Hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells: activity descriptors, stability regulation, and perspectives

The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalys...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 17; no. 12; pp. 396 - 49
Main Authors Ren, Jin-Tao, Chen, Lei, Wang, Hao-Yu, Feng, Yi, Yuan, Zhong-Yong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 18.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalysts in AEMFCs, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) in alkaline media, necessitating a high Pt amount, poses a substantial impediment to AEMFC development. This review delves into the intricate landscape of the alkaline HOR, commencing with exploration of prevailing theories grounded in diverse activity descriptors, such as the hydrogen binding energy theory and bifunctional theory. The elucidation of sluggish kinetics and reaction mechanisms in alkaline electrolytes serves as the foundation for the analysis of noble and non-noble metal catalysts, encompassing considerations of morphology, composition, local structure, heterostructure, spillover effects, single atomic catalysts, and oxyphilic site engineering. Emphasis is placed on addressing pivotal but often overlooked challenges, including long-term stability, antioxidation ability, and CO tolerance of HOR catalysts. This review underscores the significance of theoretical investigations and in situ characterization technologies. Subsequently, recent strides in AEMFCs, leveraging various electrocatalysts for enhanced activity and durability, are meticulously summarized. The narrative concludes by spotlighting persisting controversies surrounding alkaline HOR mechanisms, along with an exposition of challenges and prospective research directions vital for the eventual commercialization of AEMFCs. The general principles in terms of reactivity and stability to design efficient electrocatalysts for the alkaline hydrogen oxidation reaction are reviewed. The performance of catalysts in anion-exchange membrane fuel cells is further discussed.
AbstractList The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalysts in AEMFCs, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) in alkaline media, necessitating a high Pt amount, poses a substantial impediment to AEMFC development. This review delves into the intricate landscape of the alkaline HOR, commencing with exploration of prevailing theories grounded in diverse activity descriptors, such as the hydrogen binding energy theory and bifunctional theory. The elucidation of sluggish kinetics and reaction mechanisms in alkaline electrolytes serves as the foundation for the analysis of noble and non-noble metal catalysts, encompassing considerations of morphology, composition, local structure, heterostructure, spillover effects, single atomic catalysts, and oxyphilic site engineering. Emphasis is placed on addressing pivotal but often overlooked challenges, including long-term stability, antioxidation ability, and CO tolerance of HOR catalysts. This review underscores the significance of theoretical investigations and in situ characterization technologies. Subsequently, recent strides in AEMFCs, leveraging various electrocatalysts for enhanced activity and durability, are meticulously summarized. The narrative concludes by spotlighting persisting controversies surrounding alkaline HOR mechanisms, along with an exposition of challenges and prospective research directions vital for the eventual commercialization of AEMFCs.
The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalysts in AEMFCs, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) in alkaline media, necessitating a high Pt amount, poses a substantial impediment to AEMFC development. This review delves into the intricate landscape of the alkaline HOR, commencing with exploration of prevailing theories grounded in diverse activity descriptors, such as the hydrogen binding energy theory and bifunctional theory. The elucidation of sluggish kinetics and reaction mechanisms in alkaline electrolytes serves as the foundation for the analysis of noble and non-noble metal catalysts, encompassing considerations of morphology, composition, local structure, heterostructure, spillover effects, single atomic catalysts, and oxyphilic site engineering. Emphasis is placed on addressing pivotal but often overlooked challenges, including long-term stability, antioxidation ability, and CO tolerance of HOR catalysts. This review underscores the significance of theoretical investigations and in situ characterization technologies. Subsequently, recent strides in AEMFCs, leveraging various electrocatalysts for enhanced activity and durability, are meticulously summarized. The narrative concludes by spotlighting persisting controversies surrounding alkaline HOR mechanisms, along with an exposition of challenges and prospective research directions vital for the eventual commercialization of AEMFCs. The general principles in terms of reactivity and stability to design efficient electrocatalysts for the alkaline hydrogen oxidation reaction are reviewed. The performance of catalysts in anion-exchange membrane fuel cells is further discussed.
The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalysts in AEMFCs, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) in alkaline media, necessitating a high Pt amount, poses a substantial impediment to AEMFC development. This review delves into the intricate landscape of the alkaline HOR, commencing with exploration of prevailing theories grounded in diverse activity descriptors, such as the hydrogen binding energy theory and bifunctional theory. The elucidation of sluggish kinetics and reaction mechanisms in alkaline electrolytes serves as the foundation for the analysis of noble and non-noble metal catalysts, encompassing considerations of morphology, composition, local structure, heterostructure, spillover effects, single atomic catalysts, and oxyphilic site engineering. Emphasis is placed on addressing pivotal but often overlooked challenges, including long-term stability, antioxidation ability, and CO tolerance of HOR catalysts. This review underscores the significance of theoretical investigations and in situ characterization technologies. Subsequently, recent strides in AEMFCs, leveraging various electrocatalysts for enhanced activity and durability, are meticulously summarized. The narrative concludes by spotlighting persisting controversies surrounding alkaline HOR mechanisms, along with an exposition of challenges and prospective research directions vital for the eventual commercialization of AEMFCs.
Author Feng, Yi
Wang, Hao-Yu
Ren, Jin-Tao
Chen, Lei
Yuan, Zhong-Yong
AuthorAffiliation Smart Sensing Interdisciplinary Science Center
School of Materials Science and Engineering
Nankai University
National Institute for Advanced Materials
AuthorAffiliation_xml – sequence: 0
  name: National Institute for Advanced Materials
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Smart Sensing Interdisciplinary Science Center
– sequence: 0
  name: Nankai University
Author_xml – sequence: 1
  givenname: Jin-Tao
  surname: Ren
  fullname: Ren, Jin-Tao
– sequence: 2
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
– sequence: 3
  givenname: Hao-Yu
  surname: Wang
  fullname: Wang, Hao-Yu
– sequence: 4
  givenname: Yi
  surname: Feng
  fullname: Feng, Yi
– sequence: 5
  givenname: Zhong-Yong
  surname: Yuan
  fullname: Yuan, Zhong-Yong
BookMark eNptkU1vFDEMhiNUJNrSC3ekSNxQhzqTycyGGypbilqpl95HGcdZUrKTIclW3X_Az-7sLh8S4mTLfl6_ln3CjsY4EmNvBHwQIPWFlUTQ1Ep8f8GORaeaSnXQHv3OW12_Yic5PwC0NXT6mP283toUVzTy-OStKT6OnAJhSRFNMWGbS-YuJm7GuVXRE34z44r4mtZDMiNxt6HAkULIH7nB4h992XJLGZOfSkz5nOdiBh925USrTdh7nM_zLJ8o5Yl2Isqv2UtnQqazX_GU3V8t7y-vq9u7L18vP91WWC9EqSwigLJ60AJb57raLZxphsZ20lgJqLVpmwadVohycKrp1GIgpWzTCRBanrJ3h7FTij82lEv_EDdpnB17Ca2GFhYgZwoOFKaYcyLXoy_7xUsyPvQC-t25-89yudyf-2aWvP9HMiW_Nmn7f_jtAU4Z_3B_fyefASKxkBk
CitedBy_id crossref_primary_10_3390_catal14100689
crossref_primary_10_1002_anie_202421013
crossref_primary_10_1002_celc_202400666
crossref_primary_10_1016_j_ccr_2024_216395
crossref_primary_10_1002_cssc_202500220
crossref_primary_10_1007_s12598_024_03081_1
crossref_primary_10_1016_j_jallcom_2024_175549
crossref_primary_10_1002_smll_202406387
crossref_primary_10_1016_j_jechem_2024_07_049
crossref_primary_10_1021_acsnano_4c11614
crossref_primary_10_1002_anie_202419320
crossref_primary_10_1039_D4TA08359H
crossref_primary_10_1007_s12598_024_03223_5
crossref_primary_10_1021_acs_jpclett_4c02024
crossref_primary_10_1016_j_ijhydene_2025_02_234
crossref_primary_10_1021_acsanm_4c05770
crossref_primary_10_1002_ange_202421013
crossref_primary_10_1002_smll_202406335
crossref_primary_10_1002_adma_202414628
crossref_primary_10_1016_j_ccr_2024_216321
crossref_primary_10_1021_acs_jpcc_4c05853
crossref_primary_10_1021_jacs_4c17605
crossref_primary_10_1002_adma_202416483
crossref_primary_10_3390_molecules30030488
crossref_primary_10_1016_j_ijhydene_2025_01_054
crossref_primary_10_1039_D5CY00014A
crossref_primary_10_1039_D4TA07777F
crossref_primary_10_1016_j_jece_2025_116063
crossref_primary_10_1002_ange_202419320
crossref_primary_10_1039_D4RA04251D
crossref_primary_10_1039_D5EE00074B
crossref_primary_10_1021_acs_inorgchem_4c03879
Cites_doi 10.1002/ange.202401453
10.1038/s41929-023-00911-w
10.1021/acscatal.6b02479
10.1016/j.jpowsour.2013.12.095
10.1021/jp970930d
10.1002/ente.202000909
10.1002/aenm.202300881
10.1038/natrevmats.2017.59
10.1021/acscatal.1c04948
10.1002/advs.202100284
10.1039/c3ee00045a
10.1038/s41467-022-29276-7
10.1038/s41560-021-00878-7
10.1021/acs.nanolett.0c00364
10.1021/acscatal.7b02787
10.1016/0039-6028(96)80007-0
10.1021/acsnano.2c00641
10.1021/acscatal.3c00803
10.1038/s41467-021-26425-2
10.1016/j.scib.2020.09.014
10.1021/ja405598a
10.1016/j.jpowsour.2018.11.026
10.1016/S1872-2067(15)61064-6
10.1038/s41929-022-00846-8
10.1016/j.nanoen.2020.104877
10.1016/j.jechem.2019.02.008
10.1002/adma.202105049
10.1021/acs.chemrev.9b00157
10.1002/anie.202015571
10.1002/anie.202209486
10.1038/s41467-024-45873-0
10.1038/s41467-021-23750-4
10.1038/s41467-020-18585-4
10.1039/D0TA02528C
10.1002/anie.202311722
10.1038/ncomms6848
10.1016/j.jechem.2022.04.043
10.1021/jacs.2c11907
10.1021/jacs.0c12755
10.1016/j.electacta.2008.01.006
10.1016/j.nanoen.2019.05.045
10.1002/anie.201600647
10.1016/j.cej.2022.136700
10.1016/j.elecom.2003.03.001
10.1002/anie.202212278
10.1016/j.apsusc.2022.156131
10.1039/C7NR09452C
10.1016/j.jelechem.2008.10.028
10.1021/acscatal.0c04403
10.1007/s12274-022-4228-3
10.1021/acsanm.1c00118
10.1002/celc.201900129
10.1021/jacs.8b08356
10.1021/acscatal.2c04174
10.1007/s12274-021-3559-9
10.1039/C8TA11019K
10.1021/acscatal.8b00689
10.1021/jp011684f
10.1002/anie.202217976
10.1038/s41467-021-24578-8
10.1016/j.electacta.2018.02.106
10.1038/s41467-019-09503-4
10.1039/C9TA01916B
10.1021/acs.jpcc.5b03169
10.1021/acs.energyfuels.1c00275
10.1007/s11244-015-0487-5
10.1016/j.ccr.2021.213825
10.1016/j.jpowsour.2017.07.117
10.1016/j.jpowsour.2012.10.051
10.1016/j.jelechem.2016.11.031
10.1149/2.0981501jes
10.1038/s41467-022-33625-x
10.1038/s41929-023-01017-z
10.1002/adma.202107868
10.1149/2.0791805jes
10.1021/jacs.0c10661
10.1038/s41560-020-00710-8
10.1002/adma.201808066
10.1039/C9CC00582J
10.1002/adfm.202304125
10.1039/D0EE00092B
10.1021/acscatal.0c03938
10.1021/jacs.8b04006
10.1039/D0EE01754J
10.1016/j.ijhydene.2019.04.068
10.1002/anie.202217275
10.1021/acscatal.0c03973
10.1038/s41929-022-00862-8
10.1126/sciadv.1501602
10.1021/acs.nanolett.1c01519
10.1021/jacs.3c11734
10.1021/acscatal.1c01284
10.1016/j.cej.2023.142692
10.1002/smll.202207603
10.1002/aenm.202103336
10.1016/j.electacta.2019.134892
10.1021/jacs.0c01104
10.1016/j.mtener.2021.100846
10.1002/adfm.202315062
10.1038/nmat4738
10.1021/acscatal.9b00906
10.1002/adma.202204624
10.1021/acs.jpclett.2c00021
10.1002/anie.200802749
10.1038/s41467-021-21017-6
10.1038/s41929-021-00663-5
10.1016/j.jpowsour.2022.231141
10.1021/ja4021638
10.1016/j.coelec.2020.01.018
10.1039/c2cp22761d
10.1002/anie.202311937
10.1021/acs.chemrev.9b00248
10.1021/acscatal.0c03324
10.1002/anie.201905430
10.1038/s41929-019-0364-x
10.1039/C7SC01615H
10.1149/2.0511614jes
10.1039/D1TA03678E
10.1021/acs.jpcc.5b03284
10.1038/s41578-020-0183-3
10.1016/j.enchem.2021.100056
10.1016/j.coelec.2018.11.011
10.1073/pnas.2119883119
10.1016/j.apcatb.2020.118734
10.1038/s41929-018-0054-0
10.1021/acsaem.9b00718
10.1039/D0SE00483A
10.1039/D0QM00968G
10.1073/pnas.1121176109
10.1021/acsami.0c00506
10.1016/j.electacta.2019.135444
10.1039/D3TA01879B
10.1016/j.nanoen.2017.12.008
10.1007/s11426-020-9835-8
10.1016/S0013-4686(02)00602-3
10.1021/jacs.3c02604
10.1016/j.coelec.2023.101304
10.1038/nnano.2016.265
10.1021/jacs.2c00602
10.1002/adfm.202106156
10.1002/smll.202100391
10.1039/C6TA05517F
10.1002/anie.201909697
10.1016/j.nanoen.2018.12.098
10.1039/D1TA08872F
10.1016/j.cej.2023.145009
10.1016/j.ijhydene.2020.03.086
10.1039/C7TA07635E
10.1016/j.elecom.2020.106871
10.1021/acs.inorgchem.2c02455
10.1038/nchem.771
10.1021/acscatal.2c01863
10.1002/anie.201504830
10.1038/222556a0
10.1016/j.apsusc.2021.149002
10.1021/acscatal.0c03148
10.1016/j.jechem.2018.02.011
10.1021/ja407826d
10.1002/smll.202005092
10.1021/acs.energyfuels.3c02358
10.1021/acscatal.2c05816
10.1002/cphc.200901006
10.1038/nenergy.2017.31
10.1039/C9EE00197B
10.1149/2.1081501jes
10.1016/j.scib.2020.06.007
10.1038/s41467-019-12773-7
10.1002/admi.202000310
10.1039/D2TA08355H
10.1016/j.apcatb.2021.121029
10.1021/acsaem.8b02206
10.1021/acscatal.5b02485
10.1002/adma.202208799
10.1016/j.isci.2020.101793
10.1021/acsnano.3c02832
10.1038/s41467-023-39475-5
10.1039/D3SC04126C
10.1016/j.ijhydene.2019.03.270
10.1016/j.cej.2021.130654
10.1016/S1872-2067(21)63874-3
10.1021/acs.jpcc.9b04731
10.1126/science.1211934
10.1021/acs.chemrev.6b00596
10.1021/jacs.7b00765
10.1021/jacsau.3c00410
10.1002/adfm.202002087
10.1007/s11426-023-1709-0
10.1002/anie.201916314
10.1149/2.0661606jes
10.1126/science.1103197
10.1016/S0022-0728(00)00352-1
10.3390/en13030582
10.1007/s40974-016-0005-z
10.1039/D2EE02216H
10.1039/C3EE43899F
10.1021/acsnano.3c10867
10.1016/j.apcatb.2022.121786
10.1021/acssuschemeng.2c00037
10.1038/nchem.1574
10.1016/j.nanoen.2019.01.070
10.1016/j.jechem.2021.07.012
10.1016/j.jpowsour.2020.228147
10.1016/j.ijhydene.2016.03.083
10.1016/j.coelec.2018.11.013
10.1002/adma.202208821
10.1021/acsaem.0c03157
10.1016/j.electacta.2018.07.104
10.1039/D2CS00038E
10.1002/anie.202208040
10.1021/acs.jpclett.2c01710
10.1021/acscatal.5b00247
10.1002/anie.201708484
10.1021/ja00469a029
10.1039/D1TA02067F
10.1038/s41467-023-44320-w
10.1016/S1872-2067(21)63955-4
10.1038/376238a0
10.1038/s41467-020-19413-5
10.1021/acscatal.2c02417
10.1016/j.cplett.2019.04.072
10.1149/1945-7111/ab74be
10.1038/ncomms10141
10.1002/adfm.202210328
10.1016/S0022-0728(02)00683-6
10.1016/j.chempr.2023.06.001
10.1021/accountsmr.1c00190
10.1016/j.matlet.2022.132749
10.1002/smll.202303061
10.1021/acsaem.0c03179
10.1038/s41563-022-01221-5
10.1016/j.jpowsour.2007.07.062
10.1016/S0022-0728(03)00077-9
10.1016/j.jcat.2018.09.030
10.1002/anie.202207197
10.1002/adma.202211854
10.1021/acs.accounts.3c00071
10.1016/j.jechem.2023.03.057
10.1002/anie.202003208
10.1002/sstr.202200281
10.1002/anie.202315752
10.1021/acscatal.0c03801
10.1016/j.jiec.2020.10.042
10.1039/C4EE02564D
10.1002/anie.202016199
10.1021/acscatal.2c01011
10.1021/jacs.1c13740
10.1002/anie.201902751
10.1021/acscatal.0c00101
10.1021/acsami.0c15994
10.1021/acscatal.6b02794
10.1021/acscatal.0c03831
10.1021/cr5003563
10.1038/s41467-021-22996-2
10.1002/adma.202107721
10.1021/acscatal.9b05621
10.1038/s41586-021-04068-z
10.1038/s41467-020-16237-1
10.1039/C8TA07414C
10.1039/C8TA03250E
10.1016/S0925-8388(03)00346-3
10.1149/1.3483106
10.1021/acscatal.5b01670
10.1002/adma.202008599
10.1016/0039-6028(90)90668-X
10.1016/j.jechem.2021.07.015
10.1016/j.ijhydene.2006.06.050
10.1021/jacs.2c01448
10.1039/C7TA08718G
10.1002/adma.202105400
10.1016/j.jechem.2020.03.087
10.1039/D1CS00981H
10.1016/j.jpowsour.2018.09.051
10.1021/jacs.7b02434
10.1021/acscatal.7b04055
10.1021/acs.jpclett.1c02676
10.1021/acssuschemeng.1c07306
10.1021/jp064190x
10.1002/anie.201908194
10.1016/j.jpowsour.2015.11.026
10.1021/acscatal.8b03227
10.1063/1.4865107
10.1016/j.jechem.2020.12.008
10.1002/smll.202207038
10.1002/anie.201709455
10.1002/adfm.202211586
10.1021/jacs.9b03327
10.1039/C8TA07028H
10.1016/j.fuel.2022.123637
10.1016/j.enconman.2022.116203
10.1021/ja307466s
10.1038/s41929-020-0446-9
10.1149/2.0471815jes
10.1007/s11426-010-0080-5
10.1038/nmat2156
10.1039/D3EE02382F
10.1002/anie.200907019
10.1021/jacs.8b13228
10.1002/ange.202317922
10.1039/FT9969203719
10.1002/anie.202315148
10.1021/acsami.1c11025
10.1002/smll.202307252
10.1073/pnas.0803689105
10.1021/acscatal.3c01466
10.1002/adfm.202300593
10.1021/acs.jpclett.6b02025
10.1039/C4EE00440J
10.1016/j.electacta.2020.135751
10.1039/D1TA08038E
10.1149/06403.1069ecst
10.1021/ja104672n
10.1007/s12678-019-00560-3
10.1021/acsaem.9b00657
10.1002/anie.202008116
10.1016/j.nanoen.2022.107877
10.1126/science.1168049
10.1016/j.ijhydene.2020.05.026
10.1002/aenm.202003511
10.1021/acscatal.1c04440
10.1021/acsenergylett.9b00738
10.1038/s41929-023-01007-1
10.1039/C9EE01743G
10.1021/acscatal.9b01582
10.1002/adma.202206960
10.1039/D0SC03917A
10.1002/aenm.201801284
10.1016/S0167-5729(01)00022-X
10.1016/j.apcatb.2021.121058
10.1016/j.apcatb.2019.117952
10.1002/anie.201812662
10.1002/adfm.202306333
10.1002/smll.202206196
10.1016/j.cej.2021.134189
10.1021/acsami.0c10784
10.1039/D1EE03482K
10.1007/s11426-021-1190-7
10.1021/acs.nanolett.2c01744
10.1039/C8EE02192A
10.1021/acs.chemmater.8b00358
10.1016/0022-0728(94)03669-T
10.1016/j.jelechem.2019.113551
10.1149/1.1510131
10.1021/jacs.2c09147
10.1039/C9RA09628K
10.1016/j.cej.2021.131206
10.1073/pnas.0504499102
10.1016/j.jcat.2018.09.031
10.1021/jacs.3c01164
10.1021/acscatal.1c01723
10.1039/C9NH00533A
10.1021/acsmacrolett.5b00910
10.1103/PhysRevLett.81.2819
10.1039/C7RA03675B
10.1002/anie.202206588
10.1002/smll.202202404
10.1016/j.jechem.2020.05.066
10.1016/j.ccr.2021.213824
10.1021/acscatal.6b00350
10.1016/j.nanoen.2021.106579
10.1007/s100080050059
10.1002/adma.202006034
10.1039/D0SC03280H
10.1021/acscatal.0c02845
10.1039/D3TA00287J
10.3390/catal8100454
10.1016/j.coelec.2018.11.017
10.1021/acscatal.9b01744
10.1016/j.apcatb.2023.122740
10.1016/j.apenergy.2022.119722
10.1016/j.apsusc.2021.149627
10.1002/anie.202213365
10.1038/s41467-019-09290-y
10.1039/D0EE03609A
10.1039/C4CP01385A
10.1016/j.apcatb.2022.121279
10.1039/D3CS00557G
10.1016/j.nanoen.2017.07.053
10.1002/anie.202009612
10.1016/j.jpowsour.2015.02.133
10.1002/adfm.202010633
10.1038/nchem.330
10.1021/acs.inorgchem.3c00293
10.1002/smll.202006698
10.1016/j.nantod.2008.09.002
10.1002/adma.201806296
10.1038/nature20782
10.1002/adfm.202107479
10.1021/acscatal.0c02254
10.1038/nature08907
10.1039/C4EE01303D
10.1039/D3CC03990K
10.1038/s41467-018-06728-7
10.1073/pnas.0810041106
10.1002/anie.202103888
10.1021/acs.jpclett.7b02228
10.1002/smll.202303142
10.1021/acsenergylett.3c00842
10.1002/aenm.202202913
10.31635/ccschem.021.202100810
10.1021/acscatal.5b01037
10.1021/acs.chemmater.0c02048
10.1039/D3SC02144K
10.1021/acs.chemmater.9b01092
10.1016/j.jelechem.2016.02.024
10.1021/acsanm.1c02893
10.1016/j.cej.2021.132435
10.1021/jacs.9b13694
10.1002/anie.202013047
10.1021/jacs.3c02487
10.1021/acsnano.1c05250
10.1021/acs.accounts.9b00355
10.1021/jacs.2c00793
10.1126/sciadv.abm3779
10.1021/j100020a063
10.1149/1945-7111/ab8c88
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d3ee04251k
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 49
ExternalDocumentID 10_1039_D3EE04251K
d3ee04251k
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c281t-dcc005d9b91c6ff72f8fa4b4d73ad30c99a644cf95cc3bf54758be55d4710193
ISSN 1754-5692
IngestDate Mon Jun 30 12:03:36 EDT 2025
Tue Jul 01 01:45:59 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Tue Dec 17 20:58:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-dcc005d9b91c6ff72f8fa4b4d73ad30c99a644cf95cc3bf54758be55d4710193
Notes Zhong-Yong Yuan received his PhD degree in Physical Chemistry from Nankai University in 1999. He worked as a postdoctoral fellow at the Institute of Physics, Chinese Academy of Sciences from 1999 to 2001. He then moved to Belgium, working as a research fellow at the University of Namur from 2001 to 2005, prior to joining Nankai University as a full professor. In 2016, he was elected as a fellow of the Royal Society of Chemistry (FRSC). His research interests are mainly in the self-assembly of hierarchically nanoporous and nanostructured materials for energy and environmental applications.
Jin-Tao Ren received his PhD degree from Nankai University in 2020 under the supervision of Prof. Zhong-Yong Yuan. He is currently a postdoctoral fellow at Nankai University. His research interests focus on advanced nanomaterials for applications in electrocatalysis, metal-air batteries, fuel cells, etc.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3790-8181
PQID 3069060803
PQPubID 2047494
PageCount 5
ParticipantIDs proquest_journals_3069060803
rsc_primary_d3ee04251k
crossref_citationtrail_10_1039_D3EE04251K
crossref_primary_10_1039_D3EE04251K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-18
PublicationDateYYYYMMDD 2024-06-18
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-18
  day: 18
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (D3EE04251K/cit71/1) 2022; 13
Hu (D3EE04251K/cit86/1) 2018; 165
Zheng (D3EE04251K/cit177/1) 2016; 163
Tian (D3EE04251K/cit329/1) 2023; 19
Chen (D3EE04251K/cit362/1) 2010; 11
Wang (D3EE04251K/cit308/1) 2021; 425
Chen (D3EE04251K/cit400/1) 2022; 43
Karim (D3EE04251K/cit325/1) 2017; 541
Noonan (D3EE04251K/cit151/1) 2012; 134
Sheng (D3EE04251K/cit93/1) 2015; 6
Zhan (D3EE04251K/cit57/1) 2021; 12
Zhang (D3EE04251K/cit130/1) 2022; 72
Zhao (D3EE04251K/cit179/1) 2024; 63
Dong (D3EE04251K/cit198/1) 2022; 33
Yu (D3EE04251K/cit342/1) 2024
Brkovic (D3EE04251K/cit319/1) 2020; 45
Leroux (D3EE04251K/cit378/1) 2008; 105
Yang (D3EE04251K/cit40/1) 2017; 5
Li (D3EE04251K/cit396/1) 2023; 3
Huang (D3EE04251K/cit277/1) 2023; 62
Yang (D3EE04251K/cit203/1) 2022; 61
Jiang (D3EE04251K/cit195/1) 2020; 8
Oshchepkov (D3EE04251K/cit310/1) 2020; 11
Shen (D3EE04251K/cit237/1) 2023; 19
Jang (D3EE04251K/cit346/1) 2010; 132
Liu (D3EE04251K/cit287/1) 2020; 32
Luo (D3EE04251K/cit18/1) 2021; 12
Wang (D3EE04251K/cit393/1) 2021; 600
Li (D3EE04251K/cit405/1) 2010; 464
Zhao (D3EE04251K/cit193/1) 2022; 10
Jackson (D3EE04251K/cit53/1) 2020; 268
Gasteiger (D3EE04251K/cit160/1) 1995; 99
Zhang (D3EE04251K/cit114/1) 2021; 17
Long (D3EE04251K/cit373/1) 2023; 59
Cong (D3EE04251K/cit55/1) 2018; 44
Su (D3EE04251K/cit73/1) 2023; 145
Wang (D3EE04251K/cit88/1) 2021; 60
Wang (D3EE04251K/cit163/1) 2019; 412
Han (D3EE04251K/cit269/1) 2022; 43
Kim (D3EE04251K/cit257/1) 2021; 94
Kundu (D3EE04251K/cit111/1) 2018; 6
Zhuang (D3EE04251K/cit230/1) 2016; 7
Zhao (D3EE04251K/cit215/1) 2021; 61
Su (D3EE04251K/cit274/1) 2023; 66
Yoo (D3EE04251K/cit170/1) 2008; 47
Thomas (D3EE04251K/cit4/1) 2020; 51
Wang (D3EE04251K/cit65/1) 2022; 104
Xu (D3EE04251K/cit401/1) 2021; 436
Kwon (D3EE04251K/cit336/1) 2023; 332
Lu (D3EE04251K/cit355/1) 2008; 105
An (D3EE04251K/cit62/1) 2021; 14
Zhao (D3EE04251K/cit212/1) 2020; 5
Chen (D3EE04251K/cit307/1) 2021; 4
Tian (D3EE04251K/cit80/1) 2019; 31
Li (D3EE04251K/cit72/1) 2022; 5
Stühmeier (D3EE04251K/cit132/1) 2019; 2
Maurya (D3EE04251K/cit414/1) 2018; 30
Wang (D3EE04251K/cit74/1) 2019; 10
Kabir (D3EE04251K/cit125/1) 2017; 5
Shen (D3EE04251K/cit36/1) 2019; 62
Ohyama (D3EE04251K/cit45/1) 2013; 135
Maurya (D3EE04251K/cit411/1) 2018; 8
Ramaswamy (D3EE04251K/cit10/1) 2019; 119
Zhao (D3EE04251K/cit347/1) 2020; 26
Chung (D3EE04251K/cit410/1) 2016; 7
Wang (D3EE04251K/cit235/1) 2023; 39
Wang (D3EE04251K/cit392/1) 2023; 37
Li (D3EE04251K/cit268/1) 2022; 10
You (D3EE04251K/cit338/1) 2023; 13
Yang (D3EE04251K/cit127/1) 2022; 144
Hu (D3EE04251K/cit24/1) 2021; 3
Santori (D3EE04251K/cit149/1) 2020; 4
Anantharaj (D3EE04251K/cit283/1) 2016; 6
Wang (D3EE04251K/cit416/1) 2020; 5
Zhang (D3EE04251K/cit63/1) 2022; 15
Zhao (D3EE04251K/cit89/1) 2021; 66
Durst (D3EE04251K/cit168/1) 2015; 162
Cui (D3EE04251K/cit155/1) 2021; 90
Cherstiouk (D3EE04251K/cit249/1) 2016; 783
Montero (D3EE04251K/cit223/1) 2014; 254
Ioroi (D3EE04251K/cit353/1) 2018; 9
Wang (D3EE04251K/cit292/1) 2023; 33
Xue (D3EE04251K/cit37/1) 2020; 11
Zhou (D3EE04251K/cit51/1) 2020; 121
Tang (D3EE04251K/cit13/1) 2022; 51
Zhao (D3EE04251K/cit61/1) 2021; 17
Strmcnik (D3EE04251K/cit35/1) 2013; 5
Subbaraman (D3EE04251K/cit227/1) 2011; 334
Tang (D3EE04251K/cit59/1) 2021; 32
Zhang (D3EE04251K/cit145/1) 2022; 525
Hobbs (D3EE04251K/cit323/1) 1969; 222
Liu (D3EE04251K/cit128/1) 2019; 141
Zhang (D3EE04251K/cit270/1) 2021; 4
Strmcnik (D3EE04251K/cit98/1) 2010; 2
Janik (D3EE04251K/cit102/1) 2018; 367
Gao (D3EE04251K/cit385/1) 2023; 56
Jiang (D3EE04251K/cit316/1) 2020; 10
Uribe-Godínez (D3EE04251K/cit222/1) 2016; 41
Gao (D3EE04251K/cit236/1) 2022; 119
Song (D3EE04251K/cit239/1) 2021; 11
Ren (D3EE04251K/cit122/1) 2021; 5
Qin (D3EE04251K/cit115/1) 2019; 9
Bhowmik (D3EE04251K/cit41/1) 2016; 6
Jiang (D3EE04251K/cit108/1) 2020; 333
Weber (D3EE04251K/cit386/1) 2021; 9
Pagliaro (D3EE04251K/cit388/1) 2021; 4
Deng (D3EE04251K/cit306/1) 2019; 324
Dutta (D3EE04251K/cit226/1) 2013; 135
Zhu (D3EE04251K/cit112/1) 2021; 4
Yang (D3EE04251K/cit285/1) 2023; 14
Giles (D3EE04251K/cit96/1) 2018; 367
Gutru (D3EE04251K/cit146/1) 2020; 45
Li (D3EE04251K/cit191/1) 2023; 33
Siroma (D3EE04251K/cit354/1) 2007; 172
Lu (D3EE04251K/cit99/1) 2017; 139
Duan (D3EE04251K/cit46/1) 2020; 11
Luneau (D3EE04251K/cit300/1) 2023; 11
Guntern (D3EE04251K/cit281/1) 2021; 11
Li (D3EE04251K/cit286/1) 2021; 60
Schmidt (D3EE04251K/cit158/1) 2002; 524–525
Rosen (D3EE04251K/cit1/1) 2016; 1
Wang (D3EE04251K/cit100/1) 2015; 8
Gao (D3EE04251K/cit297/1) 2017; 8
Biemolt (D3EE04251K/cit152/1) 2021; 9
Marković (D3EE04251K/cit265/1) 2002; 45
Wang (D3EE04251K/cit381/1) 2022; 144
Wang (D3EE04251K/cit253/1) 2017; 139
Ze (D3EE04251K/cit404/1) 2021; 143
Dai (D3EE04251K/cit22/1) 2015; 115
Simonov (D3EE04251K/cit246/1) 2019; 852
Mou (D3EE04251K/cit397/1) 2023; 6
Su (D3EE04251K/cit66/1) 2022; 66
Hamo (D3EE04251K/cit138/1) 2021; 11
Dong (D3EE04251K/cit406/1) 2023; 62
Ren (D3EE04251K/cit124/1) 2023; 19
Oshchepkov (D3EE04251K/cit231/1) 2018; 402
McCrum (D3EE04251K/cit92/1) 2020; 5
Tang (D3EE04251K/cit25/1) 2020; 63
Chen (D3EE04251K/cit101/1) 2017; 56
Maurya (D3EE04251K/cit32/1) 2018; 11
Zhang (D3EE04251K/cit186/1) 2021; 33
Miller (D3EE04251K/cit116/1) 2016; 55
Zhang (D3EE04251K/cit189/1) 2021; 33
Chen (D3EE04251K/cit52/1) 2020; 336
Intikhab (D3EE04251K/cit133/1) 2017; 7
Yang (D3EE04251K/cit276/1) 2024; 136
Varcoe (D3EE04251K/cit7/1) 2014; 7
Abe (D3EE04251K/cit3/1) 2019; 44
Feng (D3EE04251K/cit288/1) 2022; 428
Xu (D3EE04251K/cit185/1) 2023; 16
Yang (D3EE04251K/cit278/1) 2020; 11
Wang (D3EE04251K/cit340/1) 2023; 14
De Lile (D3EE04251K/cit220/1) 2021; 545
Zhao (D3EE04251K/cit214/1) 2022; 4
Liu (D3EE04251K/cit190/1) 2023; 464
Mu (D3EE04251K/cit67/1) 2023; 4
Turner (D3EE04251K/cit5/1) 2004; 305
Zeng (D3EE04251K/cit39/1) 2020; 461
Scofield (D3EE04251K/cit49/1) 2016; 6
Dmochowska (D3EE04251K/cit384/1) 1998; 2
Gao (D3EE04251K/cit356/1) 2020; 12
Ma (D3EE04251K/cit197/1) 2023; 11
Yang (D3EE04251K/cit174/1) 2023; 62
Zhao (D3EE04251K/cit60/1) 2021; 31
Tang (D3EE04251K/cit56/1) 2010; 53
Strmcnik (D3EE04251K/cit399/1) 2009; 1
Zeng (D3EE04251K/cit387/1) 2015; 119
Yang (D3EE04251K/cit375/1) 2023; 13
Wang (D3EE04251K/cit201/1) 2022; 445
Schwämmlein (D3EE04251K/cit173/1) 2018; 165
Inoue (D3EE04251K/cit82/1) 2003; 554–555
Huang (D3EE04251K/cit167/1) 2023; 33
Samanta (D3EE04251K/cit330/1) 2023; 15
Sheng (D3EE04251K/cit154/1) 2013; 6
Ohyama (D3EE04251K/cit243/1) 2013; 225
Stamenkovic (D3EE04251K/cit91/1) 2016; 16
Chen (D3EE04251K/cit382/1) 2024; 136
Wang (D3EE04251K/cit238/1) 2019; 2
Ni (D3EE04251K/cit58/1) 2022; 21
Ren (D3EE04251K/cit284/1) 2022; 309
Jing (D3EE04251K/cit337/1) 2023; 472
Luo (D3EE04251K/cit291/1) 2017; 2
Mavrikakis (D3EE04251K/cit289/1) 1998; 81
Yu (D3EE04251K/cit328/1) 2023; 13
Zadick (D3EE04251K/cit343/1) 2015; 5
Zhang (D3EE04251K/cit213/1) 2023; 35
Tauster (D3EE04251K/cit365/1) 1978; 100
Dionigi (D3EE04251K/cit390/1) 2020; 11
Wang (D3EE04251K/cit165/1) 2022; 13
Li (D3EE04251K/cit211/1) 2019; 258
Liu (D3EE04251K/cit110/1) 2020; 142
Kim (D3EE04251K/cit240/1) 2021; 554
Okubo (D3EE04251K/cit107/1) 2019; 55
Yang (D3EE04251K/cit136/1) 2022; 51
Gao (D3EE04251K/cit17/1) 2021; 436
Davydova (D3EE04251K/cit54/1) 2018; 8
Wang (D3EE04251K/cit126/1) 2021; 60
Cong (D3EE04251K/cit106/1) 2019; 7
Noh (D3EE04251K/cit12/1) 2019; 52
Di Liberto (D3EE04251K/cit320/1) 2022; 12
Zhang (D3EE04251K/cit369/1) 2023; 614
Uchida (D3EE04251K/cit161/1) 2006; 110
Qiu (D3EE04251K/cit267/1) 2018; 140
Yao (D3EE04251K/cit64/1) 2022; 16
Singh (D3EE04251K/cit118/1) 2020; 30
Habrioux (D3EE04251K/cit69/1) 2020; 21
Markovića (D3EE04251K/cit81/1) 1996; 92
Han (D3EE04251K/cit368/1) 2020; 59
Alia (D3EE04251K/cit95/1) 2013; 135
Wang (D3EE04251K/cit234/1) 2023; 9
Alayoglu (D3EE04251K/cit172/1) 2008; 7
Song (D3EE04251K/cit75/1) 2023; 145
Chala (D3EE04251K/cit389/1) 2021; 15
Deng (D3EE04251K/cit305/1) 2021; 54
Wang (D3EE04251K/cit376/1) 2023; 145
Campos-Roldán (D3EE04251K/cit109/1) 2018; 283
Men (D3EE04251K/cit199/1) 2022; 144
Ren (D3EE04251K/cit260/1) 2023; 17
Yan (D3EE04251K/cit324/1) 2019; 141
Ji (D3EE04251K/cit209/1) 2022; 61
Sun (D3EE04251K/cit244/1) 2012; 14
Wang (D3EE04251K/cit15/1) 2019; 10
Fang (D3EE04251K/cit407/1) 2024; 15
Setzler (D3EE04251K/cit8/1) 2016; 11
Liu (D3EE04251K/cit326/1) 2020; 59
Lee (D3EE04251K/cit44/1) 2021; 9
Li (D3EE04251K/cit153/1) 2019; 58
Wang (D3EE04251K/cit380/1) 2012; 109
Zhang (D3EE04251K/cit409/1) 2021; 8
Ma (D3EE04251K/cit339/1) 2022; 12
Shi (D3EE04251K/cit360/1) 2016; 7
Chung (D3EE04251K/cit412/1) 2016; 163
Luo (D3EE04251K/cit182/1) 2023; 35
Pu (D3EE04251K/cit366/1) 2023; 62
Sheng (D3EE04251K/cit31/1) 2010; 157
Davydova (D3EE04251K/cit352/1) 2019; 9
Dekel (D3EE04251K/cit6/1) 2018; 375
Xiong (D3EE04251K/cit256/1) 2021; 13
Moschkowitsch (D3EE04251K/cit77/1) 2022; 12
Marković (D3EE04251K/cit264/1) 1997; 101
Deng (D3EE04251K/cit20/1) 2022; 305
Matanovic (D3EE04251K/cit415/1) 2017; 8
Wu (D3EE04251K/cit233/1) 2022; 66
Dekel (D3EE04251K/cit68/1) 2018; 12
Zhu (D3EE04251K/cit103/1) 2020; 142
Ramaswamy (D3EE04251K/cit9/1) 2017; 41
Pu (D3EE04251K/cit273/1) 2019; 12
Ji (D3EE04251K/cit202/1) 2021; 9
Liu (D3EE04251K/cit207/1) 2019; 59
Zhang (D3EE04251K/cit266/1) 2023; 19
Matanovic (D3EE04251K/cit413/1) 2019; 31
Yang (D3EE04251K/cit304/1) 2019; 58
Yang (D3EE04251K/cit131/1) 2022; 13
Hu (D3EE04251K/cit317/1) 2022; 34
Midilli (D3EE04251K/cit2/1) 2007; 32
Tang (D3EE04251K/cit259/1) 2014; 16
Speck (D3EE04251K/cit348/1) 2020; 32
Kuang (D3EE04251K/cit232/1) 2021; 33
Xiao (D3EE04251K/cit261/1) 2018; 6
Lafforgue (D3EE04251K/cit344/1) 2018; 8
Yang (D3EE04251K/cit314/1) 2019; 7
Montero (D3EE04251K/cit79/1) 2015; 283
Pan (D3EE04251K/cit333/1) 2019; 29
Ni (D3EE04251K/cit148/1) 2020; 59
He (D3EE04251K/cit367/1) 2023; 62
Liu (D3EE04251K/cit210/1) 2023; 9
Ohyama (D3EE04251K/cit252/1) 2016; 4
Oshchepkov (D3EE04251K/cit105/1) 2018; 269
Liao (D3EE04251K/cit48/1) 2016; 37
Kim (D3EE04251K/cit14/1) 2022; 34
Gong (D3EE04251K/cit23/1) 2009; 323
Lu (D3EE04251K/cit361/1) 2001; 105
Lee (D3EE04251K/cit208/1) 2021; 12
Sheng (D3EE04251K/cit94/1) 2014; 7
Oshchepkov (D3EE04251K/cit255/1) 2015; 58
Zhao (D3EE04251K/cit262/1) 2020; 10
Zhang (D3EE04251K/cit293/1) 2021; 14
Papageorgopoulos (D3EE04251K/cit370/1) 2002; 48
Qin (D3EE04251K/cit417/1) 2018; 6
Tian (D3EE04251K/cit358/1) 2024; 15
Wang (D3EE04251K/cit332/1) 2023; 62
Tang
References_xml – volume: 136
  start-page: e202401453
  year: 2024
  ident: D3EE04251K/cit276/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202401453
– volume: 6
  start-page: 122
  year: 2023
  ident: D3EE04251K/cit397/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-00911-w
– volume: 6
  start-page: 8069
  year: 2016
  ident: D3EE04251K/cit283/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02479
– volume: 254
  start-page: 218
  year: 2014
  ident: D3EE04251K/cit223/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.095
– volume: 101
  start-page: 5405
  year: 1997
  ident: D3EE04251K/cit264/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp970930d
– volume: 9
  start-page: 2000909
  year: 2021
  ident: D3EE04251K/cit152/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.202000909
– volume: 13
  start-page: 2300881
  year: 2023
  ident: D3EE04251K/cit375/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300881
– volume: 2
  start-page: 17059
  year: 2017
  ident: D3EE04251K/cit291/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.59
– volume: 12
  start-page: 1082
  year: 2022
  ident: D3EE04251K/cit77/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c04948
– volume: 8
  start-page: 2100284
  year: 2021
  ident: D3EE04251K/cit409/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100284
– volume: 6
  start-page: 1509
  year: 2013
  ident: D3EE04251K/cit154/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee00045a
– volume: 13
  start-page: 1596
  year: 2022
  ident: D3EE04251K/cit165/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29276-7
– volume: 6
  start-page: 834
  year: 2021
  ident: D3EE04251K/cit28/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00878-7
– volume: 20
  start-page: 3442
  year: 2020
  ident: D3EE04251K/cit219/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00364
– volume: 7
  start-page: 8314
  year: 2017
  ident: D3EE04251K/cit133/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02787
– volume: 343
  start-page: 211
  year: 1995
  ident: D3EE04251K/cit290/1
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(96)80007-0
– volume: 16
  start-page: 5153
  year: 2022
  ident: D3EE04251K/cit64/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c00641
– volume: 13
  start-page: 6974
  year: 2023
  ident: D3EE04251K/cit180/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c00803
– volume: 12
  start-page: 6261
  year: 2021
  ident: D3EE04251K/cit57/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26425-2
– volume: 66
  start-page: 85
  year: 2021
  ident: D3EE04251K/cit89/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.09.014
– volume: 135
  start-page: 13473
  year: 2013
  ident: D3EE04251K/cit95/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405598a
– volume: 412
  start-page: 282
  year: 2019
  ident: D3EE04251K/cit163/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.026
– volume: 37
  start-page: 1142
  year: 2016
  ident: D3EE04251K/cit48/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)61064-6
– volume: 5
  start-page: 900
  year: 2022
  ident: D3EE04251K/cit72/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00846-8
– volume: 74
  start-page: 104877
  year: 2020
  ident: D3EE04251K/cit164/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104877
– volume: 40
  start-page: 52
  year: 2020
  ident: D3EE04251K/cit162/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.02.008
– volume: 33
  start-page: 2105049
  year: 2021
  ident: D3EE04251K/cit189/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105049
– volume: 119
  start-page: 11945
  year: 2019
  ident: D3EE04251K/cit10/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00157
– volume: 60
  start-page: 5708
  year: 2021
  ident: D3EE04251K/cit88/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202015571
– volume: 61
  start-page: e202209486
  year: 2022
  ident: D3EE04251K/cit221/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209486
– volume: 15
  start-page: 1614
  year: 2024
  ident: D3EE04251K/cit407/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45873-0
– volume: 12
  start-page: 3502
  year: 2021
  ident: D3EE04251K/cit327/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23750-4
– volume: 11
  start-page: 4789
  year: 2020
  ident: D3EE04251K/cit46/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18585-4
– volume: 8
  start-page: 10168
  year: 2020
  ident: D3EE04251K/cit195/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02528C
– volume: 62
  start-page: e202311722
  year: 2023
  ident: D3EE04251K/cit406/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202311722
– volume: 6
  start-page: 5848
  year: 2015
  ident: D3EE04251K/cit93/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
– volume: 72
  start-page: 176
  year: 2022
  ident: D3EE04251K/cit130/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.04.043
– volume: 145
  start-page: 4088
  year: 2023
  ident: D3EE04251K/cit349/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c11907
– volume: 143
  start-page: 1318
  year: 2021
  ident: D3EE04251K/cit404/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c12755
– volume: 53
  start-page: 4309
  year: 2008
  ident: D3EE04251K/cit157/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2008.01.006
– volume: 62
  start-page: 601
  year: 2019
  ident: D3EE04251K/cit36/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.045
– volume: 55
  start-page: 6004
  year: 2016
  ident: D3EE04251K/cit116/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600647
– volume: 445
  start-page: 136700
  year: 2022
  ident: D3EE04251K/cit201/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136700
– volume: 6
  start-page: 480
  year: 2004
  ident: D3EE04251K/cit363/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2003.03.001
– volume: 62
  start-page: e202212278
  year: 2023
  ident: D3EE04251K/cit366/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202212278
– volume: 614
  start-page: 156131
  year: 2023
  ident: D3EE04251K/cit369/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.156131
– volume: 10
  start-page: 4872
  year: 2018
  ident: D3EE04251K/cit184/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR09452C
– volume: 626
  start-page: 14
  year: 2009
  ident: D3EE04251K/cit371/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2008.10.028
– volume: 11
  start-page: 1248
  year: 2021
  ident: D3EE04251K/cit281/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04403
– volume: 15
  start-page: 5865
  year: 2022
  ident: D3EE04251K/cit142/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4228-3
– volume: 4
  start-page: 3586
  year: 2021
  ident: D3EE04251K/cit388/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c00118
– volume: 6
  start-page: 1990
  year: 2019
  ident: D3EE04251K/cit225/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900129
– volume: 140
  start-page: 16580
  year: 2018
  ident: D3EE04251K/cit267/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08356
– volume: 13
  start-page: 2834
  year: 2023
  ident: D3EE04251K/cit328/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c04174
– volume: 14
  start-page: 3489
  year: 2021
  ident: D3EE04251K/cit293/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3559-9
– volume: 7
  start-page: 3161
  year: 2019
  ident: D3EE04251K/cit106/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11019K
– volume: 8
  start-page: 6665
  year: 2018
  ident: D3EE04251K/cit54/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00689
– volume: 105
  start-page: 9793
  year: 2001
  ident: D3EE04251K/cit361/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp011684f
– volume: 62
  start-page: e202217976
  year: 2023
  ident: D3EE04251K/cit188/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202217976
– volume: 12
  start-page: 4271
  year: 2021
  ident: D3EE04251K/cit208/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24578-8
– volume: 269
  start-page: 111
  year: 2018
  ident: D3EE04251K/cit105/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.106
– volume: 12
  start-page: 29357
  year: 2020
  ident: D3EE04251K/cit309/1
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 1506
  year: 2019
  ident: D3EE04251K/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09503-4
– volume: 7
  start-page: 10936
  year: 2019
  ident: D3EE04251K/cit314/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01916B
– volume: 119
  start-page: 18177
  year: 2015
  ident: D3EE04251K/cit387/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03169
– volume: 35
  start-page: 6380
  year: 2021
  ident: D3EE04251K/cit27/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c00275
– volume: 58
  start-page: 1181
  year: 2015
  ident: D3EE04251K/cit255/1
  publication-title: Top. Catal.
  doi: 10.1007/s11244-015-0487-5
– volume: 436
  start-page: 213825
  year: 2021
  ident: D3EE04251K/cit17/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213825
– volume: 375
  start-page: 158
  year: 2018
  ident: D3EE04251K/cit6/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.117
– volume: 225
  start-page: 311
  year: 2013
  ident: D3EE04251K/cit243/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.051
– volume: 783
  start-page: 146
  year: 2016
  ident: D3EE04251K/cit249/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.11.031
– volume: 162
  start-page: F190
  year: 2015
  ident: D3EE04251K/cit168/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0981501jes
– volume: 13
  start-page: 5894
  year: 2022
  ident: D3EE04251K/cit196/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33625-x
– volume: 6
  start-page: 916
  year: 2023
  ident: D3EE04251K/cit341/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01017-z
– volume: 34
  start-page: 2107868
  year: 2022
  ident: D3EE04251K/cit14/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107868
– volume: 165
  start-page: H229
  year: 2018
  ident: D3EE04251K/cit173/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0791805jes
– volume: 143
  start-page: 1399
  year: 2021
  ident: D3EE04251K/cit334/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10661
– volume: 5
  start-page: 891
  year: 2020
  ident: D3EE04251K/cit92/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00710-8
– volume: 31
  start-page: 1808066
  year: 2019
  ident: D3EE04251K/cit80/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808066
– volume: 55
  start-page: 3101
  year: 2019
  ident: D3EE04251K/cit107/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00582J
– volume: 33
  start-page: 2304125
  year: 2023
  ident: D3EE04251K/cit292/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304125
– volume: 13
  start-page: 1408
  year: 2020
  ident: D3EE04251K/cit16/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00092B
– volume: 10
  start-page: 15207
  year: 2020
  ident: D3EE04251K/cit262/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03938
– volume: 140
  start-page: 7787
  year: 2018
  ident: D3EE04251K/cit395/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04006
– volume: 13
  start-page: 3064
  year: 2020
  ident: D3EE04251K/cit242/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01754J
– volume: 44
  start-page: 15072
  year: 2019
  ident: D3EE04251K/cit3/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.04.068
– volume: 62
  start-page: e202217275
  year: 2023
  ident: D3EE04251K/cit70/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202217275
– volume: 11
  start-page: 932
  year: 2021
  ident: D3EE04251K/cit138/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03973
– volume: 5
  start-page: 993
  year: 2022
  ident: D3EE04251K/cit241/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00862-8
– volume: 2
  start-page: e1501602
  year: 2016
  ident: D3EE04251K/cit84/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501602
– volume: 21
  start-page: 4845
  year: 2021
  ident: D3EE04251K/cit175/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c01519
– volume: 145
  start-page: 27867
  year: 2023
  ident: D3EE04251K/cit376/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c11734
– volume: 11
  start-page: 7422
  year: 2021
  ident: D3EE04251K/cit357/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01284
– volume: 464
  start-page: 142692
  year: 2023
  ident: D3EE04251K/cit190/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142692
– volume: 19
  start-page: 2207603
  year: 2023
  ident: D3EE04251K/cit263/1
  publication-title: Small
  doi: 10.1002/smll.202207603
– volume: 12
  start-page: 2103336
  year: 2022
  ident: D3EE04251K/cit339/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103336
– volume: 324
  start-page: 134892
  year: 2019
  ident: D3EE04251K/cit306/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134892
– volume: 142
  start-page: 8748
  year: 2020
  ident: D3EE04251K/cit103/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01104
– volume: 22
  start-page: 100846
  year: 2021
  ident: D3EE04251K/cit280/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2021.100846
– year: 2024
  ident: D3EE04251K/cit342/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202315062
– volume: 16
  start-page: 57
  year: 2016
  ident: D3EE04251K/cit91/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4738
– volume: 9
  start-page: 5057
  year: 2019
  ident: D3EE04251K/cit224/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00906
– volume: 34
  start-page: 2204624
  year: 2022
  ident: D3EE04251K/cit194/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204624
– volume: 13
  start-page: 2107
  year: 2022
  ident: D3EE04251K/cit131/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00021
– volume: 47
  start-page: 9307
  year: 2008
  ident: D3EE04251K/cit170/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200802749
– volume: 12
  start-page: 859
  year: 2021
  ident: D3EE04251K/cit250/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21017-6
– volume: 4
  start-page: 711
  year: 2021
  ident: D3EE04251K/cit112/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00663-5
– volume: 525
  start-page: 231141
  year: 2022
  ident: D3EE04251K/cit145/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231141
– volume: 135
  start-page: 8016
  year: 2013
  ident: D3EE04251K/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4021638
– volume: 21
  start-page: 146
  year: 2020
  ident: D3EE04251K/cit69/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2020.01.018
– volume: 14
  start-page: 2278
  year: 2012
  ident: D3EE04251K/cit244/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp22761d
– volume: 62
  start-page: e202311937
  year: 2023
  ident: D3EE04251K/cit332/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202311937
– volume: 120
  start-page: 851
  year: 2020
  ident: D3EE04251K/cit282/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00248
– volume: 10
  start-page: 11493
  year: 2020
  ident: D3EE04251K/cit316/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03324
– volume: 58
  start-page: 10644
  year: 2019
  ident: D3EE04251K/cit121/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201905430
– volume: 2
  start-page: 955
  year: 2019
  ident: D3EE04251K/cit311/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0364-x
– volume: 8
  start-page: 5728
  year: 2017
  ident: D3EE04251K/cit297/1
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01615H
– volume: 163
  start-page: F1503
  year: 2016
  ident: D3EE04251K/cit412/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0511614jes
– volume: 9
  start-page: 17223
  year: 2021
  ident: D3EE04251K/cit44/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA03678E
– volume: 119
  start-page: 13481
  year: 2015
  ident: D3EE04251K/cit216/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b03284
– volume: 5
  start-page: 440
  year: 2020
  ident: D3EE04251K/cit212/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0183-3
– volume: 3
  start-page: 100056
  year: 2021
  ident: D3EE04251K/cit24/1
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2021.100056
– volume: 12
  start-page: 240
  year: 2018
  ident: D3EE04251K/cit11/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.11.011
– volume: 119
  start-page: e2119883119
  year: 2022
  ident: D3EE04251K/cit236/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2119883119
– volume: 268
  start-page: 118734
  year: 2020
  ident: D3EE04251K/cit53/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118734
– volume: 1
  start-page: 263
  year: 2018
  ident: D3EE04251K/cit312/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0054-0
– volume: 2
  start-page: 5534
  year: 2019
  ident: D3EE04251K/cit132/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00718
– volume: 4
  start-page: 3300
  year: 2020
  ident: D3EE04251K/cit149/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/D0SE00483A
– volume: 5
  start-page: 2399
  year: 2021
  ident: D3EE04251K/cit122/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00968G
– volume: 109
  start-page: 6399
  year: 2012
  ident: D3EE04251K/cit380/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1121176109
– volume: 12
  start-page: 22771
  year: 2020
  ident: D3EE04251K/cit217/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00506
– volume: 333
  start-page: 135444
  year: 2020
  ident: D3EE04251K/cit108/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.135444
– volume: 11
  start-page: 16370
  year: 2023
  ident: D3EE04251K/cit300/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA01879B
– volume: 44
  start-page: 288
  year: 2018
  ident: D3EE04251K/cit55/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.008
– volume: 63
  start-page: 1517
  year: 2020
  ident: D3EE04251K/cit25/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-020-9835-8
– volume: 48
  start-page: 197
  year: 2002
  ident: D3EE04251K/cit370/1
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00602-3
– volume: 145
  start-page: 12717
  year: 2023
  ident: D3EE04251K/cit75/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c02604
– volume: 39
  start-page: 101304
  year: 2023
  ident: D3EE04251K/cit235/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2023.101304
– volume: 11
  start-page: 1020
  year: 2016
  ident: D3EE04251K/cit8/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.265
– volume: 144
  start-page: 9292
  year: 2022
  ident: D3EE04251K/cit381/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00602
– volume: 31
  start-page: 2106156
  year: 2021
  ident: D3EE04251K/cit141/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106156
– volume: 17
  start-page: 2100391
  year: 2021
  ident: D3EE04251K/cit61/1
  publication-title: Small
  doi: 10.1002/smll.202100391
– volume: 4
  start-page: 15980
  year: 2016
  ident: D3EE04251K/cit252/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05517F
– volume: 58
  start-page: 17718
  year: 2019
  ident: D3EE04251K/cit97/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909697
– volume: 57
  start-page: 820
  year: 2019
  ident: D3EE04251K/cit117/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.098
– volume: 10
  start-page: 622
  year: 2022
  ident: D3EE04251K/cit322/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA08872F
– volume: 472
  start-page: 145009
  year: 2023
  ident: D3EE04251K/cit337/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.145009
– volume: 45
  start-page: 13929
  year: 2020
  ident: D3EE04251K/cit319/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.03.086
– volume: 5
  start-page: 22959
  year: 2017
  ident: D3EE04251K/cit40/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07635E
– volume: 121
  start-page: 106871
  year: 2020
  ident: D3EE04251K/cit51/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2020.106871
– volume: 61
  start-page: 14187
  year: 2022
  ident: D3EE04251K/cit209/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c02455
– volume: 2
  start-page: 880
  year: 2010
  ident: D3EE04251K/cit98/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.771
– volume: 12
  start-page: 7014
  year: 2022
  ident: D3EE04251K/cit315/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c01863
– volume: 55
  start-page: 2650
  year: 2016
  ident: D3EE04251K/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504830
– volume: 222
  start-page: 556
  year: 1969
  ident: D3EE04251K/cit323/1
  publication-title: Nature
  doi: 10.1038/222556a0
– volume: 545
  start-page: 149002
  year: 2021
  ident: D3EE04251K/cit220/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149002
– volume: 10
  start-page: 11751
  year: 2020
  ident: D3EE04251K/cit192/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03148
– volume: 29
  start-page: 111
  year: 2019
  ident: D3EE04251K/cit333/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.02.011
– volume: 135
  start-page: 18490
  year: 2013
  ident: D3EE04251K/cit226/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407826d
– volume: 17
  start-page: 2005092
  year: 2021
  ident: D3EE04251K/cit90/1
  publication-title: Small
  doi: 10.1002/smll.202005092
– volume: 37
  start-page: 17667
  year: 2023
  ident: D3EE04251K/cit392/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c02358
– volume: 13
  start-page: 6813
  year: 2023
  ident: D3EE04251K/cit338/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c05816
– volume: 11
  start-page: 2383
  year: 2010
  ident: D3EE04251K/cit362/1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200901006
– volume: 2
  start-page: 17031
  year: 2017
  ident: D3EE04251K/cit85/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.31
– volume: 12
  start-page: 952
  year: 2019
  ident: D3EE04251K/cit273/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00197B
– volume: 162
  start-page: F178
  year: 2015
  ident: D3EE04251K/cit178/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1081501jes
– volume: 65
  start-page: 1735
  year: 2020
  ident: D3EE04251K/cit187/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.06.007
– volume: 10
  start-page: 4876
  year: 2019
  ident: D3EE04251K/cit74/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12773-7
– volume: 7
  start-page: 2000310
  year: 2020
  ident: D3EE04251K/cit113/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000310
– volume: 11
  start-page: 849
  year: 2023
  ident: D3EE04251K/cit302/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA08355H
– volume: 306
  start-page: 121029
  year: 2022
  ident: D3EE04251K/cit43/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.121029
– volume: 2
  start-page: 3160
  year: 2019
  ident: D3EE04251K/cit238/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b02206
– volume: 6
  start-page: 1929
  year: 2016
  ident: D3EE04251K/cit41/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02485
– volume: 35
  start-page: 2208799
  year: 2023
  ident: D3EE04251K/cit166/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208799
– volume: 23
  start-page: 101793
  year: 2020
  ident: D3EE04251K/cit275/1
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101793
– volume: 17
  start-page: 17779
  year: 2023
  ident: D3EE04251K/cit181/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c02832
– volume: 14
  start-page: 3767
  year: 2023
  ident: D3EE04251K/cit340/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39475-5
– volume: 15
  start-page: 364
  year: 2023
  ident: D3EE04251K/cit330/1
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC04126C
– volume: 44
  start-page: 13364
  year: 2019
  ident: D3EE04251K/cit372/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.03.270
– volume: 425
  start-page: 130654
  year: 2021
  ident: D3EE04251K/cit308/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130654
– volume: 43
  start-page: 33
  year: 2022
  ident: D3EE04251K/cit400/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63874-3
– volume: 123
  start-page: 23931
  year: 2019
  ident: D3EE04251K/cit87/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b04731
– volume: 334
  start-page: 1256
  year: 2011
  ident: D3EE04251K/cit227/1
  publication-title: Science
  doi: 10.1126/science.1211934
– volume: 117
  start-page: 5002
  year: 2017
  ident: D3EE04251K/cit402/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00596
– volume: 139
  start-page: 5156
  year: 2017
  ident: D3EE04251K/cit99/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00765
– volume: 3
  start-page: 2640
  year: 2023
  ident: D3EE04251K/cit396/1
  publication-title: JACS Au
  doi: 10.1021/jacsau.3c00410
– volume: 30
  start-page: 2002087
  year: 2020
  ident: D3EE04251K/cit118/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002087
– volume: 66
  start-page: 3262
  year: 2023
  ident: D3EE04251K/cit274/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-023-1709-0
– volume: 59
  start-page: 10797
  year: 2020
  ident: D3EE04251K/cit148/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916314
– volume: 163
  start-page: F499
  year: 2016
  ident: D3EE04251K/cit177/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0661606jes
– volume: 305
  start-page: 972
  year: 2004
  ident: D3EE04251K/cit5/1
  publication-title: Science
  doi: 10.1126/science.1103197
– volume: 500
  start-page: 44
  year: 2001
  ident: D3EE04251K/cit159/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00352-1
– volume: 13
  start-page: 582
  year: 2020
  ident: D3EE04251K/cit298/1
  publication-title: Energies
  doi: 10.3390/en13030582
– volume: 1
  start-page: 10
  year: 2016
  ident: D3EE04251K/cit1/1
  publication-title: Energy, Ecol. Environ.
  doi: 10.1007/s40974-016-0005-z
– volume: 15
  start-page: 4511
  year: 2022
  ident: D3EE04251K/cit63/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE02216H
– volume: 7
  start-page: 1719
  year: 2014
  ident: D3EE04251K/cit94/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43899F
– volume: 17
  start-page: 25707
  year: 2023
  ident: D3EE04251K/cit260/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.3c10867
– volume: 317
  start-page: 121786
  year: 2022
  ident: D3EE04251K/cit296/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121786
– volume: 10
  start-page: 3682
  year: 2022
  ident: D3EE04251K/cit268/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c00037
– volume: 5
  start-page: 300
  year: 2013
  ident: D3EE04251K/cit35/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1574
– volume: 59
  start-page: 26
  year: 2019
  ident: D3EE04251K/cit207/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.070
– volume: 66
  start-page: 61
  year: 2022
  ident: D3EE04251K/cit233/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.07.012
– volume: 461
  start-page: 228147
  year: 2020
  ident: D3EE04251K/cit39/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228147
– volume: 41
  start-page: 22520
  year: 2016
  ident: D3EE04251K/cit222/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.083
– volume: 12
  start-page: 182
  year: 2018
  ident: D3EE04251K/cit68/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.11.013
– volume: 35
  start-page: 2208821
  year: 2023
  ident: D3EE04251K/cit213/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208821
– volume: 4
  start-page: 3404
  year: 2021
  ident: D3EE04251K/cit247/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c03157
– volume: 283
  start-page: 1829
  year: 2018
  ident: D3EE04251K/cit109/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.07.104
– volume: 51
  start-page: 9620
  year: 2022
  ident: D3EE04251K/cit136/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00038E
– volume: 61
  start-page: e202208040
  year: 2022
  ident: D3EE04251K/cit203/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202208040
– volume: 13
  start-page: 7920
  year: 2022
  ident: D3EE04251K/cit71/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c01710
– volume: 5
  start-page: 4449
  year: 2015
  ident: D3EE04251K/cit204/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00247
– volume: 56
  start-page: 15594
  year: 2017
  ident: D3EE04251K/cit76/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201708484
– volume: 100
  start-page: 170
  year: 1978
  ident: D3EE04251K/cit365/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00469a029
– volume: 9
  start-page: 15415
  year: 2021
  ident: D3EE04251K/cit386/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02067F
– volume: 15
  start-page: 76
  year: 2024
  ident: D3EE04251K/cit358/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-44320-w
– volume: 43
  start-page: 1527
  year: 2022
  ident: D3EE04251K/cit269/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63955-4
– volume: 376
  start-page: 238
  year: 1995
  ident: D3EE04251K/cit33/1
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 11
  start-page: 5651
  year: 2020
  ident: D3EE04251K/cit37/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19413-5
– volume: 12
  start-page: 10894
  year: 2022
  ident: D3EE04251K/cit119/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02417
– volume: 728
  start-page: 19
  year: 2019
  ident: D3EE04251K/cit313/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2019.04.072
– volume: 167
  start-page: 054514
  year: 2020
  ident: D3EE04251K/cit120/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab74be
– volume: 7
  start-page: 10141
  year: 2016
  ident: D3EE04251K/cit230/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10141
– volume: 33
  start-page: 2210328
  year: 2022
  ident: D3EE04251K/cit198/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210328
– volume: 524–525
  start-page: 252
  year: 2002
  ident: D3EE04251K/cit158/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(02)00683-6
– volume: 9
  start-page: 1645
  year: 2023
  ident: D3EE04251K/cit234/1
  publication-title: Chemistry
  doi: 10.1016/j.chempr.2023.06.001
– volume: 2
  start-page: 1239
  year: 2021
  ident: D3EE04251K/cit21/1
  publication-title: Acc. Mater. Res.
  doi: 10.1021/accountsmr.1c00190
– volume: 324
  start-page: 132749
  year: 2022
  ident: D3EE04251K/cit156/1
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2022.132749
– volume: 19
  start-page: 2303061
  year: 2023
  ident: D3EE04251K/cit329/1
  publication-title: Small
  doi: 10.1002/smll.202303061
– volume: 4
  start-page: 5434
  year: 2021
  ident: D3EE04251K/cit270/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c03179
– volume: 21
  start-page: 804
  year: 2022
  ident: D3EE04251K/cit58/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01221-5
– volume: 172
  start-page: 155
  year: 2007
  ident: D3EE04251K/cit354/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.07.062
– volume: 554–555
  start-page: 77
  year: 2003
  ident: D3EE04251K/cit82/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(03)00077-9
– volume: 367
  start-page: 328
  year: 2018
  ident: D3EE04251K/cit96/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.09.030
– volume: 61
  start-page: e202207197
  year: 2022
  ident: D3EE04251K/cit83/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202207197
– volume: 35
  start-page: 2211854
  year: 2023
  ident: D3EE04251K/cit182/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211854
– volume: 56
  start-page: 1445
  year: 2023
  ident: D3EE04251K/cit385/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00071
– volume: 83
  start-page: 255
  year: 2023
  ident: D3EE04251K/cit301/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.03.057
– volume: 59
  start-page: 11824
  year: 2020
  ident: D3EE04251K/cit368/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202003208
– volume: 4
  start-page: 2200281
  year: 2023
  ident: D3EE04251K/cit67/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200281
– volume: 62
  start-page: e202315752
  year: 2023
  ident: D3EE04251K/cit277/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202315752
– volume: 10
  start-page: 14747
  year: 2020
  ident: D3EE04251K/cit134/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03801
– volume: 94
  start-page: 309
  year: 2021
  ident: D3EE04251K/cit257/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2020.10.042
– volume: 8
  start-page: 177
  year: 2015
  ident: D3EE04251K/cit100/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02564D
– volume: 60
  start-page: 8243
  year: 2021
  ident: D3EE04251K/cit286/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016199
– volume: 12
  start-page: 5846
  year: 2022
  ident: D3EE04251K/cit320/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c01011
– volume: 144
  start-page: 7224
  year: 2022
  ident: D3EE04251K/cit398/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c13740
– volume: 58
  start-page: 7445
  year: 2019
  ident: D3EE04251K/cit228/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902751
– volume: 10
  start-page: 7043
  year: 2020
  ident: D3EE04251K/cit50/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00101
– volume: 13
  start-page: 15475
  year: 2021
  ident: D3EE04251K/cit256/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15994
– volume: 7
  start-page: 267
  year: 2016
  ident: D3EE04251K/cit360/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02794
– volume: 10
  start-page: 13227
  year: 2020
  ident: D3EE04251K/cit364/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03831
– volume: 115
  start-page: 4823
  year: 2015
  ident: D3EE04251K/cit22/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr5003563
– volume: 12
  start-page: 2686
  year: 2021
  ident: D3EE04251K/cit47/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22996-2
– volume: 34
  start-page: 2107721
  year: 2022
  ident: D3EE04251K/cit317/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107721
– volume: 10
  start-page: 4608
  year: 2020
  ident: D3EE04251K/cit218/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05621
– volume: 600
  start-page: 81
  year: 2021
  ident: D3EE04251K/cit393/1
  publication-title: Nature
  doi: 10.1038/s41586-021-04068-z
– volume: 11
  start-page: 2522
  year: 2020
  ident: D3EE04251K/cit390/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16237-1
– volume: 6
  start-page: 20374
  year: 2018
  ident: D3EE04251K/cit417/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07414C
– volume: 6
  start-page: 11346
  year: 2018
  ident: D3EE04251K/cit261/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03250E
– volume: 360
  start-page: 279
  year: 2003
  ident: D3EE04251K/cit271/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(03)00346-3
– volume: 157
  start-page: B1529
  year: 2010
  ident: D3EE04251K/cit31/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3483106
– volume: 5
  start-page: 6764
  year: 2015
  ident: D3EE04251K/cit137/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01670
– volume: 33
  start-page: 2008599
  year: 2021
  ident: D3EE04251K/cit232/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008599
– volume: 234
  start-page: 87
  year: 1990
  ident: D3EE04251K/cit229/1
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(90)90668-X
– volume: 66
  start-page: 107
  year: 2022
  ident: D3EE04251K/cit66/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.07.015
– volume: 32
  start-page: 511
  year: 2007
  ident: D3EE04251K/cit2/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2006.06.050
– volume: 144
  start-page: 12661
  year: 2022
  ident: D3EE04251K/cit199/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01448
– volume: 5
  start-page: 24433
  year: 2017
  ident: D3EE04251K/cit125/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08718G
– volume: 33
  start-page: 2105400
  year: 2021
  ident: D3EE04251K/cit186/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105400
– volume: 51
  start-page: 405
  year: 2020
  ident: D3EE04251K/cit4/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.087
– volume: 51
  start-page: 1529
  year: 2022
  ident: D3EE04251K/cit13/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00981H
– volume: 402
  start-page: 447
  year: 2018
  ident: D3EE04251K/cit231/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.09.051
– volume: 139
  start-page: 6807
  year: 2017
  ident: D3EE04251K/cit253/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02434
– volume: 8
  start-page: 1278
  year: 2018
  ident: D3EE04251K/cit344/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04055
– volume: 12
  start-page: 11361
  year: 2021
  ident: D3EE04251K/cit318/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02676
– volume: 10
  start-page: 1616
  year: 2022
  ident: D3EE04251K/cit193/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c07306
– volume: 110
  start-page: 21924
  year: 2006
  ident: D3EE04251K/cit161/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp064190x
– volume: 58
  start-page: 14179
  year: 2019
  ident: D3EE04251K/cit304/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201908194
– volume: 304
  start-page: 332
  year: 2016
  ident: D3EE04251K/cit104/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.11.026
– volume: 8
  start-page: 9429
  year: 2018
  ident: D3EE04251K/cit411/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b03227
– volume: 140
  start-page: 084106
  year: 2014
  ident: D3EE04251K/cit394/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 61
  start-page: 15
  year: 2021
  ident: D3EE04251K/cit215/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.12.008
– volume: 19
  start-page: 2207038
  year: 2023
  ident: D3EE04251K/cit266/1
  publication-title: Small
  doi: 10.1002/smll.202207038
– volume: 56
  start-page: 15025
  year: 2017
  ident: D3EE04251K/cit101/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709455
– volume: 33
  start-page: 2211586
  year: 2023
  ident: D3EE04251K/cit191/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211586
– volume: 141
  start-page: 11115
  year: 2019
  ident: D3EE04251K/cit324/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03327
– volume: 6
  start-page: 23531
  year: 2018
  ident: D3EE04251K/cit111/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA07028H
– volume: 319
  start-page: 123637
  year: 2022
  ident: D3EE04251K/cit335/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123637
– volume: 270
  start-page: 116203
  year: 2022
  ident: D3EE04251K/cit143/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2022.116203
– volume: 134
  start-page: 18161
  year: 2012
  ident: D3EE04251K/cit151/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307466s
– volume: 3
  start-page: 454
  year: 2020
  ident: D3EE04251K/cit38/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-0446-9
– volume: 165
  start-page: J3355
  year: 2018
  ident: D3EE04251K/cit86/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0471815jes
– volume: 53
  start-page: 357
  year: 2010
  ident: D3EE04251K/cit56/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-010-0080-5
– volume: 7
  start-page: 333
  year: 2008
  ident: D3EE04251K/cit172/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2156
– volume: 16
  start-page: 6120
  year: 2023
  ident: D3EE04251K/cit185/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02382F
– volume: 49
  start-page: 3173
  year: 2010
  ident: D3EE04251K/cit359/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907019
– volume: 141
  start-page: 3232
  year: 2019
  ident: D3EE04251K/cit128/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13228
– volume: 136
  start-page: e202317922
  year: 2024
  ident: D3EE04251K/cit382/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202317922
– volume: 92
  start-page: 3719
  year: 1996
  ident: D3EE04251K/cit81/1
  publication-title: J. Chem. Soc., Faraday Trans.
  doi: 10.1039/FT9969203719
– volume: 63
  start-page: e202315148
  year: 2024
  ident: D3EE04251K/cit179/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202315148
– volume: 13
  start-page: 39470
  year: 2021
  ident: D3EE04251K/cit123/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c11025
– volume: 20
  start-page: 2307252
  year: 2024
  ident: D3EE04251K/cit295/1
  publication-title: Small
  doi: 10.1002/smll.202307252
– volume: 105
  start-page: 11188
  year: 2008
  ident: D3EE04251K/cit378/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0803689105
– volume: 13
  start-page: 7822
  year: 2023
  ident: D3EE04251K/cit374/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c01466
– volume: 33
  start-page: 2300593
  year: 2023
  ident: D3EE04251K/cit140/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300593
– volume: 7
  start-page: 4464
  year: 2016
  ident: D3EE04251K/cit410/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02025
– volume: 7
  start-page: 2255
  year: 2014
  ident: D3EE04251K/cit30/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00440J
– volume: 336
  start-page: 135751
  year: 2020
  ident: D3EE04251K/cit52/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135751
– volume: 9
  start-page: 26323
  year: 2021
  ident: D3EE04251K/cit202/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA08038E
– volume: 64
  start-page: 1069
  year: 2014
  ident: D3EE04251K/cit245/1
  publication-title: ECS Trans.
  doi: 10.1149/06403.1069ecst
– volume: 132
  start-page: 14700
  year: 2010
  ident: D3EE04251K/cit346/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104672n
– volume: 11
  start-page: 133
  year: 2020
  ident: D3EE04251K/cit310/1
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-019-00560-3
– volume: 2
  start-page: 4999
  year: 2019
  ident: D3EE04251K/cit299/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00657
– volume: 59
  start-page: 18036
  year: 2020
  ident: D3EE04251K/cit391/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202008116
– volume: 104
  start-page: 107877
  year: 2022
  ident: D3EE04251K/cit65/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107877
– volume: 323
  start-page: 760
  year: 2009
  ident: D3EE04251K/cit23/1
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 45
  start-page: 19642
  year: 2020
  ident: D3EE04251K/cit146/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.026
– volume: 11
  start-page: 2003511
  year: 2021
  ident: D3EE04251K/cit239/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003511
– volume: 11
  start-page: 14932
  year: 2021
  ident: D3EE04251K/cit205/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c04440
– volume: 4
  start-page: 1594
  year: 2019
  ident: D3EE04251K/cit294/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00738
– volume: 6
  start-page: 773
  year: 2023
  ident: D3EE04251K/cit331/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01007-1
– volume: 12
  start-page: 3522
  year: 2019
  ident: D3EE04251K/cit279/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01743G
– volume: 9
  start-page: 6837
  year: 2019
  ident: D3EE04251K/cit352/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01582
– volume: 34
  start-page: 2206960
  year: 2022
  ident: D3EE04251K/cit321/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206960
– volume: 11
  start-page: 12118
  year: 2020
  ident: D3EE04251K/cit278/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03917A
– volume: 9
  start-page: 1801284
  year: 2018
  ident: D3EE04251K/cit353/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801284
– volume: 45
  start-page: 117
  year: 2002
  ident: D3EE04251K/cit265/1
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0167-5729(01)00022-X
– volume: 305
  start-page: 121058
  year: 2022
  ident: D3EE04251K/cit20/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.121058
– volume: 258
  start-page: 117952
  year: 2019
  ident: D3EE04251K/cit211/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117952
– volume: 58
  start-page: 1442
  year: 2019
  ident: D3EE04251K/cit153/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201812662
– volume: 33
  start-page: 2306333
  year: 2023
  ident: D3EE04251K/cit167/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306333
– volume: 19
  start-page: 2206196
  year: 2023
  ident: D3EE04251K/cit124/1
  publication-title: Small
  doi: 10.1002/smll.202206196
– volume: 432
  start-page: 134189
  year: 2022
  ident: D3EE04251K/cit258/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134189
– volume: 12
  start-page: 31575
  year: 2020
  ident: D3EE04251K/cit356/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c10784
– volume: 15
  start-page: 1234
  year: 2022
  ident: D3EE04251K/cit200/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03482K
– volume: 65
  start-page: 611
  year: 2022
  ident: D3EE04251K/cit42/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1190-7
– volume: 22
  start-page: 5544
  year: 2022
  ident: D3EE04251K/cit171/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c01744
– volume: 11
  start-page: 3283
  year: 2018
  ident: D3EE04251K/cit32/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02192A
– volume: 30
  start-page: 2188
  year: 2018
  ident: D3EE04251K/cit414/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00358
– volume: 382
  start-page: 153
  year: 1995
  ident: D3EE04251K/cit383/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(94)03669-T
– volume: 852
  start-page: 113551
  year: 2019
  ident: D3EE04251K/cit246/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.113551
– volume: 149
  start-page: A1400
  year: 2002
  ident: D3EE04251K/cit176/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1510131
– volume: 144
  start-page: 22018
  year: 2022
  ident: D3EE04251K/cit377/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c09147
– volume: 10
  start-page: 8645
  year: 2020
  ident: D3EE04251K/cit147/1
  publication-title: RSC Adv.
  doi: 10.1039/C9RA09628K
– volume: 428
  start-page: 131206
  year: 2022
  ident: D3EE04251K/cit288/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131206
– volume: 102
  start-page: 16951
  year: 2005
  ident: D3EE04251K/cit379/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0504499102
– volume: 367
  start-page: 332
  year: 2018
  ident: D3EE04251K/cit102/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.09.031
– volume: 26
  start-page: 14
  year: 2020
  ident: D3EE04251K/cit347/1
  publication-title: J. Electrochem.
– volume: 145
  start-page: 12051
  year: 2023
  ident: D3EE04251K/cit73/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c01164
– volume: 11
  start-page: 8165
  year: 2021
  ident: D3EE04251K/cit169/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01723
– volume: 5
  start-page: 316
  year: 2020
  ident: D3EE04251K/cit416/1
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00533A
– volume: 5
  start-page: 253
  year: 2016
  ident: D3EE04251K/cit150/1
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00910
– volume: 81
  start-page: 2819
  year: 1998
  ident: D3EE04251K/cit289/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 7
  start-page: 31574
  year: 2017
  ident: D3EE04251K/cit350/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA03675B
– volume: 61
  start-page: e202206588
  year: 2022
  ident: D3EE04251K/cit272/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202206588
– volume: 18
  start-page: 2202404
  year: 2022
  ident: D3EE04251K/cit251/1
  publication-title: Small
  doi: 10.1002/smll.202202404
– volume: 54
  start-page: 202
  year: 2021
  ident: D3EE04251K/cit305/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.05.066
– volume: 436
  start-page: 213824
  year: 2021
  ident: D3EE04251K/cit401/1
  publication-title: Coord. Chem Rev.
  doi: 10.1016/j.ccr.2021.213824
– volume: 6
  start-page: 3895
  year: 2016
  ident: D3EE04251K/cit49/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00350
– volume: 90
  start-page: 106579
  year: 2021
  ident: D3EE04251K/cit155/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106579
– volume: 2
  start-page: 16
  year: 1998
  ident: D3EE04251K/cit384/1
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s100080050059
– volume: 32
  start-page: 2006034
  year: 2020
  ident: D3EE04251K/cit287/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006034
– volume: 12
  start-page: 384
  year: 2021
  ident: D3EE04251K/cit18/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC03280H
– volume: 10
  start-page: 12300
  year: 2020
  ident: D3EE04251K/cit345/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02845
– volume: 11
  start-page: 10807
  year: 2023
  ident: D3EE04251K/cit197/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA00287J
– volume: 8
  start-page: 454
  year: 2018
  ident: D3EE04251K/cit254/1
  publication-title: Catalysts
  doi: 10.3390/catal8100454
– volume: 12
  start-page: 209
  year: 2018
  ident: D3EE04251K/cit34/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2018.11.017
– volume: 9
  start-page: 9614
  year: 2019
  ident: D3EE04251K/cit115/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b01744
– volume: 332
  start-page: 122740
  year: 2023
  ident: D3EE04251K/cit336/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.122740
– volume: 324
  start-page: 119722
  year: 2022
  ident: D3EE04251K/cit144/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119722
– volume: 554
  start-page: 149627
  year: 2021
  ident: D3EE04251K/cit240/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149627
– volume: 62
  start-page: e202213365
  year: 2023
  ident: D3EE04251K/cit367/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202213365
– volume: 10
  start-page: 1278
  year: 2019
  ident: D3EE04251K/cit19/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 14
  start-page: 2620
  year: 2021
  ident: D3EE04251K/cit62/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03609A
– volume: 16
  start-page: 19250
  year: 2014
  ident: D3EE04251K/cit259/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01385A
– volume: 309
  start-page: 121279
  year: 2022
  ident: D3EE04251K/cit284/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121279
– volume: 52
  start-page: 8319
  year: 2023
  ident: D3EE04251K/cit248/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00557G
– volume: 41
  start-page: 765
  year: 2017
  ident: D3EE04251K/cit9/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.053
– volume: 59
  start-page: 20423
  year: 2020
  ident: D3EE04251K/cit326/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009612
– volume: 283
  start-page: 181
  year: 2015
  ident: D3EE04251K/cit79/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.133
– volume: 31
  start-page: 2010633
  year: 2021
  ident: D3EE04251K/cit60/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010633
– volume: 1
  start-page: 466
  year: 2009
  ident: D3EE04251K/cit399/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.330
– volume: 62
  start-page: 5032
  year: 2023
  ident: D3EE04251K/cit174/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.3c00293
– volume: 17
  start-page: 2006698
  year: 2021
  ident: D3EE04251K/cit114/1
  publication-title: Small
  doi: 10.1002/smll.202006698
– volume: 4
  start-page: 81
  year: 2009
  ident: D3EE04251K/cit29/1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2008.09.002
– volume: 31
  start-page: 1806296
  year: 2019
  ident: D3EE04251K/cit135/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806296
– volume: 541
  start-page: 68
  year: 2017
  ident: D3EE04251K/cit325/1
  publication-title: Nature
  doi: 10.1038/nature20782
– volume: 32
  start-page: 2107479
  year: 2021
  ident: D3EE04251K/cit59/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107479
– volume: 10
  start-page: 7322
  year: 2020
  ident: D3EE04251K/cit206/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02254
– volume: 464
  start-page: 392
  year: 2010
  ident: D3EE04251K/cit405/1
  publication-title: Nature
  doi: 10.1038/nature08907
– volume: 7
  start-page: 3135
  year: 2014
  ident: D3EE04251K/cit7/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01303D
– volume: 59
  start-page: 13583
  year: 2023
  ident: D3EE04251K/cit373/1
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC03990K
– volume: 9
  start-page: 4531
  year: 2018
  ident: D3EE04251K/cit139/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06728-7
– volume: 105
  start-page: 20611
  year: 2008
  ident: D3EE04251K/cit355/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0810041106
– volume: 60
  start-page: 19774
  year: 2021
  ident: D3EE04251K/cit403/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202103888
– volume: 8
  start-page: 4918
  year: 2017
  ident: D3EE04251K/cit415/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b02228
– volume: 19
  start-page: 2303142
  year: 2023
  ident: D3EE04251K/cit237/1
  publication-title: Small
  doi: 10.1002/smll.202303142
– volume: 8
  start-page: 3381
  year: 2023
  ident: D3EE04251K/cit351/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c00842
– volume: 9
  start-page: 2202913
  year: 2023
  ident: D3EE04251K/cit210/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202913
– volume: 4
  start-page: 1732
  year: 2022
  ident: D3EE04251K/cit214/1
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202100810
– volume: 5
  start-page: 4819
  year: 2015
  ident: D3EE04251K/cit343/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01037
– volume: 32
  start-page: 7716
  year: 2020
  ident: D3EE04251K/cit348/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02048
– volume: 14
  start-page: 6289
  year: 2023
  ident: D3EE04251K/cit285/1
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC02144K
– volume: 31
  start-page: 4195
  year: 2019
  ident: D3EE04251K/cit413/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01092
– volume: 767
  start-page: 153
  year: 2016
  ident: D3EE04251K/cit78/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.02.024
– volume: 4
  start-page: 11473
  year: 2021
  ident: D3EE04251K/cit307/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c02893
– volume: 429
  start-page: 132435
  year: 2022
  ident: D3EE04251K/cit303/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132435
– volume: 142
  start-page: 4985
  year: 2020
  ident: D3EE04251K/cit110/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13694
– volume: 60
  start-page: 5771
  year: 2021
  ident: D3EE04251K/cit126/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202013047
– volume: 145
  start-page: 13805
  year: 2023
  ident: D3EE04251K/cit183/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c02487
– volume: 15
  start-page: 14996
  year: 2021
  ident: D3EE04251K/cit389/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05250
– volume: 52
  start-page: 2745
  year: 2019
  ident: D3EE04251K/cit12/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00355
– volume: 144
  start-page: 11138
  year: 2022
  ident: D3EE04251K/cit127/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c00793
– volume: 8
  start-page: eabm3779
  year: 2022
  ident: D3EE04251K/cit129/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm3779
– volume: 99
  start-page: 8290
  year: 1995
  ident: D3EE04251K/cit160/1
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100020a063
– volume: 167
  start-page: 084514
  year: 2020
  ident: D3EE04251K/cit408/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab8c88
SSID ssj0062079
Score 2.6077688
Snippet The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 396
SubjectTerms Anion exchanging
Anodizing
Catalysts
Chemical reduction
Commercialization
Electrocatalysts
Electrolytes
Electrolytic cells
Emissions
Energy theory
Fuel cells
Fuel technology
Heterostructures
Hydrogen
Kinetics
Membranes
Noble metals
Oxidation
Oxygen reduction reactions
Reaction mechanisms
Stability
Title Hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells: activity descriptors, stability regulation, and perspectives
URI https://www.proquest.com/docview/3069060803
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QUOiFdFoKCV4IJcF8frtbPcCgQiChxQEO3J8j4sWbQxShyp4Rdw4T8zu2t711Ak4BArmrWtyN_n2ZnJPBB6IgQRnEcqjBWbholiLCwocFlQBvuDKjhlut75_Yd0_il5e0pPR6MfXtbSpuFH4tuVdSX_gyrIAFddJfsPyPY3BQF8B3zhCAjD8a8wnm_lqobVoL6s7GykoB1rY6Iy23WzbrMkYSlUl7bKN7hQF-Ajg3VZbtR5oEP3Ji9OlziYSRJSWV1S2_FpYD-aDNptsLKD6yv7T71pMeBqNdeDIL8tKdS88krpugJMx6aPbW1ItQwXRe1yDaz4napcwN8qpXlRh2cbZ8Ba6VnlRy_iRGdZDRRuRpOQpnYe3pHyZFmUDrR05rMx9nQuYam3fdsGqL9tDBHRfVUlUUprqckXt_31SYlucQftxeB1gNrcOz558eZzt7WncWSaN_Y_uut3S9gzd_XQwnFuy86qmyljbJfFTXSjdTrwsWXQLTRSy9vouteK8g763nEJ91zCv3IJA5fwkEu44xLWXMKGS89xxyTsMekQ9zzCjkeHcD-JfRbdRYvXs8XLedhO6QhFPJ00oRQCNLlknE1EWpZZXE7LIuGJzEghSSQYK8DmFiWjoBd4SRPwULmiVIJZBP4F2Ue7y3qp7iGcSSE5fGgqioSyiImIluDS6qmTJCHTMXraPdhctB3s9SCV89xkUhCWvyKzmQHhZIwe9-d-tX1brjzroMMnb9_rdU5M827wpMgY7QNm_fUO4vt_WniArjmWH6DdZrVRD8Fqbfijlks_ATTXn68
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+oxidation+electrocatalysts+for+anion-exchange+membrane+fuel+cells%3A+activity+descriptors%2C+stability+regulation%2C+and+perspectives&rft.jtitle=Energy+%26+environmental+science&rft.au=Ren%2C+Jin-Tao&rft.au=Chen%2C+Lei&rft.au=Wang%2C+Hao-Yu&rft.au=Feng%2C+Yi&rft.date=2024-06-18&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=12&rft.spage=396&rft.epage=49&rft_id=info:doi/10.1039%2Fd3ee04251k&rft.externalDocID=d3ee04251k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon