Theoretical exploration of molecular packing and the charge transfer mechanism of organic solar cells based on PM6:Y6

The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations a...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 1; no. 48; pp. 25611 - 25619
Main Authors Xiang, Chongchen, Zhao, Qiming, Liu, Wanqiang, Cao, Jiamin, Zou, Yingping, Zhou, Hu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations and quantum chemical calculations provide effective means to explore the morphology and properties of active layers. In this paper, the local molecular stacking of PM6:Y6 films is simulated based on ab initio molecular dynamics (AIMD), and the simulation results show that the donor-acceptor (D-A) molecules are pi-pi stacked and some Y6 molecules are arranged in order. The excited state information of PM6:Y6 dimers was calculated by time-dependent density functional theory (TD-DFT) calculations. The results showed that Δ E S 1 -CT < 0.1 eV, and dimers have very low exciton binding energy ( E b ). The charge transfer processes of the D-A dimer are LE → CT X → CS and LE → CT X → CT 1 → CS combined with hole-electron analysis. Moreover, ultraviolet-visible (UV-vis) spectra of J-type stacked dimers is similar to that of PM6:Y6 films. Finally, the electron transfer rates ( k electron ) and hole transfer rates ( k hole ) were calculated by Marcus theory, and the results showed that the PM6:Y6 system has high charge transfer rates, but the effect of molecular configuration on k electron is less than that on k hole . The properties of PM6:Y6 films were systematically investigated at the theoretical level in this work, and it demonstrated that PM6:Y6 films have pi-pi stacking, low Δ E S 1 - CT X , low E b , and high charge transfer rates. The morphology of PM6:Y6 films (a) and the electronic structure information of D-A dimers (b) were obtained by AIMD and DFT. The low interfacial energy offset, low E b and high charge transfer rates are the key factors for PM6:Y6 to possess high PCE.
AbstractList The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations and quantum chemical calculations provide effective means to explore the morphology and properties of active layers. In this paper, the local molecular stacking of PM6:Y6 films is simulated based on ab initio molecular dynamics (AIMD), and the simulation results show that the donor–acceptor (D–A) molecules are pi–pi stacked and some Y6 molecules are arranged in order. The excited state information of PM6:Y6 dimers was calculated by time-dependent density functional theory (TD-DFT) calculations. The results showed that ΔES1–CT < 0.1 eV, and dimers have very low exciton binding energy (Eb). The charge transfer processes of the D–A dimer are LE → CTX → CS and LE → CTX → CT1 → CS combined with hole–electron analysis. Moreover, ultraviolet-visible (UV-vis) spectra of J-type stacked dimers is similar to that of PM6:Y6 films. Finally, the electron transfer rates (kelectron) and hole transfer rates (khole) were calculated by Marcus theory, and the results showed that the PM6:Y6 system has high charge transfer rates, but the effect of molecular configuration on kelectron is less than that on khole. The properties of PM6:Y6 films were systematically investigated at the theoretical level in this work, and it demonstrated that PM6:Y6 films have pi–pi stacking, low ΔES1–CTX, low Eb, and high charge transfer rates.
The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations and quantum chemical calculations provide effective means to explore the morphology and properties of active layers. In this paper, the local molecular stacking of PM6:Y6 films is simulated based on ab initio molecular dynamics (AIMD), and the simulation results show that the donor-acceptor (D-A) molecules are pi-pi stacked and some Y6 molecules are arranged in order. The excited state information of PM6:Y6 dimers was calculated by time-dependent density functional theory (TD-DFT) calculations. The results showed that Δ E S 1 -CT < 0.1 eV, and dimers have very low exciton binding energy ( E b ). The charge transfer processes of the D-A dimer are LE → CT X → CS and LE → CT X → CT 1 → CS combined with hole-electron analysis. Moreover, ultraviolet-visible (UV-vis) spectra of J-type stacked dimers is similar to that of PM6:Y6 films. Finally, the electron transfer rates ( k electron ) and hole transfer rates ( k hole ) were calculated by Marcus theory, and the results showed that the PM6:Y6 system has high charge transfer rates, but the effect of molecular configuration on k electron is less than that on k hole . The properties of PM6:Y6 films were systematically investigated at the theoretical level in this work, and it demonstrated that PM6:Y6 films have pi-pi stacking, low Δ E S 1 - CT X , low E b , and high charge transfer rates. The morphology of PM6:Y6 films (a) and the electronic structure information of D-A dimers (b) were obtained by AIMD and DFT. The low interfacial energy offset, low E b and high charge transfer rates are the key factors for PM6:Y6 to possess high PCE.
The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current experimental techniques cannot be used to directly observe the structural information at the electronic level. Molecular dynamics simulations and quantum chemical calculations provide effective means to explore the morphology and properties of active layers. In this paper, the local molecular stacking of PM6:Y6 films is simulated based on ab initio molecular dynamics (AIMD), and the simulation results show that the donor–acceptor (D–A) molecules are pi–pi stacked and some Y6 molecules are arranged in order. The excited state information of PM6:Y6 dimers was calculated by time-dependent density functional theory (TD-DFT) calculations. The results showed that Δ E S 1 –CT < 0.1 eV, and dimers have very low exciton binding energy ( E b ). The charge transfer processes of the D–A dimer are LE → CT X → CS and LE → CT X → CT 1 → CS combined with hole–electron analysis. Moreover, ultraviolet-visible (UV-vis) spectra of J-type stacked dimers is similar to that of PM6:Y6 films. Finally, the electron transfer rates ( k electron ) and hole transfer rates ( k hole ) were calculated by Marcus theory, and the results showed that the PM6:Y6 system has high charge transfer rates, but the effect of molecular configuration on k electron is less than that on k hole . The properties of PM6:Y6 films were systematically investigated at the theoretical level in this work, and it demonstrated that PM6:Y6 films have pi–pi stacking, low Δ E S 1 – CT X , low E b , and high charge transfer rates.
Author Xiang, Chongchen
Zou, Yingping
Cao, Jiamin
Zhou, Hu
Liu, Wanqiang
Zhao, Qiming
AuthorAffiliation Central South University
Hunan Province Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
College of Chemistry and Chemical Engineering
Hunan University of Science and Technology
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: Hunan University of Science and Technology
– name: College of Chemistry and Chemical Engineering
– name: Hunan Province Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
– name: School of Chemistry and Chemical Engineering
– name: Central South University
Author_xml – sequence: 1
  givenname: Chongchen
  surname: Xiang
  fullname: Xiang, Chongchen
– sequence: 2
  givenname: Qiming
  surname: Zhao
  fullname: Zhao, Qiming
– sequence: 3
  givenname: Wanqiang
  surname: Liu
  fullname: Liu, Wanqiang
– sequence: 4
  givenname: Jiamin
  surname: Cao
  fullname: Cao, Jiamin
– sequence: 5
  givenname: Yingping
  surname: Zou
  fullname: Zou, Yingping
– sequence: 6
  givenname: Hu
  surname: Zhou
  fullname: Zhou, Hu
BookMark eNpFkMFLwzAUxoNMcM5dvAsBb0I1TZum8TamU2Gih3nwVNL0Zetsk5q0oP-9mZP5ePA-Hr_3PfhO0chYAwidx-Q6Jom4qWgvCU8p0UdoTAkjEU9FNjroPD9BU--3JFROSCbEGA2rDVgHfa1kg-Gra6yTfW0Nthq3tgE1NNLhTqqP2qyxNBXuN4DVRro14N5J4zU43ELYmNq3uzPr1kEr7O3uVEHTeFxKDxUOtq_P2e17doaOtWw8TP_mBL0t7lfzx2j58vA0ny0jRfO4j6oqBaa04oJXLCtTkrNKAKOlYpSBjkEoDmmecs1jlWkRl4RSKrOS60RQAckEXe59O2c_B_B9sbWDM-FlQTlLWGieBupqTylnvXegi87VrXTfRUyKXbLFHV3NfpNdBPhiDzuvDtx_8skPMAh3ng
CitedBy_id crossref_primary_10_1088_1674_1056_ad2a6a
crossref_primary_10_1016_j_jpcs_2024_112094
crossref_primary_10_1016_j_solener_2023_112115
crossref_primary_10_1021_acs_jpca_3c06000
crossref_primary_10_1016_j_jlumin_2023_120415
crossref_primary_10_1016_j_comptc_2024_114658
crossref_primary_10_1016_j_surfin_2023_103767
crossref_primary_10_1021_acs_macromol_3c00987
crossref_primary_10_1016_j_xcrp_2024_102027
Cites_doi 10.1021/ja042390l
10.1002/adma.201903868
10.1016/j.joule.2020.03.023
10.1007/s11426-021-1180-6
10.1016/j.joule.2019.01.004
10.1002/adma.201908205
10.1063/1.3269029
10.3390/molecules27061800
10.1103/PhysRevLett.94.043002
10.1039/D0TA09502H
10.1039/D0EE01896A
10.1021/acs.chemrev.8b00803
10.1063/1.2834918
10.1021/ct2009363
10.1002/adfm.202102764
10.1007/s11426-019-9478-2
10.1039/D2TA02914F
10.1002/aenm.201904234
10.1038/s41586-021-03840-5
10.1016/j.scib.2020.01.001
10.1016/j.cej.2022.136368
10.1063/1.3382344
10.1038/nmat5063
10.1038/s41566-018-0104-9
10.1002/jcc.22885
10.1021/j100096a001
10.1021/cr3001109
10.1002/aenm.202003441
10.1016/j.chemphys.2006.06.041
10.1021/acs.accounts.9b00320
10.1021/acsenergylett.0c02572
10.1016/j.joule.2021.02.002
10.1016/j.cplett.2004.06.011
10.1063/1.464304
10.1002/adma.201906763
10.1063/1.480688
10.1002/adfm.201402682
10.1016/0009-2614(95)01310-5
10.1021/acs.jctc.7b00118
10.1002/jcc.21224
10.1021/acsami.1c15896
10.1038/nmat4865
10.1002/aenm.201800002
10.1002/adma.201806499
10.1038/s41524-019-0160-9
10.1039/D1EE03565G
10.1002/anie.202105156
10.1002/solr.201900258
10.1021/acs.chemrev.6b00127
10.1039/D0TC00587H
10.1007/s00339-003-2182-9
10.1007/s11426-022-1256-8
10.1007/s11426-020-9912-0
10.1021/ar800153f
10.1002/solr.201800251
10.1016/j.isci.2020.101675
10.1002/solr.202100175
10.1038/s41467-020-17867-1
10.1002/cphc.200500029
10.1002/advs.201903419
10.1002/agt2.58
10.1063/1.2409292
10.1063/5.0007045
10.1016/j.surfin.2021.101385
10.1063/1.477711
10.1002/ijch.197000029
10.1021/ja8087482
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d2ta07420f
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 25619
ExternalDocumentID 10_1039_D2TA07420F
d2ta07420f
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GNO
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
H13
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-dd4e5cfc797d56b4085d9e52bc525ef1e9c7e4847f71c6f91b0222a6b7f3929e3
ISSN 2050-7488
IngestDate Thu Oct 10 19:13:30 EDT 2024
Fri Dec 06 00:50:41 EST 2024
Wed Dec 14 06:06:58 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-dd4e5cfc797d56b4085d9e52bc525ef1e9c7e4847f71c6f91b0222a6b7f3929e3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d2ta07420f
ORCID 0000-0001-5561-0867
0000-0003-1901-7243
0000-0003-2069-6976
PQID 2753553574
PQPubID 2047523
PageCount 9
ParticipantIDs proquest_journals_2753553574
crossref_primary_10_1039_D2TA07420F
rsc_primary_d2ta07420f
PublicationCentury 2000
PublicationDate 2022-12-13
PublicationDateYYYYMMDD 2022-12-13
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-13
  day: 13
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (D2TA07420F/cit20/1) 2020; 65
Cheng (D2TA07420F/cit4/1) 2018; 12
Xu (D2TA07420F/cit24/1) 2021; 5
Stephens (D2TA07420F/cit44/1) 1994; 98
Dai (D2TA07420F/cit5/1) 2018; 8
Cave (D2TA07420F/cit59/1) 1996; 249
Ma (D2TA07420F/cit23/1) 2021; 13
Sui (D2TA07420F/cit32/1) 2019; 3
Ramakrishnan (D2TA07420F/cit65/1) 2019; 52
Niedzialek (D2TA07420F/cit28/1) 2015; 25
Baer (D2TA07420F/cit52/1) 2005; 94
Liu (D2TA07420F/cit15/1) 2021; 5
Zhang (D2TA07420F/cit33/1) 2020; 11
Liang (D2TA07420F/cit70/1) 2021; 31
Lu (D2TA07420F/cit61/1) 2012; 33
Karki (D2TA07420F/cit11/1) 2019; 31
Vydrov (D2TA07420F/cit49/1) 2006; 125
Han (D2TA07420F/cit60/1) 2019; 3
Perdigón Toro (D2TA07420F/cit67/1) 2021; 6
Ma (D2TA07420F/cit16/1) 2021; 64
Butler (D2TA07420F/cit30/1) 2019; 5
Hsu (D2TA07420F/cit55/1) 2009; 42
Perdigón-Toro (D2TA07420F/cit12/1) 2020; 32
Perdigón-Toro (D2TA07420F/cit64/1) 2020; 32
Natsuda (D2TA07420F/cit66/1) 2022; 15
Becke (D2TA07420F/cit43/1) 1993; 98
Martínez (D2TA07420F/cit39/1) 2009; 30
Rivnay (D2TA07420F/cit25/1) 2012; 112
Tozer (D2TA07420F/cit45/1) 1998; 109
Lin (D2TA07420F/cit13/1) 2020; 7
Zhu (D2TA07420F/cit68/1) 2021; 60
Li (D2TA07420F/cit8/1) 2022; 27
Stein (D2TA07420F/cit53/1) 2009; 131
Kühne (D2TA07420F/cit37/1) 2020; 152
Grimme (D2TA07420F/cit38/1) 2017; 13
Hou (D2TA07420F/cit1/1) 2018; 17
Grimme (D2TA07420F/cit36/1) 2017; 13
Kronik (D2TA07420F/cit50/1) 2012; 8
Liu (D2TA07420F/cit31/1) 2021; 26
Rehm (D2TA07420F/cit56/1) 1970; 8
Xiao (D2TA07420F/cit63/1) 2020; 8
Ma (D2TA07420F/cit17/1) 2022; 3
Gillett (D2TA07420F/cit69/1) 2021; 597
Cao (D2TA07420F/cit27/1) 2019; 119
Grimme (D2TA07420F/cit42/1) 2010; 132
Jakowetz (D2TA07420F/cit26/1) 2017; 16
Sabuj (D2TA07420F/cit35/1) 2020; 23
Verhoeven (D2TA07420F/cit57/1) 2005; 6
Luo (D2TA07420F/cit19/1) 2020; 4
Chen (D2TA07420F/cit34/1) 2020; 8
Chai (D2TA07420F/cit48/1) 2008; 128
Schipper (D2TA07420F/cit46/1) 2000; 112
Ma (D2TA07420F/cit7/1) 2022; 442
Cui (D2TA07420F/cit21/1) 2020; 32
Xia (D2TA07420F/cit14/1) 2019; 62
Stein (D2TA07420F/cit47/1) 2009; 131
Liu (D2TA07420F/cit10/1) 2022; 65
Baer (D2TA07420F/cit51/1) 2006; 329
Xu (D2TA07420F/cit6/1) 2022; 10
Yuan (D2TA07420F/cit29/1) 2019; 3
Ostroverkhova (D2TA07420F/cit3/1) 2016; 116
Liu (D2TA07420F/cit9/1) 2022; 65
Karki (D2TA07420F/cit22/1) 2021; 11
Lemaur (D2TA07420F/cit58/1) 2005; 127
Karki (D2TA07420F/cit18/1) 2020; 13
Knupfer (D2TA07420F/cit54/1) 2003; 77
Yanai (D2TA07420F/cit41/1) 2004; 393
Di Carlo Rasi (D2TA07420F/cit2/1) 2019; 31
Zhu (D2TA07420F/cit62/1) 2020; 10
References_xml – issn: 2016
  publication-title: GAUSSIAN 16, Revision B.01
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– volume: 127
  start-page: 6077
  year: 2005
  ident: D2TA07420F/cit58/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042390l
  contributor:
    fullname: Lemaur
– volume: 31
  start-page: 1903868
  year: 2019
  ident: D2TA07420F/cit11/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903868
  contributor:
    fullname: Karki
– volume: 4
  start-page: 1236
  year: 2020
  ident: D2TA07420F/cit19/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.023
  contributor:
    fullname: Luo
– volume: 65
  start-page: 224
  year: 2022
  ident: D2TA07420F/cit9/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1180-6
  contributor:
    fullname: Liu
– volume: 3
  start-page: 1140
  year: 2019
  ident: D2TA07420F/cit29/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.01.004
  contributor:
    fullname: Yuan
– volume: 32
  start-page: 1908205
  year: 2020
  ident: D2TA07420F/cit21/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908205
  contributor:
    fullname: Cui
– volume: 131
  start-page: 244119
  year: 2009
  ident: D2TA07420F/cit53/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3269029
  contributor:
    fullname: Stein
– volume: 27
  start-page: 1800
  issue: 6
  year: 2022
  ident: D2TA07420F/cit8/1
  publication-title: Molecules
  doi: 10.3390/molecules27061800
  contributor:
    fullname: Li
– volume: 94
  start-page: 043002
  year: 2005
  ident: D2TA07420F/cit52/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.043002
  contributor:
    fullname: Baer
– volume: 8
  start-page: 25275
  year: 2020
  ident: D2TA07420F/cit34/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09502H
  contributor:
    fullname: Chen
– volume: 13
  start-page: 3679
  year: 2020
  ident: D2TA07420F/cit18/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01896A
  contributor:
    fullname: Karki
– volume: 119
  start-page: 10856
  year: 2019
  ident: D2TA07420F/cit27/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00803
  contributor:
    fullname: Cao
– volume: 128
  start-page: 084106
  year: 2008
  ident: D2TA07420F/cit48/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2834918
  contributor:
    fullname: Chai
– volume: 8
  start-page: 1515
  year: 2012
  ident: D2TA07420F/cit50/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct2009363
  contributor:
    fullname: Kronik
– volume: 31
  start-page: 2102764
  year: 2021
  ident: D2TA07420F/cit70/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102764
  contributor:
    fullname: Liang
– volume: 62
  start-page: 662
  year: 2019
  ident: D2TA07420F/cit14/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-019-9478-2
  contributor:
    fullname: Xia
– volume: 10
  start-page: 13492
  year: 2022
  ident: D2TA07420F/cit6/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02914F
  contributor:
    fullname: Xu
– volume: 10
  start-page: 1904234
  year: 2020
  ident: D2TA07420F/cit62/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904234
  contributor:
    fullname: Zhu
– volume: 597
  start-page: 666
  year: 2021
  ident: D2TA07420F/cit69/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03840-5
  contributor:
    fullname: Gillett
– volume: 65
  start-page: 272
  year: 2020
  ident: D2TA07420F/cit20/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.01.001
  contributor:
    fullname: Liu
– volume: 442
  start-page: 136368
  year: 2022
  ident: D2TA07420F/cit7/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136368
  contributor:
    fullname: Ma
– volume: 132
  start-page: 154104
  year: 2010
  ident: D2TA07420F/cit42/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
  contributor:
    fullname: Grimme
– volume: 17
  start-page: 119
  year: 2018
  ident: D2TA07420F/cit1/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
  contributor:
    fullname: Hou
– volume: 12
  start-page: 131
  year: 2018
  ident: D2TA07420F/cit4/1
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0104-9
  contributor:
    fullname: Cheng
– volume: 33
  start-page: 580
  year: 2012
  ident: D2TA07420F/cit61/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
  contributor:
    fullname: Lu
– volume: 98
  start-page: 11623
  year: 1994
  ident: D2TA07420F/cit44/1
  publication-title: J. Chem. Phys.
  doi: 10.1021/j100096a001
  contributor:
    fullname: Stephens
– volume: 112
  start-page: 5488
  year: 2012
  ident: D2TA07420F/cit25/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr3001109
  contributor:
    fullname: Rivnay
– volume: 11
  start-page: 2003441
  year: 2021
  ident: D2TA07420F/cit22/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003441
  contributor:
    fullname: Karki
– volume: 329
  start-page: 266
  year: 2006
  ident: D2TA07420F/cit51/1
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2006.06.041
  contributor:
    fullname: Baer
– volume: 52
  start-page: 3075
  year: 2019
  ident: D2TA07420F/cit65/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00320
  contributor:
    fullname: Ramakrishnan
– volume: 6
  start-page: 557
  year: 2021
  ident: D2TA07420F/cit67/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02572
  contributor:
    fullname: Perdigón Toro
– volume: 5
  start-page: 914
  year: 2021
  ident: D2TA07420F/cit15/1
  publication-title: Joule
  doi: 10.1016/j.joule.2021.02.002
  contributor:
    fullname: Liu
– volume: 393
  start-page: 51
  year: 2004
  ident: D2TA07420F/cit41/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.06.011
  contributor:
    fullname: Yanai
– volume: 98
  start-page: 1372
  year: 1993
  ident: D2TA07420F/cit43/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464304
  contributor:
    fullname: Becke
– volume: 32
  start-page: 1906763
  year: 2020
  ident: D2TA07420F/cit64/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906763
  contributor:
    fullname: Perdigón-Toro
– volume: 112
  start-page: 1344
  year: 2000
  ident: D2TA07420F/cit46/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480688
  contributor:
    fullname: Schipper
– volume: 25
  start-page: 1972
  year: 2015
  ident: D2TA07420F/cit28/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402682
  contributor:
    fullname: Niedzialek
– volume: 249
  start-page: 15
  year: 1996
  ident: D2TA07420F/cit59/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(95)01310-5
  contributor:
    fullname: Cave
– volume: 13
  start-page: 1989
  year: 2017
  ident: D2TA07420F/cit36/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00118
  contributor:
    fullname: Grimme
– volume: 30
  start-page: 2157
  year: 2009
  ident: D2TA07420F/cit39/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
  contributor:
    fullname: Martínez
– volume: 13
  start-page: 57684
  year: 2021
  ident: D2TA07420F/cit23/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c15896
  contributor:
    fullname: Ma
– volume: 16
  start-page: 551
  year: 2017
  ident: D2TA07420F/cit26/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4865
  contributor:
    fullname: Jakowetz
– volume: 8
  start-page: 1800002
  year: 2018
  ident: D2TA07420F/cit5/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800002
  contributor:
    fullname: Dai
– volume: 31
  start-page: 1806499
  year: 2019
  ident: D2TA07420F/cit2/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806499
  contributor:
    fullname: Di Carlo Rasi
– volume: 32
  start-page: 1906763
  year: 2020
  ident: D2TA07420F/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906763
  contributor:
    fullname: Perdigón-Toro
– volume: 5
  start-page: 19
  year: 2019
  ident: D2TA07420F/cit30/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0160-9
  contributor:
    fullname: Butler
– volume: 15
  start-page: 1545
  year: 2022
  ident: D2TA07420F/cit66/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03565G
  contributor:
    fullname: Natsuda
– volume: 60
  start-page: 15348
  year: 2021
  ident: D2TA07420F/cit68/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202105156
  contributor:
    fullname: Zhu
– volume: 3
  start-page: 1900258
  year: 2019
  ident: D2TA07420F/cit32/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.201900258
  contributor:
    fullname: Sui
– volume: 116
  start-page: 13279
  year: 2016
  ident: D2TA07420F/cit3/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00127
  contributor:
    fullname: Ostroverkhova
– volume: 8
  start-page: 5370
  year: 2020
  ident: D2TA07420F/cit63/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00587H
  contributor:
    fullname: Xiao
– volume: 13
  start-page: 1989
  year: 2017
  ident: D2TA07420F/cit38/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00118
  contributor:
    fullname: Grimme
– volume: 77
  start-page: 623
  year: 2003
  ident: D2TA07420F/cit54/1
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-003-2182-9
  contributor:
    fullname: Knupfer
– volume: 65
  start-page: 1457
  year: 2022
  ident: D2TA07420F/cit10/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-022-1256-8
  contributor:
    fullname: Liu
– volume: 64
  start-page: 581
  year: 2021
  ident: D2TA07420F/cit16/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-020-9912-0
  contributor:
    fullname: Ma
– volume: 42
  start-page: 509
  year: 2009
  ident: D2TA07420F/cit55/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800153f
  contributor:
    fullname: Hsu
– volume: 3
  start-page: 1800251
  year: 2019
  ident: D2TA07420F/cit60/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800251
  contributor:
    fullname: Han
– volume: 23
  start-page: 101675
  year: 2020
  ident: D2TA07420F/cit35/1
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101675
  contributor:
    fullname: Sabuj
– volume: 5
  start-page: 2100175
  year: 2021
  ident: D2TA07420F/cit24/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100175
  contributor:
    fullname: Xu
– volume: 11
  start-page: 3943
  year: 2020
  ident: D2TA07420F/cit33/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17867-1
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 2251
  year: 2005
  ident: D2TA07420F/cit57/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200500029
  contributor:
    fullname: Verhoeven
– volume: 7
  start-page: 1903419
  year: 2020
  ident: D2TA07420F/cit13/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903419
  contributor:
    fullname: Lin
– volume: 3
  start-page: e58
  year: 2022
  ident: D2TA07420F/cit17/1
  publication-title: Aggregate
  doi: 10.1002/agt2.58
  contributor:
    fullname: Ma
– volume: 125
  start-page: 234109
  year: 2006
  ident: D2TA07420F/cit49/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2409292
  contributor:
    fullname: Vydrov
– volume: 152
  start-page: 194103
  year: 2020
  ident: D2TA07420F/cit37/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0007045
  contributor:
    fullname: Kühne
– volume: 26
  start-page: 101385
  year: 2021
  ident: D2TA07420F/cit31/1
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2021.101385
  contributor:
    fullname: Liu
– volume: 109
  start-page: 10180
  year: 1998
  ident: D2TA07420F/cit45/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477711
  contributor:
    fullname: Tozer
– volume: 8
  start-page: 259
  year: 1970
  ident: D2TA07420F/cit56/1
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.197000029
  contributor:
    fullname: Rehm
– volume: 131
  start-page: 2818
  year: 2009
  ident: D2TA07420F/cit47/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8087482
  contributor:
    fullname: Stein
SSID ssj0000800699
Score 2.5137362
Snippet The active layer morphology of non-fullerene organic solar cells is one of the key factors affecting the power conversion efficiency (PCE); however, current...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 25611
SubjectTerms Charge transfer
Cytology
Density functional theory
Dimers
Electron transfer
Energy charge
Energy conversion efficiency
Excitons
Fullerenes
Mathematical analysis
Molecular dynamics
Morphology
Photovoltaic cells
Quantum chemistry
Simulation
Solar cells
Stacking
Ultraviolet spectra
Title Theoretical exploration of molecular packing and the charge transfer mechanism of organic solar cells based on PM6:Y6
URI https://www.proquest.com/docview/2753553574
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZp-rI9jN3KsrZDsL0Zd7Zs2VXfQi90Yx0bpJDuxViy3JZSZ0ucl_6r_sOdI1myBy1sg2ASCSm2zmfp09G5EPKBqbiSpZZhImsZpoyJEGkIWgKoBI9-hPFbO_uanZ6nn-d8PhrdD6yW1q3cU3cP-pX8j1ShDOSKXrL_IFnfKRTAd5AvXEHCcP1bGXsvRG2M6TwBvHVpbwPYFN84T0RkmSY2ksbcEMBY9TK41ej8i7kyoJlN8qSCFe54A9TqrwJc6Co8VPh2lsGdXWSPEFrgvvah4S-6LHJ7wdQ6BLkaE2Dcuhsajb1z30ILXa_cn193SuzDq0VzCZ15AP-4Ko1q9zvmIrv0xkTXa2MqWDa_sGV_rGJPldB1vRlqN5hJtGKdU-0kyCIeYbxTO0frYZnNhOtn8QFYbexONyUDQ4wH6zv-Fg8uHlGCsVcr1paoMIjqfon0hot95QbZxNiL6ZhsTo9nn754xR5S8MzkLfX37sLiJuJj38GfRKjf3WwsXeoZQ3Fmz8mzTpR0aoH2gox085I8HUSsfEXWA8jRAeTooqYecrSDHAURU4ActZCjDnLUQw6bdZCjBnLUQI4ayFHoFiB3cJG9Jucnx7PD07DL3BEqth-3YVWlmqta5SKveCYxil4lNGdSccZ1HWuhcp0CMarzWGW1iCXqHcpM5jXydZ1skXGzaPQbQqOEa7TcSrTMU70PfBnmvirPI65TIRWbkPduGIufNkBLYQwrElEcsdnUDPbJhOy4ES66F3hVMNiqc_jk6YRswaj79r2Q3j5WsU2e9HDdIeN2uda7QE9b-a4DxG9QJZTL
link.rule.ids 314,780,784,27924,27925
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+exploration+of+molecular+packing+and+the+charge+transfer+mechanism+of+organic+solar+cells+based+on+PM6%3AY6&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xiang%2C+Chongchen&rft.au=Zhao%2C+Qiming&rft.au=Liu%2C+Wanqiang&rft.au=Cao%2C+Jiamin&rft.date=2022-12-13&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=1&rft.issue=48&rft.spage=25611&rft.epage=25619&rft_id=info:doi/10.1039%2Fd2ta07420f&rft.externalDocID=d2ta07420f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon