Optimization of a quantitative protocol for the intermediate metabolites of the glycolysis pathway in human serum using gas chromatography-mass spectrometry

Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites o...

Full description

Saved in:
Bibliographic Details
Published inNew journal of chemistry Vol. 47; no. 19; pp. 9364 - 9376
Main Authors Tang, Ying-Shu, Zhang, Ming-Jia, Zhao, Jin-Hui, Liu, Li-Yan
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 16.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites of glycolysis such as glycerate 3-phosphate (3PG), β-fructose 6-phosphate (F6P) and α-glucose 6-phosphate (G6P) in biological samples have poor stability and low abundance, which makes their separation and detection more challenging. In this work, an optimal protocol for detecting 10 glycolysis metabolites in serum samples was developed using gas chromatography triple quadrupole mass spectrometry. Single factor experiment and response surface methodology were used to optimize the pretreatment of serum samples. The optimal conditions were as follows: the volume of the derivatization reagent, 100 μL; extraction solvent, 80% methanol; derivatization temperature, 80 °C; and derivatization time, 60 min. The protocol showed an acceptable linearity ( R 2 ≥ 0.9872), the lowest detection limit (0.0002-0.2382 μg mL −1 ), the limits of quantitation (0.0007-0.7940 μg mL −1 ), and the satisfactory intra-day (RSD% ≤ 13.67%) and inter-day precision (RSD% ≤ 12.01%). The results of the stability test showed that it was a better choice to determine metabolites during 2 months when the serum was stored at −80 °C in order to avoid the change in 3PG and G6P. Furthermore, the metabolites in serum were relatively stable for detection (RSD% < 18.77%) after 4 freeze-thaw cycles. Finally, this protocol was applied to the quantitative analysis of glycolysis metabolites from gastric cancer patients, and was beneficial to find out the metabolic changes of the glycolysis pathway and explain the pathogenesis of the disease. This protocol refined a methodology for simultaneously testing 10 glycolysis pathway metabolites in serum. The quantification of glycolysis metabolites in serum from gastric cancer patients was carried out to observe changes in glycolysis.
AbstractList Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites of glycolysis such as glycerate 3-phosphate (3PG), β-fructose 6-phosphate (F6P) and α-glucose 6-phosphate (G6P) in biological samples have poor stability and low abundance, which makes their separation and detection more challenging. In this work, an optimal protocol for detecting 10 glycolysis metabolites in serum samples was developed using gas chromatography triple quadrupole mass spectrometry. Single factor experiment and response surface methodology were used to optimize the pretreatment of serum samples. The optimal conditions were as follows: the volume of the derivatization reagent, 100 μL; extraction solvent, 80% methanol; derivatization temperature, 80 °C; and derivatization time, 60 min. The protocol showed an acceptable linearity ( R 2 ≥ 0.9872), the lowest detection limit (0.0002–0.2382 μg mL −1 ), the limits of quantitation (0.0007–0.7940 μg mL −1 ), and the satisfactory intra-day (RSD% ≤ 13.67%) and inter-day precision (RSD% ≤ 12.01%). The results of the stability test showed that it was a better choice to determine metabolites during 2 months when the serum was stored at −80 °C in order to avoid the change in 3PG and G6P. Furthermore, the metabolites in serum were relatively stable for detection (RSD% < 18.77%) after 4 freeze–thaw cycles. Finally, this protocol was applied to the quantitative analysis of glycolysis metabolites from gastric cancer patients, and was beneficial to find out the metabolic changes of the glycolysis pathway and explain the pathogenesis of the disease.
Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites of glycolysis such as glycerate 3-phosphate (3PG), β-fructose 6-phosphate (F6P) and α-glucose 6-phosphate (G6P) in biological samples have poor stability and low abundance, which makes their separation and detection more challenging. In this work, an optimal protocol for detecting 10 glycolysis metabolites in serum samples was developed using gas chromatography triple quadrupole mass spectrometry. Single factor experiment and response surface methodology were used to optimize the pretreatment of serum samples. The optimal conditions were as follows: the volume of the derivatization reagent, 100 μL; extraction solvent, 80% methanol; derivatization temperature, 80 °C; and derivatization time, 60 min. The protocol showed an acceptable linearity ( R 2 ≥ 0.9872), the lowest detection limit (0.0002-0.2382 μg mL −1 ), the limits of quantitation (0.0007-0.7940 μg mL −1 ), and the satisfactory intra-day (RSD% ≤ 13.67%) and inter-day precision (RSD% ≤ 12.01%). The results of the stability test showed that it was a better choice to determine metabolites during 2 months when the serum was stored at −80 °C in order to avoid the change in 3PG and G6P. Furthermore, the metabolites in serum were relatively stable for detection (RSD% < 18.77%) after 4 freeze-thaw cycles. Finally, this protocol was applied to the quantitative analysis of glycolysis metabolites from gastric cancer patients, and was beneficial to find out the metabolic changes of the glycolysis pathway and explain the pathogenesis of the disease. This protocol refined a methodology for simultaneously testing 10 glycolysis pathway metabolites in serum. The quantification of glycolysis metabolites in serum from gastric cancer patients was carried out to observe changes in glycolysis.
Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the glycolysis pathway is critical in understanding metabolic alterations that occur in many metabolic disorders. The intermediate metabolites of glycolysis such as glycerate 3-phosphate (3PG), β-fructose 6-phosphate (F6P) and α-glucose 6-phosphate (G6P) in biological samples have poor stability and low abundance, which makes their separation and detection more challenging. In this work, an optimal protocol for detecting 10 glycolysis metabolites in serum samples was developed using gas chromatography triple quadrupole mass spectrometry. Single factor experiment and response surface methodology were used to optimize the pretreatment of serum samples. The optimal conditions were as follows: the volume of the derivatization reagent, 100 μL; extraction solvent, 80% methanol; derivatization temperature, 80 °C; and derivatization time, 60 min. The protocol showed an acceptable linearity (R2 ≥ 0.9872), the lowest detection limit (0.0002–0.2382 μg mL−1), the limits of quantitation (0.0007–0.7940 μg mL−1), and the satisfactory intra-day (RSD% ≤ 13.67%) and inter-day precision (RSD% ≤ 12.01%). The results of the stability test showed that it was a better choice to determine metabolites during 2 months when the serum was stored at −80 °C in order to avoid the change in 3PG and G6P. Furthermore, the metabolites in serum were relatively stable for detection (RSD% < 18.77%) after 4 freeze–thaw cycles. Finally, this protocol was applied to the quantitative analysis of glycolysis metabolites from gastric cancer patients, and was beneficial to find out the metabolic changes of the glycolysis pathway and explain the pathogenesis of the disease.
Author Tang, Ying-Shu
Zhang, Ming-Jia
Liu, Li-Yan
Zhao, Jin-Hui
AuthorAffiliation Harbin Medical University
Department of Nutrition and Food Hygiene
Public Health College
AuthorAffiliation_xml – sequence: 0
  name: Harbin Medical University
– sequence: 0
  name: Department of Nutrition and Food Hygiene
– sequence: 0
  name: Public Health College
Author_xml – sequence: 1
  givenname: Ying-Shu
  surname: Tang
  fullname: Tang, Ying-Shu
– sequence: 2
  givenname: Ming-Jia
  surname: Zhang
  fullname: Zhang, Ming-Jia
– sequence: 3
  givenname: Jin-Hui
  surname: Zhao
  fullname: Zhao, Jin-Hui
– sequence: 4
  givenname: Li-Yan
  surname: Liu
  fullname: Liu, Li-Yan
BookMark eNptkctq3TAQhkVIobl0k31B0F3BjWTJFy1D2rQJIdm0azOWx8c62JIjySnOs_Rho5MTGihdzTDz_TPMP8fk0DqLhJxx9oUzoc673G5ZyQoBB-SIi1JlKi_5Ycq5lBkrZPmeHIewZYzzquRH5M_9HM1kniAaZ6nrKdCHBWw0MVUekc7eRafdSHvnaRyQGhvRT9gZiEgnjNC60UQMO-2uvxnXhK_BBDpDHH7DmiR0WCawNKBfJroEYzd0A4HqwbsJott4mIc1myAEGmbUMZUx-vWUvOthDPjhNZ6QX1fffl7-yG7vv19fXtxmOq95zJDLXHWM19Aiq1uhigIV9hJrKVtRdkK1qtW6U0Wl-5z1XAFw2dcaddXmuhIn5NN-brr2YcEQm61bvE0rm7RA1JLLKk_U5z2lvQvBY9_M3kzg14azZud-8zW_u3lx_yLB7B9Yv1jqbPRgxv9LPu4lPui_o98eKp4BToiYlw
CitedBy_id crossref_primary_10_1016_j_aca_2024_342908
crossref_primary_10_1080_10408347_2024_2364232
Cites_doi 10.1016/j.ab.2004.04.037
10.1016/j.tibs.2015.12.001
10.1016/j.aca.2022.339570
10.1016/j.talanta.2019.120147
10.1016/j.chroma.2007.10.011
10.1016/j.chroma.2020.461807
10.1016/j.chroma.2016.06.046
10.1002/rcm.9149
10.3389/fnins.2019.00871
10.3390/metabo12010015
10.1038/onc.2010.182
10.1016/j.jpba.2019.04.022
10.1039/c3an01930f
10.1021/acs.analchem.1c00767
10.1021/ac900675k
10.1126/science.123.3191.309
10.1016/j.microc.2022.108065
10.1093/jnci/94.16.1197
10.1146/annurev-anchem-091619-091306
10.1016/j.molstruc.2023.135096
10.1016/j.exger.2013.10.010
10.1016/j.chroma.2006.05.019
10.1007/s11306-010-0254-3
10.1038/sj.jcbfm.9600145
10.1186/1476-4598-12-152
10.1007/s00216-015-8521-9
10.1016/j.jpba.2016.06.017
10.1515/revneuro-2017-0075
10.1007/s12010-015-1535-0
10.1186/s13007-019-0514-9
10.1007/s00018-015-2070-4
10.1007/s13238-014-0082-8
10.1021/acs.analchem.2c00346
10.1016/j.chemolab.2017.11.004
10.1007/s13187-013-0486-9
10.1016/j.chroma.2021.462531
10.1073/pnas.0831078100
10.1002/jssc.201900539
10.1007/s00429-013-0662-z
10.1021/ac100101d
10.1038/nm0396-323
10.1016/j.tins.2013.07.001
10.1016/j.ymben.2018.08.011
10.1586/era.13.57
10.1016/j.ccr.2012.09.020
10.1021/acs.analchem.7b01624
10.1002/jssc.201801269
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
H9R
JG9
KA0
DOI 10.1039/d2nj06053a
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Illustrata: Natural Sciences
Materials Research Database
ProQuest Illustrata: Technology Collection
DatabaseTitle CrossRef
Materials Research Database
ProQuest Illustrata: Natural Sciences
Engineered Materials Abstracts
ProQuest Illustrata: Technology Collection
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1369-9261
EndPage 9376
ExternalDocumentID 10_1039_D2NJ06053A
d2nj06053a
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29N
4.4
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABCQX
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
L7B
M4U
N9A
O9-
OK1
P2P
R7B
R7C
R7D
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
TN5
TWZ
VH6
YNT
YQT
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
8BQ
8FD
H9R
JG9
KA0
ID FETCH-LOGICAL-c281t-e1429d018abe08b3955e9ef4e844b36d39b9bccd957cf20f19aa14f8cec7b2c73
ISSN 1144-0546
IngestDate Mon Jun 30 09:48:47 EDT 2025
Tue Jul 01 02:51:32 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
Tue Dec 17 20:58:42 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-e1429d018abe08b3955e9ef4e844b36d39b9bccd957cf20f19aa14f8cec7b2c73
Notes https://doi.org/10.1039/d2nj06053a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6766-9508
PQID 2813841472
PQPubID 2048886
PageCount 13
ParticipantIDs crossref_primary_10_1039_D2NJ06053A
rsc_primary_d2nj06053a
crossref_citationtrail_10_1039_D2NJ06053A
proquest_journals_2813841472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-16
PublicationDateYYYYMMDD 2023-05-16
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-16
  day: 16
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle New journal of chemistry
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Meng (D2NJ06053A/cit2/1) 2021; 93
Tavsan (D2NJ06053A/cit4/1) 2015; 176
Boumezbeur (D2NJ06053A/cit5/1) 2005; 25
Buescher (D2NJ06053A/cit19/1) 2010; 82
Schwaiger (D2NJ06053A/cit18/1) 2017; 89
Klavins (D2NJ06053A/cit47/1) 2014; 139
Qin (D2NJ06053A/cit48/1) 2016; 1457
Li (D2NJ06053A/cit43/1) 2016; 73
Calvani (D2NJ06053A/cit8/1) 2014; 49
Nemati (D2NJ06053A/cit31/1) 2022; 1199
Akram (D2NJ06053A/cit1/1) 2013; 28
Fritz (D2NJ06053A/cit37/1) 2010; 29
Hitosugi (D2NJ06053A/cit46/1) 2012; 22
Shuch (D2NJ06053A/cit7/1) 2013; 13
Bauernfeind (D2NJ06053A/cit10/1) 2014; 219
Nam (D2NJ06053A/cit14/1) 2021; 1656
Bajad (D2NJ06053A/cit16/1) 2006; 1125
Thakare (D2NJ06053A/cit28/1) 2016; 128
Liberti (D2NJ06053A/cit36/1) 2016; 41
Al-Suod (D2NJ06053A/cit33/1) 2019; 42
Al-Suod (D2NJ06053A/cit34/1) 2019; 42
Jiang (D2NJ06053A/cit42/1) 2014; 5
Zhang (D2NJ06053A/cit12/1) 2020; 13
Preul (D2NJ06053A/cit44/1) 1996; 2
Vallee (D2NJ06053A/cit11/1) 2018; 29
Soga (D2NJ06053A/cit13/1) 2009; 81
Jin (D2NJ06053A/cit41/1) 2019; 17
Bergau (D2NJ06053A/cit9/1) 2019; 13
Gullberg (D2NJ06053A/cit21/1) 2004; 331
Katz-Brull (D2NJ06053A/cit45/1) 2002; 94
Mohebbi (D2NJ06053A/cit30/1) 2022; 183
Warburg (D2NJ06053A/cit38/1) 1956; 123
Kiseleva (D2NJ06053A/cit35/1) 2021; 12
Antonio (D2NJ06053A/cit25/1) 2007; 1172
Sonveaux (D2NJ06053A/cit40/1) 2008; 118
Chu (D2NJ06053A/cit22/1) 2015; 407
Koek (D2NJ06053A/cit20/1) 2011; 7
Zhang (D2NJ06053A/cit32/1) 2021; 35
Rende (D2NJ06053A/cit26/1) 2019; 15
Ganapathy-Kanniappan (D2NJ06053A/cit6/1) 2013; 12
Okahashi (D2NJ06053A/cit49/1) 2019; 51
Itoh (D2NJ06053A/cit39/1) 2003; 100
Mergenthaler (D2NJ06053A/cit3/1) 2013; 36
Iturrospe (D2NJ06053A/cit17/1) 2021; 1637
Si-Hung (D2NJ06053A/cit24/1) 2019; 205
Giordano (D2NJ06053A/cit27/1) 2017; 171
Khoubnasabjafari (D2NJ06053A/cit29/1) 2023; 1281
Xu (D2NJ06053A/cit23/1) 2019; 171
Li (D2NJ06053A/cit15/1) 2022; 94
References_xml – volume: 331
  start-page: 283
  year: 2004
  ident: D2NJ06053A/cit21/1
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.04.037
– volume: 41
  start-page: 211
  year: 2016
  ident: D2NJ06053A/cit36/1
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.12.001
– volume: 1199
  start-page: 339570
  year: 2022
  ident: D2NJ06053A/cit31/1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.339570
– volume: 205
  start-page: 120147
  year: 2019
  ident: D2NJ06053A/cit24/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.120147
– volume: 1172
  start-page: 170
  year: 2007
  ident: D2NJ06053A/cit25/1
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2007.10.011
– volume: 1637
  start-page: 461807
  year: 2021
  ident: D2NJ06053A/cit17/1
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2020.461807
– volume: 1457
  start-page: 125
  year: 2016
  ident: D2NJ06053A/cit48/1
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2016.06.046
– volume: 35
  start-page: e9149
  year: 2021
  ident: D2NJ06053A/cit32/1
  publication-title: Rapid Commun. Mass Spectrom.
  doi: 10.1002/rcm.9149
– volume: 13
  start-page: 871
  year: 2019
  ident: D2NJ06053A/cit9/1
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00871
– volume: 12
  start-page: 15
  issue: 1
  year: 2021
  ident: D2NJ06053A/cit35/1
  publication-title: Metabolites
  doi: 10.3390/metabo12010015
– volume: 29
  start-page: 4369
  year: 2010
  ident: D2NJ06053A/cit37/1
  publication-title: Oncogene
  doi: 10.1038/onc.2010.182
– volume: 17
  start-page: 4213
  year: 2019
  ident: D2NJ06053A/cit41/1
  publication-title: Oncol. Lett.
– volume: 171
  start-page: 171
  year: 2019
  ident: D2NJ06053A/cit23/1
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2019.04.022
– volume: 139
  start-page: 1512
  year: 2014
  ident: D2NJ06053A/cit47/1
  publication-title: Analyst
  doi: 10.1039/c3an01930f
– volume: 93
  start-page: 10075
  year: 2021
  ident: D2NJ06053A/cit2/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c00767
– volume: 81
  start-page: 6165
  year: 2009
  ident: D2NJ06053A/cit13/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac900675k
– volume: 123
  start-page: 309
  year: 1956
  ident: D2NJ06053A/cit38/1
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 183
  start-page: 108065
  year: 2022
  ident: D2NJ06053A/cit30/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2022.108065
– volume: 94
  start-page: 1197
  year: 2002
  ident: D2NJ06053A/cit45/1
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/94.16.1197
– volume: 13
  start-page: 293
  year: 2020
  ident: D2NJ06053A/cit12/1
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-091619-091306
– volume: 1281
  start-page: 135096
  year: 2023
  ident: D2NJ06053A/cit29/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2023.135096
– volume: 49
  start-page: 5
  year: 2014
  ident: D2NJ06053A/cit8/1
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2013.10.010
– volume: 1125
  start-page: 76
  year: 2006
  ident: D2NJ06053A/cit16/1
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2006.05.019
– volume: 7
  start-page: 307
  year: 2011
  ident: D2NJ06053A/cit20/1
  publication-title: Metabolomics
  doi: 10.1007/s11306-010-0254-3
– volume: 25
  start-page: 1418
  year: 2005
  ident: D2NJ06053A/cit5/1
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/sj.jcbfm.9600145
– volume: 12
  start-page: 1
  year: 2013
  ident: D2NJ06053A/cit6/1
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-12-152
– volume: 118
  start-page: 3930
  year: 2008
  ident: D2NJ06053A/cit40/1
  publication-title: J. Clin. Invest.
– volume: 407
  start-page: 2865
  year: 2015
  ident: D2NJ06053A/cit22/1
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-015-8521-9
– volume: 128
  start-page: 426
  year: 2016
  ident: D2NJ06053A/cit28/1
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2016.06.017
– volume: 29
  start-page: 547
  year: 2018
  ident: D2NJ06053A/cit11/1
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2017-0075
– volume: 176
  start-page: 76
  year: 2015
  ident: D2NJ06053A/cit4/1
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-015-1535-0
– volume: 15
  start-page: 127
  year: 2019
  ident: D2NJ06053A/cit26/1
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0514-9
– volume: 73
  start-page: 377
  year: 2016
  ident: D2NJ06053A/cit43/1
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-2070-4
– volume: 5
  start-page: 592
  year: 2014
  ident: D2NJ06053A/cit42/1
  publication-title: Protein Cell
  doi: 10.1007/s13238-014-0082-8
– volume: 94
  start-page: 4866
  year: 2022
  ident: D2NJ06053A/cit15/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c00346
– volume: 171
  start-page: 198
  year: 2017
  ident: D2NJ06053A/cit27/1
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2017.11.004
– volume: 28
  start-page: 454
  year: 2013
  ident: D2NJ06053A/cit1/1
  publication-title: J. Cancer Educ.
  doi: 10.1007/s13187-013-0486-9
– volume: 1656
  start-page: 462531
  year: 2021
  ident: D2NJ06053A/cit14/1
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2021.462531
– volume: 100
  start-page: 4879
  year: 2003
  ident: D2NJ06053A/cit39/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0831078100
– volume: 42
  start-page: 3243
  year: 2019
  ident: D2NJ06053A/cit34/1
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201900539
– volume: 219
  start-page: 1149
  year: 2014
  ident: D2NJ06053A/cit10/1
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-013-0662-z
– volume: 82
  start-page: 4403
  year: 2010
  ident: D2NJ06053A/cit19/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac100101d
– volume: 2
  start-page: 323
  year: 1996
  ident: D2NJ06053A/cit44/1
  publication-title: Nat. Med.
  doi: 10.1038/nm0396-323
– volume: 36
  start-page: 587
  year: 2013
  ident: D2NJ06053A/cit3/1
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2013.07.001
– volume: 51
  start-page: 43
  year: 2019
  ident: D2NJ06053A/cit49/1
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.08.011
– volume: 13
  start-page: 711
  year: 2013
  ident: D2NJ06053A/cit7/1
  publication-title: Expert Rev. Anticancer Ther.
  doi: 10.1586/era.13.57
– volume: 22
  start-page: 585
  year: 2012
  ident: D2NJ06053A/cit46/1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.09.020
– volume: 89
  start-page: 7667
  year: 2017
  ident: D2NJ06053A/cit18/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01624
– volume: 42
  start-page: 1265
  year: 2019
  ident: D2NJ06053A/cit33/1
  publication-title: J. Sep. Sci.
  doi: 10.1002/jssc.201801269
SSID ssj0011761
Score 2.3979504
Snippet Glycolysis takes place in all cells of the body and plays an important role in the metabolism of the organism. The detection of intermediate metabolites in the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9364
SubjectTerms Biological properties
Chromatography
Freeze thaw cycles
Gas chromatography
Glycolysis
Mass spectrometry
Metabolic disorders
Metabolism
Metabolites
Optimization
Pathogenesis
Quadrupoles
Quantitative analysis
Reagents
Response surface methodology
Scientific imaging
Stability tests
Title Optimization of a quantitative protocol for the intermediate metabolites of the glycolysis pathway in human serum using gas chromatography-mass spectrometry
URI https://www.proquest.com/docview/2813841472
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QEuiFdFoKCV4IKihewjtvdYlaIQteVAKrWnyF6v21SNA4ktBL-FE7-U2ZftiiABFyva9Vp2vs-7s-OZbxB6RY2KnKIREbC8EJEWgmSjNCdZSjUsWCpxkvknp9HkTEzPx-e93s9O1FJdZW_U9615Jf-DKrQBriZL9h-QbS4KDfAb8IUjIAzHv8L4I7zvS59I6RIdv9RpadPGTECQ0WBYAdBNKKHRhljbXJFKm9rRQACTgrwJgQKXN9_gdKtRYioVf01tUqAr4wcPVC-HtXUtXKabobpar8Da9YrXZAlG-NCmbRr9g-p2orUJouxIVKhQZK51G7gZ5wIuTj5d1b95s09Mx3SRdjrcF6NFSSb1IjQfL2rnZyAXnvTen8Fs9KBLt_RTMGzxoM07JrVr45EkkjnZ9jBvO6XOwE_ZmYUld8rofkUHCyzaulqMuBFbzVl5PYJdHe-siU2kYtu5g3YZbEVYH-0eHM0-HDffqmjsVHnDfQcRXC7ftqNvmz3tXmZnHQrNWINmdh_d8zsRfOBo9QD1dPkQ3TkM2DxCP7r0wqsCp7hLLxzohYFeGOiDu_TCHXqZsaa_pRf29IIh2NILW3phSy8M9MJb6IW79HqMzt4fzQ4nxBfzIIoltCKaguWTj2iSZnqUZFyOx1rqQuhEiIxHOZeZzJTK5ThWBRsVVKYpFUWitIozpmK-h_rlqtRPEKZFwTPB4qhQidAyl4rlWqe0YFpEuSoG6HX4r-fKK92bgis3cxtxweX8HTudWlwOBuhlc-5np--y9az9ANncvy6bOTwWTwQVMRugPYCxGd-i_vRPHc_Q3Zb7-6hfrWv9HKzbKnvh6fULED-xcQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+a+quantitative+protocol+for+the+intermediate+metabolites+of+the+glycolysis+pathway+in+human+serum+using+gas+chromatography-mass+spectrometry&rft.jtitle=New+journal+of+chemistry&rft.au=Tang%2C+Ying-Shu&rft.au=Zhang%2C+Ming-Jia&rft.au=Zhao%2C+Jin-Hui&rft.au=Liu%2C+Li-Yan&rft.date=2023-05-16&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=47&rft.issue=19&rft.spage=9364&rft.epage=9376&rft_id=info:doi/10.1039%2Fd2nj06053a&rft.externalDocID=d2nj06053a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon