Theoretical exploration of molecular packing and the charge transfer mechanism of organic solar cells based on PM6:Y6
The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations a...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 48; pp. 25611 - 25619 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations and quantum chemical calculations provide effective means to explore the morphology and properties of active layers. In this paper, the local molecular stacking of PM6:Y6 films is simulated based on
ab initio
molecular dynamics (AIMD), and the simulation results show that the donor-acceptor (D-A) molecules are pi-pi stacked and some Y6 molecules are arranged in order. The excited state information of PM6:Y6 dimers was calculated by time-dependent density functional theory (TD-DFT) calculations. The results showed that Δ
E
S
1
-CT
< 0.1 eV, and dimers have very low exciton binding energy (
E
b
). The charge transfer processes of the D-A dimer are LE → CT
X
→ CS and LE → CT
X
→ CT
1
→ CS combined with hole-electron analysis. Moreover, ultraviolet-visible (UV-vis) spectra of J-type stacked dimers is similar to that of PM6:Y6 films. Finally, the electron transfer rates (
k
electron
) and hole transfer rates (
k
hole
) were calculated by Marcus theory, and the results showed that the PM6:Y6 system has high charge transfer rates, but the effect of molecular configuration on
k
electron
is less than that on
k
hole
. The properties of PM6:Y6 films were systematically investigated at the theoretical level in this work, and it demonstrated that PM6:Y6 films have pi-pi stacking, low Δ
E
S
1
-
CT
X
, low
E
b
, and high charge transfer rates.
The morphology of PM6:Y6 films (a) and the electronic structure information of D-A dimers (b) were obtained by AIMD and DFT. The low interfacial energy offset, low
E
b
and high charge transfer rates are the key factors for PM6:Y6 to possess high PCE. |
---|---|
AbstractList | The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations and quantum chemical calculations provide effective means to explore the morphology and properties of active layers. In this paper, the local molecular stacking of PM6:Y6 films is simulated based on ab initio molecular dynamics (AIMD), and the simulation results show that the donor–acceptor (D–A) molecules are pi–pi stacked and some Y6 molecules are arranged in order. The excited state information of PM6:Y6 dimers was calculated by time-dependent density functional theory (TD-DFT) calculations. The results showed that ΔES1–CT < 0.1 eV, and dimers have very low exciton binding energy (Eb). The charge transfer processes of the D–A dimer are LE → CTX → CS and LE → CTX → CT1 → CS combined with hole–electron analysis. Moreover, ultraviolet-visible (UV-vis) spectra of J-type stacked dimers is similar to that of PM6:Y6 films. Finally, the electron transfer rates (kelectron) and hole transfer rates (khole) were calculated by Marcus theory, and the results showed that the PM6:Y6 system has high charge transfer rates, but the effect of molecular configuration on kelectron is less than that on khole. The properties of PM6:Y6 films were systematically investigated at the theoretical level in this work, and it demonstrated that PM6:Y6 films have pi–pi stacking, low ΔES1–CTX, low Eb, and high charge transfer rates. The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations and quantum chemical calculations provide effective means to explore the morphology and properties of active layers. In this paper, the local molecular stacking of PM6:Y6 films is simulated based on ab initio molecular dynamics (AIMD), and the simulation results show that the donor-acceptor (D-A) molecules are pi-pi stacked and some Y6 molecules are arranged in order. The excited state information of PM6:Y6 dimers was calculated by time-dependent density functional theory (TD-DFT) calculations. The results showed that Δ E S 1 -CT < 0.1 eV, and dimers have very low exciton binding energy ( E b ). The charge transfer processes of the D-A dimer are LE → CT X → CS and LE → CT X → CT 1 → CS combined with hole-electron analysis. Moreover, ultraviolet-visible (UV-vis) spectra of J-type stacked dimers is similar to that of PM6:Y6 films. Finally, the electron transfer rates ( k electron ) and hole transfer rates ( k hole ) were calculated by Marcus theory, and the results showed that the PM6:Y6 system has high charge transfer rates, but the effect of molecular configuration on k electron is less than that on k hole . The properties of PM6:Y6 films were systematically investigated at the theoretical level in this work, and it demonstrated that PM6:Y6 films have pi-pi stacking, low Δ E S 1 - CT X , low E b , and high charge transfer rates. The morphology of PM6:Y6 films (a) and the electronic structure information of D-A dimers (b) were obtained by AIMD and DFT. The low interfacial energy offset, low E b and high charge transfer rates are the key factors for PM6:Y6 to possess high PCE. The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations and quantum chemical calculations provide effective means to explore the morphology and properties of active layers. In this paper, the local molecular stacking of PM6:Y6 films is simulated based on ab initio molecular dynamics (AIMD), and the simulation results show that the donor–acceptor (D–A) molecules are pi–pi stacked and some Y6 molecules are arranged in order. The excited state information of PM6:Y6 dimers was calculated by time-dependent density functional theory (TD-DFT) calculations. The results showed that Δ E S 1 –CT < 0.1 eV, and dimers have very low exciton binding energy ( E b ). The charge transfer processes of the D–A dimer are LE → CT X → CS and LE → CT X → CT 1 → CS combined with hole–electron analysis. Moreover, ultraviolet-visible (UV-vis) spectra of J-type stacked dimers is similar to that of PM6:Y6 films. Finally, the electron transfer rates ( k electron ) and hole transfer rates ( k hole ) were calculated by Marcus theory, and the results showed that the PM6:Y6 system has high charge transfer rates, but the effect of molecular configuration on k electron is less than that on k hole . The properties of PM6:Y6 films were systematically investigated at the theoretical level in this work, and it demonstrated that PM6:Y6 films have pi–pi stacking, low Δ E S 1 – CT X , low E b , and high charge transfer rates. |
Author | Xiang, Chongchen Zou, Yingping Cao, Jiamin Zhou, Hu Liu, Wanqiang Zhao, Qiming |
AuthorAffiliation | Central South University Hunan Province Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers College of Chemistry and Chemical Engineering Hunan University of Science and Technology School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Hunan University of Science and Technology – name: College of Chemistry and Chemical Engineering – name: Hunan Province Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers – name: School of Chemistry and Chemical Engineering – name: Central South University |
Author_xml | – sequence: 1 givenname: Chongchen surname: Xiang fullname: Xiang, Chongchen – sequence: 2 givenname: Qiming surname: Zhao fullname: Zhao, Qiming – sequence: 3 givenname: Wanqiang surname: Liu fullname: Liu, Wanqiang – sequence: 4 givenname: Jiamin surname: Cao fullname: Cao, Jiamin – sequence: 5 givenname: Yingping surname: Zou fullname: Zou, Yingping – sequence: 6 givenname: Hu surname: Zhou fullname: Zhou, Hu |
BookMark | eNpFkMFLwzAUxoNMcM5dvAsBb0I1TZum8TamU2Gih3nwVNL0Zetsk5q0oP-9mZP5ePA-Hr_3PfhO0chYAwidx-Q6Jom4qWgvCU8p0UdoTAkjEU9FNjroPD9BU--3JFROSCbEGA2rDVgHfa1kg-Gra6yTfW0Nthq3tgE1NNLhTqqP2qyxNBXuN4DVRro14N5J4zU43ELYmNq3uzPr1kEr7O3uVEHTeFxKDxUOtq_P2e17doaOtWw8TP_mBL0t7lfzx2j58vA0ny0jRfO4j6oqBaa04oJXLCtTkrNKAKOlYpSBjkEoDmmecs1jlWkRl4RSKrOS60RQAckEXe59O2c_B_B9sbWDM-FlQTlLWGieBupqTylnvXegi87VrXTfRUyKXbLFHV3NfpNdBPhiDzuvDtx_8skPMAh3ng |
CitedBy_id | crossref_primary_10_1088_1674_1056_ad2a6a crossref_primary_10_1016_j_jpcs_2024_112094 crossref_primary_10_1016_j_solener_2023_112115 crossref_primary_10_1021_acs_jpca_3c06000 crossref_primary_10_1016_j_jlumin_2023_120415 crossref_primary_10_1016_j_comptc_2024_114658 crossref_primary_10_1016_j_surfin_2023_103767 crossref_primary_10_1021_acs_macromol_3c00987 crossref_primary_10_1016_j_xcrp_2024_102027 |
Cites_doi | 10.1021/ja042390l 10.1002/adma.201903868 10.1016/j.joule.2020.03.023 10.1007/s11426-021-1180-6 10.1016/j.joule.2019.01.004 10.1002/adma.201908205 10.1063/1.3269029 10.3390/molecules27061800 10.1103/PhysRevLett.94.043002 10.1039/D0TA09502H 10.1039/D0EE01896A 10.1021/acs.chemrev.8b00803 10.1063/1.2834918 10.1021/ct2009363 10.1002/adfm.202102764 10.1007/s11426-019-9478-2 10.1039/D2TA02914F 10.1002/aenm.201904234 10.1038/s41586-021-03840-5 10.1016/j.scib.2020.01.001 10.1016/j.cej.2022.136368 10.1063/1.3382344 10.1038/nmat5063 10.1038/s41566-018-0104-9 10.1002/jcc.22885 10.1021/j100096a001 10.1021/cr3001109 10.1002/aenm.202003441 10.1016/j.chemphys.2006.06.041 10.1021/acs.accounts.9b00320 10.1021/acsenergylett.0c02572 10.1016/j.joule.2021.02.002 10.1016/j.cplett.2004.06.011 10.1063/1.464304 10.1002/adma.201906763 10.1063/1.480688 10.1002/adfm.201402682 10.1016/0009-2614(95)01310-5 10.1021/acs.jctc.7b00118 10.1002/jcc.21224 10.1021/acsami.1c15896 10.1038/nmat4865 10.1002/aenm.201800002 10.1002/adma.201806499 10.1038/s41524-019-0160-9 10.1039/D1EE03565G 10.1002/anie.202105156 10.1002/solr.201900258 10.1021/acs.chemrev.6b00127 10.1039/D0TC00587H 10.1007/s00339-003-2182-9 10.1007/s11426-022-1256-8 10.1007/s11426-020-9912-0 10.1021/ar800153f 10.1002/solr.201800251 10.1016/j.isci.2020.101675 10.1002/solr.202100175 10.1038/s41467-020-17867-1 10.1002/cphc.200500029 10.1002/advs.201903419 10.1002/agt2.58 10.1063/1.2409292 10.1063/5.0007045 10.1016/j.surfin.2021.101385 10.1063/1.477711 10.1002/ijch.197000029 10.1021/ja8087482 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d2ta07420f |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 25619 |
ExternalDocumentID | 10_1039_D2TA07420F d2ta07420f |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GNO HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AGEGJ AHGCF APEMP CITATION GGIMP H13 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-dd4e5cfc797d56b4085d9e52bc525ef1e9c7e4847f71c6f91b0222a6b7f3929e3 |
ISSN | 2050-7488 |
IngestDate | Thu Oct 10 19:13:30 EDT 2024 Fri Dec 06 00:50:41 EST 2024 Wed Dec 14 06:06:58 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-dd4e5cfc797d56b4085d9e52bc525ef1e9c7e4847f71c6f91b0222a6b7f3929e3 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d2ta07420f |
ORCID | 0000-0001-5561-0867 0000-0003-1901-7243 0000-0003-2069-6976 |
PQID | 2753553574 |
PQPubID | 2047523 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2753553574 crossref_primary_10_1039_D2TA07420F rsc_primary_d2ta07420f |
PublicationCentury | 2000 |
PublicationDate | 2022-12-13 |
PublicationDateYYYYMMDD | 2022-12-13 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (D2TA07420F/cit20/1) 2020; 65 Cheng (D2TA07420F/cit4/1) 2018; 12 Xu (D2TA07420F/cit24/1) 2021; 5 Stephens (D2TA07420F/cit44/1) 1994; 98 Dai (D2TA07420F/cit5/1) 2018; 8 Cave (D2TA07420F/cit59/1) 1996; 249 Ma (D2TA07420F/cit23/1) 2021; 13 Sui (D2TA07420F/cit32/1) 2019; 3 Ramakrishnan (D2TA07420F/cit65/1) 2019; 52 Niedzialek (D2TA07420F/cit28/1) 2015; 25 Baer (D2TA07420F/cit52/1) 2005; 94 Liu (D2TA07420F/cit15/1) 2021; 5 Zhang (D2TA07420F/cit33/1) 2020; 11 Liang (D2TA07420F/cit70/1) 2021; 31 Lu (D2TA07420F/cit61/1) 2012; 33 Karki (D2TA07420F/cit11/1) 2019; 31 Vydrov (D2TA07420F/cit49/1) 2006; 125 Han (D2TA07420F/cit60/1) 2019; 3 Perdigón Toro (D2TA07420F/cit67/1) 2021; 6 Ma (D2TA07420F/cit16/1) 2021; 64 Butler (D2TA07420F/cit30/1) 2019; 5 Hsu (D2TA07420F/cit55/1) 2009; 42 Perdigón-Toro (D2TA07420F/cit12/1) 2020; 32 Perdigón-Toro (D2TA07420F/cit64/1) 2020; 32 Natsuda (D2TA07420F/cit66/1) 2022; 15 Becke (D2TA07420F/cit43/1) 1993; 98 Martínez (D2TA07420F/cit39/1) 2009; 30 Rivnay (D2TA07420F/cit25/1) 2012; 112 Tozer (D2TA07420F/cit45/1) 1998; 109 Lin (D2TA07420F/cit13/1) 2020; 7 Zhu (D2TA07420F/cit68/1) 2021; 60 Li (D2TA07420F/cit8/1) 2022; 27 Stein (D2TA07420F/cit53/1) 2009; 131 Kühne (D2TA07420F/cit37/1) 2020; 152 Grimme (D2TA07420F/cit38/1) 2017; 13 Hou (D2TA07420F/cit1/1) 2018; 17 Grimme (D2TA07420F/cit36/1) 2017; 13 Kronik (D2TA07420F/cit50/1) 2012; 8 Liu (D2TA07420F/cit31/1) 2021; 26 Rehm (D2TA07420F/cit56/1) 1970; 8 Xiao (D2TA07420F/cit63/1) 2020; 8 Ma (D2TA07420F/cit17/1) 2022; 3 Gillett (D2TA07420F/cit69/1) 2021; 597 Cao (D2TA07420F/cit27/1) 2019; 119 Grimme (D2TA07420F/cit42/1) 2010; 132 Jakowetz (D2TA07420F/cit26/1) 2017; 16 Sabuj (D2TA07420F/cit35/1) 2020; 23 Verhoeven (D2TA07420F/cit57/1) 2005; 6 Luo (D2TA07420F/cit19/1) 2020; 4 Chen (D2TA07420F/cit34/1) 2020; 8 Chai (D2TA07420F/cit48/1) 2008; 128 Schipper (D2TA07420F/cit46/1) 2000; 112 Ma (D2TA07420F/cit7/1) 2022; 442 Cui (D2TA07420F/cit21/1) 2020; 32 Xia (D2TA07420F/cit14/1) 2019; 62 Stein (D2TA07420F/cit47/1) 2009; 131 Liu (D2TA07420F/cit10/1) 2022; 65 Baer (D2TA07420F/cit51/1) 2006; 329 Xu (D2TA07420F/cit6/1) 2022; 10 Yuan (D2TA07420F/cit29/1) 2019; 3 Ostroverkhova (D2TA07420F/cit3/1) 2016; 116 Liu (D2TA07420F/cit9/1) 2022; 65 Karki (D2TA07420F/cit22/1) 2021; 11 Lemaur (D2TA07420F/cit58/1) 2005; 127 Karki (D2TA07420F/cit18/1) 2020; 13 Knupfer (D2TA07420F/cit54/1) 2003; 77 Yanai (D2TA07420F/cit41/1) 2004; 393 Di Carlo Rasi (D2TA07420F/cit2/1) 2019; 31 Zhu (D2TA07420F/cit62/1) 2020; 10 |
References_xml | – issn: 2016 publication-title: GAUSSIAN 16, Revision B.01 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox – volume: 127 start-page: 6077 year: 2005 ident: D2TA07420F/cit58/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042390l contributor: fullname: Lemaur – volume: 31 start-page: 1903868 year: 2019 ident: D2TA07420F/cit11/1 publication-title: Adv. Mater. doi: 10.1002/adma.201903868 contributor: fullname: Karki – volume: 4 start-page: 1236 year: 2020 ident: D2TA07420F/cit19/1 publication-title: Joule doi: 10.1016/j.joule.2020.03.023 contributor: fullname: Luo – volume: 65 start-page: 224 year: 2022 ident: D2TA07420F/cit9/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1180-6 contributor: fullname: Liu – volume: 3 start-page: 1140 year: 2019 ident: D2TA07420F/cit29/1 publication-title: Joule doi: 10.1016/j.joule.2019.01.004 contributor: fullname: Yuan – volume: 32 start-page: 1908205 year: 2020 ident: D2TA07420F/cit21/1 publication-title: Adv. Mater. doi: 10.1002/adma.201908205 contributor: fullname: Cui – volume: 131 start-page: 244119 year: 2009 ident: D2TA07420F/cit53/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3269029 contributor: fullname: Stein – volume: 27 start-page: 1800 issue: 6 year: 2022 ident: D2TA07420F/cit8/1 publication-title: Molecules doi: 10.3390/molecules27061800 contributor: fullname: Li – volume: 94 start-page: 043002 year: 2005 ident: D2TA07420F/cit52/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.043002 contributor: fullname: Baer – volume: 8 start-page: 25275 year: 2020 ident: D2TA07420F/cit34/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09502H contributor: fullname: Chen – volume: 13 start-page: 3679 year: 2020 ident: D2TA07420F/cit18/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01896A contributor: fullname: Karki – volume: 119 start-page: 10856 year: 2019 ident: D2TA07420F/cit27/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00803 contributor: fullname: Cao – volume: 128 start-page: 084106 year: 2008 ident: D2TA07420F/cit48/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2834918 contributor: fullname: Chai – volume: 8 start-page: 1515 year: 2012 ident: D2TA07420F/cit50/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct2009363 contributor: fullname: Kronik – volume: 31 start-page: 2102764 year: 2021 ident: D2TA07420F/cit70/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102764 contributor: fullname: Liang – volume: 62 start-page: 662 year: 2019 ident: D2TA07420F/cit14/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-019-9478-2 contributor: fullname: Xia – volume: 10 start-page: 13492 year: 2022 ident: D2TA07420F/cit6/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02914F contributor: fullname: Xu – volume: 10 start-page: 1904234 year: 2020 ident: D2TA07420F/cit62/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904234 contributor: fullname: Zhu – volume: 597 start-page: 666 year: 2021 ident: D2TA07420F/cit69/1 publication-title: Nature doi: 10.1038/s41586-021-03840-5 contributor: fullname: Gillett – volume: 65 start-page: 272 year: 2020 ident: D2TA07420F/cit20/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.01.001 contributor: fullname: Liu – volume: 442 start-page: 136368 year: 2022 ident: D2TA07420F/cit7/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136368 contributor: fullname: Ma – volume: 132 start-page: 154104 year: 2010 ident: D2TA07420F/cit42/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 contributor: fullname: Grimme – volume: 17 start-page: 119 year: 2018 ident: D2TA07420F/cit1/1 publication-title: Nat. Mater. doi: 10.1038/nmat5063 contributor: fullname: Hou – volume: 12 start-page: 131 year: 2018 ident: D2TA07420F/cit4/1 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0104-9 contributor: fullname: Cheng – volume: 33 start-page: 580 year: 2012 ident: D2TA07420F/cit61/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 contributor: fullname: Lu – volume: 98 start-page: 11623 year: 1994 ident: D2TA07420F/cit44/1 publication-title: J. Chem. Phys. doi: 10.1021/j100096a001 contributor: fullname: Stephens – volume: 112 start-page: 5488 year: 2012 ident: D2TA07420F/cit25/1 publication-title: Chem. Rev. doi: 10.1021/cr3001109 contributor: fullname: Rivnay – volume: 11 start-page: 2003441 year: 2021 ident: D2TA07420F/cit22/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003441 contributor: fullname: Karki – volume: 329 start-page: 266 year: 2006 ident: D2TA07420F/cit51/1 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2006.06.041 contributor: fullname: Baer – volume: 52 start-page: 3075 year: 2019 ident: D2TA07420F/cit65/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00320 contributor: fullname: Ramakrishnan – volume: 6 start-page: 557 year: 2021 ident: D2TA07420F/cit67/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02572 contributor: fullname: Perdigón Toro – volume: 5 start-page: 914 year: 2021 ident: D2TA07420F/cit15/1 publication-title: Joule doi: 10.1016/j.joule.2021.02.002 contributor: fullname: Liu – volume: 393 start-page: 51 year: 2004 ident: D2TA07420F/cit41/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.06.011 contributor: fullname: Yanai – volume: 98 start-page: 1372 year: 1993 ident: D2TA07420F/cit43/1 publication-title: J. Chem. Phys. doi: 10.1063/1.464304 contributor: fullname: Becke – volume: 32 start-page: 1906763 year: 2020 ident: D2TA07420F/cit64/1 publication-title: Adv. Mater. doi: 10.1002/adma.201906763 contributor: fullname: Perdigón-Toro – volume: 112 start-page: 1344 year: 2000 ident: D2TA07420F/cit46/1 publication-title: J. Chem. Phys. doi: 10.1063/1.480688 contributor: fullname: Schipper – volume: 25 start-page: 1972 year: 2015 ident: D2TA07420F/cit28/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402682 contributor: fullname: Niedzialek – volume: 249 start-page: 15 year: 1996 ident: D2TA07420F/cit59/1 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(95)01310-5 contributor: fullname: Cave – volume: 13 start-page: 1989 year: 2017 ident: D2TA07420F/cit36/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00118 contributor: fullname: Grimme – volume: 30 start-page: 2157 year: 2009 ident: D2TA07420F/cit39/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 contributor: fullname: Martínez – volume: 13 start-page: 57684 year: 2021 ident: D2TA07420F/cit23/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c15896 contributor: fullname: Ma – volume: 16 start-page: 551 year: 2017 ident: D2TA07420F/cit26/1 publication-title: Nat. Mater. doi: 10.1038/nmat4865 contributor: fullname: Jakowetz – volume: 8 start-page: 1800002 year: 2018 ident: D2TA07420F/cit5/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800002 contributor: fullname: Dai – volume: 31 start-page: 1806499 year: 2019 ident: D2TA07420F/cit2/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806499 contributor: fullname: Di Carlo Rasi – volume: 32 start-page: 1906763 year: 2020 ident: D2TA07420F/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.201906763 contributor: fullname: Perdigón-Toro – volume: 5 start-page: 19 year: 2019 ident: D2TA07420F/cit30/1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0160-9 contributor: fullname: Butler – volume: 15 start-page: 1545 year: 2022 ident: D2TA07420F/cit66/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03565G contributor: fullname: Natsuda – volume: 60 start-page: 15348 year: 2021 ident: D2TA07420F/cit68/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202105156 contributor: fullname: Zhu – volume: 3 start-page: 1900258 year: 2019 ident: D2TA07420F/cit32/1 publication-title: Sol. RRL doi: 10.1002/solr.201900258 contributor: fullname: Sui – volume: 116 start-page: 13279 year: 2016 ident: D2TA07420F/cit3/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00127 contributor: fullname: Ostroverkhova – volume: 8 start-page: 5370 year: 2020 ident: D2TA07420F/cit63/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00587H contributor: fullname: Xiao – volume: 13 start-page: 1989 year: 2017 ident: D2TA07420F/cit38/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00118 contributor: fullname: Grimme – volume: 77 start-page: 623 year: 2003 ident: D2TA07420F/cit54/1 publication-title: Appl. Phys. A doi: 10.1007/s00339-003-2182-9 contributor: fullname: Knupfer – volume: 65 start-page: 1457 year: 2022 ident: D2TA07420F/cit10/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-022-1256-8 contributor: fullname: Liu – volume: 64 start-page: 581 year: 2021 ident: D2TA07420F/cit16/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-020-9912-0 contributor: fullname: Ma – volume: 42 start-page: 509 year: 2009 ident: D2TA07420F/cit55/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar800153f contributor: fullname: Hsu – volume: 3 start-page: 1800251 year: 2019 ident: D2TA07420F/cit60/1 publication-title: Sol. RRL doi: 10.1002/solr.201800251 contributor: fullname: Han – volume: 23 start-page: 101675 year: 2020 ident: D2TA07420F/cit35/1 publication-title: iScience doi: 10.1016/j.isci.2020.101675 contributor: fullname: Sabuj – volume: 5 start-page: 2100175 year: 2021 ident: D2TA07420F/cit24/1 publication-title: Sol. RRL doi: 10.1002/solr.202100175 contributor: fullname: Xu – volume: 11 start-page: 3943 year: 2020 ident: D2TA07420F/cit33/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17867-1 contributor: fullname: Zhang – volume: 6 start-page: 2251 year: 2005 ident: D2TA07420F/cit57/1 publication-title: ChemPhysChem doi: 10.1002/cphc.200500029 contributor: fullname: Verhoeven – volume: 7 start-page: 1903419 year: 2020 ident: D2TA07420F/cit13/1 publication-title: Adv. Sci. doi: 10.1002/advs.201903419 contributor: fullname: Lin – volume: 3 start-page: e58 year: 2022 ident: D2TA07420F/cit17/1 publication-title: Aggregate doi: 10.1002/agt2.58 contributor: fullname: Ma – volume: 125 start-page: 234109 year: 2006 ident: D2TA07420F/cit49/1 publication-title: J. Chem. Phys. doi: 10.1063/1.2409292 contributor: fullname: Vydrov – volume: 152 start-page: 194103 year: 2020 ident: D2TA07420F/cit37/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0007045 contributor: fullname: Kühne – volume: 26 start-page: 101385 year: 2021 ident: D2TA07420F/cit31/1 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2021.101385 contributor: fullname: Liu – volume: 109 start-page: 10180 year: 1998 ident: D2TA07420F/cit45/1 publication-title: J. Chem. Phys. doi: 10.1063/1.477711 contributor: fullname: Tozer – volume: 8 start-page: 259 year: 1970 ident: D2TA07420F/cit56/1 publication-title: Isr. J. Chem. doi: 10.1002/ijch.197000029 contributor: fullname: Rehm – volume: 131 start-page: 2818 year: 2009 ident: D2TA07420F/cit47/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8087482 contributor: fullname: Stein |
SSID | ssj0000800699 |
Score | 2.5137362 |
Snippet | The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 25611 |
SubjectTerms | Charge transfer Cytology Density functional theory Dimers Electron transfer Energy charge Energy conversion efficiency Excitons Fullerenes Mathematical analysis Molecular dynamics Morphology Photovoltaic cells Quantum chemistry Simulation Solar cells Stacking Ultraviolet spectra |
Title | Theoretical exploration of molecular packing and the charge transfer mechanism of organic solar cells based on PM6:Y6 |
URI | https://www.proquest.com/docview/2753553574 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp-rI9jN3KsrZDsL0Zd7Zs2VXfQi90Yx0bpJDuxViy3JZSZ0ucl_6r_sOdI1myBy1sg2ASCSm2zmfp09G5EPKBqbiSpZZhImsZpoyJEGkIWgKoBI9-hPFbO_uanZ6nn-d8PhrdD6yW1q3cU3cP-pX8j1ShDOSKXrL_IFnfKRTAd5AvXEHCcP1bGXsvRG2M6TwBvHVpbwPYFN84T0RkmSY2ksbcEMBY9TK41ej8i7kyoJlN8qSCFe54A9TqrwJc6Co8VPh2lsGdXWSPEFrgvvah4S-6LHJ7wdQ6BLkaE2Dcuhsajb1z30ILXa_cn193SuzDq0VzCZ15AP-4Ko1q9zvmIrv0xkTXa2MqWDa_sGV_rGJPldB1vRlqN5hJtGKdU-0kyCIeYbxTO0frYZnNhOtn8QFYbexONyUDQ4wH6zv-Fg8uHlGCsVcr1paoMIjqfon0hot95QbZxNiL6ZhsTo9nn754xR5S8MzkLfX37sLiJuJj38GfRKjf3WwsXeoZQ3Fmz8mzTpR0aoH2gox085I8HUSsfEXWA8jRAeTooqYecrSDHAURU4ActZCjDnLUQw6bdZCjBnLUQI4ayFHoFiB3cJG9Jucnx7PD07DL3BEqth-3YVWlmqta5SKveCYxil4lNGdSccZ1HWuhcp0CMarzWGW1iCXqHcpM5jXydZ1skXGzaPQbQqOEa7TcSrTMU70PfBnmvirPI65TIRWbkPduGIufNkBLYQwrElEcsdnUDPbJhOy4ES66F3hVMNiqc_jk6YRswaj79r2Q3j5WsU2e9HDdIeN2uda7QE9b-a4DxG9QJZTL |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+exploration+of+molecular+packing+and+the+charge+transfer+mechanism+of+organic+solar+cells+based+on+PM6%3AY6&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xiang%2C+Chongchen&rft.au=Zhao%2C+Qiming&rft.au=Liu%2C+Wanqiang&rft.au=Cao%2C+Jiamin&rft.date=2022-12-13&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=48&rft.spage=25611&rft.epage=25619&rft_id=info:doi/10.1039%2Fd2ta07420f&rft.externalDocID=d2ta07420f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |