Amorphous copper iodide: a p-type semiconductor for solution processed p-channel thin-film transistors and inverters

Until now, inorganic p-channel thin-film transistors (TFTs) have shown relatively low performance in terms of mobility, ON-current level, and on/off ratio compared to their n-channel counterparts. For inorganic p-channel TFTs, high-temperature annealed single- or poly-crystalline materials such as C...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 1; no. 2; pp. 7815 - 7821
Main Authors Lee, Han Ju, Lee, Seonjeong, Lee, Keun Hyung, Hong, Kihyon
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 26.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Until now, inorganic p-channel thin-film transistors (TFTs) have shown relatively low performance in terms of mobility, ON-current level, and on/off ratio compared to their n-channel counterparts. For inorganic p-channel TFTs, high-temperature annealed single- or poly-crystalline materials such as CuO, SnO, or 2D dichalcogenides have been the typical materials of choice. Development of amorphous semiconductor materials can provide a wide range of promising semiconductors for the TFT industry owing to their unique advantages, such as large area applicability, high device-to-device uniformity, and low temperature processing; however, the poor TFT performance using the conventional amorphous p-type semiconductors limits the use of materials in practical applications. In the present work, we demonstrate the 1st high-performance solution-processed p-channel TFT using an amorphous copper iodide (a-CuI) semiconductor, which outperforms its polycrystalline counterpart. Amorphous CuI films were formed by spin coating of precursor solutions based on co-solvents. By using a-CuI semiconductors as the channel layer, electrolyte-gated p-channel TFTs were fabricated with a vertical device structure. Measurement of the TFT characteristics reveals that the amorphous CuI channel layer leads to better device performance than devices with a polycrystalline CuI. The optimized vertical TFTs showed high current densities above 1000 mA cm −2 , ON/OFF current ratios of > 10 4 , and large normalized transconductances of about 6 S m −1 , which are the highest among solution-processed vertical TFTs. These results pave the way for application of amorphous p-type inorganics in high-performance complementary circuits and represent a breakthrough for p-type semiconductor materials. Amorphous p-type copper iodide (a-CuI) semiconductor and corresponding p-channel vertical TFTs are demonstrated. The a-CuI-TFTs exhibit excellent device performance, high current density of 1400 mA cm −2 and normalized transconductance of 6.46 S m −1 .
AbstractList Until now, inorganic p-channel thin-film transistors (TFTs) have shown relatively low performance in terms of mobility, ON-current level, and on/off ratio compared to their n-channel counterparts. For inorganic p-channel TFTs, high-temperature annealed single- or poly-crystalline materials such as CuO, SnO, or 2D dichalcogenides have been the typical materials of choice. Development of amorphous semiconductor materials can provide a wide range of promising semiconductors for the TFT industry owing to their unique advantages, such as large area applicability, high device-to-device uniformity, and low temperature processing; however, the poor TFT performance using the conventional amorphous p-type semiconductors limits the use of materials in practical applications. In the present work, we demonstrate the 1st high-performance solution-processed p-channel TFT using an amorphous copper iodide (a-CuI) semiconductor, which outperforms its polycrystalline counterpart. Amorphous CuI films were formed by spin coating of precursor solutions based on co-solvents. By using a-CuI semiconductors as the channel layer, electrolyte-gated p-channel TFTs were fabricated with a vertical device structure. Measurement of the TFT characteristics reveals that the amorphous CuI channel layer leads to better device performance than devices with a polycrystalline CuI. The optimized vertical TFTs showed high current densities above 1000 mA cm −2 , ON/OFF current ratios of > 10 4 , and large normalized transconductances of about 6 S m −1 , which are the highest among solution-processed vertical TFTs. These results pave the way for application of amorphous p-type inorganics in high-performance complementary circuits and represent a breakthrough for p-type semiconductor materials.
Until now, inorganic p-channel thin-film transistors (TFTs) have shown relatively low performance in terms of mobility, ON-current level, and on/off ratio compared to their n-channel counterparts. For inorganic p-channel TFTs, high-temperature annealed single- or poly-crystalline materials such as CuO, SnO, or 2D dichalcogenides have been the typical materials of choice. Development of amorphous semiconductor materials can provide a wide range of promising semiconductors for the TFT industry owing to their unique advantages, such as large area applicability, high device-to-device uniformity, and low temperature processing; however, the poor TFT performance using the conventional amorphous p-type semiconductors limits the use of materials in practical applications. In the present work, we demonstrate the 1st high-performance solution-processed p-channel TFT using an amorphous copper iodide (a-CuI) semiconductor, which outperforms its polycrystalline counterpart. Amorphous CuI films were formed by spin coating of precursor solutions based on co-solvents. By using a-CuI semiconductors as the channel layer, electrolyte-gated p-channel TFTs were fabricated with a vertical device structure. Measurement of the TFT characteristics reveals that the amorphous CuI channel layer leads to better device performance than devices with a polycrystalline CuI. The optimized vertical TFTs showed high current densities above 1000 mA cm−2, ON/OFF current ratios of > 104, and large normalized transconductances of about 6 S m−1, which are the highest among solution-processed vertical TFTs. These results pave the way for application of amorphous p-type inorganics in high-performance complementary circuits and represent a breakthrough for p-type semiconductor materials.
Until now, inorganic p-channel thin-film transistors (TFTs) have shown relatively low performance in terms of mobility, ON-current level, and on/off ratio compared to their n-channel counterparts. For inorganic p-channel TFTs, high-temperature annealed single- or poly-crystalline materials such as CuO, SnO, or 2D dichalcogenides have been the typical materials of choice. Development of amorphous semiconductor materials can provide a wide range of promising semiconductors for the TFT industry owing to their unique advantages, such as large area applicability, high device-to-device uniformity, and low temperature processing; however, the poor TFT performance using the conventional amorphous p-type semiconductors limits the use of materials in practical applications. In the present work, we demonstrate the 1st high-performance solution-processed p-channel TFT using an amorphous copper iodide (a-CuI) semiconductor, which outperforms its polycrystalline counterpart. Amorphous CuI films were formed by spin coating of precursor solutions based on co-solvents. By using a-CuI semiconductors as the channel layer, electrolyte-gated p-channel TFTs were fabricated with a vertical device structure. Measurement of the TFT characteristics reveals that the amorphous CuI channel layer leads to better device performance than devices with a polycrystalline CuI. The optimized vertical TFTs showed high current densities above 1000 mA cm −2 , ON/OFF current ratios of > 10 4 , and large normalized transconductances of about 6 S m −1 , which are the highest among solution-processed vertical TFTs. These results pave the way for application of amorphous p-type inorganics in high-performance complementary circuits and represent a breakthrough for p-type semiconductor materials. Amorphous p-type copper iodide (a-CuI) semiconductor and corresponding p-channel vertical TFTs are demonstrated. The a-CuI-TFTs exhibit excellent device performance, high current density of 1400 mA cm −2 and normalized transconductance of 6.46 S m −1 .
Author Lee, Han Ju
Lee, Keun Hyung
Hong, Kihyon
Lee, Seonjeong
AuthorAffiliation Chungnam National University
Inha University
Education and Research Center for Smart Energy and Materials
Department of Materials Science and Engineering
Department of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Department of Chemistry and Chemical Engineering
– name: Inha University
– name: Chungnam National University
– name: Education and Research Center for Smart Energy and Materials
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Han Ju
  surname: Lee
  fullname: Lee, Han Ju
– sequence: 2
  givenname: Seonjeong
  surname: Lee
  fullname: Lee, Seonjeong
– sequence: 3
  givenname: Keun Hyung
  surname: Lee
  fullname: Lee, Keun Hyung
– sequence: 4
  givenname: Kihyon
  surname: Hong
  fullname: Hong, Kihyon
BookMark eNpFkMtLAzEQxoMoWGsv3oWAN2E1j316K_WJBS_1vKTJhKbuJmuSFfrfG63UgWHm8Jv5Zr4zdGydBYQuKLmhhDe3ikVJSE7JxxGaMFKQrCp4fnzoWXmKZiFsSYqalnXZTFCc984PGzcGLN0wgMfGKaPgDgs8ZHE3AA7QG-msGmV0HuuUwXVjNM7iwTsJIYBKrNwIa6HDcWNspk3X4-iFDSakqYCFVdjYL_ARfDhHJ1p0AWZ_dYreHx9Wi-ds-fb0spgvM8lqGjPN0y8110LVihNFqjUTIEVeEQb1muiS6rXWVdPQQhCVFww4YyWHIkGiJBWfoqv93nTn5wghtls3epskW1aWTUFJkbNEXe8p6V0IHnQ7eNMLv2spaX-Mbe_ZavFr7GuCL_ewD_LA_RvPvwHci3jC
CitedBy_id crossref_primary_10_3390_molecules29081723
crossref_primary_10_1038_s41586_024_07360_w
crossref_primary_10_1039_D4TC00203B
crossref_primary_10_1016_j_matlet_2023_134112
crossref_primary_10_1021_acsaelm_3c01224
crossref_primary_10_1021_acs_chemmater_3c01628
Cites_doi 10.1002/adfm.201700437
10.1016/S0040-6031(03)00057-1
10.1002/adfm.201601296
10.1002/pssa.201329349
10.1109/LED.2018.2874276
10.1038/nature03090
10.1002/adma.201202790
10.1063/1.3026539
10.1002/adfm.200400297
10.1039/D0TC02005B
10.1002/adma.200600961
10.1016/j.ceramint.2015.12.109
10.1002/aelm.201600140
10.1063/1.4953222
10.1021/acsami.6b08396
10.1002/pssb.202000218
10.1021/cm049617w
10.1016/j.apsusc.2013.08.063
10.1039/C8CE00203G
10.1103/PhysRevMaterials.4.054603
10.1126/sciadv.1602640
10.1038/nmat4599
10.1016/j.tsf.2013.12.046
10.1039/C6TC03234F
10.1038/s41928-018-0106-0
10.1109/LED.2017.2702570
10.1002/aelm.201900371
10.1016/j.tsf.2016.01.036
10.1021/acsami.9b11161
10.1002/adfm.201904632
10.1109/LED.2019.2904737
10.1002/adma.201802379
10.1021/acsami.9b12654
10.1016/j.apsusc.2013.08.118
10.1016/j.mser.2018.11.001
10.1021/acsami.9b14310
10.1002/adma.201706573
10.1002/adma.201700880
10.1021/am302251s
10.1038/s41467-020-18006-6
10.1063/1.4965848
10.1016/j.solmat.2017.02.030
10.1002/adma.201103228
10.1002/pssb.200945545
10.1109/LED.2017.2786237
10.1039/D0TC00815J
10.1039/C6TC04750E
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d2tc00410k
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 7821
ExternalDocumentID 10_1039_D2TC00410K
d2tc00410k
GroupedDBID 0-7
0R
4.4
705
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
H13
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
-JG
0R~
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
HZ~
RAOCF
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c281t-f341083fad8d30d07b2aeca4702e8b0f61fbff79915a0d452e32263e5ecaa6073
ISSN 2050-7526
IngestDate Thu Oct 10 19:53:24 EDT 2024
Fri Aug 23 00:40:08 EDT 2024
Sun May 29 04:20:55 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-f341083fad8d30d07b2aeca4702e8b0f61fbff79915a0d452e32263e5ecaa6073
Notes https://doi.org/10.1039/d2tc00410k
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0003-4066-9991
0000-0001-5445-3871
PQID 2669510542
PQPubID 2047521
PageCount 7
ParticipantIDs proquest_journals_2669510542
crossref_primary_10_1039_D2TC00410K
rsc_primary_d2tc00410k
PublicationCentury 2000
PublicationDate 2022-05-26
PublicationDateYYYYMMDD 2022-05-26
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-26
  day: 26
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hu (D2TC00410K/cit6/1) 2017; 38
Chiu (D2TC00410K/cit5/1) 2010; 31
Liu (D2TC00410K/cit31/1) 2019; 11
Kim (D2TC00410K/cit45/1) 2013; 25
Kaushik (D2TC00410K/cit43/1) 2017; 165
Nomura (D2TC00410K/cit13/1) 2004; 432
Yang (D2TC00410K/cit40/1) 2005; 15
Liu (D2TC00410K/cit19/1) 2019; 135
Jun (D2TC00410K/cit46/1) 2018; 30
Lee (D2TC00410K/cit11/1) 2007; 19
Hosono (D2TC00410K/cit12/1) 2018; 1
Morozov (D2TC00410K/cit39/1) 2003; 403
Lee (D2TC00410K/cit47/1) 2020; 257
Lee (D2TC00410K/cit1/1) 2016; 26
Maeng (D2TC00410K/cit33/1) 2016; 42
Yu (D2TC00410K/cit4/1) 2016; 15
Chang (D2TC00410K/cit41/1) 2004; 16
Lin (D2TC00410K/cit21/1) 2016; 108
Lee (D2TC00410K/cit25/1) 2019; 11
Jang (D2TC00410K/cit17/1) 2016; 600
Choi (D2TC00410K/cit28/1) 2016; 4
Lee (D2TC00410K/cit36/1) 2020; 8
Zare Bidoky (D2TC00410K/cit44/1) 2016; 8
Liu (D2TC00410K/cit15/1) 2016; 2
Zhu (D2TC00410K/cit27/1) 2019; 40
Gong (D2TC00410K/cit38/1) 2018; 20
Matsuzaki (D2TC00410K/cit22/1) 2008; 93
Liu (D2TC00410K/cit30/1) 2020; 11
Shin (D2TC00410K/cit37/1) 2014; 556
Fortunato (D2TC00410K/cit20/1) 2012; 24
Marette (D2TC00410K/cit3/1) 2017; 29
Mao (D2TC00410K/cit24/1) 2010; 247
Zhang (D2TC00410K/cit48/1) 2020; 4
Ji (D2TC00410K/cit29/1) 2020; 8
Kim (D2TC00410K/cit18/1) 2013; 5
Hosseini Vajargah (D2TC00410K/cit42/1) 2013; 285
Kwon (D2TC00410K/cit23/1) 2013; 285
Faber (D2TC00410K/cit9/1) 2017; 3
Park (D2TC00410K/cit10/1) 2019; 30
Li (D2TC00410K/cit16/1) 2018; 39
Grundmann (D2TC00410K/cit35/1) 2013; 210
Xia (D2TC00410K/cit8/1) 2018; 39
Jang (D2TC00410K/cit14/1) 2019; 5
Liu (D2TC00410K/cit26/1) 2018
Han (D2TC00410K/cit32/1) 2016; 109
Lee (D2TC00410K/cit2/1) 2017; 27
Sheng (D2TC00410K/cit7/1) 2019; 11
Kim (D2TC00410K/cit34/1) 2017; 5
References_xml – volume: 27
  start-page: 1700437
  issue: 29
  year: 2017
  ident: D2TC00410K/cit2/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700437
  contributor:
    fullname: Lee
– volume: 403
  start-page: 173
  issue: 2
  year: 2003
  ident: D2TC00410K/cit39/1
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(03)00057-1
  contributor:
    fullname: Morozov
– volume: 26
  start-page: 6170
  issue: 34
  year: 2016
  ident: D2TC00410K/cit1/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601296
  contributor:
    fullname: Lee
– volume: 210
  start-page: 1671
  issue: 9
  year: 2013
  ident: D2TC00410K/cit35/1
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201329349
  contributor:
    fullname: Grundmann
– volume: 39
  start-page: 1868
  issue: 12
  year: 2018
  ident: D2TC00410K/cit8/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2874276
  contributor:
    fullname: Xia
– volume: 432
  start-page: 5
  year: 2004
  ident: D2TC00410K/cit13/1
  publication-title: Nature
  doi: 10.1038/nature03090
  contributor:
    fullname: Nomura
– volume: 25
  start-page: 1822
  issue: 13
  year: 2013
  ident: D2TC00410K/cit45/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202790
  contributor:
    fullname: Kim
– volume: 93
  start-page: 202107
  issue: 20
  year: 2008
  ident: D2TC00410K/cit22/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3026539
  contributor:
    fullname: Matsuzaki
– volume: 15
  start-page: 671
  issue: 4
  year: 2005
  ident: D2TC00410K/cit40/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400297
  contributor:
    fullname: Yang
– volume: 8
  start-page: 9608
  issue: 28
  year: 2020
  ident: D2TC00410K/cit36/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC02005B
  contributor:
    fullname: Lee
– volume: 19
  start-page: 843
  issue: 6
  year: 2007
  ident: D2TC00410K/cit11/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600961
  contributor:
    fullname: Lee
– volume: 42
  start-page: 5517
  issue: 4
  year: 2016
  ident: D2TC00410K/cit33/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.12.109
  contributor:
    fullname: Maeng
– volume: 2
  start-page: 1600140
  issue: 9
  year: 2016
  ident: D2TC00410K/cit15/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600140
  contributor:
    fullname: Liu
– volume: 108
  start-page: 233503
  issue: 23
  year: 2016
  ident: D2TC00410K/cit21/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4953222
  contributor:
    fullname: Lin
– volume: 8
  start-page: 27012
  issue: 40
  year: 2016
  ident: D2TC00410K/cit44/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08396
  contributor:
    fullname: Zare Bidoky
– volume: 257
  start-page: 2000218
  issue: 9
  year: 2020
  ident: D2TC00410K/cit47/1
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.202000218
  contributor:
    fullname: Lee
– volume: 16
  start-page: 4772
  year: 2004
  ident: D2TC00410K/cit41/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm049617w
  contributor:
    fullname: Chang
– volume: 285
  start-page: 373
  year: 2013
  ident: D2TC00410K/cit23/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.08.063
  contributor:
    fullname: Kwon
– volume: 20
  start-page: 3096
  issue: 22
  year: 2018
  ident: D2TC00410K/cit38/1
  publication-title: CrystEngComm
  doi: 10.1039/C8CE00203G
  contributor:
    fullname: Gong
– volume: 4
  start-page: 054603
  issue: 5
  year: 2020
  ident: D2TC00410K/cit48/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.4.054603
  contributor:
    fullname: Zhang
– volume: 3
  start-page: e1602640
  year: 2017
  ident: D2TC00410K/cit9/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602640
  contributor:
    fullname: Faber
– volume: 15
  start-page: 383
  issue: 4
  year: 2016
  ident: D2TC00410K/cit4/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4599
  contributor:
    fullname: Yu
– volume: 556
  start-page: 9
  year: 2014
  ident: D2TC00410K/cit37/1
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.12.046
  contributor:
    fullname: Shin
– volume: 4
  start-page: 10309
  issue: 43
  year: 2016
  ident: D2TC00410K/cit28/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03234F
  contributor:
    fullname: Choi
– volume: 1
  start-page: 428
  issue: 7
  year: 2018
  ident: D2TC00410K/cit12/1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0106-0
  contributor:
    fullname: Hosono
– volume: 38
  start-page: 879
  issue: 7
  year: 2017
  ident: D2TC00410K/cit6/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2702570
  contributor:
    fullname: Hu
– volume: 5
  start-page: 1900371
  issue: 7
  year: 2019
  ident: D2TC00410K/cit14/1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900371
  contributor:
    fullname: Jang
– volume: 600
  start-page: 157
  year: 2016
  ident: D2TC00410K/cit17/1
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.01.036
  contributor:
    fullname: Jang
– volume: 11
  start-page: 33157
  issue: 36
  year: 2019
  ident: D2TC00410K/cit31/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11161
  contributor:
    fullname: Liu
– volume: 30
  start-page: 1904632
  issue: 20
  year: 2019
  ident: D2TC00410K/cit10/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904632
  contributor:
    fullname: Park
– volume: 40
  start-page: 769
  issue: 5
  year: 2019
  ident: D2TC00410K/cit27/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2019.2904737
  contributor:
    fullname: Zhu
– start-page: e1802379
  year: 2018
  ident: D2TC00410K/cit26/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802379
  contributor:
    fullname: Liu
– volume: 11
  start-page: 40243
  issue: 43
  year: 2019
  ident: D2TC00410K/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12654
  contributor:
    fullname: Lee
– volume: 285
  start-page: 732
  year: 2013
  ident: D2TC00410K/cit42/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.08.118
  contributor:
    fullname: Hosseini Vajargah
– volume: 31
  start-page: 1245
  year: 2010
  ident: D2TC00410K/cit5/1
  publication-title: IEEE Electron Device Lett.
  contributor:
    fullname: Chiu
– volume: 135
  start-page: 85
  year: 2019
  ident: D2TC00410K/cit19/1
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2018.11.001
  contributor:
    fullname: Liu
– volume: 11
  start-page: 40300
  issue: 43
  year: 2019
  ident: D2TC00410K/cit7/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14310
  contributor:
    fullname: Sheng
– volume: 30
  start-page: e1706573
  issue: 12
  year: 2018
  ident: D2TC00410K/cit46/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706573
  contributor:
    fullname: Jun
– volume: 29
  start-page: 1700880
  issue: 30
  year: 2017
  ident: D2TC00410K/cit3/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700880
  contributor:
    fullname: Marette
– volume: 5
  start-page: 2417
  issue: 7
  year: 2013
  ident: D2TC00410K/cit18/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302251s
  contributor:
    fullname: Kim
– volume: 11
  start-page: 4309
  issue: 1
  year: 2020
  ident: D2TC00410K/cit30/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18006-6
  contributor:
    fullname: Liu
– volume: 109
  start-page: 173502
  issue: 17
  year: 2016
  ident: D2TC00410K/cit32/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4965848
  contributor:
    fullname: Han
– volume: 165
  start-page: 52
  year: 2017
  ident: D2TC00410K/cit43/1
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.02.030
  contributor:
    fullname: Kaushik
– volume: 24
  start-page: 2945
  issue: 22
  year: 2012
  ident: D2TC00410K/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103228
  contributor:
    fullname: Fortunato
– volume: 247
  start-page: 299
  issue: 2
  year: 2010
  ident: D2TC00410K/cit24/1
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200945545
  contributor:
    fullname: Mao
– volume: 39
  start-page: 208
  issue: 2
  year: 2018
  ident: D2TC00410K/cit16/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2786237
  contributor:
    fullname: Li
– volume: 8
  start-page: 5587
  issue: 16
  year: 2020
  ident: D2TC00410K/cit29/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00815J
  contributor:
    fullname: Ji
– volume: 5
  start-page: 3139
  issue: 12
  year: 2017
  ident: D2TC00410K/cit34/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04750E
  contributor:
    fullname: Kim
SSID ssj0000816869
Score 2.3933551
Snippet Until now, inorganic p-channel thin-film transistors (TFTs) have shown relatively low performance in terms of mobility, ON-current level, and on/off ratio...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 7815
SubjectTerms Amorphous materials
Amorphous semiconductors
Copper
High temperature
Low temperature
P-type semiconductors
Polycrystals
Semiconductor devices
Semiconductor materials
Semiconductors
Spin coating
Thin film transistors
Transistors
Title Amorphous copper iodide: a p-type semiconductor for solution processed p-channel thin-film transistors and inverters
URI https://www.proquest.com/docview/2669510542
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLa6TUhwQDCY6BjIEtwiD9dJmoRbNYYCBS500m6VYzsQ2JKoSQ7bn8VfyHPiOFlVJODQqHpuU9fv63uf3fcDode6pJlIJSVCRpR4jHMSea4kwBV8Cf6MBzOdKPz5yzy-8D5e-peTya9R1FJTJ6fidmdeyf9oFWSgV50l-w-atTcFATwH_cIVNAzXv9Lx4rqAZdJBrKIoS7VxskJmUnUJzCVpj1crHf1e5Lqsa7Fpgwr7OTlllyQAlLMkOgE4V1fAQ7OcpNnVtW4ekVdtEZHKlGjSrZtNwPwOPgvUt_vOjuibyJ06Z10-UD-iP74oa1uhYNSER6rWZm0FCMU6u6rZEn5VRf4DHt-25EvV5E580wwDsQk4Xmbfbwz-zAkHbI6pDrwbDCGjPiWBb0RqLDMHob0lHwGWjaxyEHYpo8bDAyma7fQe1NXFVyWrhS5DRn8OPtJGLg6De-iAgXEDq3qwOF99-GRP9tpWJm0vRTvxvi6uG70ZbnCXCQ3bm71N33um5TirR-ihUSZedEh7jCYqP0QPRiUrD9G9NmRYVE9QbdGHO_ThDn1vMccd9vAd7GFQPu6xhy32sMUettjDI-xhwAm22HuKLt6fr85iYnp4EMHCWU1SYEnA8lMuQ-lSSYOEcSW4F1CmwoSm81mapGkAuxSfU-n5TIGHmbvKhxfxOfifI7SfF7l6hnCYJqFwOQW553lBEEkRhpIDz1IpVSqZolf9eq7LrlTLug2xcKP1O6b_QYOpLKfopF_qtfkpV2tgqe1Ow2NTdATLb98_aOv4TwPP0f0BtCdov9406gUQ1Tp5aZDxG23Zm3c
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amorphous+copper+iodide%3A+a+p-type+semiconductor+for+solution+processed+p-channel+thin-film+transistors+and+inverters&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Lee%2C+Han+Ju&rft.au=Lee%2C+Seonjeong&rft.au=Lee%2C+Keun+Hyung&rft.au=Hong%2C+Kihyon&rft.date=2022-05-26&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=1&rft.issue=2&rft.spage=7815&rft.epage=7821&rft_id=info:doi/10.1039%2Fd2tc00410k&rft.externalDocID=d2tc00410k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon