Optimization of a quantitative protocol for the intermediate metabolites of the glycolysis pathway in human serum using gas chromatography-mass spectrometry
Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites o...
Saved in:
Published in | New journal of chemistry Vol. 47; no. 19; pp. 9364 - 9376 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
16.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites of glycolysis such as glycerate 3-phosphate (3PG), β-fructose 6-phosphate (F6P) and α-glucose 6-phosphate (G6P) in biological samples have poor stability and low abundance, which makes their separation and detection more challenging. In this work, an optimal protocol for detecting 10 glycolysis metabolites in serum samples was developed using gas chromatography triple quadrupole mass spectrometry. Single factor experiment and response surface methodology were used to optimize the pretreatment of serum samples. The optimal conditions were as follows: the volume of the derivatization reagent, 100 μL; extraction solvent, 80% methanol; derivatization temperature, 80 °C; and derivatization time, 60 min. The protocol showed an acceptable linearity (
R
2
≥ 0.9872), the lowest detection limit (0.0002-0.2382 μg mL
−1
), the limits of quantitation (0.0007-0.7940 μg mL
−1
), and the satisfactory intra-day (RSD% ≤ 13.67%) and inter-day precision (RSD% ≤ 12.01%). The results of the stability test showed that it was a better choice to determine metabolites during 2 months when the serum was stored at −80 °C in order to avoid the change in 3PG and G6P. Furthermore, the metabolites in serum were relatively stable for detection (RSD% < 18.77%) after 4 freeze-thaw cycles. Finally, this protocol was applied to the quantitative analysis of glycolysis metabolites from gastric cancer patients, and was beneficial to find out the metabolic changes of the glycolysis pathway and explain the pathogenesis of the disease.
This protocol refined a methodology for simultaneously testing 10 glycolysis pathway metabolites in serum. The quantification of glycolysis metabolites in serum from gastric cancer patients was carried out to observe changes in glycolysis. |
---|---|
AbstractList | Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites of glycolysis such as glycerate 3-phosphate (3PG), β-fructose 6-phosphate (F6P) and α-glucose 6-phosphate (G6P) in biological samples have poor stability and low abundance, which makes their separation and detection more challenging. In this work, an optimal protocol for detecting 10 glycolysis metabolites in serum samples was developed using gas chromatography triple quadrupole mass spectrometry. Single factor experiment and response surface methodology were used to optimize the pretreatment of serum samples. The optimal conditions were as follows: the volume of the derivatization reagent, 100 μL; extraction solvent, 80% methanol; derivatization temperature, 80 °C; and derivatization time, 60 min. The protocol showed an acceptable linearity (
R
2
≥ 0.9872), the lowest detection limit (0.0002–0.2382 μg mL
−1
), the limits of quantitation (0.0007–0.7940 μg mL
−1
), and the satisfactory intra-day (RSD% ≤ 13.67%) and inter-day precision (RSD% ≤ 12.01%). The results of the stability test showed that it was a better choice to determine metabolites during 2 months when the serum was stored at −80 °C in order to avoid the change in 3PG and G6P. Furthermore, the metabolites in serum were relatively stable for detection (RSD% < 18.77%) after 4 freeze–thaw cycles. Finally, this protocol was applied to the quantitative analysis of glycolysis metabolites from gastric cancer patients, and was beneficial to find out the metabolic changes of the glycolysis pathway and explain the pathogenesis of the disease. Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites of glycolysis such as glycerate 3-phosphate (3PG), β-fructose 6-phosphate (F6P) and α-glucose 6-phosphate (G6P) in biological samples have poor stability and low abundance, which makes their separation and detection more challenging. In this work, an optimal protocol for detecting 10 glycolysis metabolites in serum samples was developed using gas chromatography triple quadrupole mass spectrometry. Single factor experiment and response surface methodology were used to optimize the pretreatment of serum samples. The optimal conditions were as follows: the volume of the derivatization reagent, 100 μL; extraction solvent, 80% methanol; derivatization temperature, 80 °C; and derivatization time, 60 min. The protocol showed an acceptable linearity ( R 2 ≥ 0.9872), the lowest detection limit (0.0002-0.2382 μg mL −1 ), the limits of quantitation (0.0007-0.7940 μg mL −1 ), and the satisfactory intra-day (RSD% ≤ 13.67%) and inter-day precision (RSD% ≤ 12.01%). The results of the stability test showed that it was a better choice to determine metabolites during 2 months when the serum was stored at −80 °C in order to avoid the change in 3PG and G6P. Furthermore, the metabolites in serum were relatively stable for detection (RSD% < 18.77%) after 4 freeze-thaw cycles. Finally, this protocol was applied to the quantitative analysis of glycolysis metabolites from gastric cancer patients, and was beneficial to find out the metabolic changes of the glycolysis pathway and explain the pathogenesis of the disease. This protocol refined a methodology for simultaneously testing 10 glycolysis pathway metabolites in serum. The quantification of glycolysis metabolites in serum from gastric cancer patients was carried out to observe changes in glycolysis. Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites of glycolysis such as glycerate 3-phosphate (3PG), β-fructose 6-phosphate (F6P) and α-glucose 6-phosphate (G6P) in biological samples have poor stability and low abundance, which makes their separation and detection more challenging. In this work, an optimal protocol for detecting 10 glycolysis metabolites in serum samples was developed using gas chromatography triple quadrupole mass spectrometry. Single factor experiment and response surface methodology were used to optimize the pretreatment of serum samples. The optimal conditions were as follows: the volume of the derivatization reagent, 100 μL; extraction solvent, 80% methanol; derivatization temperature, 80 °C; and derivatization time, 60 min. The protocol showed an acceptable linearity (R2 ≥ 0.9872), the lowest detection limit (0.0002–0.2382 μg mL−1), the limits of quantitation (0.0007–0.7940 μg mL−1), and the satisfactory intra-day (RSD% ≤ 13.67%) and inter-day precision (RSD% ≤ 12.01%). The results of the stability test showed that it was a better choice to determine metabolites during 2 months when the serum was stored at −80 °C in order to avoid the change in 3PG and G6P. Furthermore, the metabolites in serum were relatively stable for detection (RSD% < 18.77%) after 4 freeze–thaw cycles. Finally, this protocol was applied to the quantitative analysis of glycolysis metabolites from gastric cancer patients, and was beneficial to find out the metabolic changes of the glycolysis pathway and explain the pathogenesis of the disease. |
Author | Tang, Ying-Shu Zhang, Ming-Jia Liu, Li-Yan Zhao, Jin-Hui |
AuthorAffiliation | Harbin Medical University Department of Nutrition and Food Hygiene Public Health College |
AuthorAffiliation_xml | – sequence: 0 name: Harbin Medical University – sequence: 0 name: Department of Nutrition and Food Hygiene – sequence: 0 name: Public Health College |
Author_xml | – sequence: 1 givenname: Ying-Shu surname: Tang fullname: Tang, Ying-Shu – sequence: 2 givenname: Ming-Jia surname: Zhang fullname: Zhang, Ming-Jia – sequence: 3 givenname: Jin-Hui surname: Zhao fullname: Zhao, Jin-Hui – sequence: 4 givenname: Li-Yan surname: Liu fullname: Liu, Li-Yan |
BookMark | eNptkctq3TAQhkVIobl0k31B0F3BjWTJFy1D2rQJIdm0azOWx8c62JIjySnOs_Rho5MTGihdzTDz_TPMP8fk0DqLhJxx9oUzoc673G5ZyQoBB-SIi1JlKi_5Ycq5lBkrZPmeHIewZYzzquRH5M_9HM1kniAaZ6nrKdCHBWw0MVUekc7eRafdSHvnaRyQGhvRT9gZiEgnjNC60UQMO-2uvxnXhK_BBDpDHH7DmiR0WCawNKBfJroEYzd0A4HqwbsJott4mIc1myAEGmbUMZUx-vWUvOthDPjhNZ6QX1fffl7-yG7vv19fXtxmOq95zJDLXHWM19Aiq1uhigIV9hJrKVtRdkK1qtW6U0Wl-5z1XAFw2dcaddXmuhIn5NN-brr2YcEQm61bvE0rm7RA1JLLKk_U5z2lvQvBY9_M3kzg14azZud-8zW_u3lx_yLB7B9Yv1jqbPRgxv9LPu4lPui_o98eKp4BToiYlw |
CitedBy_id | crossref_primary_10_1016_j_aca_2024_342908 crossref_primary_10_1080_10408347_2024_2364232 |
Cites_doi | 10.1016/j.ab.2004.04.037 10.1016/j.tibs.2015.12.001 10.1016/j.aca.2022.339570 10.1016/j.talanta.2019.120147 10.1016/j.chroma.2007.10.011 10.1016/j.chroma.2020.461807 10.1016/j.chroma.2016.06.046 10.1002/rcm.9149 10.3389/fnins.2019.00871 10.3390/metabo12010015 10.1038/onc.2010.182 10.1016/j.jpba.2019.04.022 10.1039/c3an01930f 10.1021/acs.analchem.1c00767 10.1021/ac900675k 10.1126/science.123.3191.309 10.1016/j.microc.2022.108065 10.1093/jnci/94.16.1197 10.1146/annurev-anchem-091619-091306 10.1016/j.molstruc.2023.135096 10.1016/j.exger.2013.10.010 10.1016/j.chroma.2006.05.019 10.1007/s11306-010-0254-3 10.1038/sj.jcbfm.9600145 10.1186/1476-4598-12-152 10.1007/s00216-015-8521-9 10.1016/j.jpba.2016.06.017 10.1515/revneuro-2017-0075 10.1007/s12010-015-1535-0 10.1186/s13007-019-0514-9 10.1007/s00018-015-2070-4 10.1007/s13238-014-0082-8 10.1021/acs.analchem.2c00346 10.1016/j.chemolab.2017.11.004 10.1007/s13187-013-0486-9 10.1016/j.chroma.2021.462531 10.1073/pnas.0831078100 10.1002/jssc.201900539 10.1007/s00429-013-0662-z 10.1021/ac100101d 10.1038/nm0396-323 10.1016/j.tins.2013.07.001 10.1016/j.ymben.2018.08.011 10.1586/era.13.57 10.1016/j.ccr.2012.09.020 10.1021/acs.analchem.7b01624 10.1002/jssc.201801269 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
DOI | 10.1039/d2nj06053a |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 9376 |
ExternalDocumentID | 10_1039_D2NJ06053A d2nj06053a |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABCQX ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L7B M4U N9A O9- OK1 P2P R7B R7C R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 YNT YQT AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 8BQ 8FD H9R JG9 KA0 |
ID | FETCH-LOGICAL-c281t-e1429d018abe08b3955e9ef4e844b36d39b9bccd957cf20f19aa14f8cec7b2c73 |
ISSN | 1144-0546 |
IngestDate | Mon Jun 30 09:48:47 EDT 2025 Tue Jul 01 02:51:32 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Tue Dec 17 20:58:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-e1429d018abe08b3955e9ef4e844b36d39b9bccd957cf20f19aa14f8cec7b2c73 |
Notes | https://doi.org/10.1039/d2nj06053a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6766-9508 |
PQID | 2813841472 |
PQPubID | 2048886 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1039_D2NJ06053A rsc_primary_d2nj06053a crossref_citationtrail_10_1039_D2NJ06053A proquest_journals_2813841472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-16 |
PublicationDateYYYYMMDD | 2023-05-16 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | New journal of chemistry |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Meng (D2NJ06053A/cit2/1) 2021; 93 Tavsan (D2NJ06053A/cit4/1) 2015; 176 Boumezbeur (D2NJ06053A/cit5/1) 2005; 25 Buescher (D2NJ06053A/cit19/1) 2010; 82 Schwaiger (D2NJ06053A/cit18/1) 2017; 89 Klavins (D2NJ06053A/cit47/1) 2014; 139 Qin (D2NJ06053A/cit48/1) 2016; 1457 Li (D2NJ06053A/cit43/1) 2016; 73 Calvani (D2NJ06053A/cit8/1) 2014; 49 Nemati (D2NJ06053A/cit31/1) 2022; 1199 Akram (D2NJ06053A/cit1/1) 2013; 28 Fritz (D2NJ06053A/cit37/1) 2010; 29 Hitosugi (D2NJ06053A/cit46/1) 2012; 22 Shuch (D2NJ06053A/cit7/1) 2013; 13 Bauernfeind (D2NJ06053A/cit10/1) 2014; 219 Nam (D2NJ06053A/cit14/1) 2021; 1656 Bajad (D2NJ06053A/cit16/1) 2006; 1125 Thakare (D2NJ06053A/cit28/1) 2016; 128 Liberti (D2NJ06053A/cit36/1) 2016; 41 Al-Suod (D2NJ06053A/cit33/1) 2019; 42 Al-Suod (D2NJ06053A/cit34/1) 2019; 42 Jiang (D2NJ06053A/cit42/1) 2014; 5 Zhang (D2NJ06053A/cit12/1) 2020; 13 Preul (D2NJ06053A/cit44/1) 1996; 2 Vallee (D2NJ06053A/cit11/1) 2018; 29 Soga (D2NJ06053A/cit13/1) 2009; 81 Jin (D2NJ06053A/cit41/1) 2019; 17 Bergau (D2NJ06053A/cit9/1) 2019; 13 Gullberg (D2NJ06053A/cit21/1) 2004; 331 Katz-Brull (D2NJ06053A/cit45/1) 2002; 94 Mohebbi (D2NJ06053A/cit30/1) 2022; 183 Warburg (D2NJ06053A/cit38/1) 1956; 123 Kiseleva (D2NJ06053A/cit35/1) 2021; 12 Antonio (D2NJ06053A/cit25/1) 2007; 1172 Sonveaux (D2NJ06053A/cit40/1) 2008; 118 Chu (D2NJ06053A/cit22/1) 2015; 407 Koek (D2NJ06053A/cit20/1) 2011; 7 Zhang (D2NJ06053A/cit32/1) 2021; 35 Rende (D2NJ06053A/cit26/1) 2019; 15 Ganapathy-Kanniappan (D2NJ06053A/cit6/1) 2013; 12 Okahashi (D2NJ06053A/cit49/1) 2019; 51 Itoh (D2NJ06053A/cit39/1) 2003; 100 Mergenthaler (D2NJ06053A/cit3/1) 2013; 36 Iturrospe (D2NJ06053A/cit17/1) 2021; 1637 Si-Hung (D2NJ06053A/cit24/1) 2019; 205 Giordano (D2NJ06053A/cit27/1) 2017; 171 Khoubnasabjafari (D2NJ06053A/cit29/1) 2023; 1281 Xu (D2NJ06053A/cit23/1) 2019; 171 Li (D2NJ06053A/cit15/1) 2022; 94 |
References_xml | – volume: 331 start-page: 283 year: 2004 ident: D2NJ06053A/cit21/1 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2004.04.037 – volume: 41 start-page: 211 year: 2016 ident: D2NJ06053A/cit36/1 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.12.001 – volume: 1199 start-page: 339570 year: 2022 ident: D2NJ06053A/cit31/1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2022.339570 – volume: 205 start-page: 120147 year: 2019 ident: D2NJ06053A/cit24/1 publication-title: Talanta doi: 10.1016/j.talanta.2019.120147 – volume: 1172 start-page: 170 year: 2007 ident: D2NJ06053A/cit25/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2007.10.011 – volume: 1637 start-page: 461807 year: 2021 ident: D2NJ06053A/cit17/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2020.461807 – volume: 1457 start-page: 125 year: 2016 ident: D2NJ06053A/cit48/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2016.06.046 – volume: 35 start-page: e9149 year: 2021 ident: D2NJ06053A/cit32/1 publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.9149 – volume: 13 start-page: 871 year: 2019 ident: D2NJ06053A/cit9/1 publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00871 – volume: 12 start-page: 15 issue: 1 year: 2021 ident: D2NJ06053A/cit35/1 publication-title: Metabolites doi: 10.3390/metabo12010015 – volume: 29 start-page: 4369 year: 2010 ident: D2NJ06053A/cit37/1 publication-title: Oncogene doi: 10.1038/onc.2010.182 – volume: 17 start-page: 4213 year: 2019 ident: D2NJ06053A/cit41/1 publication-title: Oncol. Lett. – volume: 171 start-page: 171 year: 2019 ident: D2NJ06053A/cit23/1 publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2019.04.022 – volume: 139 start-page: 1512 year: 2014 ident: D2NJ06053A/cit47/1 publication-title: Analyst doi: 10.1039/c3an01930f – volume: 93 start-page: 10075 year: 2021 ident: D2NJ06053A/cit2/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00767 – volume: 81 start-page: 6165 year: 2009 ident: D2NJ06053A/cit13/1 publication-title: Anal. Chem. doi: 10.1021/ac900675k – volume: 123 start-page: 309 year: 1956 ident: D2NJ06053A/cit38/1 publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 183 start-page: 108065 year: 2022 ident: D2NJ06053A/cit30/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2022.108065 – volume: 94 start-page: 1197 year: 2002 ident: D2NJ06053A/cit45/1 publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/94.16.1197 – volume: 13 start-page: 293 year: 2020 ident: D2NJ06053A/cit12/1 publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-091619-091306 – volume: 1281 start-page: 135096 year: 2023 ident: D2NJ06053A/cit29/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2023.135096 – volume: 49 start-page: 5 year: 2014 ident: D2NJ06053A/cit8/1 publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2013.10.010 – volume: 1125 start-page: 76 year: 2006 ident: D2NJ06053A/cit16/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2006.05.019 – volume: 7 start-page: 307 year: 2011 ident: D2NJ06053A/cit20/1 publication-title: Metabolomics doi: 10.1007/s11306-010-0254-3 – volume: 25 start-page: 1418 year: 2005 ident: D2NJ06053A/cit5/1 publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/sj.jcbfm.9600145 – volume: 12 start-page: 1 year: 2013 ident: D2NJ06053A/cit6/1 publication-title: Mol. Cancer doi: 10.1186/1476-4598-12-152 – volume: 118 start-page: 3930 year: 2008 ident: D2NJ06053A/cit40/1 publication-title: J. Clin. Invest. – volume: 407 start-page: 2865 year: 2015 ident: D2NJ06053A/cit22/1 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-015-8521-9 – volume: 128 start-page: 426 year: 2016 ident: D2NJ06053A/cit28/1 publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2016.06.017 – volume: 29 start-page: 547 year: 2018 ident: D2NJ06053A/cit11/1 publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2017-0075 – volume: 176 start-page: 76 year: 2015 ident: D2NJ06053A/cit4/1 publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-015-1535-0 – volume: 15 start-page: 127 year: 2019 ident: D2NJ06053A/cit26/1 publication-title: Plant Methods doi: 10.1186/s13007-019-0514-9 – volume: 73 start-page: 377 year: 2016 ident: D2NJ06053A/cit43/1 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-015-2070-4 – volume: 5 start-page: 592 year: 2014 ident: D2NJ06053A/cit42/1 publication-title: Protein Cell doi: 10.1007/s13238-014-0082-8 – volume: 94 start-page: 4866 year: 2022 ident: D2NJ06053A/cit15/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c00346 – volume: 171 start-page: 198 year: 2017 ident: D2NJ06053A/cit27/1 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.11.004 – volume: 28 start-page: 454 year: 2013 ident: D2NJ06053A/cit1/1 publication-title: J. Cancer Educ. doi: 10.1007/s13187-013-0486-9 – volume: 1656 start-page: 462531 year: 2021 ident: D2NJ06053A/cit14/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2021.462531 – volume: 100 start-page: 4879 year: 2003 ident: D2NJ06053A/cit39/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0831078100 – volume: 42 start-page: 3243 year: 2019 ident: D2NJ06053A/cit34/1 publication-title: J. Sep. Sci. doi: 10.1002/jssc.201900539 – volume: 219 start-page: 1149 year: 2014 ident: D2NJ06053A/cit10/1 publication-title: Brain Struct. Funct. doi: 10.1007/s00429-013-0662-z – volume: 82 start-page: 4403 year: 2010 ident: D2NJ06053A/cit19/1 publication-title: Anal. Chem. doi: 10.1021/ac100101d – volume: 2 start-page: 323 year: 1996 ident: D2NJ06053A/cit44/1 publication-title: Nat. Med. doi: 10.1038/nm0396-323 – volume: 36 start-page: 587 year: 2013 ident: D2NJ06053A/cit3/1 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2013.07.001 – volume: 51 start-page: 43 year: 2019 ident: D2NJ06053A/cit49/1 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.08.011 – volume: 13 start-page: 711 year: 2013 ident: D2NJ06053A/cit7/1 publication-title: Expert Rev. Anticancer Ther. doi: 10.1586/era.13.57 – volume: 22 start-page: 585 year: 2012 ident: D2NJ06053A/cit46/1 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.09.020 – volume: 89 start-page: 7667 year: 2017 ident: D2NJ06053A/cit18/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01624 – volume: 42 start-page: 1265 year: 2019 ident: D2NJ06053A/cit33/1 publication-title: J. Sep. Sci. doi: 10.1002/jssc.201801269 |
SSID | ssj0011761 |
Score | 2.3979504 |
Snippet | Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9364 |
SubjectTerms | Biological properties Chromatography Freeze thaw cycles Gas chromatography Glycolysis Mass spectrometry Metabolic disorders Metabolism Metabolites Optimization Pathogenesis Quadrupoles Quantitative analysis Reagents Response surface methodology Scientific imaging Stability tests |
Title | Optimization of a quantitative protocol for the intermediate metabolites of the glycolysis pathway in human serum using gas chromatography-mass spectrometry |
URI | https://www.proquest.com/docview/2813841472 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QEuiFdFoKCV4IKihewjtvdYlaIQteVAKrWnyF6v21SNA4ktBL-FE7-U2ZftiiABFyva9Vp2vs-7s-OZbxB6RY2KnKIREbC8EJEWgmSjNCdZSjUsWCpxkvknp9HkTEzPx-e93s9O1FJdZW_U9615Jf-DKrQBriZL9h-QbS4KDfAb8IUjIAzHv8L4I7zvS59I6RIdv9RpadPGTECQ0WBYAdBNKKHRhljbXJFKm9rRQACTgrwJgQKXN9_gdKtRYioVf01tUqAr4wcPVC-HtXUtXKabobpar8Da9YrXZAlG-NCmbRr9g-p2orUJouxIVKhQZK51G7gZ5wIuTj5d1b95s09Mx3SRdjrcF6NFSSb1IjQfL2rnZyAXnvTen8Fs9KBLt_RTMGzxoM07JrVr45EkkjnZ9jBvO6XOwE_ZmYUld8rofkUHCyzaulqMuBFbzVl5PYJdHe-siU2kYtu5g3YZbEVYH-0eHM0-HDffqmjsVHnDfQcRXC7ftqNvmz3tXmZnHQrNWINmdh_d8zsRfOBo9QD1dPkQ3TkM2DxCP7r0wqsCp7hLLxzohYFeGOiDu_TCHXqZsaa_pRf29IIh2NILW3phSy8M9MJb6IW79HqMzt4fzQ4nxBfzIIoltCKaguWTj2iSZnqUZFyOx1rqQuhEiIxHOZeZzJTK5ThWBRsVVKYpFUWitIozpmK-h_rlqtRPEKZFwTPB4qhQidAyl4rlWqe0YFpEuSoG6HX4r-fKK92bgis3cxtxweX8HTudWlwOBuhlc-5np--y9az9ANncvy6bOTwWTwQVMRugPYCxGd-i_vRPHc_Q3Zb7-6hfrWv9HKzbKnvh6fULED-xcQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+a+quantitative+protocol+for+the+intermediate+metabolites+of+the+glycolysis+pathway+in+human+serum+using+gas+chromatography-mass+spectrometry&rft.jtitle=New+journal+of+chemistry&rft.au=Tang%2C+Ying-Shu&rft.au=Zhang%2C+Ming-Jia&rft.au=Zhao%2C+Jin-Hui&rft.au=Liu%2C+Li-Yan&rft.date=2023-05-16&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=47&rft.issue=19&rft.spage=9364&rft.epage=9376&rft_id=info:doi/10.1039%2Fd2nj06053a&rft.externalDocID=d2nj06053a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |