A multivariate single-index model for longitudinal data
Index measures are commonly used in medical research and clinical practice, primarily for quantification of health risks in individual subjects or patients. The utility of an index measure is ultimately contingent on its ability to predict health outcomes. Construction of medical indices has largely...
Saved in:
Published in | Statistical modelling Vol. 16; no. 5; pp. 392 - 408 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi, India
SAGE Publications
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1471-082X 1477-0342 |
DOI | 10.1177/1471082X16655633 |
Cover
Abstract | Index measures are commonly used in medical research and clinical practice, primarily for quantification of health risks in individual subjects or patients. The utility of an index measure is ultimately contingent on its ability to predict health outcomes. Construction of medical indices has largely been based on heuristic arguments, although the acceptance of a new index typically requires objective validation, preferably with multiple outcomes. In this article, we propose an analytical tool for index development and validation. We use a multivariate single-index model to ascertain the best functional form for risk index construction. Methodologically, the proposed model represents a multivariate extension of the traditional single-index models. Such an extension is important because it assures that the resultant index simultaneously works for multiple outcomes. The model is developed in the general framework of longitudinal data analysis. We use penalized cubic splines to characterize the index components while leaving the other subject characteristics as additive components. The splines are estimated directly by penalizing nonlinear least squares, and we show that the model can be implemented using existing software. To illustrate, we examine the formation of an adiposity index for prediction of systolic and diastolic blood pressure in children. We assess the performance of the method through a simulation study. |
---|---|
AbstractList | Index measures are commonly used in medical research and clinical practice, primarily for quantification of health risks in individual subjects or patients. The utility of an index measure is ultimately contingent on its ability to predict health outcomes. Construction of medical indices has largely been based on heuristic arguments, although the acceptance of a new index typically requires objective validation, preferably with multiple outcomes. In this article, we propose an analytical tool for index development and validation. We use a multivariate single-index model to ascertain the best functional form for risk index construction. Methodologically, the proposed model represents a multivariate extension of the traditional single-index models. Such an extension is important because it assures that the resultant index simultaneously works for multiple outcomes. The model is developed in the general framework of longitudinal data analysis. We use penalized cubic splines to characterize the index components while leaving the other subject characteristics as additive components. The splines are estimated directly by penalizing nonlinear least squares, and we show that the model can be implemented using existing software. To illustrate, we examine the formation of an adiposity index for prediction of systolic and diastolic blood pressure in children. We assess the performance of the method through a simulation study. |
Author | Tu, Wanzhu Wu, Jingwei |
Author_xml | – sequence: 1 givenname: Jingwei surname: Wu fullname: Wu, Jingwei – sequence: 2 givenname: Wanzhu surname: Tu fullname: Tu, Wanzhu email: tug30693@temple.edu |
BookMark | eNp9j01LAzEQhoNUsK3ePe4fiGY2m6R7LMUvKHhR8LZMk2xJSRNJsqL_3q31VNDTvMzM88IzI5MQgyXkGtgNgFK30Chgi_oNpBRCcn5GpuNKUcabevKTgR7uF2SW846xGpRsp0Qtq_3gi_vA5LDYKruw9Za6YOxntY_G-qqPqfIxbF0ZjAvoK4MFL8l5jz7bq985J6_3dy-rR7p-fnhaLddU1wso1DKuhNAcEZjpFQjZGC0btQHJ-kY2TAglLLYCNhuLsmVKMGG4Bs0XrQXgcyKPvTrFnJPtO-0KFhdDSeh8B6w76Hen-iPITsD35PaYvv5D6BHJuLXdLg5ptM1__38DUltp8A |
CitedBy_id | crossref_primary_10_1002_sim_9763 crossref_primary_10_1080_02664763_2023_2173156 crossref_primary_10_1007_s41096_024_00181_0 crossref_primary_10_1002_sim_10139 crossref_primary_10_1016_j_jmva_2019_01_003 |
Cites_doi | 10.1016/0304-4076(93)90114-K 10.1090/S0025-5718-1970-0258249-6 10.1161/CIRCULATIONAHA.106.675355 10.1016/j.jacc.2014.05.057 10.1214/aos/1176349020 10.1016/j.jpeds.2013.06.082 10.1090/S0025-5718-1970-0274029-X 10.1210/jc.2009-0997 10.1002/sim.1991 10.1111/1467-9868.03411 10.1016/j.jmva.2005.11.005 10.1002/sim.1572 10.18637/jss.v014.i14 10.1080/01621459.1991.10475035 10.1214/ss/1177013525 10.1214/ss/1038425655 10.1214/ss/1177011926 10.2307/1914309 10.1090/S0025-5718-1970-0279993-0 10.1007/978-1-4419-0318-1 10.1093/comjnl/13.3.317 10.1198/016214502388618861 10.2307/2529430 10.1210/en.2003-1336 |
ContentType | Journal Article |
Copyright | 2016 SAGE Publications |
Copyright_xml | – notice: 2016 SAGE Publications |
DBID | AAYXX CITATION |
DOI | 10.1177/1471082X16655633 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1477-0342 |
EndPage | 408 |
ExternalDocumentID | 10_1177_1471082X16655633 10.1177_1471082X16655633 |
GroupedDBID | -TM .2L 01A 0R~ 123 1~K 29Q 31W 31X 4.4 54M 56W 5VS 7WY 88I 8FE 8FG 8FL 8R4 8R5 8V8 AADIR AADUE AAGLT AAJPV AAQDB AAQXI AARIX AATAA ABAWP ABCCA ABCJG ABEIX ABFXH ABHQH ABIDT ABJCF ABKRH ABPNF ABQPY ABQXT ABRHV ABTDE ABUJY ABUWG ACDXX ACFUR ACFZE ACGFS ACGOD ACIWK ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUIR ADDLC ADEBD ADNMO ADNON ADRRZ ADTOS ADYCS AEDXQ AEMOZ AENEX AEOBU AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS AMVHM ANDLU ARAPS ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN AZQEC B8T B8Z BDZRT BENPR BEZIV BGLVJ BMVBW BPACV BPHCQ CAG CCPQU CEADM COF CS3 DG~ DOPDO DV7 DV8 DWQXO EBS EJD EMI EST F5P FEDTE FHBDP FRNLG GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF HZ~ J8X J9A K1G K60 K6V K6~ K7- L6V M0C M2P M7S N9A O9- P.B P2P P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS Q2X Q7P ROL S01 SASJQ SAUOL SCNPE SFC SFK SFT SGU SGV SHB SPJ SSDHQ TH9 TN5 ZPLXX ZPPRI ~32 AAYXX ACCVC AJGYC AMNSR CITATION |
ID | FETCH-LOGICAL-c281t-e03755c3aa10df71564dc647b160f46405575ea951bbea6907505d3c1c389e113 |
ISSN | 1471-082X |
IngestDate | Thu Apr 24 23:13:04 EDT 2025 Tue Jul 01 05:17:50 EDT 2025 Tue Jun 17 22:42:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | single-index model mixed effect model multivariate setting penalizing nonlinear least squares P-spline |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-e03755c3aa10df71564dc647b160f46405575ea951bbea6907505d3c1c389e113 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1177_1471082X16655633 crossref_primary_10_1177_1471082X16655633 sage_journals_10_1177_1471082X16655633 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161000 2016-10-00 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 20161000 |
PublicationDecade | 2010 |
PublicationPlace | New Delhi, India |
PublicationPlace_xml | – name: New Delhi, India |
PublicationTitle | Statistical modelling |
PublicationYear | 2016 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Xia, Hardle 2006; 97 Xia, Tong, Li, Zhu 2002; 64 Yu, Eckert, Liu, Pratt, Tu 2013; 163 Ichimura 1993; 58 Broyden 1970; 24 Stoker 1986; 54 Goldfarb 1970; 24 Fletcher 1970; 13 Crainiceanu, Ruppert, Wand 2005; 14 Härdle, Hall, Ichimura 1993; 21 Xu 2003; 22 Durbán, Harezlak, Wand, Carroll 2005; 24 Fain, Madan, Hiler, Cheema, Bahouth 2004; 145 O'Sullivan 1986; 1 Li 1991; 86 Fox, Massaro, Hoffmann, Pou, Maurovich-Horvat, Liu, Vasan, Murabito, Meigs, Cupples, D'Agostino, O'Donnel 2007; 16 Henderson 1975; 31 Lindstrom, Bates 1988; 83 Wu, Tu 2013 Yu, Ruppert 2002; 97 Tu, Eckert, Saha, Pratt 2009; 94 Eilers, Marx 1996; 11 Härdle, Stoker 1989; 84 Shanno 1970; 24 Chandra, Neeland, Berry, Ayers, Rohatgi, Das, Khera, MeGuire, de Lemos, Turer 2014; 64 Pinheiro, Bates, DebRoy, Sarkar 2015 Robinson 1991; 6 bibr28-1471082X16655633 bibr15-1471082X16655633 Härdle W (bibr11-1471082X16655633) 1989; 84 bibr7-1471082X16655633 bibr1-1471082X16655633 bibr14-1471082X16655633 bibr29-1471082X16655633 bibr23-1471082X16655633 bibr27-1471082X16655633 bibr10-1471082X16655633 bibr22-1471082X16655633 bibr30-1471082X16655633 bibr8-1471082X16655633 Ruppert D (bibr21-1471082X16655633) 2002 bibr4-1471082X16655633 bibr26-1471082X16655633 Lindstrom M (bibr16-1471082X16655633) 1988; 83 bibr9-1471082X16655633 bibr17-1471082X16655633 Hinkle D (bibr13-1471082X16655633) 2003 bibr18-1471082X16655633 bibr12-1471082X16655633 bibr3-1471082X16655633 bibr5-1471082X16655633 bibr19-1471082X16655633 bibr2-1471082X16655633 bibr20-1471082X16655633 bibr6-1471082X16655633 Wu J (bibr25-1471082X16655633) 2013 bibr24-1471082X16655633 |
References_xml | – volume: 84 start-page: 986 year: 1989 end-page: 95 article-title: Investing smooth multiple regression by the method of average derivatives – volume: 97 start-page: 1162 year: 2006 end-page: 84 article-title: Semi-parametric estimation of partially linear single index models – volume: 13 start-page: 317 year: 1970 end-page: 22 article-title: A new approach to variable metric algorithm – year: 2015 – volume: 64 start-page: 363 year: 2002 end-page: 410 article-title: An adaptive estimation of dimension reduction space – volume: 6 start-page: 15 year: 1991 end-page: 32 article-title: That BLUP is a good thing: The estimation of random effects – volume: 14 start-page: 1 year: 2005 end-page: 24 article-title: Bayesian analysis for penalized spline regression using winbugs – year: 2013 article-title: Development of a pediatric body mass index using longitudinal single-index models – volume: 24 start-page: 365 year: 1970 end-page: 82 article-title: The convergence of single-rank quasi-newton methods – volume: 97 start-page: 1042 year: 2002 end-page: 54 article-title: Penalized spline estimation for partially linear single-index models – volume: 163 start-page: 1317 year: 2013 end-page: 22 article-title: Adiposity has unique influence on the renin-aldosterone axis and blood pressure in black children – volume: 22 start-page: 3527 year: 2003 end-page: 41 article-title: Measuring explained variation in linear mixed effects models – volume: 64 start-page: 997 year: 2014 end-page: 1002 article-title: The relationship of body mass and fat distribution with incident hypertension: Observations from the dallas heart study – volume: 24 start-page: 1153 year: 2005 end-page: 67 article-title: Simple fitting of subject-specific curves for longitudinal data – volume: 24 start-page: 23 year: 1970 end-page: 26 article-title: A family of variable metric updates derived by variational means – volume: 21 start-page: 157 year: 1993 end-page: 78 article-title: Optimal smoothing in single-index models – volume: 11 start-page: 89 year: 1996 end-page: 121 article-title: Flexible smoothing with B-splines and penalties – volume: 16 start-page: 39 year: 2007 end-page: 48 article-title: Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the framingham heart study – volume: 58 start-page: 71 year: 1993 end-page: 120 article-title: Semiparametric least squares (SLS) and weighted sls estimation of single-index models – volume: 86 start-page: 316 year: 1991 end-page: 42 article-title: Sliced inverse regression for dimension reduction – volume: 1 start-page: 502 year: 1986 end-page: 18 article-title: A statistical perspective on ill-posed inverse problems – volume: 54 start-page: 1461 year: 1986 end-page: 81 article-title: Consistent estimation of scaled coefficients – volume: 145 start-page: 2773 year: 2004 end-page: 82 article-title: Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous – volume: 31 start-page: 423 year: 1975 end-page: 47 article-title: Best linear unbiased estimation and prediction under a selection model – volume: 83 start-page: 1014 year: 1988 end-page: 22 article-title: Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data – volume: 24 start-page: 647 year: 1970 end-page: 56 article-title: Conditioning of quasi-Newton methods for function minimization – volume: 94 start-page: 5019 year: 2009 end-page: 22 article-title: Synchronization of adolescent blood pressure and pubertal somatic growth – ident: bibr14-1471082X16655633 doi: 10.1016/0304-4076(93)90114-K – ident: bibr9-1471082X16655633 doi: 10.1090/S0025-5718-1970-0258249-6 – ident: bibr8-1471082X16655633 doi: 10.1161/CIRCULATIONAHA.106.675355 – ident: bibr19-1471082X16655633 – volume: 84 start-page: 986 year: 1989 ident: bibr11-1471082X16655633 publication-title: Journal of the American Statistical Association – ident: bibr2-1471082X16655633 doi: 10.1016/j.jacc.2014.05.057 – ident: bibr10-1471082X16655633 doi: 10.1214/aos/1176349020 – volume-title: Applied Statistics for the Behavioral Sciences year: 2003 ident: bibr13-1471082X16655633 – ident: bibr30-1471082X16655633 doi: 10.1016/j.jpeds.2013.06.082 – ident: bibr22-1471082X16655633 doi: 10.1090/S0025-5718-1970-0274029-X – ident: bibr24-1471082X16655633 doi: 10.1210/jc.2009-0997 – ident: bibr4-1471082X16655633 doi: 10.1002/sim.1991 – ident: bibr27-1471082X16655633 doi: 10.1111/1467-9868.03411 – ident: bibr26-1471082X16655633 doi: 10.1016/j.jmva.2005.11.005 – ident: bibr28-1471082X16655633 doi: 10.1002/sim.1572 – ident: bibr3-1471082X16655633 doi: 10.18637/jss.v014.i14 – ident: bibr15-1471082X16655633 doi: 10.1080/01621459.1991.10475035 – volume: 83 start-page: 1014 year: 1988 ident: bibr16-1471082X16655633 publication-title: Journal of the American Statistical Association – volume-title: Semiparametric Regression year: 2002 ident: bibr21-1471082X16655633 – ident: bibr17-1471082X16655633 doi: 10.1214/ss/1177013525 – ident: bibr5-1471082X16655633 doi: 10.1214/ss/1038425655 – ident: bibr20-1471082X16655633 doi: 10.1214/ss/1177011926 – ident: bibr23-1471082X16655633 doi: 10.2307/1914309 – year: 2013 ident: bibr25-1471082X16655633 publication-title: Statistical Methods in Medical Research – ident: bibr1-1471082X16655633 doi: 10.1090/S0025-5718-1970-0279993-0 – ident: bibr18-1471082X16655633 doi: 10.1007/978-1-4419-0318-1 – ident: bibr7-1471082X16655633 doi: 10.1093/comjnl/13.3.317 – ident: bibr29-1471082X16655633 doi: 10.1198/016214502388618861 – ident: bibr12-1471082X16655633 doi: 10.2307/2529430 – ident: bibr6-1471082X16655633 doi: 10.1210/en.2003-1336 |
SSID | ssj0021769 |
Score | 2.0556614 |
Snippet | Index measures are commonly used in medical research and clinical practice, primarily for quantification of health risks in individual subjects or patients.... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 392 |
Title | A multivariate single-index model for longitudinal data |
URI | https://journals.sagepub.com/doi/full/10.1177/1471082X16655633 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66veiD-BPnL_oggkjcsqTpfByiDGGisMF8Gk2aoTA2ca2Cf713adp1YxPnS9lCm9J-yd2X5u47Qs6VEgMecUV5JAwFf-1TzHeEv6g9omGEBZic3H6Ura546Pm9rNC4yy6J1bX-XphX8h9UoQ1wxSzZFZDNO4UG-A34whEQhuOfMG6m8YCfsN4FyniFy_6hoVYAMS1xY4MIh2OsSZREtv6Vy0XLCSmSTavVjFkkeMkw82VoqRMLMrR8mbdpJIaNywNO-ZoUvxkwmUefZWYOXBIF599LvUDWFlAUBJyxjbIwBvyCoeNpBTvnM4XVZlhgjoM0oR9oDNyMSYlyZHzqerLt9jmPlMcJMidGPt_DOinXgwC35cvNl6fndr7EZoEtYpg_33RjujrfxwwRKUTxWWLR2SZbbkXgNVN4d8iaGe2SzXYupzvZI0HTKwLtFYH2LGoeAO0VgfYQ6H3Svb_r3Laoq3hBdb3BYmqwIrGveRiyWjQIUMgn0jB1FJO1gZACBdN8EwIrVsqE-GEDCGzENdPAOw1j_ICURuOROSQeH0QChZnqobgRWkiFBYlq3MAkDIVq1Cqkmj1-Xzs5eKxKMuwve-kVcplf8Z5Kofxy7gW-0b6bLJOlJx6t0Okx2ZgO5hNSij8ScwqUMFZnbhz8AG9UVb4 |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH32J97kEED1uz3U1Sj0WUqk1RaKF6KdnN5mJpxaYe_PXOJGmsFUU8BmbDMPuYb5OZ7wM40VrFMpKay0hZjvna5dTviI_EPWJwhfnUnBy0vWZX3fbc3ozUVx7BcZXKqtCj9LAudjf1ieNpimmrJzyPuK3kIpTrxElTgnLj8f4hKG5bwk_17Mie04DPf5Tf3vElJ80UdKU55noNnqbeZaUlz9VJgo69zxE3_sv9dVjNkSdrZEtlAxbscBNWgoK2dbwFfoOlBYZveIFGDMroO8LA8pRRkaWaOQwxLhuMSORoEpGgFqMS023oXl91Lps8V1bgplYXCbekfOsaGYbCiWKfCGMig1OkhefEylNEzOXaENGX1jakCzQCpUgaYRDfWCHkDpSGo6HdBSbjSBEBUC1UF8ooT5PwjSMtTnaodN2pwPk0tn2T046T-sWgL3Km8fmQVOCsGPGSUW78YntKke5P4_6j4d5fDY9hqdkJWv3WTftuH5YRH3lZ7d4BlJLXiT1EDJLoo3y1fQBGwcvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60BdGDb7E-9yCCh9hsd5PUY1FLfbRUsFBPJfvIxdIWm3rw1zuTbKtWFPEYmITN7Gbn2-y33wdwopRMhBHKE0ZaD-t14NF5R7wk7RGNIyyiw8nNVtjoyNtu0HXcHDoL4zI4PidaFbYom6zp6x6ZpOz2GMscZ1QsXV0ehqRvJRahiHXKrxSgWHtqPzRnKy4eZZ52FO_RDR_7lN-e8aUufSJ1ZXWmvpabqY4zeUKilzyfT1Js3NuceOO_X2EdVh0CZbV8yGzAgh1swkpzJt863oKoxjKi4SsupBGLMvqf0LdepqzIMu8chliX9YdkdjQxZKzFiGq6DZ369eNlw3MOC56uVHnqWXLADbSIY-6bJCLhGKOxqxQP_USGkgS6AhsjClPKxrSQRsBkhOYacY7lXOxAYTAc2F1gIjGShIAqsbyQWoaKDHB8YbHTY6mqfgnK0_z2tJMfJxeMfo87xfH5lJTgbHbHKJfe-CX2lLLdm-b-x8C9vwYew1L7qt67v2nd7cMywqQwp_AdQCF9mdhDhCKpOnID7h1By85V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multivariate+single-index+model+for+longitudinal+data&rft.jtitle=Statistical+modelling&rft.au=Wu%2C+Jingwei&rft.au=Tu%2C+Wanzhu&rft.date=2016-10-01&rft.issn=1471-082X&rft.eissn=1477-0342&rft.volume=16&rft.issue=5&rft.spage=392&rft.epage=408&rft_id=info:doi/10.1177%2F1471082X16655633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_1471082X16655633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-082X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-082X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-082X&client=summon |