Topological defects stabilized by a soft twist-bend dimer and quantum dots lead to a wide thermal range and ultra-fast electro-optic response in a liquid crystalline amorphous blue phase

Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to its attractive electro-optical properties, such as sub-millisecond response time, high contrast ratio and wide viewing angle. However, obtain...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 11; no. 28; pp. 9686 - 9694
Main Authors Khatun, Nurjahan, Sridurai, Vimala, Csorba, Katalin F, Nair, Geetha G
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 20.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to its attractive electro-optical properties, such as sub-millisecond response time, high contrast ratio and wide viewing angle. However, obtaining a fast-responding, thermally stable BPIII with commercial usability is still a challenge due to the frustrated nature of the phase. The study presented here investigates the thermal and electro-optic properties of the BPIII exhibited by a low molecular weight liquid crystalline system. Adding a twist-bend nematic dimer to a mixture comprising a nematic liquid crystal and chiral dopant helps stabilize the BPI, the cubic blue phase, due to the ultra-low bend elastic constant and saddle-splay deformation inherent to the dimer. Doping small concentrations of surface-functionalized quantum dots reduces the free energy associated with the topological defects leading to a complete transformation of the cubic blue phase to an amorphous one, with the latter exhibiting a wide thermal range. Polarizing optical microscopy, and electro-optical studies confirm the existence of BPIII over 34 °C spanning ambient and below/above ambient temperatures. The response time associated with the switching between achromatic dark and bright states is ∼200 μs, a value faster than that reported for low molecular weight systems and on par with polymeric ones. Furthermore, the BPIII exhibits a hysteresis-free optical transmittance with low operating voltages and high contrast ratio. A prototype device fabricated using the BPIII composite is found to be thermally, temporally and electrically stable, making it highly promising for display device applications. Adding an NTB material to BPLC increases the thermal range of BPI. Further doping with QDs leads to the induction of BPIII, with a wide thermal range of 34 °C, spanning ambient and below/above ambient temperatures with enhanced display parameters.
AbstractList Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to its attractive electro-optical properties, such as sub-millisecond response time, high contrast ratio and wide viewing angle. However, obtaining a fast-responding, thermally stable BPIII with commercial usability is still a challenge due to the frustrated nature of the phase. The study presented here investigates the thermal and electro-optic properties of the BPIII exhibited by a low molecular weight liquid crystalline system. Adding a twist-bend nematic dimer to a mixture comprising a nematic liquid crystal and chiral dopant helps stabilize the BPI, the cubic blue phase, due to the ultra-low bend elastic constant and saddle-splay deformation inherent to the dimer. Doping small concentrations of surface-functionalized quantum dots reduces the free energy associated with the topological defects leading to a complete transformation of the cubic blue phase to an amorphous one, with the latter exhibiting a wide thermal range. Polarizing optical microscopy, and electro-optical studies confirm the existence of BPIII over 34 °C spanning ambient and below/above ambient temperatures. The response time associated with the switching between achromatic dark and bright states is ∼200 μs, a value faster than that reported for low molecular weight systems and on par with polymeric ones. Furthermore, the BPIII exhibits a hysteresis-free optical transmittance with low operating voltages and high contrast ratio. A prototype device fabricated using the BPIII composite is found to be thermally, temporally and electrically stable, making it highly promising for display device applications. Adding an NTB material to BPLC increases the thermal range of BPI. Further doping with QDs leads to the induction of BPIII, with a wide thermal range of 34 °C, spanning ambient and below/above ambient temperatures with enhanced display parameters.
Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to its attractive electro-optical properties, such as sub-millisecond response time, high contrast ratio and wide viewing angle. However, obtaining a fast-responding, thermally stable BPIII with commercial usability is still a challenge due to the frustrated nature of the phase. The study presented here investigates the thermal and electro-optic properties of the BPIII exhibited by a low molecular weight liquid crystalline system. Adding a twist-bend nematic dimer to a mixture comprising a nematic liquid crystal and chiral dopant helps stabilize the BPI, the cubic blue phase, due to the ultra-low bend elastic constant and saddle-splay deformation inherent to the dimer. Doping small concentrations of surface-functionalized quantum dots reduces the free energy associated with the topological defects leading to a complete transformation of the cubic blue phase to an amorphous one, with the latter exhibiting a wide thermal range. Polarizing optical microscopy, and electro-optical studies confirm the existence of BPIII over 34 °C spanning ambient and below/above ambient temperatures. The response time associated with the switching between achromatic dark and bright states is ∼200 μs, a value faster than that reported for low molecular weight systems and on par with polymeric ones. Furthermore, the BPIII exhibits a hysteresis-free optical transmittance with low operating voltages and high contrast ratio. A prototype device fabricated using the BPIII composite is found to be thermally, temporally and electrically stable, making it highly promising for display device applications.
Author Khatun, Nurjahan
Csorba, Katalin F
Sridurai, Vimala
Nair, Geetha G
AuthorAffiliation Manipal Academy of Higher Education
Centre for Nano and Soft Matter Sciences
Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences Budapest
AuthorAffiliation_xml – name: Centre for Nano and Soft Matter Sciences
– name: Manipal Academy of Higher Education
– name: Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences Budapest
Author_xml – sequence: 1
  givenname: Nurjahan
  surname: Khatun
  fullname: Khatun, Nurjahan
– sequence: 2
  givenname: Vimala
  surname: Sridurai
  fullname: Sridurai, Vimala
– sequence: 3
  givenname: Katalin F
  surname: Csorba
  fullname: Csorba, Katalin F
– sequence: 4
  givenname: Geetha G
  surname: Nair
  fullname: Nair, Geetha G
BookMark eNpFkU9r3DAQxUVJoUmaS-6BgdwCbiXL1srHsPnTQqCXzdnI0jirIEteSSZsP1o_XdRsSOYyc_i9N8O8E3Lkg0dCzhn9wSjvfhqeNaVSMPOFHNe0pdWq5c3Rx1yLb-QspWdaSjIhRXdM_m3CHFx4slo5MDiizglSVoN19i8aGPagIIUxQ36xKVcDegPGThhBlWm3KJ-XCUwoMofKQA5F8GINQt5inIprVP4J3-jF5aiqUaUM6MqmGKowZ6shYpqDTwjWF7Wzu8Ua0HFfDnHO-qKeQpy3YUkwuAVh3qqE38nXUbmEZ-_9lDze3W7Wv6qHP_e_19cPla4lyxV2YuwGrjhtxKgYmqY2TIgaFQ68lY1e1W152mCQynYYORWswdYo7KjRTdvxU3J58J1j2C2Ycv8clujLyr6WvFsxKbks1NWB0jGkFHHs52gnFfc9o_3_ePobvlm_xXNT4IsDHJP-4D7j46-peZIX
CitedBy_id crossref_primary_10_1039_D3NR03366J
crossref_primary_10_1021_acs_chemmater_4c00471
crossref_primary_10_3390_ma17061291
Cites_doi 10.1002/adma.201603226
10.1038/asiamat.2009.3
10.1038/nphoton.2010.184
10.1002/smsc.202100007
10.1246/cl.2010.170
10.1007/978-3-319-18293-3_9
10.1063/5.0052765
10.1103/PhysRevE.85.020701
10.1080/02678298908026383
10.1038/nmat712
10.1002/masy.200451409
10.1002/adma.200700903
10.1103/PhysRevLett.67.2151
10.1007/978-3-319-14346-0
10.1080/15421400903054220
10.1073/pnas.1015831108
10.1103/PhysRevLett.46.1216
10.1109/JDT.2009.2037981
10.1021/acsnano.2c07321
10.1063/5.0035810
10.3390/cryst9090475
10.1889/1.3621051
10.1038/nature03932
10.3389/fphy.2020.00315
10.1039/c0jm04009f
10.1021/acsami.2c09392
10.1143/APEX.4.101701
10.1039/c1sm06046e
10.1021/acs.jpcb.1c07422
10.1002/adma.202004754
10.3390/cryst11060621
10.1002/9781118751992
10.1063/1.3097355
10.1088/1468-6996/16/3/033501
10.1080/02678298608086486
10.1143/APEX.1.111801
10.1021/acsami.7b10952
10.7567/JJAP.53.03CA02
10.1038/ncomms3635
10.1364/OE.21.009774
10.1063/1.3662391
10.1080/02678292.2016.1217569
10.1038/lsa.2017.168
10.1016/j.molliq.2020.115059
10.1002/adma.201801335
10.1002/adom.201700891
10.1021/acsami.1c11711
10.1039/c0jm00690d
10.1002/adfm.201502071
10.1063/1.4773985
10.1080/15421406.2010.486600
10.1103/PhysRevE.81.041703
10.1117/12.813372
10.1039/C5SM01918D
10.1080/21680396.2019.1581103
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d3tc00861d
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 9694
ExternalDocumentID 10_1039_D3TC00861D
d3tc00861d
GroupedDBID -JG
0-7
0R~
4.4
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
AENEX
AETIL
AFOGI
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ADSRN
AEFDR
AENGV
AESAV
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c281t-e96f9b3a3046fa1ed42d1662eaeb3584c725086bde085bf30614e5dae90dc4593
ISSN 2050-7526
IngestDate Thu Oct 10 17:13:21 EDT 2024
Fri Aug 23 00:40:16 EDT 2024
Fri Jul 21 04:23:40 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-e96f9b3a3046fa1ed42d1662eaeb3584c725086bde085bf30614e5dae90dc4593
Notes https://doi.org/10.1039/d3tc00861d
Electronic supplementary information (ESI) available: Chemical structures and compositions of the materials, optical microscopy, phase sequence of the composites, HRTEM, UV-Vis and PL spectra of the QDs, circular dichroism, DSC, electro-optical switching and switching video. See DOI
ORCID 0000-0003-1006-3315
0000-0002-9071-6971
PQID 2839718838
PQPubID 2047521
PageCount 9
ParticipantIDs proquest_journals_2839718838
crossref_primary_10_1039_D3TC00861D
rsc_primary_d3tc00861d
PublicationCentury 2000
PublicationDate 2023-07-20
PublicationDateYYYYMMDD 2023-07-20
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-20
  day: 20
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Den Boer (D3TC00861D/cit2/1) 2011
Orzechowski (D3TC00861D/cit56/1) 2022; 16
Khatun (D3TC00861D/cit53/1) 2021; 325
Rahman (D3TC00861D/cit10/1) 2015; 16
Xu (D3TC00861D/cit17/1) 2018; 6
Yang (D3TC00861D/cit13/1) 2021; 1
Coles (D3TC00861D/cit19/1) 2010; 4
Ravnik (D3TC00861D/cit55/1) 2011; 108
Kikuchi (D3TC00861D/cit29/1) 2002; 1
Yoshizawa (D3TC00861D/cit39/1) 2011; 4
Chen (D3TC00861D/cit5/1) 2018; 7
Meiboom (D3TC00861D/cit46/1) 1981; 46
Hong (D3TC00861D/cit54/1) 2009; 511
Fodor-Csorba (D3TC00861D/cit45/1) 2004; 218
Taushanoff (D3TC00861D/cit36/1) 2010; 20
Crooker (D3TC00861D/cit6/1) 1989; 5
Karatairi (D3TC00861D/cit32/1) 2010; 81
Cordoyiannis (D3TC00861D/cit33/1) 2020
Coles (D3TC00861D/cit51/1) 2005; 436
Gandhi (D3TC00861D/cit31/1) 2016; 28
Selinger (D3TC00861D/cit50/1) 2018; 6
Singh (D3TC00861D/cit57/1) 2019; 9
Yan (D3TC00861D/cit16/1) 2013; 102
Chen (D3TC00861D/cit26/1) 2011; 99
Hur (D3TC00861D/cit44/1) 2011; 7
Yang (D3TC00861D/cit12/1) 2021; 33
Fukuda (D3TC00861D/cit47/1) 2012; 85
Khosla (D3TC00861D/cit59/1) 2021; 2352
Chen (D3TC00861D/cit24/1) 2010; 6
Khatun (D3TC00861D/cit52/1) 2021; 125
Lee (D3TC00861D/cit27/1) 2011; 42
Iwamochi (D3TC00861D/cit41/1) 2010; 39
Lin (D3TC00861D/cit7/1) 2015
Chen (D3TC00861D/cit42/1) 2013; 21
Uchida (D3TC00861D/cit3/1) 2014; 53
Khan (D3TC00861D/cit34/1) 2021; 129
Wang (D3TC00861D/cit14/1) 2020; 32
Sato (D3TC00861D/cit38/1) 2007; 19
Ge (D3TC00861D/cit25/1) 2009; 94
Yang (D3TC00861D/cit1/1) 2014
Sridurai (D3TC00861D/cit18/1) 2017; 9
Yang (D3TC00861D/cit20/1) 2021; 13
Chen (D3TC00861D/cit58/1) 2016
Khan (D3TC00861D/cit37/1) 2022; 14
Chen (D3TC00861D/cit43/1) 2017; 44
Rao (D3TC00861D/cit23/1) 2010; 527
Gleeson (D3TC00861D/cit8/1) 2015; 42
Gong (D3TC00861D/cit15/1) 2019
Kitzerow (D3TC00861D/cit22/1) 1991; 67
Stegemeyer (D3TC00861D/cit21/1) 1986; 1
Le (D3TC00861D/cit35/1) 2011; 21
Kitzerow (D3TC00861D/cit28/1) 2009; 7232
Borshch (D3TC00861D/cit48/1) 2013; 4
Kim (D3TC00861D/cit4/1) 2009; 1
Dubois-Violette (D3TC00861D/cit9/1) 1988; 165
Wang (D3TC00861D/cit11/1) 2016; 26
Iwamochi (D3TC00861D/cit40/1) 2008; 1
Panov (D3TC00861D/cit49/1) 2021; 11
Kim (D3TC00861D/cit30/1) 2015; 11
References_xml – issn: 2019
  publication-title: Photonic crystals: principles and applications
  doi: Gong Hu
– issn: 2015
  end-page: p 337-378
  publication-title: Anisotropic nanomaterials
  doi: Lin Chen Li
– issn: 2011
  publication-title: Active matrix liquid crystal displays: fundamentals and applications
  doi: Den Boer
– issn: 2014
  publication-title: Fundamentals of liquid crystal devices
  doi: Yang Wu
– issn: 2016
  publication-title: Handbook of visual display technology
  doi: Chen Cranton Fihn
– volume: 28
  start-page: 8998
  year: 2016
  ident: D3TC00861D/cit31/1
  publication-title: Adv. Mat.
  doi: 10.1002/adma.201603226
  contributor:
    fullname: Gandhi
– volume: 1
  start-page: 29
  year: 2009
  ident: D3TC00861D/cit4/1
  publication-title: NPG Asia Mater.
  doi: 10.1038/asiamat.2009.3
  contributor:
    fullname: Kim
– volume: 4
  start-page: 676
  year: 2010
  ident: D3TC00861D/cit19/1
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.184
  contributor:
    fullname: Coles
– volume: 1
  start-page: 2100007
  issue: 6
  year: 2021
  ident: D3TC00861D/cit13/1
  publication-title: Small Sci.
  doi: 10.1002/smsc.202100007
  contributor:
    fullname: Yang
– volume: 39
  start-page: 170
  year: 2010
  ident: D3TC00861D/cit41/1
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2010.170
  contributor:
    fullname: Iwamochi
– start-page: 337
  volume-title: Anisotropic nanomaterials
  year: 2015
  ident: D3TC00861D/cit7/1
  doi: 10.1007/978-3-319-18293-3_9
  contributor:
    fullname: Lin
– volume: 2352
  start-page: 020037
  year: 2021
  ident: D3TC00861D/cit59/1
  publication-title: AIP Conf. Proc.
  doi: 10.1063/5.0052765
  contributor:
    fullname: Khosla
– volume: 85
  start-page: 020701
  year: 2012
  ident: D3TC00861D/cit47/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.85.020701
  contributor:
    fullname: Fukuda
– volume: 5
  start-page: 751
  year: 1989
  ident: D3TC00861D/cit6/1
  publication-title: Liq. Cryst.
  doi: 10.1080/02678298908026383
  contributor:
    fullname: Crooker
– volume: 1
  start-page: 64
  year: 2002
  ident: D3TC00861D/cit29/1
  publication-title: Nat. Mat.
  doi: 10.1038/nmat712
  contributor:
    fullname: Kikuchi
– volume: 218
  start-page: 81
  year: 2004
  ident: D3TC00861D/cit45/1
  publication-title: Macromol. Symp.
  doi: 10.1002/masy.200451409
  contributor:
    fullname: Fodor-Csorba
– volume-title: Photonic crystals: principles and applications
  year: 2019
  ident: D3TC00861D/cit15/1
  contributor:
    fullname: Gong
– volume: 19
  start-page: 4145
  year: 2007
  ident: D3TC00861D/cit38/1
  publication-title: Adv. Mat.
  doi: 10.1002/adma.200700903
  contributor:
    fullname: Sato
– volume: 67
  start-page: 2151
  year: 1991
  ident: D3TC00861D/cit22/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.2151
  contributor:
    fullname: Kitzerow
– volume-title: Handbook of visual display technology
  year: 2016
  ident: D3TC00861D/cit58/1
  doi: 10.1007/978-3-319-14346-0
  contributor:
    fullname: Chen
– volume: 511
  start-page: 248/[1718]
  year: 2009
  ident: D3TC00861D/cit54/1
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421400903054220
  contributor:
    fullname: Hong
– volume: 108
  start-page: 5188
  issue: 13
  year: 2011
  ident: D3TC00861D/cit55/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1015831108
  contributor:
    fullname: Ravnik
– volume: 46
  start-page: 1216
  year: 1981
  ident: D3TC00861D/cit46/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.46.1216
  contributor:
    fullname: Meiboom
– volume: 6
  start-page: 49
  year: 2010
  ident: D3TC00861D/cit24/1
  publication-title: J. Disp. Technol.
  doi: 10.1109/JDT.2009.2037981
  contributor:
    fullname: Chen
– volume: 16
  start-page: 20577
  issue: 12
  year: 2022
  ident: D3TC00861D/cit56/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07321
  contributor:
    fullname: Orzechowski
– volume: 129
  start-page: 024702
  year: 2021
  ident: D3TC00861D/cit34/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0035810
  contributor:
    fullname: Khan
– volume: 9
  start-page: 475
  year: 2019
  ident: D3TC00861D/cit57/1
  publication-title: Crystals
  doi: 10.3390/cryst9090475
  contributor:
    fullname: Singh
– volume: 42
  start-page: 121
  year: 2011
  ident: D3TC00861D/cit27/1
  publication-title: SID Symposium Digest of Technical Papers
  doi: 10.1889/1.3621051
  contributor:
    fullname: Lee
– volume: 436
  start-page: 997
  year: 2005
  ident: D3TC00861D/cit51/1
  publication-title: Nature
  doi: 10.1038/nature03932
  contributor:
    fullname: Coles
– volume: 42
  start-page: 760
  year: 2015
  ident: D3TC00861D/cit8/1
  publication-title: Liq. Cryst.
  contributor:
    fullname: Gleeson
– start-page: 315
  year: 2020
  ident: D3TC00861D/cit33/1
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.00315
  contributor:
    fullname: Cordoyiannis
– volume: 21
  start-page: 2855
  year: 2011
  ident: D3TC00861D/cit35/1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04009f
  contributor:
    fullname: Le
– volume: 14
  start-page: 42628
  year: 2022
  ident: D3TC00861D/cit37/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c09392
  contributor:
    fullname: Khan
– volume: 4
  start-page: 101701
  year: 2011
  ident: D3TC00861D/cit39/1
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.4.101701
  contributor:
    fullname: Yoshizawa
– volume: 7
  start-page: 8800
  year: 2011
  ident: D3TC00861D/cit44/1
  publication-title: Soft Matter
  doi: 10.1039/c1sm06046e
  contributor:
    fullname: Hur
– volume: 125
  start-page: 11582
  year: 2021
  ident: D3TC00861D/cit52/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.1c07422
  contributor:
    fullname: Khatun
– volume: 33
  start-page: 2004754
  issue: 14
  year: 2021
  ident: D3TC00861D/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004754
  contributor:
    fullname: Yang
– volume: 11
  start-page: 621
  issue: 6
  year: 2021
  ident: D3TC00861D/cit49/1
  publication-title: Crystals
  doi: 10.3390/cryst11060621
  contributor:
    fullname: Panov
– volume-title: Fundamentals of liquid crystal devices
  year: 2014
  ident: D3TC00861D/cit1/1
  doi: 10.1002/9781118751992
  contributor:
    fullname: Yang
– volume: 94
  start-page: 101104
  year: 2009
  ident: D3TC00861D/cit25/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3097355
  contributor:
    fullname: Ge
– volume: 16
  start-page: 033501
  issue: 3
  year: 2015
  ident: D3TC00861D/cit10/1
  publication-title: Sci. Technol. Adv. Mat.
  doi: 10.1088/1468-6996/16/3/033501
  contributor:
    fullname: Rahman
– volume: 1
  start-page: 3
  year: 1986
  ident: D3TC00861D/cit21/1
  publication-title: Liq. Cryst.
  doi: 10.1080/02678298608086486
  contributor:
    fullname: Stegemeyer
– volume: 1
  start-page: 111801
  year: 2008
  ident: D3TC00861D/cit40/1
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.1.111801
  contributor:
    fullname: Iwamochi
– volume: 9
  start-page: 39569
  year: 2017
  ident: D3TC00861D/cit18/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10952
  contributor:
    fullname: Sridurai
– volume: 53
  start-page: 03CA02
  year: 2014
  ident: D3TC00861D/cit3/1
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.53.03CA02
  contributor:
    fullname: Uchida
– volume: 4
  start-page: 1
  year: 2013
  ident: D3TC00861D/cit48/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3635
  contributor:
    fullname: Borshch
– volume: 21
  start-page: 9774
  year: 2013
  ident: D3TC00861D/cit42/1
  publication-title: Opt. Express
  doi: 10.1364/OE.21.009774
  contributor:
    fullname: Chen
– volume: 99
  start-page: 201105
  year: 2011
  ident: D3TC00861D/cit26/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3662391
  contributor:
    fullname: Chen
– volume: 44
  start-page: 473
  year: 2017
  ident: D3TC00861D/cit43/1
  publication-title: Liq. Cryst.
  doi: 10.1080/02678292.2016.1217569
  contributor:
    fullname: Chen
– volume: 7
  start-page: 17168
  year: 2018
  ident: D3TC00861D/cit5/1
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2017.168
  contributor:
    fullname: Chen
– volume: 325
  start-page: 115059
  year: 2021
  ident: D3TC00861D/cit53/1
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.115059
  contributor:
    fullname: Khatun
– volume: 32
  start-page: 1801335
  issue: 41
  year: 2020
  ident: D3TC00861D/cit14/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801335
  contributor:
    fullname: Wang
– volume: 6
  start-page: 1700891
  year: 2018
  ident: D3TC00861D/cit17/1
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201700891
  contributor:
    fullname: Xu
– volume: 13
  start-page: 41102
  issue: 34
  year: 2021
  ident: D3TC00861D/cit20/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c11711
  contributor:
    fullname: Yang
– volume: 20
  start-page: 5893
  year: 2010
  ident: D3TC00861D/cit36/1
  publication-title: J. Mat. Chem.
  doi: 10.1039/c0jm00690d
  contributor:
    fullname: Taushanoff
– volume: 26
  start-page: 10
  year: 2016
  ident: D3TC00861D/cit11/1
  publication-title: Adv. Funct. Mat.
  doi: 10.1002/adfm.201502071
  contributor:
    fullname: Wang
– volume: 102
  start-page: 011113
  year: 2013
  ident: D3TC00861D/cit16/1
  publication-title: App. Phys. Lett.
  doi: 10.1063/1.4773985
  contributor:
    fullname: Yan
– volume: 527
  start-page: 30/[186]
  year: 2010
  ident: D3TC00861D/cit23/1
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2010.486600
  contributor:
    fullname: Rao
– volume: 81
  start-page: 041703
  year: 2010
  ident: D3TC00861D/cit32/1
  publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
  doi: 10.1103/PhysRevE.81.041703
  contributor:
    fullname: Karatairi
– volume: 7232
  start-page: 723205
  year: 2009
  ident: D3TC00861D/cit28/1
  publication-title: Emerging liquid crystal technologies IV
  doi: 10.1117/12.813372
  contributor:
    fullname: Kitzerow
– volume-title: Active matrix liquid crystal displays: fundamentals and applications
  year: 2011
  ident: D3TC00861D/cit2/1
  contributor:
    fullname: Den Boer
– volume: 11
  start-page: 8013
  year: 2015
  ident: D3TC00861D/cit30/1
  publication-title: Soft Matter
  doi: 10.1039/C5SM01918D
  contributor:
    fullname: Kim
– volume: 6
  start-page: 129
  year: 2018
  ident: D3TC00861D/cit50/1
  publication-title: Liq. Cryst. Rev.
  doi: 10.1080/21680396.2019.1581103
  contributor:
    fullname: Selinger
– volume: 165
  start-page: 151
  year: 1988
  ident: D3TC00861D/cit9/1
  publication-title: Mol. Cryst. Liqu. Cryst.
  contributor:
    fullname: Dubois-Violette
SSID ssj0000816869
Score 2.2962103
Snippet Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 9686
SubjectTerms Ambient temperature
Crystal defects
Dimers
Display devices
Elastic deformation
Elastic properties
Free energy
Liquid crystals
Low molecular weights
Molecular weight
Nematic crystals
Optical microscopy
Optical properties
Optics
Quantum dots
Response time
Thermal stability
Topology
Title Topological defects stabilized by a soft twist-bend dimer and quantum dots lead to a wide thermal range and ultra-fast electro-optic response in a liquid crystalline amorphous blue phase
URI https://www.proquest.com/docview/2839718838
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwGLU6rZDggKBQMVCQJbhFKZk4cZNj1RYVBL0wRb2NvEWTarZmUdX-NH4dn5fEqQoScIlmnGUyeS-fn-1vQegDYYRTUKohoYSESV5kYUYzFmaFoAR6cBnlOlD42zk9u0i-XKaXW6PRwGupbfiBuPttXMn_oAptgKuOkv0HZPuLQgN8BnxhCwjD9u8wthUO7EqLso4ZoPa0v-udVZYsqMHOBs0NoBlytZKBLJfK-k1et_BU22UA49JaV4-QWoey4KaUSstRsNiLoNKxB-bodtFULCxY3QSudE643tgE0MbL1iQfYcGivG5LGYjqFm5kYTQsW64BTO1qyxetCjbzbkHooSYG-WyfWyC6QnQHwbGNKer2aL9I88suy8GgkI9Uxu71ncicNa2NJ2urKzb3L8L3qpRtZStx_yjhj3p_pXpdcRcmp5NDrrzr8zkrK7uMoJo5c0XJ3IRJTPRMbBx5uxpHaRQeprHLwD1sc_OqXccwGbwALoTdmvmcdvm73VdbqPlBdxQRnc1VkkbooeNE-k63d4X0O0doJwZrCWZ65-h0-vlrP1VoaqOY4oz9rXeJdkn-0V_gvrTy46VR1RWzMaJp-gw9dcjiI0vd52hLrXbRk0EOzF30yPggi_oF-jmgM3Z0xp7OmN9ihjWdsaczNnTGwAPs6Iw1nbGmM27WcIKmM3Z0xobO5mhPZ3yPzrijMy5XcLalMx7QGfd0xprO2ND5Jbr4dDo9PgtdaZFQxNmkCVVOi5yDoYoSWrCJkkksJ5TGiilOQJOLQxgaZJRLBUMSXhA9b6JSyVQeSZGkOdlD26v1Sr1CmKWgyKUUuSBFwjnLBBUwBmcRISpNZTxG7ztUZhubQWZmPD9IPjshemEPsDsZo_0OsJmzMPUMpH8O2jEj2RjtAYj9-R7z13_a8QY99uTfR9tN1aq3oJ8b_s7x6xesqNGg
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+defects+stabilized+by+a+soft+twist-bend+dimer+and+quantum+dots+lead+to+a+wide+thermal+range+and+ultra-fast+electro-optic+response+in+a+liquid+crystalline+amorphous+blue+phase&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Khatun%2C+Nurjahan&rft.au=Sridurai%2C+Vimala&rft.au=Csorba%2C+Katalin+F&rft.au=Nair%2C+Geetha+G&rft.date=2023-07-20&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=11&rft.issue=28&rft.spage=9686&rft.epage=9694&rft_id=info:doi/10.1039%2Fd3tc00861d&rft.externalDocID=d3tc00861d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon