Hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells: activity descriptors, stability regulation, and perspectives
The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalys...
Saved in:
Published in | Energy & environmental science Vol. 17; no. 12; pp. 396 - 49 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
18.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalysts in AEMFCs, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) in alkaline media, necessitating a high Pt amount, poses a substantial impediment to AEMFC development. This review delves into the intricate landscape of the alkaline HOR, commencing with exploration of prevailing theories grounded in diverse activity descriptors, such as the hydrogen binding energy theory and bifunctional theory. The elucidation of sluggish kinetics and reaction mechanisms in alkaline electrolytes serves as the foundation for the analysis of noble and non-noble metal catalysts, encompassing considerations of morphology, composition, local structure, heterostructure, spillover effects, single atomic catalysts, and oxyphilic site engineering. Emphasis is placed on addressing pivotal but often overlooked challenges, including long-term stability, antioxidation ability, and CO tolerance of HOR catalysts. This review underscores the significance of theoretical investigations and
in situ
characterization technologies. Subsequently, recent strides in AEMFCs, leveraging various electrocatalysts for enhanced activity and durability, are meticulously summarized. The narrative concludes by spotlighting persisting controversies surrounding alkaline HOR mechanisms, along with an exposition of challenges and prospective research directions vital for the eventual commercialization of AEMFCs.
The general principles in terms of reactivity and stability to design efficient electrocatalysts for the alkaline hydrogen oxidation reaction are reviewed. The performance of catalysts in anion-exchange membrane fuel cells is further discussed. |
---|---|
AbstractList | The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalysts in AEMFCs, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) in alkaline media, necessitating a high Pt amount, poses a substantial impediment to AEMFC development. This review delves into the intricate landscape of the alkaline HOR, commencing with exploration of prevailing theories grounded in diverse activity descriptors, such as the hydrogen binding energy theory and bifunctional theory. The elucidation of sluggish kinetics and reaction mechanisms in alkaline electrolytes serves as the foundation for the analysis of noble and non-noble metal catalysts, encompassing considerations of morphology, composition, local structure, heterostructure, spillover effects, single atomic catalysts, and oxyphilic site engineering. Emphasis is placed on addressing pivotal but often overlooked challenges, including long-term stability, antioxidation ability, and CO tolerance of HOR catalysts. This review underscores the significance of theoretical investigations and in situ characterization technologies. Subsequently, recent strides in AEMFCs, leveraging various electrocatalysts for enhanced activity and durability, are meticulously summarized. The narrative concludes by spotlighting persisting controversies surrounding alkaline HOR mechanisms, along with an exposition of challenges and prospective research directions vital for the eventual commercialization of AEMFCs. The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalysts in AEMFCs, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) in alkaline media, necessitating a high Pt amount, poses a substantial impediment to AEMFC development. This review delves into the intricate landscape of the alkaline HOR, commencing with exploration of prevailing theories grounded in diverse activity descriptors, such as the hydrogen binding energy theory and bifunctional theory. The elucidation of sluggish kinetics and reaction mechanisms in alkaline electrolytes serves as the foundation for the analysis of noble and non-noble metal catalysts, encompassing considerations of morphology, composition, local structure, heterostructure, spillover effects, single atomic catalysts, and oxyphilic site engineering. Emphasis is placed on addressing pivotal but often overlooked challenges, including long-term stability, antioxidation ability, and CO tolerance of HOR catalysts. This review underscores the significance of theoretical investigations and in situ characterization technologies. Subsequently, recent strides in AEMFCs, leveraging various electrocatalysts for enhanced activity and durability, are meticulously summarized. The narrative concludes by spotlighting persisting controversies surrounding alkaline HOR mechanisms, along with an exposition of challenges and prospective research directions vital for the eventual commercialization of AEMFCs. The general principles in terms of reactivity and stability to design efficient electrocatalysts for the alkaline hydrogen oxidation reaction are reviewed. The performance of catalysts in anion-exchange membrane fuel cells is further discussed. The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based catalysts, offering a zero-carbon emission alternative. Despite the success of numerous noble metal-free cathodic oxygen reduction reaction catalysts in AEMFCs, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) in alkaline media, necessitating a high Pt amount, poses a substantial impediment to AEMFC development. This review delves into the intricate landscape of the alkaline HOR, commencing with exploration of prevailing theories grounded in diverse activity descriptors, such as the hydrogen binding energy theory and bifunctional theory. The elucidation of sluggish kinetics and reaction mechanisms in alkaline electrolytes serves as the foundation for the analysis of noble and non-noble metal catalysts, encompassing considerations of morphology, composition, local structure, heterostructure, spillover effects, single atomic catalysts, and oxyphilic site engineering. Emphasis is placed on addressing pivotal but often overlooked challenges, including long-term stability, antioxidation ability, and CO tolerance of HOR catalysts. This review underscores the significance of theoretical investigations and in situ characterization technologies. Subsequently, recent strides in AEMFCs, leveraging various electrocatalysts for enhanced activity and durability, are meticulously summarized. The narrative concludes by spotlighting persisting controversies surrounding alkaline HOR mechanisms, along with an exposition of challenges and prospective research directions vital for the eventual commercialization of AEMFCs. |
Author | Feng, Yi Wang, Hao-Yu Ren, Jin-Tao Chen, Lei Yuan, Zhong-Yong |
AuthorAffiliation | Smart Sensing Interdisciplinary Science Center School of Materials Science and Engineering Nankai University National Institute for Advanced Materials |
AuthorAffiliation_xml | – sequence: 0 name: National Institute for Advanced Materials – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Smart Sensing Interdisciplinary Science Center – sequence: 0 name: Nankai University |
Author_xml | – sequence: 1 givenname: Jin-Tao surname: Ren fullname: Ren, Jin-Tao – sequence: 2 givenname: Lei surname: Chen fullname: Chen, Lei – sequence: 3 givenname: Hao-Yu surname: Wang fullname: Wang, Hao-Yu – sequence: 4 givenname: Yi surname: Feng fullname: Feng, Yi – sequence: 5 givenname: Zhong-Yong surname: Yuan fullname: Yuan, Zhong-Yong |
BookMark | eNptkU1vFDEMhiNUJNrSC3ekSNxQhzqTycyGGypbilqpl95HGcdZUrKTIclW3X_Az-7sLh8S4mTLfl6_ln3CjsY4EmNvBHwQIPWFlUTQ1Ep8f8GORaeaSnXQHv3OW12_Yic5PwC0NXT6mP283toUVzTy-OStKT6OnAJhSRFNMWGbS-YuJm7GuVXRE34z44r4mtZDMiNxt6HAkULIH7nB4h992XJLGZOfSkz5nOdiBh925USrTdh7nM_zLJ8o5Yl2Isqv2UtnQqazX_GU3V8t7y-vq9u7L18vP91WWC9EqSwigLJ60AJb57raLZxphsZ20lgJqLVpmwadVohycKrp1GIgpWzTCRBanrJ3h7FTij82lEv_EDdpnB17Ca2GFhYgZwoOFKaYcyLXoy_7xUsyPvQC-t25-89yudyf-2aWvP9HMiW_Nmn7f_jtAU4Z_3B_fyefASKxkBk |
CitedBy_id | crossref_primary_10_3390_catal14100689 crossref_primary_10_1002_anie_202421013 crossref_primary_10_1002_celc_202400666 crossref_primary_10_1016_j_ccr_2024_216395 crossref_primary_10_1002_cssc_202500220 crossref_primary_10_1007_s12598_024_03081_1 crossref_primary_10_1016_j_jallcom_2024_175549 crossref_primary_10_1002_smll_202406387 crossref_primary_10_1016_j_jechem_2024_07_049 crossref_primary_10_1021_acsnano_4c11614 crossref_primary_10_1002_anie_202419320 crossref_primary_10_1039_D4TA08359H crossref_primary_10_1007_s12598_024_03223_5 crossref_primary_10_1021_acs_jpclett_4c02024 crossref_primary_10_1016_j_ijhydene_2025_02_234 crossref_primary_10_1021_acsanm_4c05770 crossref_primary_10_1002_ange_202421013 crossref_primary_10_1002_smll_202406335 crossref_primary_10_1002_adma_202414628 crossref_primary_10_1016_j_ccr_2024_216321 crossref_primary_10_1021_acs_jpcc_4c05853 crossref_primary_10_1021_jacs_4c17605 crossref_primary_10_1002_adma_202416483 crossref_primary_10_3390_molecules30030488 crossref_primary_10_1016_j_ijhydene_2025_01_054 crossref_primary_10_1039_D5CY00014A crossref_primary_10_1039_D4TA07777F crossref_primary_10_1016_j_jece_2025_116063 crossref_primary_10_1002_ange_202419320 crossref_primary_10_1039_D4RA04251D crossref_primary_10_1039_D5EE00074B crossref_primary_10_1021_acs_inorgchem_4c03879 |
Cites_doi | 10.1002/ange.202401453 10.1038/s41929-023-00911-w 10.1021/acscatal.6b02479 10.1016/j.jpowsour.2013.12.095 10.1021/jp970930d 10.1002/ente.202000909 10.1002/aenm.202300881 10.1038/natrevmats.2017.59 10.1021/acscatal.1c04948 10.1002/advs.202100284 10.1039/c3ee00045a 10.1038/s41467-022-29276-7 10.1038/s41560-021-00878-7 10.1021/acs.nanolett.0c00364 10.1021/acscatal.7b02787 10.1016/0039-6028(96)80007-0 10.1021/acsnano.2c00641 10.1021/acscatal.3c00803 10.1038/s41467-021-26425-2 10.1016/j.scib.2020.09.014 10.1021/ja405598a 10.1016/j.jpowsour.2018.11.026 10.1016/S1872-2067(15)61064-6 10.1038/s41929-022-00846-8 10.1016/j.nanoen.2020.104877 10.1016/j.jechem.2019.02.008 10.1002/adma.202105049 10.1021/acs.chemrev.9b00157 10.1002/anie.202015571 10.1002/anie.202209486 10.1038/s41467-024-45873-0 10.1038/s41467-021-23750-4 10.1038/s41467-020-18585-4 10.1039/D0TA02528C 10.1002/anie.202311722 10.1038/ncomms6848 10.1016/j.jechem.2022.04.043 10.1021/jacs.2c11907 10.1021/jacs.0c12755 10.1016/j.electacta.2008.01.006 10.1016/j.nanoen.2019.05.045 10.1002/anie.201600647 10.1016/j.cej.2022.136700 10.1016/j.elecom.2003.03.001 10.1002/anie.202212278 10.1016/j.apsusc.2022.156131 10.1039/C7NR09452C 10.1016/j.jelechem.2008.10.028 10.1021/acscatal.0c04403 10.1007/s12274-022-4228-3 10.1021/acsanm.1c00118 10.1002/celc.201900129 10.1021/jacs.8b08356 10.1021/acscatal.2c04174 10.1007/s12274-021-3559-9 10.1039/C8TA11019K 10.1021/acscatal.8b00689 10.1021/jp011684f 10.1002/anie.202217976 10.1038/s41467-021-24578-8 10.1016/j.electacta.2018.02.106 10.1038/s41467-019-09503-4 10.1039/C9TA01916B 10.1021/acs.jpcc.5b03169 10.1021/acs.energyfuels.1c00275 10.1007/s11244-015-0487-5 10.1016/j.ccr.2021.213825 10.1016/j.jpowsour.2017.07.117 10.1016/j.jpowsour.2012.10.051 10.1016/j.jelechem.2016.11.031 10.1149/2.0981501jes 10.1038/s41467-022-33625-x 10.1038/s41929-023-01017-z 10.1002/adma.202107868 10.1149/2.0791805jes 10.1021/jacs.0c10661 10.1038/s41560-020-00710-8 10.1002/adma.201808066 10.1039/C9CC00582J 10.1002/adfm.202304125 10.1039/D0EE00092B 10.1021/acscatal.0c03938 10.1021/jacs.8b04006 10.1039/D0EE01754J 10.1016/j.ijhydene.2019.04.068 10.1002/anie.202217275 10.1021/acscatal.0c03973 10.1038/s41929-022-00862-8 10.1126/sciadv.1501602 10.1021/acs.nanolett.1c01519 10.1021/jacs.3c11734 10.1021/acscatal.1c01284 10.1016/j.cej.2023.142692 10.1002/smll.202207603 10.1002/aenm.202103336 10.1016/j.electacta.2019.134892 10.1021/jacs.0c01104 10.1016/j.mtener.2021.100846 10.1002/adfm.202315062 10.1038/nmat4738 10.1021/acscatal.9b00906 10.1002/adma.202204624 10.1021/acs.jpclett.2c00021 10.1002/anie.200802749 10.1038/s41467-021-21017-6 10.1038/s41929-021-00663-5 10.1016/j.jpowsour.2022.231141 10.1021/ja4021638 10.1016/j.coelec.2020.01.018 10.1039/c2cp22761d 10.1002/anie.202311937 10.1021/acs.chemrev.9b00248 10.1021/acscatal.0c03324 10.1002/anie.201905430 10.1038/s41929-019-0364-x 10.1039/C7SC01615H 10.1149/2.0511614jes 10.1039/D1TA03678E 10.1021/acs.jpcc.5b03284 10.1038/s41578-020-0183-3 10.1016/j.enchem.2021.100056 10.1016/j.coelec.2018.11.011 10.1073/pnas.2119883119 10.1016/j.apcatb.2020.118734 10.1038/s41929-018-0054-0 10.1021/acsaem.9b00718 10.1039/D0SE00483A 10.1039/D0QM00968G 10.1073/pnas.1121176109 10.1021/acsami.0c00506 10.1016/j.electacta.2019.135444 10.1039/D3TA01879B 10.1016/j.nanoen.2017.12.008 10.1007/s11426-020-9835-8 10.1016/S0013-4686(02)00602-3 10.1021/jacs.3c02604 10.1016/j.coelec.2023.101304 10.1038/nnano.2016.265 10.1021/jacs.2c00602 10.1002/adfm.202106156 10.1002/smll.202100391 10.1039/C6TA05517F 10.1002/anie.201909697 10.1016/j.nanoen.2018.12.098 10.1039/D1TA08872F 10.1016/j.cej.2023.145009 10.1016/j.ijhydene.2020.03.086 10.1039/C7TA07635E 10.1016/j.elecom.2020.106871 10.1021/acs.inorgchem.2c02455 10.1038/nchem.771 10.1021/acscatal.2c01863 10.1002/anie.201504830 10.1038/222556a0 10.1016/j.apsusc.2021.149002 10.1021/acscatal.0c03148 10.1016/j.jechem.2018.02.011 10.1021/ja407826d 10.1002/smll.202005092 10.1021/acs.energyfuels.3c02358 10.1021/acscatal.2c05816 10.1002/cphc.200901006 10.1038/nenergy.2017.31 10.1039/C9EE00197B 10.1149/2.1081501jes 10.1016/j.scib.2020.06.007 10.1038/s41467-019-12773-7 10.1002/admi.202000310 10.1039/D2TA08355H 10.1016/j.apcatb.2021.121029 10.1021/acsaem.8b02206 10.1021/acscatal.5b02485 10.1002/adma.202208799 10.1016/j.isci.2020.101793 10.1021/acsnano.3c02832 10.1038/s41467-023-39475-5 10.1039/D3SC04126C 10.1016/j.ijhydene.2019.03.270 10.1016/j.cej.2021.130654 10.1016/S1872-2067(21)63874-3 10.1021/acs.jpcc.9b04731 10.1126/science.1211934 10.1021/acs.chemrev.6b00596 10.1021/jacs.7b00765 10.1021/jacsau.3c00410 10.1002/adfm.202002087 10.1007/s11426-023-1709-0 10.1002/anie.201916314 10.1149/2.0661606jes 10.1126/science.1103197 10.1016/S0022-0728(00)00352-1 10.3390/en13030582 10.1007/s40974-016-0005-z 10.1039/D2EE02216H 10.1039/C3EE43899F 10.1021/acsnano.3c10867 10.1016/j.apcatb.2022.121786 10.1021/acssuschemeng.2c00037 10.1038/nchem.1574 10.1016/j.nanoen.2019.01.070 10.1016/j.jechem.2021.07.012 10.1016/j.jpowsour.2020.228147 10.1016/j.ijhydene.2016.03.083 10.1016/j.coelec.2018.11.013 10.1002/adma.202208821 10.1021/acsaem.0c03157 10.1016/j.electacta.2018.07.104 10.1039/D2CS00038E 10.1002/anie.202208040 10.1021/acs.jpclett.2c01710 10.1021/acscatal.5b00247 10.1002/anie.201708484 10.1021/ja00469a029 10.1039/D1TA02067F 10.1038/s41467-023-44320-w 10.1016/S1872-2067(21)63955-4 10.1038/376238a0 10.1038/s41467-020-19413-5 10.1021/acscatal.2c02417 10.1016/j.cplett.2019.04.072 10.1149/1945-7111/ab74be 10.1038/ncomms10141 10.1002/adfm.202210328 10.1016/S0022-0728(02)00683-6 10.1016/j.chempr.2023.06.001 10.1021/accountsmr.1c00190 10.1016/j.matlet.2022.132749 10.1002/smll.202303061 10.1021/acsaem.0c03179 10.1038/s41563-022-01221-5 10.1016/j.jpowsour.2007.07.062 10.1016/S0022-0728(03)00077-9 10.1016/j.jcat.2018.09.030 10.1002/anie.202207197 10.1002/adma.202211854 10.1021/acs.accounts.3c00071 10.1016/j.jechem.2023.03.057 10.1002/anie.202003208 10.1002/sstr.202200281 10.1002/anie.202315752 10.1021/acscatal.0c03801 10.1016/j.jiec.2020.10.042 10.1039/C4EE02564D 10.1002/anie.202016199 10.1021/acscatal.2c01011 10.1021/jacs.1c13740 10.1002/anie.201902751 10.1021/acscatal.0c00101 10.1021/acsami.0c15994 10.1021/acscatal.6b02794 10.1021/acscatal.0c03831 10.1021/cr5003563 10.1038/s41467-021-22996-2 10.1002/adma.202107721 10.1021/acscatal.9b05621 10.1038/s41586-021-04068-z 10.1038/s41467-020-16237-1 10.1039/C8TA07414C 10.1039/C8TA03250E 10.1016/S0925-8388(03)00346-3 10.1149/1.3483106 10.1021/acscatal.5b01670 10.1002/adma.202008599 10.1016/0039-6028(90)90668-X 10.1016/j.jechem.2021.07.015 10.1016/j.ijhydene.2006.06.050 10.1021/jacs.2c01448 10.1039/C7TA08718G 10.1002/adma.202105400 10.1016/j.jechem.2020.03.087 10.1039/D1CS00981H 10.1016/j.jpowsour.2018.09.051 10.1021/jacs.7b02434 10.1021/acscatal.7b04055 10.1021/acs.jpclett.1c02676 10.1021/acssuschemeng.1c07306 10.1021/jp064190x 10.1002/anie.201908194 10.1016/j.jpowsour.2015.11.026 10.1021/acscatal.8b03227 10.1063/1.4865107 10.1016/j.jechem.2020.12.008 10.1002/smll.202207038 10.1002/anie.201709455 10.1002/adfm.202211586 10.1021/jacs.9b03327 10.1039/C8TA07028H 10.1016/j.fuel.2022.123637 10.1016/j.enconman.2022.116203 10.1021/ja307466s 10.1038/s41929-020-0446-9 10.1149/2.0471815jes 10.1007/s11426-010-0080-5 10.1038/nmat2156 10.1039/D3EE02382F 10.1002/anie.200907019 10.1021/jacs.8b13228 10.1002/ange.202317922 10.1039/FT9969203719 10.1002/anie.202315148 10.1021/acsami.1c11025 10.1002/smll.202307252 10.1073/pnas.0803689105 10.1021/acscatal.3c01466 10.1002/adfm.202300593 10.1021/acs.jpclett.6b02025 10.1039/C4EE00440J 10.1016/j.electacta.2020.135751 10.1039/D1TA08038E 10.1149/06403.1069ecst 10.1021/ja104672n 10.1007/s12678-019-00560-3 10.1021/acsaem.9b00657 10.1002/anie.202008116 10.1016/j.nanoen.2022.107877 10.1126/science.1168049 10.1016/j.ijhydene.2020.05.026 10.1002/aenm.202003511 10.1021/acscatal.1c04440 10.1021/acsenergylett.9b00738 10.1038/s41929-023-01007-1 10.1039/C9EE01743G 10.1021/acscatal.9b01582 10.1002/adma.202206960 10.1039/D0SC03917A 10.1002/aenm.201801284 10.1016/S0167-5729(01)00022-X 10.1016/j.apcatb.2021.121058 10.1016/j.apcatb.2019.117952 10.1002/anie.201812662 10.1002/adfm.202306333 10.1002/smll.202206196 10.1016/j.cej.2021.134189 10.1021/acsami.0c10784 10.1039/D1EE03482K 10.1007/s11426-021-1190-7 10.1021/acs.nanolett.2c01744 10.1039/C8EE02192A 10.1021/acs.chemmater.8b00358 10.1016/0022-0728(94)03669-T 10.1016/j.jelechem.2019.113551 10.1149/1.1510131 10.1021/jacs.2c09147 10.1039/C9RA09628K 10.1016/j.cej.2021.131206 10.1073/pnas.0504499102 10.1016/j.jcat.2018.09.031 10.1021/jacs.3c01164 10.1021/acscatal.1c01723 10.1039/C9NH00533A 10.1021/acsmacrolett.5b00910 10.1103/PhysRevLett.81.2819 10.1039/C7RA03675B 10.1002/anie.202206588 10.1002/smll.202202404 10.1016/j.jechem.2020.05.066 10.1016/j.ccr.2021.213824 10.1021/acscatal.6b00350 10.1016/j.nanoen.2021.106579 10.1007/s100080050059 10.1002/adma.202006034 10.1039/D0SC03280H 10.1021/acscatal.0c02845 10.1039/D3TA00287J 10.3390/catal8100454 10.1016/j.coelec.2018.11.017 10.1021/acscatal.9b01744 10.1016/j.apcatb.2023.122740 10.1016/j.apenergy.2022.119722 10.1016/j.apsusc.2021.149627 10.1002/anie.202213365 10.1038/s41467-019-09290-y 10.1039/D0EE03609A 10.1039/C4CP01385A 10.1016/j.apcatb.2022.121279 10.1039/D3CS00557G 10.1016/j.nanoen.2017.07.053 10.1002/anie.202009612 10.1016/j.jpowsour.2015.02.133 10.1002/adfm.202010633 10.1038/nchem.330 10.1021/acs.inorgchem.3c00293 10.1002/smll.202006698 10.1016/j.nantod.2008.09.002 10.1002/adma.201806296 10.1038/nature20782 10.1002/adfm.202107479 10.1021/acscatal.0c02254 10.1038/nature08907 10.1039/C4EE01303D 10.1039/D3CC03990K 10.1038/s41467-018-06728-7 10.1073/pnas.0810041106 10.1002/anie.202103888 10.1021/acs.jpclett.7b02228 10.1002/smll.202303142 10.1021/acsenergylett.3c00842 10.1002/aenm.202202913 10.31635/ccschem.021.202100810 10.1021/acscatal.5b01037 10.1021/acs.chemmater.0c02048 10.1039/D3SC02144K 10.1021/acs.chemmater.9b01092 10.1016/j.jelechem.2016.02.024 10.1021/acsanm.1c02893 10.1016/j.cej.2021.132435 10.1021/jacs.9b13694 10.1002/anie.202013047 10.1021/jacs.3c02487 10.1021/acsnano.1c05250 10.1021/acs.accounts.9b00355 10.1021/jacs.2c00793 10.1126/sciadv.abm3779 10.1021/j100020a063 10.1149/1945-7111/ab8c88 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d3ee04251k |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 49 |
ExternalDocumentID | 10_1039_D3EE04251K d3ee04251k |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c281t-dcc005d9b91c6ff72f8fa4b4d73ad30c99a644cf95cc3bf54758be55d4710193 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:03:36 EDT 2025 Tue Jul 01 01:45:59 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Tue Dec 17 20:58:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-dcc005d9b91c6ff72f8fa4b4d73ad30c99a644cf95cc3bf54758be55d4710193 |
Notes | Zhong-Yong Yuan received his PhD degree in Physical Chemistry from Nankai University in 1999. He worked as a postdoctoral fellow at the Institute of Physics, Chinese Academy of Sciences from 1999 to 2001. He then moved to Belgium, working as a research fellow at the University of Namur from 2001 to 2005, prior to joining Nankai University as a full professor. In 2016, he was elected as a fellow of the Royal Society of Chemistry (FRSC). His research interests are mainly in the self-assembly of hierarchically nanoporous and nanostructured materials for energy and environmental applications. Jin-Tao Ren received his PhD degree from Nankai University in 2020 under the supervision of Prof. Zhong-Yong Yuan. He is currently a postdoctoral fellow at Nankai University. His research interests focus on advanced nanomaterials for applications in electrocatalysis, metal-air batteries, fuel cells, etc. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3790-8181 |
PQID | 3069060803 |
PQPubID | 2047494 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3069060803 rsc_primary_d3ee04251k crossref_citationtrail_10_1039_D3EE04251K crossref_primary_10_1039_D3EE04251K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-18 |
PublicationDateYYYYMMDD | 2024-06-18 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (D3EE04251K/cit71/1) 2022; 13 Hu (D3EE04251K/cit86/1) 2018; 165 Zheng (D3EE04251K/cit177/1) 2016; 163 Tian (D3EE04251K/cit329/1) 2023; 19 Chen (D3EE04251K/cit362/1) 2010; 11 Wang (D3EE04251K/cit308/1) 2021; 425 Chen (D3EE04251K/cit400/1) 2022; 43 Karim (D3EE04251K/cit325/1) 2017; 541 Noonan (D3EE04251K/cit151/1) 2012; 134 Sheng (D3EE04251K/cit93/1) 2015; 6 Zhan (D3EE04251K/cit57/1) 2021; 12 Zhang (D3EE04251K/cit130/1) 2022; 72 Zhao (D3EE04251K/cit179/1) 2024; 63 Dong (D3EE04251K/cit198/1) 2022; 33 Yu (D3EE04251K/cit342/1) 2024 Brkovic (D3EE04251K/cit319/1) 2020; 45 Leroux (D3EE04251K/cit378/1) 2008; 105 Yang (D3EE04251K/cit40/1) 2017; 5 Li (D3EE04251K/cit396/1) 2023; 3 Huang (D3EE04251K/cit277/1) 2023; 62 Yang (D3EE04251K/cit203/1) 2022; 61 Jiang (D3EE04251K/cit195/1) 2020; 8 Oshchepkov (D3EE04251K/cit310/1) 2020; 11 Shen (D3EE04251K/cit237/1) 2023; 19 Jang (D3EE04251K/cit346/1) 2010; 132 Liu (D3EE04251K/cit287/1) 2020; 32 Luo (D3EE04251K/cit18/1) 2021; 12 Wang (D3EE04251K/cit393/1) 2021; 600 Li (D3EE04251K/cit405/1) 2010; 464 Zhao (D3EE04251K/cit193/1) 2022; 10 Jackson (D3EE04251K/cit53/1) 2020; 268 Gasteiger (D3EE04251K/cit160/1) 1995; 99 Zhang (D3EE04251K/cit114/1) 2021; 17 Long (D3EE04251K/cit373/1) 2023; 59 Cong (D3EE04251K/cit55/1) 2018; 44 Su (D3EE04251K/cit73/1) 2023; 145 Wang (D3EE04251K/cit88/1) 2021; 60 Wang (D3EE04251K/cit163/1) 2019; 412 Han (D3EE04251K/cit269/1) 2022; 43 Kim (D3EE04251K/cit257/1) 2021; 94 Kundu (D3EE04251K/cit111/1) 2018; 6 Zhuang (D3EE04251K/cit230/1) 2016; 7 Zhao (D3EE04251K/cit215/1) 2021; 61 Su (D3EE04251K/cit274/1) 2023; 66 Yoo (D3EE04251K/cit170/1) 2008; 47 Thomas (D3EE04251K/cit4/1) 2020; 51 Wang (D3EE04251K/cit65/1) 2022; 104 Xu (D3EE04251K/cit401/1) 2021; 436 Kwon (D3EE04251K/cit336/1) 2023; 332 Lu (D3EE04251K/cit355/1) 2008; 105 An (D3EE04251K/cit62/1) 2021; 14 Zhao (D3EE04251K/cit212/1) 2020; 5 Chen (D3EE04251K/cit307/1) 2021; 4 Tian (D3EE04251K/cit80/1) 2019; 31 Li (D3EE04251K/cit72/1) 2022; 5 Stühmeier (D3EE04251K/cit132/1) 2019; 2 Maurya (D3EE04251K/cit414/1) 2018; 30 Wang (D3EE04251K/cit74/1) 2019; 10 Kabir (D3EE04251K/cit125/1) 2017; 5 Shen (D3EE04251K/cit36/1) 2019; 62 Ohyama (D3EE04251K/cit45/1) 2013; 135 Maurya (D3EE04251K/cit411/1) 2018; 8 Ramaswamy (D3EE04251K/cit10/1) 2019; 119 Zhao (D3EE04251K/cit347/1) 2020; 26 Chung (D3EE04251K/cit410/1) 2016; 7 Wang (D3EE04251K/cit235/1) 2023; 39 Wang (D3EE04251K/cit392/1) 2023; 37 Li (D3EE04251K/cit268/1) 2022; 10 You (D3EE04251K/cit338/1) 2023; 13 Yang (D3EE04251K/cit127/1) 2022; 144 Hu (D3EE04251K/cit24/1) 2021; 3 Santori (D3EE04251K/cit149/1) 2020; 4 Anantharaj (D3EE04251K/cit283/1) 2016; 6 Wang (D3EE04251K/cit416/1) 2020; 5 Zhang (D3EE04251K/cit63/1) 2022; 15 Zhao (D3EE04251K/cit89/1) 2021; 66 Durst (D3EE04251K/cit168/1) 2015; 162 Cui (D3EE04251K/cit155/1) 2021; 90 Cherstiouk (D3EE04251K/cit249/1) 2016; 783 Montero (D3EE04251K/cit223/1) 2014; 254 Ioroi (D3EE04251K/cit353/1) 2018; 9 Wang (D3EE04251K/cit292/1) 2023; 33 Xue (D3EE04251K/cit37/1) 2020; 11 Zhou (D3EE04251K/cit51/1) 2020; 121 Tang (D3EE04251K/cit13/1) 2022; 51 Zhao (D3EE04251K/cit61/1) 2021; 17 Strmcnik (D3EE04251K/cit35/1) 2013; 5 Subbaraman (D3EE04251K/cit227/1) 2011; 334 Tang (D3EE04251K/cit59/1) 2021; 32 Zhang (D3EE04251K/cit145/1) 2022; 525 Hobbs (D3EE04251K/cit323/1) 1969; 222 Liu (D3EE04251K/cit128/1) 2019; 141 Zhang (D3EE04251K/cit270/1) 2021; 4 Strmcnik (D3EE04251K/cit98/1) 2010; 2 Janik (D3EE04251K/cit102/1) 2018; 367 Gao (D3EE04251K/cit385/1) 2023; 56 Jiang (D3EE04251K/cit316/1) 2020; 10 Uribe-Godínez (D3EE04251K/cit222/1) 2016; 41 Gao (D3EE04251K/cit236/1) 2022; 119 Song (D3EE04251K/cit239/1) 2021; 11 Ren (D3EE04251K/cit122/1) 2021; 5 Qin (D3EE04251K/cit115/1) 2019; 9 Bhowmik (D3EE04251K/cit41/1) 2016; 6 Jiang (D3EE04251K/cit108/1) 2020; 333 Weber (D3EE04251K/cit386/1) 2021; 9 Pagliaro (D3EE04251K/cit388/1) 2021; 4 Deng (D3EE04251K/cit306/1) 2019; 324 Dutta (D3EE04251K/cit226/1) 2013; 135 Zhu (D3EE04251K/cit112/1) 2021; 4 Yang (D3EE04251K/cit285/1) 2023; 14 Giles (D3EE04251K/cit96/1) 2018; 367 Gutru (D3EE04251K/cit146/1) 2020; 45 Li (D3EE04251K/cit191/1) 2023; 33 Siroma (D3EE04251K/cit354/1) 2007; 172 Lu (D3EE04251K/cit99/1) 2017; 139 Duan (D3EE04251K/cit46/1) 2020; 11 Luneau (D3EE04251K/cit300/1) 2023; 11 Guntern (D3EE04251K/cit281/1) 2021; 11 Li (D3EE04251K/cit286/1) 2021; 60 Schmidt (D3EE04251K/cit158/1) 2002; 524–525 Rosen (D3EE04251K/cit1/1) 2016; 1 Wang (D3EE04251K/cit100/1) 2015; 8 Gao (D3EE04251K/cit297/1) 2017; 8 Biemolt (D3EE04251K/cit152/1) 2021; 9 Marković (D3EE04251K/cit265/1) 2002; 45 Wang (D3EE04251K/cit381/1) 2022; 144 Wang (D3EE04251K/cit253/1) 2017; 139 Ze (D3EE04251K/cit404/1) 2021; 143 Dai (D3EE04251K/cit22/1) 2015; 115 Simonov (D3EE04251K/cit246/1) 2019; 852 Mou (D3EE04251K/cit397/1) 2023; 6 Su (D3EE04251K/cit66/1) 2022; 66 Hamo (D3EE04251K/cit138/1) 2021; 11 Dong (D3EE04251K/cit406/1) 2023; 62 Ren (D3EE04251K/cit124/1) 2023; 19 Oshchepkov (D3EE04251K/cit231/1) 2018; 402 McCrum (D3EE04251K/cit92/1) 2020; 5 Tang (D3EE04251K/cit25/1) 2020; 63 Chen (D3EE04251K/cit101/1) 2017; 56 Maurya (D3EE04251K/cit32/1) 2018; 11 Zhang (D3EE04251K/cit186/1) 2021; 33 Miller (D3EE04251K/cit116/1) 2016; 55 Zhang (D3EE04251K/cit189/1) 2021; 33 Chen (D3EE04251K/cit52/1) 2020; 336 Intikhab (D3EE04251K/cit133/1) 2017; 7 Yang (D3EE04251K/cit276/1) 2024; 136 Varcoe (D3EE04251K/cit7/1) 2014; 7 Abe (D3EE04251K/cit3/1) 2019; 44 Feng (D3EE04251K/cit288/1) 2022; 428 Xu (D3EE04251K/cit185/1) 2023; 16 Yang (D3EE04251K/cit278/1) 2020; 11 Wang (D3EE04251K/cit340/1) 2023; 14 De Lile (D3EE04251K/cit220/1) 2021; 545 Zhao (D3EE04251K/cit214/1) 2022; 4 Liu (D3EE04251K/cit190/1) 2023; 464 Mu (D3EE04251K/cit67/1) 2023; 4 Turner (D3EE04251K/cit5/1) 2004; 305 Zeng (D3EE04251K/cit39/1) 2020; 461 Scofield (D3EE04251K/cit49/1) 2016; 6 Dmochowska (D3EE04251K/cit384/1) 1998; 2 Gao (D3EE04251K/cit356/1) 2020; 12 Ma (D3EE04251K/cit197/1) 2023; 11 Yang (D3EE04251K/cit174/1) 2023; 62 Zhao (D3EE04251K/cit60/1) 2021; 31 Tang (D3EE04251K/cit56/1) 2010; 53 Strmcnik (D3EE04251K/cit399/1) 2009; 1 Zeng (D3EE04251K/cit387/1) 2015; 119 Yang (D3EE04251K/cit375/1) 2023; 13 Wang (D3EE04251K/cit201/1) 2022; 445 Schwämmlein (D3EE04251K/cit173/1) 2018; 165 Inoue (D3EE04251K/cit82/1) 2003; 554–555 Huang (D3EE04251K/cit167/1) 2023; 33 Samanta (D3EE04251K/cit330/1) 2023; 15 Sheng (D3EE04251K/cit154/1) 2013; 6 Ohyama (D3EE04251K/cit243/1) 2013; 225 Stamenkovic (D3EE04251K/cit91/1) 2016; 16 Chen (D3EE04251K/cit382/1) 2024; 136 Wang (D3EE04251K/cit238/1) 2019; 2 Ni (D3EE04251K/cit58/1) 2022; 21 Ren (D3EE04251K/cit284/1) 2022; 309 Jing (D3EE04251K/cit337/1) 2023; 472 Luo (D3EE04251K/cit291/1) 2017; 2 Mavrikakis (D3EE04251K/cit289/1) 1998; 81 Yu (D3EE04251K/cit328/1) 2023; 13 Zadick (D3EE04251K/cit343/1) 2015; 5 Zhang (D3EE04251K/cit213/1) 2023; 35 Tauster (D3EE04251K/cit365/1) 1978; 100 Dionigi (D3EE04251K/cit390/1) 2020; 11 Wang (D3EE04251K/cit165/1) 2022; 13 Li (D3EE04251K/cit211/1) 2019; 258 Liu (D3EE04251K/cit110/1) 2020; 142 Kim (D3EE04251K/cit240/1) 2021; 554 Okubo (D3EE04251K/cit107/1) 2019; 55 Yang (D3EE04251K/cit136/1) 2022; 51 Gao (D3EE04251K/cit17/1) 2021; 436 Davydova (D3EE04251K/cit54/1) 2018; 8 Wang (D3EE04251K/cit126/1) 2021; 60 Cong (D3EE04251K/cit106/1) 2019; 7 Noh (D3EE04251K/cit12/1) 2019; 52 Di Liberto (D3EE04251K/cit320/1) 2022; 12 Zhang (D3EE04251K/cit369/1) 2023; 614 Uchida (D3EE04251K/cit161/1) 2006; 110 Qiu (D3EE04251K/cit267/1) 2018; 140 Yao (D3EE04251K/cit64/1) 2022; 16 Singh (D3EE04251K/cit118/1) 2020; 30 Habrioux (D3EE04251K/cit69/1) 2020; 21 Markovića (D3EE04251K/cit81/1) 1996; 92 Han (D3EE04251K/cit368/1) 2020; 59 Alia (D3EE04251K/cit95/1) 2013; 135 Wang (D3EE04251K/cit234/1) 2023; 9 Alayoglu (D3EE04251K/cit172/1) 2008; 7 Song (D3EE04251K/cit75/1) 2023; 145 Chala (D3EE04251K/cit389/1) 2021; 15 Deng (D3EE04251K/cit305/1) 2021; 54 Wang (D3EE04251K/cit376/1) 2023; 145 Campos-Roldán (D3EE04251K/cit109/1) 2018; 283 Men (D3EE04251K/cit199/1) 2022; 144 Ren (D3EE04251K/cit260/1) 2023; 17 Yan (D3EE04251K/cit324/1) 2019; 141 Ji (D3EE04251K/cit209/1) 2022; 61 Sun (D3EE04251K/cit244/1) 2012; 14 Wang (D3EE04251K/cit15/1) 2019; 10 Fang (D3EE04251K/cit407/1) 2024; 15 Setzler (D3EE04251K/cit8/1) 2016; 11 Liu (D3EE04251K/cit326/1) 2020; 59 Lee (D3EE04251K/cit44/1) 2021; 9 Li (D3EE04251K/cit153/1) 2019; 58 Wang (D3EE04251K/cit380/1) 2012; 109 Zhang (D3EE04251K/cit409/1) 2021; 8 Ma (D3EE04251K/cit339/1) 2022; 12 Shi (D3EE04251K/cit360/1) 2016; 7 Chung (D3EE04251K/cit412/1) 2016; 163 Luo (D3EE04251K/cit182/1) 2023; 35 Pu (D3EE04251K/cit366/1) 2023; 62 Sheng (D3EE04251K/cit31/1) 2010; 157 Davydova (D3EE04251K/cit352/1) 2019; 9 Dekel (D3EE04251K/cit6/1) 2018; 375 Xiong (D3EE04251K/cit256/1) 2021; 13 Moschkowitsch (D3EE04251K/cit77/1) 2022; 12 Marković (D3EE04251K/cit264/1) 1997; 101 Deng (D3EE04251K/cit20/1) 2022; 305 Matanovic (D3EE04251K/cit415/1) 2017; 8 Wu (D3EE04251K/cit233/1) 2022; 66 Dekel (D3EE04251K/cit68/1) 2018; 12 Zhu (D3EE04251K/cit103/1) 2020; 142 Ramaswamy (D3EE04251K/cit9/1) 2017; 41 Pu (D3EE04251K/cit273/1) 2019; 12 Ji (D3EE04251K/cit202/1) 2021; 9 Liu (D3EE04251K/cit207/1) 2019; 59 Zhang (D3EE04251K/cit266/1) 2023; 19 Matanovic (D3EE04251K/cit413/1) 2019; 31 Yang (D3EE04251K/cit304/1) 2019; 58 Yang (D3EE04251K/cit131/1) 2022; 13 Hu (D3EE04251K/cit317/1) 2022; 34 Midilli (D3EE04251K/cit2/1) 2007; 32 Tang (D3EE04251K/cit259/1) 2014; 16 Speck (D3EE04251K/cit348/1) 2020; 32 Kuang (D3EE04251K/cit232/1) 2021; 33 Xiao (D3EE04251K/cit261/1) 2018; 6 Lafforgue (D3EE04251K/cit344/1) 2018; 8 Yang (D3EE04251K/cit314/1) 2019; 7 Montero (D3EE04251K/cit79/1) 2015; 283 Pan (D3EE04251K/cit333/1) 2019; 29 Ni (D3EE04251K/cit148/1) 2020; 59 He (D3EE04251K/cit367/1) 2023; 62 Liu (D3EE04251K/cit210/1) 2023; 9 Ohyama (D3EE04251K/cit252/1) 2016; 4 Oshchepkov (D3EE04251K/cit105/1) 2018; 269 Liao (D3EE04251K/cit48/1) 2016; 37 Kim (D3EE04251K/cit14/1) 2022; 34 Gong (D3EE04251K/cit23/1) 2009; 323 Lu (D3EE04251K/cit361/1) 2001; 105 Lee (D3EE04251K/cit208/1) 2021; 12 Sheng (D3EE04251K/cit94/1) 2014; 7 Oshchepkov (D3EE04251K/cit255/1) 2015; 58 Zhao (D3EE04251K/cit262/1) 2020; 10 Zhang (D3EE04251K/cit293/1) 2021; 14 Papageorgopoulos (D3EE04251K/cit370/1) 2002; 48 Qin (D3EE04251K/cit417/1) 2018; 6 Tian (D3EE04251K/cit358/1) 2024; 15 Wang (D3EE04251K/cit332/1) 2023; 62 Tang |
References_xml | – volume: 136 start-page: e202401453 year: 2024 ident: D3EE04251K/cit276/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202401453 – volume: 6 start-page: 122 year: 2023 ident: D3EE04251K/cit397/1 publication-title: Nat. Catal. doi: 10.1038/s41929-023-00911-w – volume: 6 start-page: 8069 year: 2016 ident: D3EE04251K/cit283/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02479 – volume: 254 start-page: 218 year: 2014 ident: D3EE04251K/cit223/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.095 – volume: 101 start-page: 5405 year: 1997 ident: D3EE04251K/cit264/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp970930d – volume: 9 start-page: 2000909 year: 2021 ident: D3EE04251K/cit152/1 publication-title: Energy Technol. doi: 10.1002/ente.202000909 – volume: 13 start-page: 2300881 year: 2023 ident: D3EE04251K/cit375/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300881 – volume: 2 start-page: 17059 year: 2017 ident: D3EE04251K/cit291/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.59 – volume: 12 start-page: 1082 year: 2022 ident: D3EE04251K/cit77/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c04948 – volume: 8 start-page: 2100284 year: 2021 ident: D3EE04251K/cit409/1 publication-title: Adv. Sci. doi: 10.1002/advs.202100284 – volume: 6 start-page: 1509 year: 2013 ident: D3EE04251K/cit154/1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee00045a – volume: 13 start-page: 1596 year: 2022 ident: D3EE04251K/cit165/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29276-7 – volume: 6 start-page: 834 year: 2021 ident: D3EE04251K/cit28/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00878-7 – volume: 20 start-page: 3442 year: 2020 ident: D3EE04251K/cit219/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00364 – volume: 7 start-page: 8314 year: 2017 ident: D3EE04251K/cit133/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02787 – volume: 343 start-page: 211 year: 1995 ident: D3EE04251K/cit290/1 publication-title: Surf. Sci. doi: 10.1016/0039-6028(96)80007-0 – volume: 16 start-page: 5153 year: 2022 ident: D3EE04251K/cit64/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c00641 – volume: 13 start-page: 6974 year: 2023 ident: D3EE04251K/cit180/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c00803 – volume: 12 start-page: 6261 year: 2021 ident: D3EE04251K/cit57/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-26425-2 – volume: 66 start-page: 85 year: 2021 ident: D3EE04251K/cit89/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.09.014 – volume: 135 start-page: 13473 year: 2013 ident: D3EE04251K/cit95/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405598a – volume: 412 start-page: 282 year: 2019 ident: D3EE04251K/cit163/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.11.026 – volume: 37 start-page: 1142 year: 2016 ident: D3EE04251K/cit48/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)61064-6 – volume: 5 start-page: 900 year: 2022 ident: D3EE04251K/cit72/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00846-8 – volume: 74 start-page: 104877 year: 2020 ident: D3EE04251K/cit164/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104877 – volume: 40 start-page: 52 year: 2020 ident: D3EE04251K/cit162/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.02.008 – volume: 33 start-page: 2105049 year: 2021 ident: D3EE04251K/cit189/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105049 – volume: 119 start-page: 11945 year: 2019 ident: D3EE04251K/cit10/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00157 – volume: 60 start-page: 5708 year: 2021 ident: D3EE04251K/cit88/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202015571 – volume: 61 start-page: e202209486 year: 2022 ident: D3EE04251K/cit221/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202209486 – volume: 15 start-page: 1614 year: 2024 ident: D3EE04251K/cit407/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45873-0 – volume: 12 start-page: 3502 year: 2021 ident: D3EE04251K/cit327/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23750-4 – volume: 11 start-page: 4789 year: 2020 ident: D3EE04251K/cit46/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18585-4 – volume: 8 start-page: 10168 year: 2020 ident: D3EE04251K/cit195/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02528C – volume: 62 start-page: e202311722 year: 2023 ident: D3EE04251K/cit406/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202311722 – volume: 6 start-page: 5848 year: 2015 ident: D3EE04251K/cit93/1 publication-title: Nat. Commun. doi: 10.1038/ncomms6848 – volume: 72 start-page: 176 year: 2022 ident: D3EE04251K/cit130/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.04.043 – volume: 145 start-page: 4088 year: 2023 ident: D3EE04251K/cit349/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c11907 – volume: 143 start-page: 1318 year: 2021 ident: D3EE04251K/cit404/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c12755 – volume: 53 start-page: 4309 year: 2008 ident: D3EE04251K/cit157/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.01.006 – volume: 62 start-page: 601 year: 2019 ident: D3EE04251K/cit36/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.045 – volume: 55 start-page: 6004 year: 2016 ident: D3EE04251K/cit116/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600647 – volume: 445 start-page: 136700 year: 2022 ident: D3EE04251K/cit201/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136700 – volume: 6 start-page: 480 year: 2004 ident: D3EE04251K/cit363/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2003.03.001 – volume: 62 start-page: e202212278 year: 2023 ident: D3EE04251K/cit366/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202212278 – volume: 614 start-page: 156131 year: 2023 ident: D3EE04251K/cit369/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.156131 – volume: 10 start-page: 4872 year: 2018 ident: D3EE04251K/cit184/1 publication-title: Nanoscale doi: 10.1039/C7NR09452C – volume: 626 start-page: 14 year: 2009 ident: D3EE04251K/cit371/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2008.10.028 – volume: 11 start-page: 1248 year: 2021 ident: D3EE04251K/cit281/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04403 – volume: 15 start-page: 5865 year: 2022 ident: D3EE04251K/cit142/1 publication-title: Nano Res. doi: 10.1007/s12274-022-4228-3 – volume: 4 start-page: 3586 year: 2021 ident: D3EE04251K/cit388/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00118 – volume: 6 start-page: 1990 year: 2019 ident: D3EE04251K/cit225/1 publication-title: ChemElectroChem doi: 10.1002/celc.201900129 – volume: 140 start-page: 16580 year: 2018 ident: D3EE04251K/cit267/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08356 – volume: 13 start-page: 2834 year: 2023 ident: D3EE04251K/cit328/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c04174 – volume: 14 start-page: 3489 year: 2021 ident: D3EE04251K/cit293/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3559-9 – volume: 7 start-page: 3161 year: 2019 ident: D3EE04251K/cit106/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11019K – volume: 8 start-page: 6665 year: 2018 ident: D3EE04251K/cit54/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00689 – volume: 105 start-page: 9793 year: 2001 ident: D3EE04251K/cit361/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp011684f – volume: 62 start-page: e202217976 year: 2023 ident: D3EE04251K/cit188/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202217976 – volume: 12 start-page: 4271 year: 2021 ident: D3EE04251K/cit208/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24578-8 – volume: 269 start-page: 111 year: 2018 ident: D3EE04251K/cit105/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.02.106 – volume: 12 start-page: 29357 year: 2020 ident: D3EE04251K/cit309/1 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 1506 year: 2019 ident: D3EE04251K/cit15/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09503-4 – volume: 7 start-page: 10936 year: 2019 ident: D3EE04251K/cit314/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01916B – volume: 119 start-page: 18177 year: 2015 ident: D3EE04251K/cit387/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03169 – volume: 35 start-page: 6380 year: 2021 ident: D3EE04251K/cit27/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c00275 – volume: 58 start-page: 1181 year: 2015 ident: D3EE04251K/cit255/1 publication-title: Top. Catal. doi: 10.1007/s11244-015-0487-5 – volume: 436 start-page: 213825 year: 2021 ident: D3EE04251K/cit17/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213825 – volume: 375 start-page: 158 year: 2018 ident: D3EE04251K/cit6/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.117 – volume: 225 start-page: 311 year: 2013 ident: D3EE04251K/cit243/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.051 – volume: 783 start-page: 146 year: 2016 ident: D3EE04251K/cit249/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.11.031 – volume: 162 start-page: F190 year: 2015 ident: D3EE04251K/cit168/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0981501jes – volume: 13 start-page: 5894 year: 2022 ident: D3EE04251K/cit196/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33625-x – volume: 6 start-page: 916 year: 2023 ident: D3EE04251K/cit341/1 publication-title: Nat. Catal. doi: 10.1038/s41929-023-01017-z – volume: 34 start-page: 2107868 year: 2022 ident: D3EE04251K/cit14/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107868 – volume: 165 start-page: H229 year: 2018 ident: D3EE04251K/cit173/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0791805jes – volume: 143 start-page: 1399 year: 2021 ident: D3EE04251K/cit334/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10661 – volume: 5 start-page: 891 year: 2020 ident: D3EE04251K/cit92/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-00710-8 – volume: 31 start-page: 1808066 year: 2019 ident: D3EE04251K/cit80/1 publication-title: Adv. Mater. doi: 10.1002/adma.201808066 – volume: 55 start-page: 3101 year: 2019 ident: D3EE04251K/cit107/1 publication-title: Chem. Commun. doi: 10.1039/C9CC00582J – volume: 33 start-page: 2304125 year: 2023 ident: D3EE04251K/cit292/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304125 – volume: 13 start-page: 1408 year: 2020 ident: D3EE04251K/cit16/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00092B – volume: 10 start-page: 15207 year: 2020 ident: D3EE04251K/cit262/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03938 – volume: 140 start-page: 7787 year: 2018 ident: D3EE04251K/cit395/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04006 – volume: 13 start-page: 3064 year: 2020 ident: D3EE04251K/cit242/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01754J – volume: 44 start-page: 15072 year: 2019 ident: D3EE04251K/cit3/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.04.068 – volume: 62 start-page: e202217275 year: 2023 ident: D3EE04251K/cit70/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202217275 – volume: 11 start-page: 932 year: 2021 ident: D3EE04251K/cit138/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03973 – volume: 5 start-page: 993 year: 2022 ident: D3EE04251K/cit241/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00862-8 – volume: 2 start-page: e1501602 year: 2016 ident: D3EE04251K/cit84/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501602 – volume: 21 start-page: 4845 year: 2021 ident: D3EE04251K/cit175/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c01519 – volume: 145 start-page: 27867 year: 2023 ident: D3EE04251K/cit376/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c11734 – volume: 11 start-page: 7422 year: 2021 ident: D3EE04251K/cit357/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01284 – volume: 464 start-page: 142692 year: 2023 ident: D3EE04251K/cit190/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142692 – volume: 19 start-page: 2207603 year: 2023 ident: D3EE04251K/cit263/1 publication-title: Small doi: 10.1002/smll.202207603 – volume: 12 start-page: 2103336 year: 2022 ident: D3EE04251K/cit339/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103336 – volume: 324 start-page: 134892 year: 2019 ident: D3EE04251K/cit306/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134892 – volume: 142 start-page: 8748 year: 2020 ident: D3EE04251K/cit103/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01104 – volume: 22 start-page: 100846 year: 2021 ident: D3EE04251K/cit280/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100846 – year: 2024 ident: D3EE04251K/cit342/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202315062 – volume: 16 start-page: 57 year: 2016 ident: D3EE04251K/cit91/1 publication-title: Nat. Mater. doi: 10.1038/nmat4738 – volume: 9 start-page: 5057 year: 2019 ident: D3EE04251K/cit224/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00906 – volume: 34 start-page: 2204624 year: 2022 ident: D3EE04251K/cit194/1 publication-title: Adv. Mater. doi: 10.1002/adma.202204624 – volume: 13 start-page: 2107 year: 2022 ident: D3EE04251K/cit131/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00021 – volume: 47 start-page: 9307 year: 2008 ident: D3EE04251K/cit170/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200802749 – volume: 12 start-page: 859 year: 2021 ident: D3EE04251K/cit250/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21017-6 – volume: 4 start-page: 711 year: 2021 ident: D3EE04251K/cit112/1 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00663-5 – volume: 525 start-page: 231141 year: 2022 ident: D3EE04251K/cit145/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231141 – volume: 135 start-page: 8016 year: 2013 ident: D3EE04251K/cit45/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4021638 – volume: 21 start-page: 146 year: 2020 ident: D3EE04251K/cit69/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.01.018 – volume: 14 start-page: 2278 year: 2012 ident: D3EE04251K/cit244/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp22761d – volume: 62 start-page: e202311937 year: 2023 ident: D3EE04251K/cit332/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202311937 – volume: 120 start-page: 851 year: 2020 ident: D3EE04251K/cit282/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00248 – volume: 10 start-page: 11493 year: 2020 ident: D3EE04251K/cit316/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03324 – volume: 58 start-page: 10644 year: 2019 ident: D3EE04251K/cit121/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201905430 – volume: 2 start-page: 955 year: 2019 ident: D3EE04251K/cit311/1 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0364-x – volume: 8 start-page: 5728 year: 2017 ident: D3EE04251K/cit297/1 publication-title: Chem. Sci. doi: 10.1039/C7SC01615H – volume: 163 start-page: F1503 year: 2016 ident: D3EE04251K/cit412/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0511614jes – volume: 9 start-page: 17223 year: 2021 ident: D3EE04251K/cit44/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03678E – volume: 119 start-page: 13481 year: 2015 ident: D3EE04251K/cit216/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b03284 – volume: 5 start-page: 440 year: 2020 ident: D3EE04251K/cit212/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0183-3 – volume: 3 start-page: 100056 year: 2021 ident: D3EE04251K/cit24/1 publication-title: EnergyChem doi: 10.1016/j.enchem.2021.100056 – volume: 12 start-page: 240 year: 2018 ident: D3EE04251K/cit11/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.11.011 – volume: 119 start-page: e2119883119 year: 2022 ident: D3EE04251K/cit236/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2119883119 – volume: 268 start-page: 118734 year: 2020 ident: D3EE04251K/cit53/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118734 – volume: 1 start-page: 263 year: 2018 ident: D3EE04251K/cit312/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0054-0 – volume: 2 start-page: 5534 year: 2019 ident: D3EE04251K/cit132/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00718 – volume: 4 start-page: 3300 year: 2020 ident: D3EE04251K/cit149/1 publication-title: Sustainable Energy Fuels doi: 10.1039/D0SE00483A – volume: 5 start-page: 2399 year: 2021 ident: D3EE04251K/cit122/1 publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00968G – volume: 109 start-page: 6399 year: 2012 ident: D3EE04251K/cit380/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1121176109 – volume: 12 start-page: 22771 year: 2020 ident: D3EE04251K/cit217/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00506 – volume: 333 start-page: 135444 year: 2020 ident: D3EE04251K/cit108/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.135444 – volume: 11 start-page: 16370 year: 2023 ident: D3EE04251K/cit300/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA01879B – volume: 44 start-page: 288 year: 2018 ident: D3EE04251K/cit55/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.008 – volume: 63 start-page: 1517 year: 2020 ident: D3EE04251K/cit25/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-020-9835-8 – volume: 48 start-page: 197 year: 2002 ident: D3EE04251K/cit370/1 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00602-3 – volume: 145 start-page: 12717 year: 2023 ident: D3EE04251K/cit75/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02604 – volume: 39 start-page: 101304 year: 2023 ident: D3EE04251K/cit235/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2023.101304 – volume: 11 start-page: 1020 year: 2016 ident: D3EE04251K/cit8/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.265 – volume: 144 start-page: 9292 year: 2022 ident: D3EE04251K/cit381/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00602 – volume: 31 start-page: 2106156 year: 2021 ident: D3EE04251K/cit141/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106156 – volume: 17 start-page: 2100391 year: 2021 ident: D3EE04251K/cit61/1 publication-title: Small doi: 10.1002/smll.202100391 – volume: 4 start-page: 15980 year: 2016 ident: D3EE04251K/cit252/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05517F – volume: 58 start-page: 17718 year: 2019 ident: D3EE04251K/cit97/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909697 – volume: 57 start-page: 820 year: 2019 ident: D3EE04251K/cit117/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.098 – volume: 10 start-page: 622 year: 2022 ident: D3EE04251K/cit322/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA08872F – volume: 472 start-page: 145009 year: 2023 ident: D3EE04251K/cit337/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145009 – volume: 45 start-page: 13929 year: 2020 ident: D3EE04251K/cit319/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.03.086 – volume: 5 start-page: 22959 year: 2017 ident: D3EE04251K/cit40/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07635E – volume: 121 start-page: 106871 year: 2020 ident: D3EE04251K/cit51/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2020.106871 – volume: 61 start-page: 14187 year: 2022 ident: D3EE04251K/cit209/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c02455 – volume: 2 start-page: 880 year: 2010 ident: D3EE04251K/cit98/1 publication-title: Nat. Chem. doi: 10.1038/nchem.771 – volume: 12 start-page: 7014 year: 2022 ident: D3EE04251K/cit315/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c01863 – volume: 55 start-page: 2650 year: 2016 ident: D3EE04251K/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504830 – volume: 222 start-page: 556 year: 1969 ident: D3EE04251K/cit323/1 publication-title: Nature doi: 10.1038/222556a0 – volume: 545 start-page: 149002 year: 2021 ident: D3EE04251K/cit220/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149002 – volume: 10 start-page: 11751 year: 2020 ident: D3EE04251K/cit192/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03148 – volume: 29 start-page: 111 year: 2019 ident: D3EE04251K/cit333/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.02.011 – volume: 135 start-page: 18490 year: 2013 ident: D3EE04251K/cit226/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407826d – volume: 17 start-page: 2005092 year: 2021 ident: D3EE04251K/cit90/1 publication-title: Small doi: 10.1002/smll.202005092 – volume: 37 start-page: 17667 year: 2023 ident: D3EE04251K/cit392/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c02358 – volume: 13 start-page: 6813 year: 2023 ident: D3EE04251K/cit338/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c05816 – volume: 11 start-page: 2383 year: 2010 ident: D3EE04251K/cit362/1 publication-title: ChemPhysChem doi: 10.1002/cphc.200901006 – volume: 2 start-page: 17031 year: 2017 ident: D3EE04251K/cit85/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 12 start-page: 952 year: 2019 ident: D3EE04251K/cit273/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00197B – volume: 162 start-page: F178 year: 2015 ident: D3EE04251K/cit178/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1081501jes – volume: 65 start-page: 1735 year: 2020 ident: D3EE04251K/cit187/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.06.007 – volume: 10 start-page: 4876 year: 2019 ident: D3EE04251K/cit74/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12773-7 – volume: 7 start-page: 2000310 year: 2020 ident: D3EE04251K/cit113/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000310 – volume: 11 start-page: 849 year: 2023 ident: D3EE04251K/cit302/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA08355H – volume: 306 start-page: 121029 year: 2022 ident: D3EE04251K/cit43/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.121029 – volume: 2 start-page: 3160 year: 2019 ident: D3EE04251K/cit238/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02206 – volume: 6 start-page: 1929 year: 2016 ident: D3EE04251K/cit41/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02485 – volume: 35 start-page: 2208799 year: 2023 ident: D3EE04251K/cit166/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208799 – volume: 23 start-page: 101793 year: 2020 ident: D3EE04251K/cit275/1 publication-title: iScience doi: 10.1016/j.isci.2020.101793 – volume: 17 start-page: 17779 year: 2023 ident: D3EE04251K/cit181/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c02832 – volume: 14 start-page: 3767 year: 2023 ident: D3EE04251K/cit340/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39475-5 – volume: 15 start-page: 364 year: 2023 ident: D3EE04251K/cit330/1 publication-title: Chem. Sci. doi: 10.1039/D3SC04126C – volume: 44 start-page: 13364 year: 2019 ident: D3EE04251K/cit372/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.03.270 – volume: 425 start-page: 130654 year: 2021 ident: D3EE04251K/cit308/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130654 – volume: 43 start-page: 33 year: 2022 ident: D3EE04251K/cit400/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63874-3 – volume: 123 start-page: 23931 year: 2019 ident: D3EE04251K/cit87/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04731 – volume: 334 start-page: 1256 year: 2011 ident: D3EE04251K/cit227/1 publication-title: Science doi: 10.1126/science.1211934 – volume: 117 start-page: 5002 year: 2017 ident: D3EE04251K/cit402/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00596 – volume: 139 start-page: 5156 year: 2017 ident: D3EE04251K/cit99/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00765 – volume: 3 start-page: 2640 year: 2023 ident: D3EE04251K/cit396/1 publication-title: JACS Au doi: 10.1021/jacsau.3c00410 – volume: 30 start-page: 2002087 year: 2020 ident: D3EE04251K/cit118/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002087 – volume: 66 start-page: 3262 year: 2023 ident: D3EE04251K/cit274/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-023-1709-0 – volume: 59 start-page: 10797 year: 2020 ident: D3EE04251K/cit148/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916314 – volume: 163 start-page: F499 year: 2016 ident: D3EE04251K/cit177/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0661606jes – volume: 305 start-page: 972 year: 2004 ident: D3EE04251K/cit5/1 publication-title: Science doi: 10.1126/science.1103197 – volume: 500 start-page: 44 year: 2001 ident: D3EE04251K/cit159/1 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00352-1 – volume: 13 start-page: 582 year: 2020 ident: D3EE04251K/cit298/1 publication-title: Energies doi: 10.3390/en13030582 – volume: 1 start-page: 10 year: 2016 ident: D3EE04251K/cit1/1 publication-title: Energy, Ecol. Environ. doi: 10.1007/s40974-016-0005-z – volume: 15 start-page: 4511 year: 2022 ident: D3EE04251K/cit63/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02216H – volume: 7 start-page: 1719 year: 2014 ident: D3EE04251K/cit94/1 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43899F – volume: 17 start-page: 25707 year: 2023 ident: D3EE04251K/cit260/1 publication-title: ACS Nano doi: 10.1021/acsnano.3c10867 – volume: 317 start-page: 121786 year: 2022 ident: D3EE04251K/cit296/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121786 – volume: 10 start-page: 3682 year: 2022 ident: D3EE04251K/cit268/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c00037 – volume: 5 start-page: 300 year: 2013 ident: D3EE04251K/cit35/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1574 – volume: 59 start-page: 26 year: 2019 ident: D3EE04251K/cit207/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.070 – volume: 66 start-page: 61 year: 2022 ident: D3EE04251K/cit233/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.07.012 – volume: 461 start-page: 228147 year: 2020 ident: D3EE04251K/cit39/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228147 – volume: 41 start-page: 22520 year: 2016 ident: D3EE04251K/cit222/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.083 – volume: 12 start-page: 182 year: 2018 ident: D3EE04251K/cit68/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.11.013 – volume: 35 start-page: 2208821 year: 2023 ident: D3EE04251K/cit213/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208821 – volume: 4 start-page: 3404 year: 2021 ident: D3EE04251K/cit247/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c03157 – volume: 283 start-page: 1829 year: 2018 ident: D3EE04251K/cit109/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.07.104 – volume: 51 start-page: 9620 year: 2022 ident: D3EE04251K/cit136/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00038E – volume: 61 start-page: e202208040 year: 2022 ident: D3EE04251K/cit203/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202208040 – volume: 13 start-page: 7920 year: 2022 ident: D3EE04251K/cit71/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c01710 – volume: 5 start-page: 4449 year: 2015 ident: D3EE04251K/cit204/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b00247 – volume: 56 start-page: 15594 year: 2017 ident: D3EE04251K/cit76/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708484 – volume: 100 start-page: 170 year: 1978 ident: D3EE04251K/cit365/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00469a029 – volume: 9 start-page: 15415 year: 2021 ident: D3EE04251K/cit386/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02067F – volume: 15 start-page: 76 year: 2024 ident: D3EE04251K/cit358/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-44320-w – volume: 43 start-page: 1527 year: 2022 ident: D3EE04251K/cit269/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63955-4 – volume: 376 start-page: 238 year: 1995 ident: D3EE04251K/cit33/1 publication-title: Nature doi: 10.1038/376238a0 – volume: 11 start-page: 5651 year: 2020 ident: D3EE04251K/cit37/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19413-5 – volume: 12 start-page: 10894 year: 2022 ident: D3EE04251K/cit119/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c02417 – volume: 728 start-page: 19 year: 2019 ident: D3EE04251K/cit313/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2019.04.072 – volume: 167 start-page: 054514 year: 2020 ident: D3EE04251K/cit120/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab74be – volume: 7 start-page: 10141 year: 2016 ident: D3EE04251K/cit230/1 publication-title: Nat. Commun. doi: 10.1038/ncomms10141 – volume: 33 start-page: 2210328 year: 2022 ident: D3EE04251K/cit198/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210328 – volume: 524–525 start-page: 252 year: 2002 ident: D3EE04251K/cit158/1 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(02)00683-6 – volume: 9 start-page: 1645 year: 2023 ident: D3EE04251K/cit234/1 publication-title: Chemistry doi: 10.1016/j.chempr.2023.06.001 – volume: 2 start-page: 1239 year: 2021 ident: D3EE04251K/cit21/1 publication-title: Acc. Mater. Res. doi: 10.1021/accountsmr.1c00190 – volume: 324 start-page: 132749 year: 2022 ident: D3EE04251K/cit156/1 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2022.132749 – volume: 19 start-page: 2303061 year: 2023 ident: D3EE04251K/cit329/1 publication-title: Small doi: 10.1002/smll.202303061 – volume: 4 start-page: 5434 year: 2021 ident: D3EE04251K/cit270/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c03179 – volume: 21 start-page: 804 year: 2022 ident: D3EE04251K/cit58/1 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01221-5 – volume: 172 start-page: 155 year: 2007 ident: D3EE04251K/cit354/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.07.062 – volume: 554–555 start-page: 77 year: 2003 ident: D3EE04251K/cit82/1 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(03)00077-9 – volume: 367 start-page: 328 year: 2018 ident: D3EE04251K/cit96/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.09.030 – volume: 61 start-page: e202207197 year: 2022 ident: D3EE04251K/cit83/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202207197 – volume: 35 start-page: 2211854 year: 2023 ident: D3EE04251K/cit182/1 publication-title: Adv. Mater. doi: 10.1002/adma.202211854 – volume: 56 start-page: 1445 year: 2023 ident: D3EE04251K/cit385/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.3c00071 – volume: 83 start-page: 255 year: 2023 ident: D3EE04251K/cit301/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.03.057 – volume: 59 start-page: 11824 year: 2020 ident: D3EE04251K/cit368/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003208 – volume: 4 start-page: 2200281 year: 2023 ident: D3EE04251K/cit67/1 publication-title: Small Struct. doi: 10.1002/sstr.202200281 – volume: 62 start-page: e202315752 year: 2023 ident: D3EE04251K/cit277/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202315752 – volume: 10 start-page: 14747 year: 2020 ident: D3EE04251K/cit134/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03801 – volume: 94 start-page: 309 year: 2021 ident: D3EE04251K/cit257/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2020.10.042 – volume: 8 start-page: 177 year: 2015 ident: D3EE04251K/cit100/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02564D – volume: 60 start-page: 8243 year: 2021 ident: D3EE04251K/cit286/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016199 – volume: 12 start-page: 5846 year: 2022 ident: D3EE04251K/cit320/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c01011 – volume: 144 start-page: 7224 year: 2022 ident: D3EE04251K/cit398/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c13740 – volume: 58 start-page: 7445 year: 2019 ident: D3EE04251K/cit228/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902751 – volume: 10 start-page: 7043 year: 2020 ident: D3EE04251K/cit50/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00101 – volume: 13 start-page: 15475 year: 2021 ident: D3EE04251K/cit256/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15994 – volume: 7 start-page: 267 year: 2016 ident: D3EE04251K/cit360/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02794 – volume: 10 start-page: 13227 year: 2020 ident: D3EE04251K/cit364/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03831 – volume: 115 start-page: 4823 year: 2015 ident: D3EE04251K/cit22/1 publication-title: Chem. Rev. doi: 10.1021/cr5003563 – volume: 12 start-page: 2686 year: 2021 ident: D3EE04251K/cit47/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22996-2 – volume: 34 start-page: 2107721 year: 2022 ident: D3EE04251K/cit317/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107721 – volume: 10 start-page: 4608 year: 2020 ident: D3EE04251K/cit218/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05621 – volume: 600 start-page: 81 year: 2021 ident: D3EE04251K/cit393/1 publication-title: Nature doi: 10.1038/s41586-021-04068-z – volume: 11 start-page: 2522 year: 2020 ident: D3EE04251K/cit390/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16237-1 – volume: 6 start-page: 20374 year: 2018 ident: D3EE04251K/cit417/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07414C – volume: 6 start-page: 11346 year: 2018 ident: D3EE04251K/cit261/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03250E – volume: 360 start-page: 279 year: 2003 ident: D3EE04251K/cit271/1 publication-title: J. Alloys Compd. doi: 10.1016/S0925-8388(03)00346-3 – volume: 157 start-page: B1529 year: 2010 ident: D3EE04251K/cit31/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3483106 – volume: 5 start-page: 6764 year: 2015 ident: D3EE04251K/cit137/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01670 – volume: 33 start-page: 2008599 year: 2021 ident: D3EE04251K/cit232/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008599 – volume: 234 start-page: 87 year: 1990 ident: D3EE04251K/cit229/1 publication-title: Surf. Sci. doi: 10.1016/0039-6028(90)90668-X – volume: 66 start-page: 107 year: 2022 ident: D3EE04251K/cit66/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.07.015 – volume: 32 start-page: 511 year: 2007 ident: D3EE04251K/cit2/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2006.06.050 – volume: 144 start-page: 12661 year: 2022 ident: D3EE04251K/cit199/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01448 – volume: 5 start-page: 24433 year: 2017 ident: D3EE04251K/cit125/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08718G – volume: 33 start-page: 2105400 year: 2021 ident: D3EE04251K/cit186/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105400 – volume: 51 start-page: 405 year: 2020 ident: D3EE04251K/cit4/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.087 – volume: 51 start-page: 1529 year: 2022 ident: D3EE04251K/cit13/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00981H – volume: 402 start-page: 447 year: 2018 ident: D3EE04251K/cit231/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.09.051 – volume: 139 start-page: 6807 year: 2017 ident: D3EE04251K/cit253/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02434 – volume: 8 start-page: 1278 year: 2018 ident: D3EE04251K/cit344/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b04055 – volume: 12 start-page: 11361 year: 2021 ident: D3EE04251K/cit318/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02676 – volume: 10 start-page: 1616 year: 2022 ident: D3EE04251K/cit193/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c07306 – volume: 110 start-page: 21924 year: 2006 ident: D3EE04251K/cit161/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp064190x – volume: 58 start-page: 14179 year: 2019 ident: D3EE04251K/cit304/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201908194 – volume: 304 start-page: 332 year: 2016 ident: D3EE04251K/cit104/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.11.026 – volume: 8 start-page: 9429 year: 2018 ident: D3EE04251K/cit411/1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b03227 – volume: 140 start-page: 084106 year: 2014 ident: D3EE04251K/cit394/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 61 start-page: 15 year: 2021 ident: D3EE04251K/cit215/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.12.008 – volume: 19 start-page: 2207038 year: 2023 ident: D3EE04251K/cit266/1 publication-title: Small doi: 10.1002/smll.202207038 – volume: 56 start-page: 15025 year: 2017 ident: D3EE04251K/cit101/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709455 – volume: 33 start-page: 2211586 year: 2023 ident: D3EE04251K/cit191/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211586 – volume: 141 start-page: 11115 year: 2019 ident: D3EE04251K/cit324/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03327 – volume: 6 start-page: 23531 year: 2018 ident: D3EE04251K/cit111/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07028H – volume: 319 start-page: 123637 year: 2022 ident: D3EE04251K/cit335/1 publication-title: Fuel doi: 10.1016/j.fuel.2022.123637 – volume: 270 start-page: 116203 year: 2022 ident: D3EE04251K/cit143/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2022.116203 – volume: 134 start-page: 18161 year: 2012 ident: D3EE04251K/cit151/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307466s – volume: 3 start-page: 454 year: 2020 ident: D3EE04251K/cit38/1 publication-title: Nat. Catal. doi: 10.1038/s41929-020-0446-9 – volume: 165 start-page: J3355 year: 2018 ident: D3EE04251K/cit86/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0471815jes – volume: 53 start-page: 357 year: 2010 ident: D3EE04251K/cit56/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-010-0080-5 – volume: 7 start-page: 333 year: 2008 ident: D3EE04251K/cit172/1 publication-title: Nat. Mater. doi: 10.1038/nmat2156 – volume: 16 start-page: 6120 year: 2023 ident: D3EE04251K/cit185/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02382F – volume: 49 start-page: 3173 year: 2010 ident: D3EE04251K/cit359/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907019 – volume: 141 start-page: 3232 year: 2019 ident: D3EE04251K/cit128/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13228 – volume: 136 start-page: e202317922 year: 2024 ident: D3EE04251K/cit382/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202317922 – volume: 92 start-page: 3719 year: 1996 ident: D3EE04251K/cit81/1 publication-title: J. Chem. Soc., Faraday Trans. doi: 10.1039/FT9969203719 – volume: 63 start-page: e202315148 year: 2024 ident: D3EE04251K/cit179/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202315148 – volume: 13 start-page: 39470 year: 2021 ident: D3EE04251K/cit123/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11025 – volume: 20 start-page: 2307252 year: 2024 ident: D3EE04251K/cit295/1 publication-title: Small doi: 10.1002/smll.202307252 – volume: 105 start-page: 11188 year: 2008 ident: D3EE04251K/cit378/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0803689105 – volume: 13 start-page: 7822 year: 2023 ident: D3EE04251K/cit374/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c01466 – volume: 33 start-page: 2300593 year: 2023 ident: D3EE04251K/cit140/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300593 – volume: 7 start-page: 4464 year: 2016 ident: D3EE04251K/cit410/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02025 – volume: 7 start-page: 2255 year: 2014 ident: D3EE04251K/cit30/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00440J – volume: 336 start-page: 135751 year: 2020 ident: D3EE04251K/cit52/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135751 – volume: 9 start-page: 26323 year: 2021 ident: D3EE04251K/cit202/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA08038E – volume: 64 start-page: 1069 year: 2014 ident: D3EE04251K/cit245/1 publication-title: ECS Trans. doi: 10.1149/06403.1069ecst – volume: 132 start-page: 14700 year: 2010 ident: D3EE04251K/cit346/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104672n – volume: 11 start-page: 133 year: 2020 ident: D3EE04251K/cit310/1 publication-title: Electrocatalysis doi: 10.1007/s12678-019-00560-3 – volume: 2 start-page: 4999 year: 2019 ident: D3EE04251K/cit299/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00657 – volume: 59 start-page: 18036 year: 2020 ident: D3EE04251K/cit391/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202008116 – volume: 104 start-page: 107877 year: 2022 ident: D3EE04251K/cit65/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107877 – volume: 323 start-page: 760 year: 2009 ident: D3EE04251K/cit23/1 publication-title: Science doi: 10.1126/science.1168049 – volume: 45 start-page: 19642 year: 2020 ident: D3EE04251K/cit146/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.026 – volume: 11 start-page: 2003511 year: 2021 ident: D3EE04251K/cit239/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003511 – volume: 11 start-page: 14932 year: 2021 ident: D3EE04251K/cit205/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c04440 – volume: 4 start-page: 1594 year: 2019 ident: D3EE04251K/cit294/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00738 – volume: 6 start-page: 773 year: 2023 ident: D3EE04251K/cit331/1 publication-title: Nat. Catal. doi: 10.1038/s41929-023-01007-1 – volume: 12 start-page: 3522 year: 2019 ident: D3EE04251K/cit279/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01743G – volume: 9 start-page: 6837 year: 2019 ident: D3EE04251K/cit352/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01582 – volume: 34 start-page: 2206960 year: 2022 ident: D3EE04251K/cit321/1 publication-title: Adv. Mater. doi: 10.1002/adma.202206960 – volume: 11 start-page: 12118 year: 2020 ident: D3EE04251K/cit278/1 publication-title: Chem. Sci. doi: 10.1039/D0SC03917A – volume: 9 start-page: 1801284 year: 2018 ident: D3EE04251K/cit353/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801284 – volume: 45 start-page: 117 year: 2002 ident: D3EE04251K/cit265/1 publication-title: Surf. Sci. Rep. doi: 10.1016/S0167-5729(01)00022-X – volume: 305 start-page: 121058 year: 2022 ident: D3EE04251K/cit20/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.121058 – volume: 258 start-page: 117952 year: 2019 ident: D3EE04251K/cit211/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117952 – volume: 58 start-page: 1442 year: 2019 ident: D3EE04251K/cit153/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201812662 – volume: 33 start-page: 2306333 year: 2023 ident: D3EE04251K/cit167/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306333 – volume: 19 start-page: 2206196 year: 2023 ident: D3EE04251K/cit124/1 publication-title: Small doi: 10.1002/smll.202206196 – volume: 432 start-page: 134189 year: 2022 ident: D3EE04251K/cit258/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134189 – volume: 12 start-page: 31575 year: 2020 ident: D3EE04251K/cit356/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10784 – volume: 15 start-page: 1234 year: 2022 ident: D3EE04251K/cit200/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03482K – volume: 65 start-page: 611 year: 2022 ident: D3EE04251K/cit42/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1190-7 – volume: 22 start-page: 5544 year: 2022 ident: D3EE04251K/cit171/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c01744 – volume: 11 start-page: 3283 year: 2018 ident: D3EE04251K/cit32/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02192A – volume: 30 start-page: 2188 year: 2018 ident: D3EE04251K/cit414/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00358 – volume: 382 start-page: 153 year: 1995 ident: D3EE04251K/cit383/1 publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(94)03669-T – volume: 852 start-page: 113551 year: 2019 ident: D3EE04251K/cit246/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.113551 – volume: 149 start-page: A1400 year: 2002 ident: D3EE04251K/cit176/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1510131 – volume: 144 start-page: 22018 year: 2022 ident: D3EE04251K/cit377/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c09147 – volume: 10 start-page: 8645 year: 2020 ident: D3EE04251K/cit147/1 publication-title: RSC Adv. doi: 10.1039/C9RA09628K – volume: 428 start-page: 131206 year: 2022 ident: D3EE04251K/cit288/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131206 – volume: 102 start-page: 16951 year: 2005 ident: D3EE04251K/cit379/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0504499102 – volume: 367 start-page: 332 year: 2018 ident: D3EE04251K/cit102/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.09.031 – volume: 26 start-page: 14 year: 2020 ident: D3EE04251K/cit347/1 publication-title: J. Electrochem. – volume: 145 start-page: 12051 year: 2023 ident: D3EE04251K/cit73/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c01164 – volume: 11 start-page: 8165 year: 2021 ident: D3EE04251K/cit169/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01723 – volume: 5 start-page: 316 year: 2020 ident: D3EE04251K/cit416/1 publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00533A – volume: 5 start-page: 253 year: 2016 ident: D3EE04251K/cit150/1 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.5b00910 – volume: 81 start-page: 2819 year: 1998 ident: D3EE04251K/cit289/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 7 start-page: 31574 year: 2017 ident: D3EE04251K/cit350/1 publication-title: RSC Adv. doi: 10.1039/C7RA03675B – volume: 61 start-page: e202206588 year: 2022 ident: D3EE04251K/cit272/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202206588 – volume: 18 start-page: 2202404 year: 2022 ident: D3EE04251K/cit251/1 publication-title: Small doi: 10.1002/smll.202202404 – volume: 54 start-page: 202 year: 2021 ident: D3EE04251K/cit305/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.05.066 – volume: 436 start-page: 213824 year: 2021 ident: D3EE04251K/cit401/1 publication-title: Coord. Chem Rev. doi: 10.1016/j.ccr.2021.213824 – volume: 6 start-page: 3895 year: 2016 ident: D3EE04251K/cit49/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b00350 – volume: 90 start-page: 106579 year: 2021 ident: D3EE04251K/cit155/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106579 – volume: 2 start-page: 16 year: 1998 ident: D3EE04251K/cit384/1 publication-title: J. Solid State Electrochem. doi: 10.1007/s100080050059 – volume: 32 start-page: 2006034 year: 2020 ident: D3EE04251K/cit287/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006034 – volume: 12 start-page: 384 year: 2021 ident: D3EE04251K/cit18/1 publication-title: Chem. Sci. doi: 10.1039/D0SC03280H – volume: 10 start-page: 12300 year: 2020 ident: D3EE04251K/cit345/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c02845 – volume: 11 start-page: 10807 year: 2023 ident: D3EE04251K/cit197/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA00287J – volume: 8 start-page: 454 year: 2018 ident: D3EE04251K/cit254/1 publication-title: Catalysts doi: 10.3390/catal8100454 – volume: 12 start-page: 209 year: 2018 ident: D3EE04251K/cit34/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.11.017 – volume: 9 start-page: 9614 year: 2019 ident: D3EE04251K/cit115/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b01744 – volume: 332 start-page: 122740 year: 2023 ident: D3EE04251K/cit336/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.122740 – volume: 324 start-page: 119722 year: 2022 ident: D3EE04251K/cit144/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119722 – volume: 554 start-page: 149627 year: 2021 ident: D3EE04251K/cit240/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149627 – volume: 62 start-page: e202213365 year: 2023 ident: D3EE04251K/cit367/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202213365 – volume: 10 start-page: 1278 year: 2019 ident: D3EE04251K/cit19/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 14 start-page: 2620 year: 2021 ident: D3EE04251K/cit62/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03609A – volume: 16 start-page: 19250 year: 2014 ident: D3EE04251K/cit259/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01385A – volume: 309 start-page: 121279 year: 2022 ident: D3EE04251K/cit284/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121279 – volume: 52 start-page: 8319 year: 2023 ident: D3EE04251K/cit248/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00557G – volume: 41 start-page: 765 year: 2017 ident: D3EE04251K/cit9/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.053 – volume: 59 start-page: 20423 year: 2020 ident: D3EE04251K/cit326/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009612 – volume: 283 start-page: 181 year: 2015 ident: D3EE04251K/cit79/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.133 – volume: 31 start-page: 2010633 year: 2021 ident: D3EE04251K/cit60/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010633 – volume: 1 start-page: 466 year: 2009 ident: D3EE04251K/cit399/1 publication-title: Nat. Chem. doi: 10.1038/nchem.330 – volume: 62 start-page: 5032 year: 2023 ident: D3EE04251K/cit174/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.3c00293 – volume: 17 start-page: 2006698 year: 2021 ident: D3EE04251K/cit114/1 publication-title: Small doi: 10.1002/smll.202006698 – volume: 4 start-page: 81 year: 2009 ident: D3EE04251K/cit29/1 publication-title: Nano Today doi: 10.1016/j.nantod.2008.09.002 – volume: 31 start-page: 1806296 year: 2019 ident: D3EE04251K/cit135/1 publication-title: Adv. Mater. doi: 10.1002/adma.201806296 – volume: 541 start-page: 68 year: 2017 ident: D3EE04251K/cit325/1 publication-title: Nature doi: 10.1038/nature20782 – volume: 32 start-page: 2107479 year: 2021 ident: D3EE04251K/cit59/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107479 – volume: 10 start-page: 7322 year: 2020 ident: D3EE04251K/cit206/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c02254 – volume: 464 start-page: 392 year: 2010 ident: D3EE04251K/cit405/1 publication-title: Nature doi: 10.1038/nature08907 – volume: 7 start-page: 3135 year: 2014 ident: D3EE04251K/cit7/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01303D – volume: 59 start-page: 13583 year: 2023 ident: D3EE04251K/cit373/1 publication-title: Chem. Commun. doi: 10.1039/D3CC03990K – volume: 9 start-page: 4531 year: 2018 ident: D3EE04251K/cit139/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06728-7 – volume: 105 start-page: 20611 year: 2008 ident: D3EE04251K/cit355/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0810041106 – volume: 60 start-page: 19774 year: 2021 ident: D3EE04251K/cit403/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202103888 – volume: 8 start-page: 4918 year: 2017 ident: D3EE04251K/cit415/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b02228 – volume: 19 start-page: 2303142 year: 2023 ident: D3EE04251K/cit237/1 publication-title: Small doi: 10.1002/smll.202303142 – volume: 8 start-page: 3381 year: 2023 ident: D3EE04251K/cit351/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.3c00842 – volume: 9 start-page: 2202913 year: 2023 ident: D3EE04251K/cit210/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202913 – volume: 4 start-page: 1732 year: 2022 ident: D3EE04251K/cit214/1 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202100810 – volume: 5 start-page: 4819 year: 2015 ident: D3EE04251K/cit343/1 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01037 – volume: 32 start-page: 7716 year: 2020 ident: D3EE04251K/cit348/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02048 – volume: 14 start-page: 6289 year: 2023 ident: D3EE04251K/cit285/1 publication-title: Chem. Sci. doi: 10.1039/D3SC02144K – volume: 31 start-page: 4195 year: 2019 ident: D3EE04251K/cit413/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01092 – volume: 767 start-page: 153 year: 2016 ident: D3EE04251K/cit78/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.02.024 – volume: 4 start-page: 11473 year: 2021 ident: D3EE04251K/cit307/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c02893 – volume: 429 start-page: 132435 year: 2022 ident: D3EE04251K/cit303/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132435 – volume: 142 start-page: 4985 year: 2020 ident: D3EE04251K/cit110/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13694 – volume: 60 start-page: 5771 year: 2021 ident: D3EE04251K/cit126/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202013047 – volume: 145 start-page: 13805 year: 2023 ident: D3EE04251K/cit183/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02487 – volume: 15 start-page: 14996 year: 2021 ident: D3EE04251K/cit389/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c05250 – volume: 52 start-page: 2745 year: 2019 ident: D3EE04251K/cit12/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00355 – volume: 144 start-page: 11138 year: 2022 ident: D3EE04251K/cit127/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00793 – volume: 8 start-page: eabm3779 year: 2022 ident: D3EE04251K/cit129/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abm3779 – volume: 99 start-page: 8290 year: 1995 ident: D3EE04251K/cit160/1 publication-title: J. Phys. Chem. doi: 10.1021/j100020a063 – volume: 167 start-page: 084514 year: 2020 ident: D3EE04251K/cit408/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab8c88 |
SSID | ssj0062079 |
Score | 2.6077688 |
Snippet | The burgeoning field of anion-exchange membrane fuel cells (AEMFCs) presents a promising avenue to circumvent the reliance on scarce and costly Pt-based... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 396 |
SubjectTerms | Anion exchanging Anodizing Catalysts Chemical reduction Commercialization Electrocatalysts Electrolytes Electrolytic cells Emissions Energy theory Fuel cells Fuel technology Heterostructures Hydrogen Kinetics Membranes Noble metals Oxidation Oxygen reduction reactions Reaction mechanisms Stability |
Title | Hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells: activity descriptors, stability regulation, and perspectives |
URI | https://www.proquest.com/docview/3069060803 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QUOiFdFoKCV4IJcF8frtbPcCgQiChxQEO3J8j4sWbQxShyp4Rdw4T8zu2t711Ak4BArmrWtyN_n2ZnJPBB6IgQRnEcqjBWbholiLCwocFlQBvuDKjhlut75_Yd0_il5e0pPR6MfXtbSpuFH4tuVdSX_gyrIAFddJfsPyPY3BQF8B3zhCAjD8a8wnm_lqobVoL6s7GykoB1rY6Iy23WzbrMkYSlUl7bKN7hQF-Ajg3VZbtR5oEP3Ji9OlziYSRJSWV1S2_FpYD-aDNptsLKD6yv7T71pMeBqNdeDIL8tKdS88krpugJMx6aPbW1ItQwXRe1yDaz4napcwN8qpXlRh2cbZ8Ba6VnlRy_iRGdZDRRuRpOQpnYe3pHyZFmUDrR05rMx9nQuYam3fdsGqL9tDBHRfVUlUUprqckXt_31SYlucQftxeB1gNrcOz558eZzt7WncWSaN_Y_uut3S9gzd_XQwnFuy86qmyljbJfFTXSjdTrwsWXQLTRSy9vouteK8g763nEJ91zCv3IJA5fwkEu44xLWXMKGS89xxyTsMekQ9zzCjkeHcD-JfRbdRYvXs8XLedhO6QhFPJ00oRQCNLlknE1EWpZZXE7LIuGJzEghSSQYK8DmFiWjoBd4SRPwULmiVIJZBP4F2Ue7y3qp7iGcSSE5fGgqioSyiImIluDS6qmTJCHTMXraPdhctB3s9SCV89xkUhCWvyKzmQHhZIwe9-d-tX1brjzroMMnb9_rdU5M827wpMgY7QNm_fUO4vt_WniArjmWH6DdZrVRD8Fqbfijlks_ATTXn68 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+oxidation+electrocatalysts+for+anion-exchange+membrane+fuel+cells%3A+activity+descriptors%2C+stability+regulation%2C+and+perspectives&rft.jtitle=Energy+%26+environmental+science&rft.au=Ren%2C+Jin-Tao&rft.au=Chen%2C+Lei&rft.au=Wang%2C+Hao-Yu&rft.au=Feng%2C+Yi&rft.date=2024-06-18&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=12&rft.spage=396&rft.epage=49&rft_id=info:doi/10.1039%2Fd3ee04251k&rft.externalDocID=d3ee04251k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |