A rhodium-cobalt alloy bimetallene towards liquid C1 molecule electrooxidation in alkaline media

Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based nanomaterials are attracting increased attention in electrocatalysis, which show high intrinsic electroactivity for the oxidation reaction of...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 38; pp. 2343 - 2349
Main Authors Zhong, Wei, Miao, Bo-Qiang, Wang, Ming-Yao, Ding, Yu, Li, Dong-Sheng, Yin, Shi-Bin, Li, Xi-Fei, Chen, Yu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 04.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based nanomaterials are attracting increased attention in electrocatalysis, which show high intrinsic electroactivity for the oxidation reaction of liquid C1 molecules. Herein, we focus on the facile preparation of a Rh-Co alloy bimetallene (Rh-Co ABM) based on an interesting and simple self-template and self-reduction strategy. Relative to commercial Rh nanoparticles, Rh-Co ABM reveals sharply improved electroactivity and durability for the oxidation reactions of liquid C1 molecules due to its high electrochemically active area and particular alloy effect, as well as remarkable anti-poison capability. Density functional theory calculations also demonstrate that the bimetallene interface can dramatically reduce the chemisorption energy of CO intermediates, which significantly boosts the durability of Rh-Co ABM for the oxidation reaction of liquid C1 molecules. This work highlights Rh-Co ABM as a highly promising anodic electrocatalyst in direct liquid fuel cells. Rh-Co ABM is synthesized by the cyanogel self-reduction strategy and exhibits high activity for C1 molecule electrooxidation.
AbstractList Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based nanomaterials are attracting increased attention in electrocatalysis, which show high intrinsic electroactivity for the oxidation reaction of liquid C1 molecules. Herein, we focus on the facile preparation of a Rh–Co alloy bimetallene (Rh–Co ABM) based on an interesting and simple self-template and self-reduction strategy. Relative to commercial Rh nanoparticles, Rh–Co ABM reveals sharply improved electroactivity and durability for the oxidation reactions of liquid C1 molecules due to its high electrochemically active area and particular alloy effect, as well as remarkable anti-poison capability. Density functional theory calculations also demonstrate that the bimetallene interface can dramatically reduce the chemisorption energy of CO intermediates, which significantly boosts the durability of Rh–Co ABM for the oxidation reaction of liquid C1 molecules. This work highlights Rh–Co ABM as a highly promising anodic electrocatalyst in direct liquid fuel cells.
Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based nanomaterials are attracting increased attention in electrocatalysis, which show high intrinsic electroactivity for the oxidation reaction of liquid C1 molecules. Herein, we focus on the facile preparation of a Rh-Co alloy bimetallene (Rh-Co ABM) based on an interesting and simple self-template and self-reduction strategy. Relative to commercial Rh nanoparticles, Rh-Co ABM reveals sharply improved electroactivity and durability for the oxidation reactions of liquid C1 molecules due to its high electrochemically active area and particular alloy effect, as well as remarkable anti-poison capability. Density functional theory calculations also demonstrate that the bimetallene interface can dramatically reduce the chemisorption energy of CO intermediates, which significantly boosts the durability of Rh-Co ABM for the oxidation reaction of liquid C1 molecules. This work highlights Rh-Co ABM as a highly promising anodic electrocatalyst in direct liquid fuel cells. Rh-Co ABM is synthesized by the cyanogel self-reduction strategy and exhibits high activity for C1 molecule electrooxidation.
Author Zhong, Wei
Li, Dong-Sheng
Miao, Bo-Qiang
Wang, Ming-Yao
Chen, Yu
Ding, Yu
Yin, Shi-Bin
Li, Xi-Fei
AuthorAffiliation Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials
School of Materials Science and Engineering
Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
College of Materials and Chemical Engineering
Xi'an University of Technology
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
Guangxi University
Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation
China Three Gorges University
Shaanxi Key Laboratory for Advanced Energy Devices
Shaanxi Normal University
MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials
Key Laboratory of Macromolecular Science of Shaanxi Province
AuthorAffiliation_xml – name: Guangxi University
– name: Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
– name: School of Materials Science and Engineering
– name: Xi'an University of Technology
– name: China Three Gorges University
– name: College of Materials and Chemical Engineering
– name: Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
– name: Shaanxi Key Laboratory for Advanced Energy Devices
– name: Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials
– name: Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation
– name: Key Laboratory of Macromolecular Science of Shaanxi Province
– name: MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials
– name: Shaanxi Normal University
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhong
  fullname: Zhong, Wei
– sequence: 2
  givenname: Bo-Qiang
  surname: Miao
  fullname: Miao, Bo-Qiang
– sequence: 3
  givenname: Ming-Yao
  surname: Wang
  fullname: Wang, Ming-Yao
– sequence: 4
  givenname: Yu
  surname: Ding
  fullname: Ding, Yu
– sequence: 5
  givenname: Dong-Sheng
  surname: Li
  fullname: Li, Dong-Sheng
– sequence: 6
  givenname: Shi-Bin
  surname: Yin
  fullname: Yin, Shi-Bin
– sequence: 7
  givenname: Xi-Fei
  surname: Li
  fullname: Li, Xi-Fei
– sequence: 8
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
BookMark eNptUU1LAzEUDFLBWnvxLgS8CavZZDebPZb6CQUv9bxmkxdMzW7abBbtv3dtpYL4LjOHmXm8eado1PoWEDpPyXVKWHmjaZSEk6KQR2hMSU6SIiv56MCFOEHTrluRYQQhvCzH6HWGw5vXtm8S5WvpIpbO-S2ubQNxoNACjv5DBt1hZze91Xie4sY7UL0DDAPG4P2n1TJa32LbDgHv0tnB14C28gwdG-k6mP7gBL3c3y3nj8ni-eFpPlskioo0JoYqwTQTPAUtwHAjoaa5AMm1NrTOlclrypiWmSqNBpKVkBNVckGU5LmSbIIu97nr4Dc9dLFa-T60w8qKFjRNGc9oPqiu9ioVfNcFMNU62EaGbZWS6rvE6pYuZ7sSZ4OY_BErG3dnxiCt-99ysbeETh2if__CvgCikoGl
CitedBy_id crossref_primary_10_1016_j_apcatb_2025_125041
crossref_primary_10_1002_aenm_202301119
crossref_primary_10_1016_j_ijhydene_2024_10_271
crossref_primary_10_1039_D3CC06073J
crossref_primary_10_1016_j_mtphys_2024_101416
crossref_primary_10_1039_D2TA10021E
crossref_primary_10_1039_D3TA00367A
crossref_primary_10_1021_acs_inorgchem_3c00174
crossref_primary_10_1021_acs_jpclett_4c03536
crossref_primary_10_1016_j_mtener_2024_101495
crossref_primary_10_1021_acsnano_3c02066
crossref_primary_10_1016_j_enchem_2025_100148
crossref_primary_10_1002_smll_202306014
Cites_doi 10.1002/adma.202105276
10.1039/D2TA00590E
10.1007/s12274-021-3652-0
10.1021/jacs.0c00218
10.1002/adfm.202003933
10.1016/j.apcatb.2022.121338
10.1039/D0CC05720G
10.1002/sstr.202200046
10.1002/advs.202103722
10.1039/D2TA03023C
10.1016/j.apcatb.2019.118520
10.1002/adma.202008631
10.1039/C9NR03644J
10.1021/acsaem.0c02293
10.1002/cey2.170
10.1039/C9TA05334D
10.1039/D2TA01890J
10.1016/j.apcatb.2021.120753
10.1002/anie.201914649
10.1002/adma.202110680
10.1002/anie.202101019
10.1021/acsaem.1c02147
10.1007/s12274-018-2204-8
10.1021/acsami.8b13361
10.1039/D0TA11770F
10.1002/advs.202002341
10.1093/nsr/nwab019
10.1016/j.cej.2021.132646
10.1016/j.susmat.2021.e00379
10.1002/adma.202105049
10.1021/acsanm.1c02116
10.1016/j.jcis.2021.09.078
10.1016/j.apcatb.2020.119393
10.1039/D0CC01228A
10.1038/s41565-020-0665-x
10.1038/s41467-021-26336-2
10.1002/smll.201801239
10.1039/D1TA03198H
10.1038/ncomms15581
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d2ta06077a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 2349
ExternalDocumentID 10_1039_D2TA06077A
d2ta06077a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
HZ~
H~N
J3I
O-G
O9-
R7C
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
RAOCF
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-f2c83d3861ed8ef6faeb258ea6ddf2b5cf5b233da4c9fde049e50c9680ca65ca3
ISSN 2050-7488
IngestDate Mon Jun 30 12:00:25 EDT 2025
Tue Jul 01 01:13:30 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Thu Oct 13 02:30:46 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-f2c83d3861ed8ef6faeb258ea6ddf2b5cf5b233da4c9fde049e50c9680ca65ca3
Notes Electronic supplementary information (ESI) available. See
https://doi.org/10.1039/d2ta06077a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1283-6334
0000-0002-4828-4183
0000-0002-1539-4474
0000-0001-9545-6761
PQID 2721136425
PQPubID 2047523
PageCount 7
ParticipantIDs crossref_primary_10_1039_D2TA06077A
rsc_primary_d2ta06077a
proquest_journals_2721136425
crossref_citationtrail_10_1039_D2TA06077A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-04
PublicationDateYYYYMMDD 2022-10-04
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-04
  day: 04
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Jiang (D2TA06077A/cit39/1) 2017; 8
Ren (D2TA06077A/cit6/1) 2022; 10
Yu (D2TA06077A/cit26/1) 2021; 60
Deng (D2TA06077A/cit23/1) 2022; 34
Guo (D2TA06077A/cit10/1) 2020; 56
Zhu (D2TA06077A/cit35/1) 2020; 264
Zhou (D2TA06077A/cit41/1) 2021; 280
Ding (D2TA06077A/cit4/1) 2020; 59
Yang (D2TA06077A/cit8/1) 2021; 4
Miao (D2TA06077A/cit16/1) 2022; 31
Du (D2TA06077A/cit34/1) 2021; 4
Kang (D2TA06077A/cit38/1) 2018; 14
Mao (D2TA06077A/cit22/1) 2022; 10
Zhang (D2TA06077A/cit25/1) 2021; 4
Cao (D2TA06077A/cit2/1) 2021; 33
Qin (D2TA06077A/cit21/1) 2022; 9
Mu (D2TA06077A/cit30/1) 2021; 8
Wang (D2TA06077A/cit33/1) 2022; 4
Kani (D2TA06077A/cit11/1) 2019; 11
Ding (D2TA06077A/cit15/1) 2022; 3
Zhao (D2TA06077A/cit14/1) 2022; 41
Lv (D2TA06077A/cit31/1) 2021; 8
Zhang (D2TA06077A/cit19/1) 2021; 33
Fu (D2TA06077A/cit37/1) 2019; 12
Wang (D2TA06077A/cit36/1) 2020; 56
Guo (D2TA06077A/cit17/1) 2022; 15
Wang (D2TA06077A/cit9/1) 2021; 9
Dang (D2TA06077A/cit27/1) 2021; 12
Zhang (D2TA06077A/cit3/1) 2020; 30
Kang (D2TA06077A/cit13/1) 2018; 14
Deng (D2TA06077A/cit24/1) 2022; 310
Xiong (D2TA06077A/cit12/1) 2020; 15
Zhang (D2TA06077A/cit20/1) 2021; 9
An (D2TA06077A/cit5/1) 2018; 10
Xu (D2TA06077A/cit1/1) 2022; 300
Zhao (D2TA06077A/cit40/1) 2019; 7
Li (D2TA06077A/cit29/1) 2022; 607
Guo (D2TA06077A/cit7/1) 2022; 10
Zhang (D2TA06077A/cit28/1) 2022; 34
Fan (D2TA06077A/cit32/1) 2020; 142
Duan (D2TA06077A/cit18/1) 2022; 428
References_xml – volume: 34
  start-page: 2105276
  year: 2022
  ident: D2TA06077A/cit28/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105276
– volume: 10
  start-page: 8364
  year: 2022
  ident: D2TA06077A/cit22/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00590E
– volume: 15
  start-page: 1288
  year: 2022
  ident: D2TA06077A/cit17/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3652-0
– volume: 142
  start-page: 3645
  year: 2020
  ident: D2TA06077A/cit32/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00218
– volume: 41
  start-page: 2204040
  year: 2022
  ident: D2TA06077A/cit14/1
  publication-title: Chin. J. Struct. Chem.
– volume: 30
  start-page: 2003933
  year: 2020
  ident: D2TA06077A/cit3/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003933
– volume: 310
  start-page: 121338
  year: 2022
  ident: D2TA06077A/cit24/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121338
– volume: 56
  start-page: 13595
  year: 2020
  ident: D2TA06077A/cit36/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC05720G
– volume: 3
  start-page: 2200046
  year: 2022
  ident: D2TA06077A/cit15/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200046
– volume: 9
  start-page: 2103722
  year: 2022
  ident: D2TA06077A/cit21/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202103722
– volume: 10
  start-page: 13345
  year: 2022
  ident: D2TA06077A/cit6/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03023C
– volume: 264
  start-page: 118520
  year: 2020
  ident: D2TA06077A/cit35/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118520
– volume: 33
  start-page: e2008631
  year: 2021
  ident: D2TA06077A/cit2/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008631
– volume: 11
  start-page: 10581
  year: 2019
  ident: D2TA06077A/cit11/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR03644J
– volume: 4
  start-page: 376
  year: 2021
  ident: D2TA06077A/cit8/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02293
– volume: 4
  start-page: 283
  year: 2022
  ident: D2TA06077A/cit33/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.170
– volume: 7
  start-page: 16437
  year: 2019
  ident: D2TA06077A/cit40/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05334D
– volume: 10
  start-page: 13998
  year: 2022
  ident: D2TA06077A/cit7/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01890J
– volume: 300
  start-page: 09263373
  year: 2022
  ident: D2TA06077A/cit1/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120753
– volume: 59
  start-page: 5092
  year: 2020
  ident: D2TA06077A/cit4/1
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201914649
– volume: 34
  start-page: 2110680
  year: 2022
  ident: D2TA06077A/cit23/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110680
– volume: 60
  start-page: 12027
  year: 2021
  ident: D2TA06077A/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202101019
– volume: 4
  start-page: 12336
  year: 2021
  ident: D2TA06077A/cit25/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c02147
– volume: 12
  start-page: 211
  year: 2019
  ident: D2TA06077A/cit37/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2204-8
– volume: 10
  start-page: 41293
  year: 2018
  ident: D2TA06077A/cit5/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13361
– volume: 9
  start-page: 4744
  year: 2021
  ident: D2TA06077A/cit9/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11770F
– volume: 8
  start-page: 2002341
  year: 2021
  ident: D2TA06077A/cit30/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002341
– volume: 8
  start-page: nwab019
  year: 2021
  ident: D2TA06077A/cit31/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwab019
– volume: 428
  start-page: 132646
  year: 2022
  ident: D2TA06077A/cit18/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132646
– volume: 31
  start-page: e00379
  year: 2022
  ident: D2TA06077A/cit16/1
  publication-title: Sustainable Mater. Technol.
  doi: 10.1016/j.susmat.2021.e00379
– volume: 33
  start-page: 2105049
  year: 2021
  ident: D2TA06077A/cit19/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105049
– volume: 4
  start-page: 9729
  year: 2021
  ident: D2TA06077A/cit34/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c02116
– volume: 607
  start-page: 1625
  year: 2022
  ident: D2TA06077A/cit29/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.09.078
– volume: 280
  start-page: 119393
  year: 2021
  ident: D2TA06077A/cit41/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119393
– volume: 56
  start-page: 4448
  year: 2020
  ident: D2TA06077A/cit10/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01228A
– volume: 15
  start-page: 390
  year: 2020
  ident: D2TA06077A/cit12/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0665-x
– volume: 12
  start-page: 6007
  year: 2021
  ident: D2TA06077A/cit27/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26336-2
– volume: 14
  start-page: 1801239
  year: 2018
  ident: D2TA06077A/cit13/1
  publication-title: Small
  doi: 10.1002/smll.201801239
– volume: 9
  start-page: 13080
  year: 2021
  ident: D2TA06077A/cit20/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA03198H
– volume: 14
  start-page: 10
  year: 2018
  ident: D2TA06077A/cit38/1
  publication-title: Small
– volume: 8
  start-page: 15581
  year: 2017
  ident: D2TA06077A/cit39/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15581
SSID ssj0000800699
Score 2.439566
Snippet Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2343
SubjectTerms Bimetals
Chemisorption
Cobalt
Cobalt base alloys
Density functional theory
Durability
Electroactivity
Electrocatalysts
Fuel cells
Intermediates
Liquid fuels
Nanomaterials
Nanoparticles
Nanotechnology
Oxidation
Rhodium
Sustainable energy
Title A rhodium-cobalt alloy bimetallene towards liquid C1 molecule electrooxidation in alkaline media
URI https://www.proquest.com/docview/2721136425
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJwkCW4AVFGY6dOMljKEMDMSSkTmy8BMd2toi2gS6RgJ_BL8a3XIY6CXiJGtuxUp-v9jmn55wPgGcBE9qkln5JZOGHnAi_kGHoi0AkcchFwgzz3PF7enQSvj2NTieTX6OopbYpDvjPrXkl_yNV1abkqrNk_0Gy_aSqQX1W8lVXJWF1_SsZZ97mohZVu_K5LuuhvbfL-odXVCvZGI4UzYuhw2IvvWX1ra2ENw-8lSXElZ5jwKm_V5ZXSbs-2PILM4qnySi5RnNVSq79dh7v6OIOvMxm_nQ9ppK4zSs0rvkuT0uH4vZe_E8XLiD4o6x6yVfMeG9f1v4HBd3zweNvhx6rs9Y_Y3WvgTtSlrN27MBQtq_--z0c9jmMIqRLmtptWI7bLNltv1GP8GhLwnS7LrGlntwJrm7TracDIrq4qsANQxTF8egM7CMTh84dsIuV6YGnYDc7XLx513vutI5NDTFp_-Zd3VuSvhgmuKrpDObLzqbjljE6zOI2uOVECDOLpDtgItd3wc1RScp74HMGr2IKGkzBEaagwxS0mILzAHaYgn9iClZr2GEKGkzdByevDxfzI9-xcPgcJ0Hjl5gnRJCEBlIksqQlkwWOEsmoECUuIl5GBSZEsJCnpZDK4pQR4ilNEGc04ozsgem6XssHAMaJYAEuJS4RC1NEExYXAcdIqHVklLIZeN6tWM5diXrNlLLMTagESfNXeJGZ1c1m4Gk_9qstzLJ11H638Ln74V7mWHs9iDK8oxnYU8Lonx9k9_C6jkfgxoDhfTBtNq18rNTSpnjicPIbujmS9w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rhodium-cobalt+alloy+bimetallene+towards+liquid+C1+molecule+electrooxidation+in+alkaline+media&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhong%2C+Wei&rft.au=Miao%2C+Bo-Qiang&rft.au=Wang%2C+Ming-Yao&rft.au=Ding%2C+Yu&rft.date=2022-10-04&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=38&rft.spage=2343&rft.epage=2349&rft_id=info:doi/10.1039%2Fd2ta06077a&rft.externalDocID=d2ta06077a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon