Topological defects stabilized by a soft twist-bend dimer and quantum dots lead to a wide thermal range and ultra-fast electro-optic response in a liquid crystalline amorphous blue phase
Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to its attractive electro-optical properties, such as sub-millisecond response time, high contrast ratio and wide viewing angle. However, obtain...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 11; no. 28; pp. 9686 - 9694 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
20.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to its attractive electro-optical properties, such as sub-millisecond response time, high contrast ratio and wide viewing angle. However, obtaining a fast-responding, thermally stable BPIII with commercial usability is still a challenge due to the frustrated nature of the phase. The study presented here investigates the thermal and electro-optic properties of the BPIII exhibited by a low molecular weight liquid crystalline system. Adding a twist-bend nematic dimer to a mixture comprising a nematic liquid crystal and chiral dopant helps stabilize the BPI, the cubic blue phase, due to the ultra-low bend elastic constant and saddle-splay deformation inherent to the dimer. Doping small concentrations of surface-functionalized quantum dots reduces the free energy associated with the topological defects leading to a complete transformation of the cubic blue phase to an amorphous one, with the latter exhibiting a wide thermal range. Polarizing optical microscopy, and electro-optical studies confirm the existence of BPIII over 34 °C spanning ambient and below/above ambient temperatures. The response time associated with the switching between achromatic dark and bright states is ∼200 μs, a value faster than that reported for low molecular weight systems and on par with polymeric ones. Furthermore, the BPIII exhibits a hysteresis-free optical transmittance with low operating voltages and high contrast ratio. A prototype device fabricated using the BPIII composite is found to be thermally, temporally and electrically stable, making it highly promising for display device applications.
Adding an NTB material to BPLC increases the thermal range of BPI. Further doping with QDs leads to the induction of BPIII, with a wide thermal range of 34 °C, spanning ambient and below/above ambient temperatures with enhanced display parameters. |
---|---|
AbstractList | Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to its attractive electro-optical properties, such as sub-millisecond response time, high contrast ratio and wide viewing angle. However, obtaining a fast-responding, thermally stable BPIII with commercial usability is still a challenge due to the frustrated nature of the phase. The study presented here investigates the thermal and electro-optic properties of the BPIII exhibited by a low molecular weight liquid crystalline system. Adding a twist-bend nematic dimer to a mixture comprising a nematic liquid crystal and chiral dopant helps stabilize the BPI, the cubic blue phase, due to the ultra-low bend elastic constant and saddle-splay deformation inherent to the dimer. Doping small concentrations of surface-functionalized quantum dots reduces the free energy associated with the topological defects leading to a complete transformation of the cubic blue phase to an amorphous one, with the latter exhibiting a wide thermal range. Polarizing optical microscopy, and electro-optical studies confirm the existence of BPIII over 34 °C spanning ambient and below/above ambient temperatures. The response time associated with the switching between achromatic dark and bright states is ∼200 μs, a value faster than that reported for low molecular weight systems and on par with polymeric ones. Furthermore, the BPIII exhibits a hysteresis-free optical transmittance with low operating voltages and high contrast ratio. A prototype device fabricated using the BPIII composite is found to be thermally, temporally and electrically stable, making it highly promising for display device applications.
Adding an NTB material to BPLC increases the thermal range of BPI. Further doping with QDs leads to the induction of BPIII, with a wide thermal range of 34 °C, spanning ambient and below/above ambient temperatures with enhanced display parameters. Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to its attractive electro-optical properties, such as sub-millisecond response time, high contrast ratio and wide viewing angle. However, obtaining a fast-responding, thermally stable BPIII with commercial usability is still a challenge due to the frustrated nature of the phase. The study presented here investigates the thermal and electro-optic properties of the BPIII exhibited by a low molecular weight liquid crystalline system. Adding a twist-bend nematic dimer to a mixture comprising a nematic liquid crystal and chiral dopant helps stabilize the BPI, the cubic blue phase, due to the ultra-low bend elastic constant and saddle-splay deformation inherent to the dimer. Doping small concentrations of surface-functionalized quantum dots reduces the free energy associated with the topological defects leading to a complete transformation of the cubic blue phase to an amorphous one, with the latter exhibiting a wide thermal range. Polarizing optical microscopy, and electro-optical studies confirm the existence of BPIII over 34 °C spanning ambient and below/above ambient temperatures. The response time associated with the switching between achromatic dark and bright states is ∼200 μs, a value faster than that reported for low molecular weight systems and on par with polymeric ones. Furthermore, the BPIII exhibits a hysteresis-free optical transmittance with low operating voltages and high contrast ratio. A prototype device fabricated using the BPIII composite is found to be thermally, temporally and electrically stable, making it highly promising for display device applications. |
Author | Khatun, Nurjahan Csorba, Katalin F Sridurai, Vimala Nair, Geetha G |
AuthorAffiliation | Manipal Academy of Higher Education Centre for Nano and Soft Matter Sciences Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences Budapest |
AuthorAffiliation_xml | – name: Centre for Nano and Soft Matter Sciences – name: Manipal Academy of Higher Education – name: Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences Budapest |
Author_xml | – sequence: 1 givenname: Nurjahan surname: Khatun fullname: Khatun, Nurjahan – sequence: 2 givenname: Vimala surname: Sridurai fullname: Sridurai, Vimala – sequence: 3 givenname: Katalin F surname: Csorba fullname: Csorba, Katalin F – sequence: 4 givenname: Geetha G surname: Nair fullname: Nair, Geetha G |
BookMark | eNpFkU9r3DAQxUVJoUmaS-6BgdwCbiXL1srHsPnTQqCXzdnI0jirIEteSSZsP1o_XdRsSOYyc_i9N8O8E3Lkg0dCzhn9wSjvfhqeNaVSMPOFHNe0pdWq5c3Rx1yLb-QspWdaSjIhRXdM_m3CHFx4slo5MDiizglSVoN19i8aGPagIIUxQ36xKVcDegPGThhBlWm3KJ-XCUwoMofKQA5F8GINQt5inIprVP4J3-jF5aiqUaUM6MqmGKowZ6shYpqDTwjWF7Wzu8Ua0HFfDnHO-qKeQpy3YUkwuAVh3qqE38nXUbmEZ-_9lDze3W7Wv6qHP_e_19cPla4lyxV2YuwGrjhtxKgYmqY2TIgaFQ68lY1e1W152mCQynYYORWswdYo7KjRTdvxU3J58J1j2C2Ycv8clujLyr6WvFsxKbks1NWB0jGkFHHs52gnFfc9o_3_ePobvlm_xXNT4IsDHJP-4D7j46-peZIX |
CitedBy_id | crossref_primary_10_1039_D3NR03366J crossref_primary_10_1021_acs_chemmater_4c00471 crossref_primary_10_3390_ma17061291 |
Cites_doi | 10.1002/adma.201603226 10.1038/asiamat.2009.3 10.1038/nphoton.2010.184 10.1002/smsc.202100007 10.1246/cl.2010.170 10.1007/978-3-319-18293-3_9 10.1063/5.0052765 10.1103/PhysRevE.85.020701 10.1080/02678298908026383 10.1038/nmat712 10.1002/masy.200451409 10.1002/adma.200700903 10.1103/PhysRevLett.67.2151 10.1007/978-3-319-14346-0 10.1080/15421400903054220 10.1073/pnas.1015831108 10.1103/PhysRevLett.46.1216 10.1109/JDT.2009.2037981 10.1021/acsnano.2c07321 10.1063/5.0035810 10.3390/cryst9090475 10.1889/1.3621051 10.1038/nature03932 10.3389/fphy.2020.00315 10.1039/c0jm04009f 10.1021/acsami.2c09392 10.1143/APEX.4.101701 10.1039/c1sm06046e 10.1021/acs.jpcb.1c07422 10.1002/adma.202004754 10.3390/cryst11060621 10.1002/9781118751992 10.1063/1.3097355 10.1088/1468-6996/16/3/033501 10.1080/02678298608086486 10.1143/APEX.1.111801 10.1021/acsami.7b10952 10.7567/JJAP.53.03CA02 10.1038/ncomms3635 10.1364/OE.21.009774 10.1063/1.3662391 10.1080/02678292.2016.1217569 10.1038/lsa.2017.168 10.1016/j.molliq.2020.115059 10.1002/adma.201801335 10.1002/adom.201700891 10.1021/acsami.1c11711 10.1039/c0jm00690d 10.1002/adfm.201502071 10.1063/1.4773985 10.1080/15421406.2010.486600 10.1103/PhysRevE.81.041703 10.1117/12.813372 10.1039/C5SM01918D 10.1080/21680396.2019.1581103 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d3tc00861d |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 9694 |
ExternalDocumentID | 10_1039_D3TC00861D d3tc00861d |
GroupedDBID | -JG 0-7 0R~ 4.4 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA AENEX AETIL AFOGI AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ADSRN AEFDR AENGV AESAV AFLYV AFRDS AGEGJ AHGCF APEMP CITATION GGIMP 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c281t-e96f9b3a3046fa1ed42d1662eaeb3584c725086bde085bf30614e5dae90dc4593 |
ISSN | 2050-7526 |
IngestDate | Thu Oct 10 17:13:21 EDT 2024 Fri Aug 23 00:40:16 EDT 2024 Fri Jul 21 04:23:40 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-e96f9b3a3046fa1ed42d1662eaeb3584c725086bde085bf30614e5dae90dc4593 |
Notes | https://doi.org/10.1039/d3tc00861d Electronic supplementary information (ESI) available: Chemical structures and compositions of the materials, optical microscopy, phase sequence of the composites, HRTEM, UV-Vis and PL spectra of the QDs, circular dichroism, DSC, electro-optical switching and switching video. See DOI |
ORCID | 0000-0003-1006-3315 0000-0002-9071-6971 |
PQID | 2839718838 |
PQPubID | 2047521 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2839718838 crossref_primary_10_1039_D3TC00861D rsc_primary_d3tc00861d |
PublicationCentury | 2000 |
PublicationDate | 2023-07-20 |
PublicationDateYYYYMMDD | 2023-07-20 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Den Boer (D3TC00861D/cit2/1) 2011 Orzechowski (D3TC00861D/cit56/1) 2022; 16 Khatun (D3TC00861D/cit53/1) 2021; 325 Rahman (D3TC00861D/cit10/1) 2015; 16 Xu (D3TC00861D/cit17/1) 2018; 6 Yang (D3TC00861D/cit13/1) 2021; 1 Coles (D3TC00861D/cit19/1) 2010; 4 Ravnik (D3TC00861D/cit55/1) 2011; 108 Kikuchi (D3TC00861D/cit29/1) 2002; 1 Yoshizawa (D3TC00861D/cit39/1) 2011; 4 Chen (D3TC00861D/cit5/1) 2018; 7 Meiboom (D3TC00861D/cit46/1) 1981; 46 Hong (D3TC00861D/cit54/1) 2009; 511 Fodor-Csorba (D3TC00861D/cit45/1) 2004; 218 Taushanoff (D3TC00861D/cit36/1) 2010; 20 Crooker (D3TC00861D/cit6/1) 1989; 5 Karatairi (D3TC00861D/cit32/1) 2010; 81 Cordoyiannis (D3TC00861D/cit33/1) 2020 Coles (D3TC00861D/cit51/1) 2005; 436 Gandhi (D3TC00861D/cit31/1) 2016; 28 Selinger (D3TC00861D/cit50/1) 2018; 6 Singh (D3TC00861D/cit57/1) 2019; 9 Yan (D3TC00861D/cit16/1) 2013; 102 Chen (D3TC00861D/cit26/1) 2011; 99 Hur (D3TC00861D/cit44/1) 2011; 7 Yang (D3TC00861D/cit12/1) 2021; 33 Fukuda (D3TC00861D/cit47/1) 2012; 85 Khosla (D3TC00861D/cit59/1) 2021; 2352 Chen (D3TC00861D/cit24/1) 2010; 6 Khatun (D3TC00861D/cit52/1) 2021; 125 Lee (D3TC00861D/cit27/1) 2011; 42 Iwamochi (D3TC00861D/cit41/1) 2010; 39 Lin (D3TC00861D/cit7/1) 2015 Chen (D3TC00861D/cit42/1) 2013; 21 Uchida (D3TC00861D/cit3/1) 2014; 53 Khan (D3TC00861D/cit34/1) 2021; 129 Wang (D3TC00861D/cit14/1) 2020; 32 Sato (D3TC00861D/cit38/1) 2007; 19 Ge (D3TC00861D/cit25/1) 2009; 94 Yang (D3TC00861D/cit1/1) 2014 Sridurai (D3TC00861D/cit18/1) 2017; 9 Yang (D3TC00861D/cit20/1) 2021; 13 Chen (D3TC00861D/cit58/1) 2016 Khan (D3TC00861D/cit37/1) 2022; 14 Chen (D3TC00861D/cit43/1) 2017; 44 Rao (D3TC00861D/cit23/1) 2010; 527 Gleeson (D3TC00861D/cit8/1) 2015; 42 Gong (D3TC00861D/cit15/1) 2019 Kitzerow (D3TC00861D/cit22/1) 1991; 67 Stegemeyer (D3TC00861D/cit21/1) 1986; 1 Le (D3TC00861D/cit35/1) 2011; 21 Kitzerow (D3TC00861D/cit28/1) 2009; 7232 Borshch (D3TC00861D/cit48/1) 2013; 4 Kim (D3TC00861D/cit4/1) 2009; 1 Dubois-Violette (D3TC00861D/cit9/1) 1988; 165 Wang (D3TC00861D/cit11/1) 2016; 26 Iwamochi (D3TC00861D/cit40/1) 2008; 1 Panov (D3TC00861D/cit49/1) 2021; 11 Kim (D3TC00861D/cit30/1) 2015; 11 |
References_xml | – issn: 2019 publication-title: Photonic crystals: principles and applications doi: Gong Hu – issn: 2015 end-page: p 337-378 publication-title: Anisotropic nanomaterials doi: Lin Chen Li – issn: 2011 publication-title: Active matrix liquid crystal displays: fundamentals and applications doi: Den Boer – issn: 2014 publication-title: Fundamentals of liquid crystal devices doi: Yang Wu – issn: 2016 publication-title: Handbook of visual display technology doi: Chen Cranton Fihn – volume: 28 start-page: 8998 year: 2016 ident: D3TC00861D/cit31/1 publication-title: Adv. Mat. doi: 10.1002/adma.201603226 contributor: fullname: Gandhi – volume: 1 start-page: 29 year: 2009 ident: D3TC00861D/cit4/1 publication-title: NPG Asia Mater. doi: 10.1038/asiamat.2009.3 contributor: fullname: Kim – volume: 4 start-page: 676 year: 2010 ident: D3TC00861D/cit19/1 publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.184 contributor: fullname: Coles – volume: 1 start-page: 2100007 issue: 6 year: 2021 ident: D3TC00861D/cit13/1 publication-title: Small Sci. doi: 10.1002/smsc.202100007 contributor: fullname: Yang – volume: 39 start-page: 170 year: 2010 ident: D3TC00861D/cit41/1 publication-title: Chem. Lett. doi: 10.1246/cl.2010.170 contributor: fullname: Iwamochi – start-page: 337 volume-title: Anisotropic nanomaterials year: 2015 ident: D3TC00861D/cit7/1 doi: 10.1007/978-3-319-18293-3_9 contributor: fullname: Lin – volume: 2352 start-page: 020037 year: 2021 ident: D3TC00861D/cit59/1 publication-title: AIP Conf. Proc. doi: 10.1063/5.0052765 contributor: fullname: Khosla – volume: 85 start-page: 020701 year: 2012 ident: D3TC00861D/cit47/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.85.020701 contributor: fullname: Fukuda – volume: 5 start-page: 751 year: 1989 ident: D3TC00861D/cit6/1 publication-title: Liq. Cryst. doi: 10.1080/02678298908026383 contributor: fullname: Crooker – volume: 1 start-page: 64 year: 2002 ident: D3TC00861D/cit29/1 publication-title: Nat. Mat. doi: 10.1038/nmat712 contributor: fullname: Kikuchi – volume: 218 start-page: 81 year: 2004 ident: D3TC00861D/cit45/1 publication-title: Macromol. Symp. doi: 10.1002/masy.200451409 contributor: fullname: Fodor-Csorba – volume-title: Photonic crystals: principles and applications year: 2019 ident: D3TC00861D/cit15/1 contributor: fullname: Gong – volume: 19 start-page: 4145 year: 2007 ident: D3TC00861D/cit38/1 publication-title: Adv. Mat. doi: 10.1002/adma.200700903 contributor: fullname: Sato – volume: 67 start-page: 2151 year: 1991 ident: D3TC00861D/cit22/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.2151 contributor: fullname: Kitzerow – volume-title: Handbook of visual display technology year: 2016 ident: D3TC00861D/cit58/1 doi: 10.1007/978-3-319-14346-0 contributor: fullname: Chen – volume: 511 start-page: 248/[1718] year: 2009 ident: D3TC00861D/cit54/1 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421400903054220 contributor: fullname: Hong – volume: 108 start-page: 5188 issue: 13 year: 2011 ident: D3TC00861D/cit55/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1015831108 contributor: fullname: Ravnik – volume: 46 start-page: 1216 year: 1981 ident: D3TC00861D/cit46/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.1216 contributor: fullname: Meiboom – volume: 6 start-page: 49 year: 2010 ident: D3TC00861D/cit24/1 publication-title: J. Disp. Technol. doi: 10.1109/JDT.2009.2037981 contributor: fullname: Chen – volume: 16 start-page: 20577 issue: 12 year: 2022 ident: D3TC00861D/cit56/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c07321 contributor: fullname: Orzechowski – volume: 129 start-page: 024702 year: 2021 ident: D3TC00861D/cit34/1 publication-title: J. Appl. Phys. doi: 10.1063/5.0035810 contributor: fullname: Khan – volume: 9 start-page: 475 year: 2019 ident: D3TC00861D/cit57/1 publication-title: Crystals doi: 10.3390/cryst9090475 contributor: fullname: Singh – volume: 42 start-page: 121 year: 2011 ident: D3TC00861D/cit27/1 publication-title: SID Symposium Digest of Technical Papers doi: 10.1889/1.3621051 contributor: fullname: Lee – volume: 436 start-page: 997 year: 2005 ident: D3TC00861D/cit51/1 publication-title: Nature doi: 10.1038/nature03932 contributor: fullname: Coles – volume: 42 start-page: 760 year: 2015 ident: D3TC00861D/cit8/1 publication-title: Liq. Cryst. contributor: fullname: Gleeson – start-page: 315 year: 2020 ident: D3TC00861D/cit33/1 publication-title: Front. Phys. doi: 10.3389/fphy.2020.00315 contributor: fullname: Cordoyiannis – volume: 21 start-page: 2855 year: 2011 ident: D3TC00861D/cit35/1 publication-title: J. Mater. Chem. doi: 10.1039/c0jm04009f contributor: fullname: Le – volume: 14 start-page: 42628 year: 2022 ident: D3TC00861D/cit37/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c09392 contributor: fullname: Khan – volume: 4 start-page: 101701 year: 2011 ident: D3TC00861D/cit39/1 publication-title: Appl. Phys. Express doi: 10.1143/APEX.4.101701 contributor: fullname: Yoshizawa – volume: 7 start-page: 8800 year: 2011 ident: D3TC00861D/cit44/1 publication-title: Soft Matter doi: 10.1039/c1sm06046e contributor: fullname: Hur – volume: 125 start-page: 11582 year: 2021 ident: D3TC00861D/cit52/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.1c07422 contributor: fullname: Khatun – volume: 33 start-page: 2004754 issue: 14 year: 2021 ident: D3TC00861D/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.202004754 contributor: fullname: Yang – volume: 11 start-page: 621 issue: 6 year: 2021 ident: D3TC00861D/cit49/1 publication-title: Crystals doi: 10.3390/cryst11060621 contributor: fullname: Panov – volume-title: Fundamentals of liquid crystal devices year: 2014 ident: D3TC00861D/cit1/1 doi: 10.1002/9781118751992 contributor: fullname: Yang – volume: 94 start-page: 101104 year: 2009 ident: D3TC00861D/cit25/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3097355 contributor: fullname: Ge – volume: 16 start-page: 033501 issue: 3 year: 2015 ident: D3TC00861D/cit10/1 publication-title: Sci. Technol. Adv. Mat. doi: 10.1088/1468-6996/16/3/033501 contributor: fullname: Rahman – volume: 1 start-page: 3 year: 1986 ident: D3TC00861D/cit21/1 publication-title: Liq. Cryst. doi: 10.1080/02678298608086486 contributor: fullname: Stegemeyer – volume: 1 start-page: 111801 year: 2008 ident: D3TC00861D/cit40/1 publication-title: Appl. Phys. Express doi: 10.1143/APEX.1.111801 contributor: fullname: Iwamochi – volume: 9 start-page: 39569 year: 2017 ident: D3TC00861D/cit18/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10952 contributor: fullname: Sridurai – volume: 53 start-page: 03CA02 year: 2014 ident: D3TC00861D/cit3/1 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.53.03CA02 contributor: fullname: Uchida – volume: 4 start-page: 1 year: 2013 ident: D3TC00861D/cit48/1 publication-title: Nat. Commun. doi: 10.1038/ncomms3635 contributor: fullname: Borshch – volume: 21 start-page: 9774 year: 2013 ident: D3TC00861D/cit42/1 publication-title: Opt. Express doi: 10.1364/OE.21.009774 contributor: fullname: Chen – volume: 99 start-page: 201105 year: 2011 ident: D3TC00861D/cit26/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3662391 contributor: fullname: Chen – volume: 44 start-page: 473 year: 2017 ident: D3TC00861D/cit43/1 publication-title: Liq. Cryst. doi: 10.1080/02678292.2016.1217569 contributor: fullname: Chen – volume: 7 start-page: 17168 year: 2018 ident: D3TC00861D/cit5/1 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2017.168 contributor: fullname: Chen – volume: 325 start-page: 115059 year: 2021 ident: D3TC00861D/cit53/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.115059 contributor: fullname: Khatun – volume: 32 start-page: 1801335 issue: 41 year: 2020 ident: D3TC00861D/cit14/1 publication-title: Adv. Mater. doi: 10.1002/adma.201801335 contributor: fullname: Wang – volume: 6 start-page: 1700891 year: 2018 ident: D3TC00861D/cit17/1 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201700891 contributor: fullname: Xu – volume: 13 start-page: 41102 issue: 34 year: 2021 ident: D3TC00861D/cit20/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11711 contributor: fullname: Yang – volume: 20 start-page: 5893 year: 2010 ident: D3TC00861D/cit36/1 publication-title: J. Mat. Chem. doi: 10.1039/c0jm00690d contributor: fullname: Taushanoff – volume: 26 start-page: 10 year: 2016 ident: D3TC00861D/cit11/1 publication-title: Adv. Funct. Mat. doi: 10.1002/adfm.201502071 contributor: fullname: Wang – volume: 102 start-page: 011113 year: 2013 ident: D3TC00861D/cit16/1 publication-title: App. Phys. Lett. doi: 10.1063/1.4773985 contributor: fullname: Yan – volume: 527 start-page: 30/[186] year: 2010 ident: D3TC00861D/cit23/1 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2010.486600 contributor: fullname: Rao – volume: 81 start-page: 041703 year: 2010 ident: D3TC00861D/cit32/1 publication-title: Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. doi: 10.1103/PhysRevE.81.041703 contributor: fullname: Karatairi – volume: 7232 start-page: 723205 year: 2009 ident: D3TC00861D/cit28/1 publication-title: Emerging liquid crystal technologies IV doi: 10.1117/12.813372 contributor: fullname: Kitzerow – volume-title: Active matrix liquid crystal displays: fundamentals and applications year: 2011 ident: D3TC00861D/cit2/1 contributor: fullname: Den Boer – volume: 11 start-page: 8013 year: 2015 ident: D3TC00861D/cit30/1 publication-title: Soft Matter doi: 10.1039/C5SM01918D contributor: fullname: Kim – volume: 6 start-page: 129 year: 2018 ident: D3TC00861D/cit50/1 publication-title: Liq. Cryst. Rev. doi: 10.1080/21680396.2019.1581103 contributor: fullname: Selinger – volume: 165 start-page: 151 year: 1988 ident: D3TC00861D/cit9/1 publication-title: Mol. Cryst. Liqu. Cryst. contributor: fullname: Dubois-Violette |
SSID | ssj0000816869 |
Score | 2.2962103 |
Snippet | Amorphous Blue phase, or BPIII, a mesophase exhibited by highly chiral liquid crystals, is increasingly being investigated for next-generation displays due to... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 9686 |
SubjectTerms | Ambient temperature Crystal defects Dimers Display devices Elastic deformation Elastic properties Free energy Liquid crystals Low molecular weights Molecular weight Nematic crystals Optical microscopy Optical properties Optics Quantum dots Response time Thermal stability Topology |
Title | Topological defects stabilized by a soft twist-bend dimer and quantum dots lead to a wide thermal range and ultra-fast electro-optic response in a liquid crystalline amorphous blue phase |
URI | https://www.proquest.com/docview/2839718838 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwGLU6rZDggKBQMVCQJbhFKZk4cZNj1RYVBL0wRb2NvEWTarZmUdX-NH4dn5fEqQoScIlmnGUyeS-fn-1vQegDYYRTUKohoYSESV5kYUYzFmaFoAR6cBnlOlD42zk9u0i-XKaXW6PRwGupbfiBuPttXMn_oAptgKuOkv0HZPuLQgN8BnxhCwjD9u8wthUO7EqLso4ZoPa0v-udVZYsqMHOBs0NoBlytZKBLJfK-k1et_BU22UA49JaV4-QWoey4KaUSstRsNiLoNKxB-bodtFULCxY3QSudE643tgE0MbL1iQfYcGivG5LGYjqFm5kYTQsW64BTO1qyxetCjbzbkHooSYG-WyfWyC6QnQHwbGNKer2aL9I88suy8GgkI9Uxu71ncicNa2NJ2urKzb3L8L3qpRtZStx_yjhj3p_pXpdcRcmp5NDrrzr8zkrK7uMoJo5c0XJ3IRJTPRMbBx5uxpHaRQeprHLwD1sc_OqXccwGbwALoTdmvmcdvm73VdbqPlBdxQRnc1VkkbooeNE-k63d4X0O0doJwZrCWZ65-h0-vlrP1VoaqOY4oz9rXeJdkn-0V_gvrTy46VR1RWzMaJp-gw9dcjiI0vd52hLrXbRk0EOzF30yPggi_oF-jmgM3Z0xp7OmN9ihjWdsaczNnTGwAPs6Iw1nbGmM27WcIKmM3Z0xobO5mhPZ3yPzrijMy5XcLalMx7QGfd0xprO2ND5Jbr4dDo9PgtdaZFQxNmkCVVOi5yDoYoSWrCJkkksJ5TGiilOQJOLQxgaZJRLBUMSXhA9b6JSyVQeSZGkOdlD26v1Sr1CmKWgyKUUuSBFwjnLBBUwBmcRISpNZTxG7ztUZhubQWZmPD9IPjshemEPsDsZo_0OsJmzMPUMpH8O2jEj2RjtAYj9-R7z13_a8QY99uTfR9tN1aq3oJ8b_s7x6xesqNGg |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+defects+stabilized+by+a+soft+twist-bend+dimer+and+quantum+dots+lead+to+a+wide+thermal+range+and+ultra-fast+electro-optic+response+in+a+liquid+crystalline+amorphous+blue+phase&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Khatun%2C+Nurjahan&rft.au=Sridurai%2C+Vimala&rft.au=Csorba%2C+Katalin+F&rft.au=Nair%2C+Geetha+G&rft.date=2023-07-20&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=11&rft.issue=28&rft.spage=9686&rft.epage=9694&rft_id=info:doi/10.1039%2Fd3tc00861d&rft.externalDocID=d3tc00861d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |