTS8OktNotCWlat0o_NwrQqEagzARcvAE_YzF8LozmQnfL5lid_SoBLEMRCFhlJfToogFO0D9qq7kM4R5EAjhF4x7oeDSG2WjoAjzLPNpLkvhywF6Y1crzRueetUu5TLV-RIsTk_4ZKFX9vMAvWrHXhl2lntHHdlFT5u39yZlXuz5kWq5NEAHoIh2vtPb8z_PO0QPHNKPUH97vZMvwEPdipcNUn4BQKqTfA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+photocatalytic+degradation+of+diclofenac+by+UiO-66%2FMgAl-LDH%3A+excellent+performances+and+mechanisms&rft.jtitle=Environmental+science.+Nano&rft.au=Jia-Hang%2C+Wang&rft.au=Kong%2C+Fanying&rft.au=Bing-Feng%2C+Liu&rft.au=Sheng-Nan+Zhuo&rft.date=2024-08-08&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=11&rft.issue=8&rft.spage=3286&rft.epage=3293&rft_id=info:doi/10.1039%2Fd4en00266k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon