A rhodium-cobalt alloy bimetallene towards liquid C1 molecule electrooxidation in alkaline media
Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based nanomaterials are attracting increased attention in electrocatalysis, which show high intrinsic electroactivity for the oxidation reaction of...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 38; pp. 2343 - 2349 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
04.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based nanomaterials are attracting increased attention in electrocatalysis, which show high intrinsic electroactivity for the oxidation reaction of liquid C1 molecules. Herein, we focus on the facile preparation of a Rh-Co alloy bimetallene (Rh-Co ABM) based on an interesting and simple self-template and self-reduction strategy. Relative to commercial Rh nanoparticles, Rh-Co ABM reveals sharply improved electroactivity and durability for the oxidation reactions of liquid C1 molecules due to its high electrochemically active area and particular alloy effect, as well as remarkable anti-poison capability. Density functional theory calculations also demonstrate that the bimetallene interface can dramatically reduce the chemisorption energy of CO intermediates, which significantly boosts the durability of Rh-Co ABM for the oxidation reaction of liquid C1 molecules. This work highlights Rh-Co ABM as a highly promising anodic electrocatalyst in direct liquid fuel cells.
Rh-Co ABM is synthesized by the cyanogel self-reduction strategy and exhibits high activity for C1 molecule electrooxidation. |
---|---|
AbstractList | Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based nanomaterials are attracting increased attention in electrocatalysis, which show high intrinsic electroactivity for the oxidation reaction of liquid C1 molecules. Herein, we focus on the facile preparation of a Rh–Co alloy bimetallene (Rh–Co ABM) based on an interesting and simple self-template and self-reduction strategy. Relative to commercial Rh nanoparticles, Rh–Co ABM reveals sharply improved electroactivity and durability for the oxidation reactions of liquid C1 molecules due to its high electrochemically active area and particular alloy effect, as well as remarkable anti-poison capability. Density functional theory calculations also demonstrate that the bimetallene interface can dramatically reduce the chemisorption energy of CO intermediates, which significantly boosts the durability of Rh–Co ABM for the oxidation reaction of liquid C1 molecules. This work highlights Rh–Co ABM as a highly promising anodic electrocatalyst in direct liquid fuel cells. Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based nanomaterials are attracting increased attention in electrocatalysis, which show high intrinsic electroactivity for the oxidation reaction of liquid C1 molecules. Herein, we focus on the facile preparation of a Rh-Co alloy bimetallene (Rh-Co ABM) based on an interesting and simple self-template and self-reduction strategy. Relative to commercial Rh nanoparticles, Rh-Co ABM reveals sharply improved electroactivity and durability for the oxidation reactions of liquid C1 molecules due to its high electrochemically active area and particular alloy effect, as well as remarkable anti-poison capability. Density functional theory calculations also demonstrate that the bimetallene interface can dramatically reduce the chemisorption energy of CO intermediates, which significantly boosts the durability of Rh-Co ABM for the oxidation reaction of liquid C1 molecules. This work highlights Rh-Co ABM as a highly promising anodic electrocatalyst in direct liquid fuel cells. Rh-Co ABM is synthesized by the cyanogel self-reduction strategy and exhibits high activity for C1 molecule electrooxidation. |
Author | Zhong, Wei Li, Dong-Sheng Miao, Bo-Qiang Wang, Ming-Yao Chen, Yu Ding, Yu Yin, Shi-Bin Li, Xi-Fei |
AuthorAffiliation | Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials School of Materials Science and Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering Xi'an University of Technology Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) Guangxi University Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation China Three Gorges University Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Normal University MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials Key Laboratory of Macromolecular Science of Shaanxi Province |
AuthorAffiliation_xml | – name: Guangxi University – name: Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education) – name: School of Materials Science and Engineering – name: Xi'an University of Technology – name: China Three Gorges University – name: College of Materials and Chemical Engineering – name: Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials – name: Shaanxi Key Laboratory for Advanced Energy Devices – name: Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials – name: Key Laboratory of Advanced Batteries Materials for Electric Vehicles of China Petroleum and Chemical Industry Federation – name: Key Laboratory of Macromolecular Science of Shaanxi Province – name: MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials – name: Shaanxi Normal University |
Author_xml | – sequence: 1 givenname: Wei surname: Zhong fullname: Zhong, Wei – sequence: 2 givenname: Bo-Qiang surname: Miao fullname: Miao, Bo-Qiang – sequence: 3 givenname: Ming-Yao surname: Wang fullname: Wang, Ming-Yao – sequence: 4 givenname: Yu surname: Ding fullname: Ding, Yu – sequence: 5 givenname: Dong-Sheng surname: Li fullname: Li, Dong-Sheng – sequence: 6 givenname: Shi-Bin surname: Yin fullname: Yin, Shi-Bin – sequence: 7 givenname: Xi-Fei surname: Li fullname: Li, Xi-Fei – sequence: 8 givenname: Yu surname: Chen fullname: Chen, Yu |
BookMark | eNptUU1LAzEUDFLBWnvxLgS8CavZZDebPZb6CQUv9bxmkxdMzW7abBbtv3dtpYL4LjOHmXm8eado1PoWEDpPyXVKWHmjaZSEk6KQR2hMSU6SIiv56MCFOEHTrluRYQQhvCzH6HWGw5vXtm8S5WvpIpbO-S2ubQNxoNACjv5DBt1hZze91Xie4sY7UL0DDAPG4P2n1TJa32LbDgHv0tnB14C28gwdG-k6mP7gBL3c3y3nj8ni-eFpPlskioo0JoYqwTQTPAUtwHAjoaa5AMm1NrTOlclrypiWmSqNBpKVkBNVckGU5LmSbIIu97nr4Dc9dLFa-T60w8qKFjRNGc9oPqiu9ioVfNcFMNU62EaGbZWS6rvE6pYuZ7sSZ4OY_BErG3dnxiCt-99ysbeETh2if__CvgCikoGl |
CitedBy_id | crossref_primary_10_1016_j_apcatb_2025_125041 crossref_primary_10_1002_aenm_202301119 crossref_primary_10_1016_j_ijhydene_2024_10_271 crossref_primary_10_1039_D3CC06073J crossref_primary_10_1016_j_mtphys_2024_101416 crossref_primary_10_1039_D2TA10021E crossref_primary_10_1039_D3TA00367A crossref_primary_10_1021_acs_inorgchem_3c00174 crossref_primary_10_1021_acs_jpclett_4c03536 crossref_primary_10_1016_j_mtener_2024_101495 crossref_primary_10_1021_acsnano_3c02066 crossref_primary_10_1016_j_enchem_2025_100148 crossref_primary_10_1002_smll_202306014 |
Cites_doi | 10.1002/adma.202105276 10.1039/D2TA00590E 10.1007/s12274-021-3652-0 10.1021/jacs.0c00218 10.1002/adfm.202003933 10.1016/j.apcatb.2022.121338 10.1039/D0CC05720G 10.1002/sstr.202200046 10.1002/advs.202103722 10.1039/D2TA03023C 10.1016/j.apcatb.2019.118520 10.1002/adma.202008631 10.1039/C9NR03644J 10.1021/acsaem.0c02293 10.1002/cey2.170 10.1039/C9TA05334D 10.1039/D2TA01890J 10.1016/j.apcatb.2021.120753 10.1002/anie.201914649 10.1002/adma.202110680 10.1002/anie.202101019 10.1021/acsaem.1c02147 10.1007/s12274-018-2204-8 10.1021/acsami.8b13361 10.1039/D0TA11770F 10.1002/advs.202002341 10.1093/nsr/nwab019 10.1016/j.cej.2021.132646 10.1016/j.susmat.2021.e00379 10.1002/adma.202105049 10.1021/acsanm.1c02116 10.1016/j.jcis.2021.09.078 10.1016/j.apcatb.2020.119393 10.1039/D0CC01228A 10.1038/s41565-020-0665-x 10.1038/s41467-021-26336-2 10.1002/smll.201801239 10.1039/D1TA03198H 10.1038/ncomms15581 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d2ta06077a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 2349 |
ExternalDocumentID | 10_1039_D2TA06077A d2ta06077a |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GNO HZ~ H~N J3I O-G O9- R7C RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 RAOCF 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-f2c83d3861ed8ef6faeb258ea6ddf2b5cf5b233da4c9fde049e50c9680ca65ca3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:00:25 EDT 2025 Tue Jul 01 01:13:30 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Thu Oct 13 02:30:46 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-f2c83d3861ed8ef6faeb258ea6ddf2b5cf5b233da4c9fde049e50c9680ca65ca3 |
Notes | Electronic supplementary information (ESI) available. See https://doi.org/10.1039/d2ta06077a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1283-6334 0000-0002-4828-4183 0000-0002-1539-4474 0000-0001-9545-6761 |
PQID | 2721136425 |
PQPubID | 2047523 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_D2TA06077A rsc_primary_d2ta06077a proquest_journals_2721136425 crossref_citationtrail_10_1039_D2TA06077A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-04 |
PublicationDateYYYYMMDD | 2022-10-04 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Jiang (D2TA06077A/cit39/1) 2017; 8 Ren (D2TA06077A/cit6/1) 2022; 10 Yu (D2TA06077A/cit26/1) 2021; 60 Deng (D2TA06077A/cit23/1) 2022; 34 Guo (D2TA06077A/cit10/1) 2020; 56 Zhu (D2TA06077A/cit35/1) 2020; 264 Zhou (D2TA06077A/cit41/1) 2021; 280 Ding (D2TA06077A/cit4/1) 2020; 59 Yang (D2TA06077A/cit8/1) 2021; 4 Miao (D2TA06077A/cit16/1) 2022; 31 Du (D2TA06077A/cit34/1) 2021; 4 Kang (D2TA06077A/cit38/1) 2018; 14 Mao (D2TA06077A/cit22/1) 2022; 10 Zhang (D2TA06077A/cit25/1) 2021; 4 Cao (D2TA06077A/cit2/1) 2021; 33 Qin (D2TA06077A/cit21/1) 2022; 9 Mu (D2TA06077A/cit30/1) 2021; 8 Wang (D2TA06077A/cit33/1) 2022; 4 Kani (D2TA06077A/cit11/1) 2019; 11 Ding (D2TA06077A/cit15/1) 2022; 3 Zhao (D2TA06077A/cit14/1) 2022; 41 Lv (D2TA06077A/cit31/1) 2021; 8 Zhang (D2TA06077A/cit19/1) 2021; 33 Fu (D2TA06077A/cit37/1) 2019; 12 Wang (D2TA06077A/cit36/1) 2020; 56 Guo (D2TA06077A/cit17/1) 2022; 15 Wang (D2TA06077A/cit9/1) 2021; 9 Dang (D2TA06077A/cit27/1) 2021; 12 Zhang (D2TA06077A/cit3/1) 2020; 30 Kang (D2TA06077A/cit13/1) 2018; 14 Deng (D2TA06077A/cit24/1) 2022; 310 Xiong (D2TA06077A/cit12/1) 2020; 15 Zhang (D2TA06077A/cit20/1) 2021; 9 An (D2TA06077A/cit5/1) 2018; 10 Xu (D2TA06077A/cit1/1) 2022; 300 Zhao (D2TA06077A/cit40/1) 2019; 7 Li (D2TA06077A/cit29/1) 2022; 607 Guo (D2TA06077A/cit7/1) 2022; 10 Zhang (D2TA06077A/cit28/1) 2022; 34 Fan (D2TA06077A/cit32/1) 2020; 142 Duan (D2TA06077A/cit18/1) 2022; 428 |
References_xml | – volume: 34 start-page: 2105276 year: 2022 ident: D2TA06077A/cit28/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105276 – volume: 10 start-page: 8364 year: 2022 ident: D2TA06077A/cit22/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00590E – volume: 15 start-page: 1288 year: 2022 ident: D2TA06077A/cit17/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3652-0 – volume: 142 start-page: 3645 year: 2020 ident: D2TA06077A/cit32/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00218 – volume: 41 start-page: 2204040 year: 2022 ident: D2TA06077A/cit14/1 publication-title: Chin. J. Struct. Chem. – volume: 30 start-page: 2003933 year: 2020 ident: D2TA06077A/cit3/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003933 – volume: 310 start-page: 121338 year: 2022 ident: D2TA06077A/cit24/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121338 – volume: 56 start-page: 13595 year: 2020 ident: D2TA06077A/cit36/1 publication-title: Chem. Commun. doi: 10.1039/D0CC05720G – volume: 3 start-page: 2200046 year: 2022 ident: D2TA06077A/cit15/1 publication-title: Small Struct. doi: 10.1002/sstr.202200046 – volume: 9 start-page: 2103722 year: 2022 ident: D2TA06077A/cit21/1 publication-title: Adv. Sci. doi: 10.1002/advs.202103722 – volume: 10 start-page: 13345 year: 2022 ident: D2TA06077A/cit6/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03023C – volume: 264 start-page: 118520 year: 2020 ident: D2TA06077A/cit35/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118520 – volume: 33 start-page: e2008631 year: 2021 ident: D2TA06077A/cit2/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008631 – volume: 11 start-page: 10581 year: 2019 ident: D2TA06077A/cit11/1 publication-title: Nanoscale doi: 10.1039/C9NR03644J – volume: 4 start-page: 376 year: 2021 ident: D2TA06077A/cit8/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02293 – volume: 4 start-page: 283 year: 2022 ident: D2TA06077A/cit33/1 publication-title: Carbon Energy doi: 10.1002/cey2.170 – volume: 7 start-page: 16437 year: 2019 ident: D2TA06077A/cit40/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05334D – volume: 10 start-page: 13998 year: 2022 ident: D2TA06077A/cit7/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01890J – volume: 300 start-page: 09263373 year: 2022 ident: D2TA06077A/cit1/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120753 – volume: 59 start-page: 5092 year: 2020 ident: D2TA06077A/cit4/1 publication-title: Angew. Chem. doi: 10.1002/anie.201914649 – volume: 34 start-page: 2110680 year: 2022 ident: D2TA06077A/cit23/1 publication-title: Adv. Mater. doi: 10.1002/adma.202110680 – volume: 60 start-page: 12027 year: 2021 ident: D2TA06077A/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202101019 – volume: 4 start-page: 12336 year: 2021 ident: D2TA06077A/cit25/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c02147 – volume: 12 start-page: 211 year: 2019 ident: D2TA06077A/cit37/1 publication-title: Nano Res. doi: 10.1007/s12274-018-2204-8 – volume: 10 start-page: 41293 year: 2018 ident: D2TA06077A/cit5/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13361 – volume: 9 start-page: 4744 year: 2021 ident: D2TA06077A/cit9/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11770F – volume: 8 start-page: 2002341 year: 2021 ident: D2TA06077A/cit30/1 publication-title: Adv. Sci. doi: 10.1002/advs.202002341 – volume: 8 start-page: nwab019 year: 2021 ident: D2TA06077A/cit31/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwab019 – volume: 428 start-page: 132646 year: 2022 ident: D2TA06077A/cit18/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132646 – volume: 31 start-page: e00379 year: 2022 ident: D2TA06077A/cit16/1 publication-title: Sustainable Mater. Technol. doi: 10.1016/j.susmat.2021.e00379 – volume: 33 start-page: 2105049 year: 2021 ident: D2TA06077A/cit19/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105049 – volume: 4 start-page: 9729 year: 2021 ident: D2TA06077A/cit34/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c02116 – volume: 607 start-page: 1625 year: 2022 ident: D2TA06077A/cit29/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.09.078 – volume: 280 start-page: 119393 year: 2021 ident: D2TA06077A/cit41/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119393 – volume: 56 start-page: 4448 year: 2020 ident: D2TA06077A/cit10/1 publication-title: Chem. Commun. doi: 10.1039/D0CC01228A – volume: 15 start-page: 390 year: 2020 ident: D2TA06077A/cit12/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0665-x – volume: 12 start-page: 6007 year: 2021 ident: D2TA06077A/cit27/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26336-2 – volume: 14 start-page: 1801239 year: 2018 ident: D2TA06077A/cit13/1 publication-title: Small doi: 10.1002/smll.201801239 – volume: 9 start-page: 13080 year: 2021 ident: D2TA06077A/cit20/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03198H – volume: 14 start-page: 10 year: 2018 ident: D2TA06077A/cit38/1 publication-title: Small – volume: 8 start-page: 15581 year: 2017 ident: D2TA06077A/cit39/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15581 |
SSID | ssj0000800699 |
Score | 2.439566 |
Snippet | Two-dimensional metallenes with ultrahigh surface area are highly active electrocatalysts in various sustainable energy devices. Meanwhile, rhodium (Rh) based... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2343 |
SubjectTerms | Bimetals Chemisorption Cobalt Cobalt base alloys Density functional theory Durability Electroactivity Electrocatalysts Fuel cells Intermediates Liquid fuels Nanomaterials Nanoparticles Nanotechnology Oxidation Rhodium Sustainable energy |
Title | A rhodium-cobalt alloy bimetallene towards liquid C1 molecule electrooxidation in alkaline media |
URI | https://www.proquest.com/docview/2721136425 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gUeELeJwkCW4AVFGY6dOMljKEMDMSSkTmy8BMd2toi2gS6RgJ_BL8a3XIY6CXiJGtuxUp-v9jmn55wPgGcBE9qkln5JZOGHnAi_kGHoi0AkcchFwgzz3PF7enQSvj2NTieTX6OopbYpDvjPrXkl_yNV1abkqrNk_0Gy_aSqQX1W8lVXJWF1_SsZZ97mohZVu_K5LuuhvbfL-odXVCvZGI4UzYuhw2IvvWX1ra2ENw-8lSXElZ5jwKm_V5ZXSbs-2PILM4qnySi5RnNVSq79dh7v6OIOvMxm_nQ9ppK4zSs0rvkuT0uH4vZe_E8XLiD4o6x6yVfMeG9f1v4HBd3zweNvhx6rs9Y_Y3WvgTtSlrN27MBQtq_--z0c9jmMIqRLmtptWI7bLNltv1GP8GhLwnS7LrGlntwJrm7TracDIrq4qsANQxTF8egM7CMTh84dsIuV6YGnYDc7XLx513vutI5NDTFp_-Zd3VuSvhgmuKrpDObLzqbjljE6zOI2uOVECDOLpDtgItd3wc1RScp74HMGr2IKGkzBEaagwxS0mILzAHaYgn9iClZr2GEKGkzdByevDxfzI9-xcPgcJ0Hjl5gnRJCEBlIksqQlkwWOEsmoECUuIl5GBSZEsJCnpZDK4pQR4ilNEGc04ozsgem6XssHAMaJYAEuJS4RC1NEExYXAcdIqHVklLIZeN6tWM5diXrNlLLMTagESfNXeJGZ1c1m4Gk_9qstzLJ11H638Ln74V7mWHs9iDK8oxnYU8Lonx9k9_C6jkfgxoDhfTBtNq18rNTSpnjicPIbujmS9w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rhodium-cobalt+alloy+bimetallene+towards+liquid+C1+molecule+electrooxidation+in+alkaline+media&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Zhong%2C+Wei&rft.au=Miao%2C+Bo-Qiang&rft.au=Wang%2C+Ming-Yao&rft.au=Ding%2C+Yu&rft.date=2022-10-04&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=38&rft.spage=2343&rft.epage=2349&rft_id=info:doi/10.1039%2Fd2ta06077a&rft.externalDocID=d2ta06077a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |