Recent advances in hydrogen production through proton exchange membrane water electrolysis - a review
Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. Moreover, PEM water electrolysis has several benefits such as compact system design with high operat...
Saved in:
Published in | Sustainable energy & fuels Vol. 7; no. 15; pp. 356 - 3583 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
25.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. Moreover, PEM water electrolysis has several benefits such as compact system design with high operating current density, high hydrogen purity, greater energy efficiency and rapid response when combined with renewable energy sources. However, the use of costly electrocatalysts and cell components leads to expensive and limited commercial applications. In this review, various water electrolysis technologies and their technical specifications including hydrogen production costs were briefly summarized from a commercial perspective. Furthermore, we have mainly focused on PEM water electrolysis including recent developments in cell components such as membranes, gas diffusion layers, bipolar plates, and electrocatalysts. Moreover, some of the most effective results also were described and the research gaps and their challenges for cost reduction and commercialization were identified. Furthermore, we concluded by outlining our thoughts and potential solutions for future research directions that should be pursued to develop inexpensive electrocatalysts and cell components for efficient production of green hydrogen. This review aims to provide possible directions and a road map for future research and development towards the development of inexpensive PEM electrolysers.
Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. |
---|---|
AbstractList | Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. Moreover, PEM water electrolysis has several benefits such as compact system design with high operating current density, high hydrogen purity, greater energy efficiency and rapid response when combined with renewable energy sources. However, the use of costly electrocatalysts and cell components leads to expensive and limited commercial applications. In this review, various water electrolysis technologies and their technical specifications including hydrogen production costs were briefly summarized from a commercial perspective. Furthermore, we have mainly focused on PEM water electrolysis including recent developments in cell components such as membranes, gas diffusion layers, bipolar plates, and electrocatalysts. Moreover, some of the most effective results also were described and the research gaps and their challenges for cost reduction and commercialization were identified. Furthermore, we concluded by outlining our thoughts and potential solutions for future research directions that should be pursued to develop inexpensive electrocatalysts and cell components for efficient production of green hydrogen. This review aims to provide possible directions and a road map for future research and development towards the development of inexpensive PEM electrolysers. Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. Moreover, PEM water electrolysis has several benefits such as compact system design with high operating current density, high hydrogen purity, greater energy efficiency and rapid response when combined with renewable energy sources. However, the use of costly electrocatalysts and cell components leads to expensive and limited commercial applications. In this review, various water electrolysis technologies and their technical specifications including hydrogen production costs were briefly summarized from a commercial perspective. Furthermore, we have mainly focused on PEM water electrolysis including recent developments in cell components such as membranes, gas diffusion layers, bipolar plates, and electrocatalysts. Moreover, some of the most effective results also were described and the research gaps and their challenges for cost reduction and commercialization were identified. Furthermore, we concluded by outlining our thoughts and potential solutions for future research directions that should be pursued to develop inexpensive electrocatalysts and cell components for efficient production of green hydrogen. This review aims to provide possible directions and a road map for future research and development towards the development of inexpensive PEM electrolysers. Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. |
Author | Kumar, S. Shiva Lim, Hankwon |
AuthorAffiliation | Graduate School of Carbon Neutrality School of Energy and Chemical Engineering Carbon Neutrality Demonstration and Research Center Ulsan National Institute of Science and Technology |
AuthorAffiliation_xml | – name: School of Energy and Chemical Engineering – name: Ulsan National Institute of Science and Technology – name: Graduate School of Carbon Neutrality – name: Carbon Neutrality Demonstration and Research Center |
Author_xml | – sequence: 1 givenname: S. Shiva surname: Kumar fullname: Kumar, S. Shiva – sequence: 2 givenname: Hankwon surname: Lim fullname: Lim, Hankwon |
BookMark | eNpNkMtLAzEQh4NUsNZevAsBb8Jqnt3ssdT6gILg47xks7PdLW1Sk2wf_71bK-ppZn58zAzfOepZZwGhS0puKeHZXckDEML5SJ-gPuOZSkRGWO9ff4aGISwIIYwywWTaR_AKBmzEutxoayDgxuJ6X3o3B4vX3pWtiY2zONbetfP6EMVuhJ2ptZ0DXsGq8NoC3uoIHsMSTPRuuQ9NwAnW2MOmge0FOq30MsDwpw7Qx8P0ffKUzF4enyfjWWKYojEpMyUgU1BU2ihCgPOCCS6roqQjUQhBeKpLnYpKZkVluCRSCcVSppigsiCaD9D1cW_35mcLIeYL13rbncyZEpRTIUeyo26OlPEuBA9VvvbNSvt9Tkl-MJnf87fpt8lxB18dYR_ML_dnmn8BVJZyJQ |
CitedBy_id | crossref_primary_10_1038_s41524_024_01268_9 crossref_primary_10_1039_D3TA03769J crossref_primary_10_1039_D3YA00492A crossref_primary_10_1021_acs_chemrev_3c00712 crossref_primary_10_1002_cite_202300151 crossref_primary_10_1039_D3DT02969G crossref_primary_10_1021_acs_inorgchem_4c00881 crossref_primary_10_3390_cleantechnol5040067 crossref_primary_10_1002_ente_202301603 crossref_primary_10_1016_j_cclet_2024_109557 crossref_primary_10_1016_j_renene_2024_120911 crossref_primary_10_1039_D3RA05164A crossref_primary_10_1039_D3SE01343J crossref_primary_10_1039_D3SE01486J crossref_primary_10_1002_solr_202301047 crossref_primary_10_1039_D3NH00506B crossref_primary_10_1021_acsaem_3c03260 crossref_primary_10_1088_1755_1315_1348_1_012058 crossref_primary_10_1039_D4YA00143E |
Cites_doi | 10.1016/j.apcatb.2018.07.064 10.1016/j.enconman.2021.114516 10.1016/j.jece.2021.106349 10.1002/cite.201900101 10.1002/er.6936 10.1016/j.jcis.2021.01.049 10.1016/j.ijhydene.2014.07.170 10.1016/j.elecom.2018.10.021 10.1016/j.ijhydene.2021.03.203 10.1016/j.ijhydene.2019.02.110 10.1016/j.ijhydene.2016.08.195 10.1016/j.nanoen.2017.09.014 10.1016/j.cej.2021.129455 10.1039/C5EE02573G 10.1016/j.jece.2022.107682 10.1016/j.enconman.2016.04.021 10.1016/j.rser.2022.112398 10.1038/s41467-019-13993-7 10.1016/j.ijhydene.2018.10.229 10.1016/j.ijhydene.2021.09.116 10.1016/j.renene.2017.04.028 10.1007/s11581-018-2783-0 10.1002/cssc.201500334 10.1016/j.electacta.2021.138391 10.1016/j.nanoen.2017.02.045 10.1016/j.ijhydene.2017.10.045 10.1016/j.ijhydene.2013.01.151 10.1002/adfm.201803291 10.1016/j.ijhydene.2021.11.101 10.1016/j.ijhydene.2012.05.058 10.1039/C9SE00275H 10.1021/acscatal.2c00570 10.1016/j.fuel.2022.124775 10.1016/j.jpowsour.2017.01.021 10.1016/j.apenergy.2021.118016 10.1016/j.elecom.2021.106941 10.1016/j.jallcom.2022.164506 10.1021/acssuschemeng.2c03597 10.1016/j.rser.2012.08.011 10.1149/1945-7111/ac56a3 10.1016/j.ijhydene.2014.02.082 10.1016/B978-0-12-822989-7.00010-X 10.1016/j.electacta.2018.02.078 10.1149/2.1451910jes 10.1002/er.3081 10.1016/j.ijhydene.2020.02.041 10.1039/D1TA06240A 10.1016/j.enpol.2011.03.005 10.1002/er.7182 10.1016/j.egyr.2022.10.127 10.1016/j.renene.2018.02.024 10.1016/j.ijhydene.2022.03.061 10.1038/s41565-021-00986-1 10.1016/j.enconman.2022.115985 10.3390/catal11040481 10.1016/j.ijhydene.2011.01.154 10.1039/D0TA05628F 10.4236/jpee.2019.71007 10.1016/j.jmst.2022.10.039 10.1016/j.ijhydene.2023.01.032 10.1016/j.jallcom.2021.162113 10.1016/j.enconman.2020.113477 10.1016/j.ijhydene.2014.08.121 10.1002/smtd.202101236 10.1002/smll.202003161 10.1002/smll.202108031 10.1149/1945-7111/ac4c76 10.1016/j.ijhydene.2016.07.125 10.1016/j.jpowsour.2011.10.022 10.1016/j.jpowsour.2022.231146 10.1016/j.ijhydene.2011.09.152 10.1016/j.ijhydene.2020.05.164 10.1016/j.ijhydene.2022.06.217 10.1016/j.energy.2014.01.072 10.1016/j.geothermics.2015.05.005 10.1016/j.jechem.2019.01.011 10.1021/acsaem.0c00735 10.1039/C6TA08075H 10.1021/acsomega.0c02110 10.1016/j.ijhydene.2022.08.297 10.1016/j.jpowsour.2020.228618 10.1149/2.0421908jes 10.1016/j.cej.2020.128333 10.1016/j.ijhydene.2017.08.033 10.1007/s11581-018-2471-0 10.1016/j.jpowsour.2016.06.082 10.1021/acssuschemeng.1c05152 10.1038/s41467-018-07882-8 10.1016/j.ijhydene.2015.08.109 10.1016/j.renene.2019.08.068 10.1021/acsomega.0c04786 10.1016/j.ijhydene.2021.04.174 10.1016/j.jcis.2020.09.099 10.1016/j.jelechem.2022.116905 10.1016/j.energy.2013.11.012 10.1016/j.nanoen.2020.105151 10.1039/D2SE00260D 10.1016/j.enconman.2018.02.041 10.1016/j.tsf.2013.03.130 10.1007/s11581-017-2359-4 10.3390/polym15051301 10.1002/ange.202110335 10.1016/j.apcatb.2021.120899 10.1016/j.ijhydene.2021.03.225 10.1016/j.ijhydene.2021.09.152 10.1002/anie.202106547 10.1016/j.nanoen.2019.01.043 10.1016/j.apcatb.2022.121458 10.1016/j.energy.2016.08.101 10.1002/er.6739 10.1039/C5TA02974K 10.1016/j.ijhydene.2016.03.177 10.1039/C5CY02299A 10.1039/C7RA06534E 10.1149/1945-7111/ac5f1d 10.1002/aenm.202002926 10.1038/s41467-020-20503-7 10.1016/j.ccst.2022.100042 10.1007/s12274-021-3778-0 10.1021/acsami.0c20791 10.1039/D1TA09887J 10.1039/C9SE00148D 10.1149/1945-7111/ac6d14 10.1002/aenm.202103670 10.1016/j.rser.2017.09.003 10.1016/j.ijhydene.2017.09.132 10.1016/j.apcatb.2014.09.005 10.1016/j.ijhydene.2019.11.109 10.1016/j.jpowsour.2014.05.117 10.1016/j.jiec.2021.02.003 10.1016/j.energy.2018.06.073 10.1038/s41565-019-0550-7 10.1002/ange.201909369 10.1016/j.rser.2021.110963 10.1016/j.ijhydene.2010.05.041 10.1149/1.1856988 10.1080/15435075.2018.1508468 10.1021/acscatal.9b04922 10.1016/j.jelechem.2021.115076 10.1039/C8NR01572D 10.1016/j.memsci.2018.09.063 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7QO 7SP 7ST 7U6 8FD C1K FR3 L7M P64 |
DOI | 10.1039/d3se00336a |
DatabaseName | CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Sustainability Science Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Biotechnology Research Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2398-4902 |
EndPage | 3583 |
ExternalDocumentID | 10_1039_D3SE00336A d3se00336a |
GroupedDBID | 0R~ AAEMU AAIWI AAJAE AANOJ ABASK ABDVN ABRYZ AETIL AFOGI AGRSR ALMA_UNASSIGNED_HOLDINGS ANUXI BLAPV C6K EBS ECGLT H13 O9- OK1 RAOCF RCNCU RRC RSCEA RVUXY AARTK AAXHV AAYXX ABPDG AENGV AGEGJ AKBGW APEMP CITATION GGIMP 7QO 7SP 7ST 7U6 8FD C1K FR3 L7M P64 |
ID | FETCH-LOGICAL-c281t-d984e98ebfac800e33b2435fbd164b44037ada74f59bfc350584827282415b0a3 |
ISSN | 2398-4902 |
IngestDate | Thu Oct 10 17:27:26 EDT 2024 Fri Aug 23 01:31:36 EDT 2024 Wed Jul 26 04:23:32 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-d984e98ebfac800e33b2435fbd164b44037ada74f59bfc350584827282415b0a3 |
Notes | 2 electrolysis, fuel cells and CO capture technologies, including synthesis of nanostructured functional materials for the HER/OER/ORR, membrane electrode assemblies (MEAs) and designing of prototype electrolysers. Hankwon Lim is a Full Professor and a Director of the Carbon Neutrality Demonstration and Research Center at Ulsan National Institute of Science and Technology (UNIST) in Korea. He received BS from Sogang University in 2000, MS from Georgia Tech in 2003, and PhD from Virginia Tech in 2007 all in chemical engineering. He also had industrial experience in an R&D center at Praxair (now Linde) as a development specialist. His research is well balanced between experimental and theoretical studies and primary research areas are process design, economics, life cycle assessment, scale-up, plant design, computational fluid dynamics, H Dr S. Shiva Kumar is currently working as a postdoctoral researcher at the Ulsan National Institute of Science and Technology, South Korea. He received his Ph.D. in Chemistry from Jawaharlal Nehru Technological University Hyderabad (JNTUH), India. After completing his Ph.D., he continued his postdoctoral research at JNTUH, in the field of hydrogen production through water electrolysis. Additionally, he has industrial experience as a Deputy Manager-Team Lead for hydrogen projects at Axis Energy Ventures India Pvt. Ltd. His current research expertise is in the field of low-temperature water electrolysis (alkaline/AEM/PEM), CO energy, CO capture & utilization, ammonia synthesis, battery management, plastic recycling, and machine learning-based engineering applications. His research also aims at an integrative engineering approach for commercialization of technologies of interest from laboratory to industrial scales through low carbon/carbon neutral processes coupled with sustainability and ESG. |
ORCID | 0000-0002-1074-0251 |
PQID | 2841314565 |
PQPubID | 2048882 |
PageCount | 24 |
ParticipantIDs | proquest_journals_2841314565 crossref_primary_10_1039_D3SE00336A rsc_primary_d3se00336a |
PublicationCentury | 2000 |
PublicationDate | 2023-07-25 |
PublicationDateYYYYMMDD | 2023-07-25 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Sustainable energy & fuels |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Balaji (D3SE00336A/cit93/1) 2022; 907 Chen (D3SE00336A/cit95/1) 2022; 12 Wakayama (D3SE00336A/cit57/1) 2021; 6 Lee (D3SE00336A/cit22/1) 2017; 42 Jiang (D3SE00336A/cit106/1) 2021; 13 Cummins Inc (D3SE00336A/cit152/1) 19 May 2023 Genç (D3SE00336A/cit142/1) 2012; 16 Olateju (D3SE00336A/cit149/1) 2016; 115 Young (D3SE00336A/cit63/1) 2021; 124 Ramakrishna (D3SE00336A/cit137/1) 2016; 41 Pérez (D3SE00336A/cit82/1) 2022; 10 Pang (D3SE00336A/cit85/1) 2021; 590 Jiang (D3SE00336A/cit128/1) 2022; 10 Nel Hydrogen (D3SE00336A/cit153/1) 19 May 2023 Hu (D3SE00336A/cit74/1) 2021; 12 Lim (D3SE00336A/cit129/1) 2014; 38 Plug Power (D3SE00336A/cit155/1) Elogen (D3SE00336A/cit157/1) Jiang (D3SE00336A/cit99/1) 2019; 39 Möckl (D3SE00336A/cit30/1) 2022; 169 Mohammadi (D3SE00336A/cit2/1) 2018; 158 Lee (D3SE00336A/cit21/1) 2019; 3 Chen (D3SE00336A/cit116/1) 2019; 10 Hassan (D3SE00336A/cit12/1) 2022; 169 Sarno (D3SE00336A/cit121/1) 2019; 44 Yoo (D3SE00336A/cit88/1) 2021; 46 Uzgören (D3SE00336A/cit113/1) 2022; 10 Lim (D3SE00336A/cit5/1) 2021; 245 Yoon (D3SE00336A/cit134/1) 2021; 45 Buttler (D3SE00336A/cit29/1) 2018; 82 Lee (D3SE00336A/cit16/1) 2021; 9 Kim (D3SE00336A/cit75/1) 2021; 96 Wang (D3SE00336A/cit124/1) 2017; 34 Reduction (D3SE00336A/cit31/1) 2020 Yuan (D3SE00336A/cit52/1) 2022; 6 Chen (D3SE00336A/cit28/1) 2022 Upadhyay (D3SE00336A/cit38/1) 2022; 306 Noor Azam (D3SE00336A/cit13/1) 2023; 15 Proton onsite (D3SE00336A/cit156/1) Min (D3SE00336A/cit104/1) 2021; 385 Shiva Kumar (D3SE00336A/cit36/1) 2019; 25 Upadhyay (D3SE00336A/cit39/1) 2020; 45 Pan (D3SE00336A/cit84/1) 2016; 6 Muntean (D3SE00336A/cit70/1) 2020; 45 Giancola (D3SE00336A/cit42/1) 2019; 570 Nørskov (D3SE00336A/cit67/1) 2005; 152 Lin (D3SE00336A/cit100/1) 2019; 10 Zhang (D3SE00336A/cit60/1) 2011; 36 Zeng (D3SE00336A/cit68/1) 2015; 3 Kaya (D3SE00336A/cit105/1) 2021; 46 Shaner (D3SE00336A/cit140/1) 2016; 9 Rakousky (D3SE00336A/cit127/1) 2016; 326 Siracusano (D3SE00336A/cit17/1) 2018; 123 Davodi (D3SE00336A/cit83/1) 2021; 896 Yilmaz (D3SE00336A/cit146/1) 2015; 57 Schmidt (D3SE00336A/cit25/1) 2017; 42 Zeng (D3SE00336A/cit132/1) 2017; 342 Pelaez-Samaniego (D3SE00336A/cit147/1) 2014; 64 Minke (D3SE00336A/cit97/1) 2021; 46 Wu (D3SE00336A/cit108/1) 2022 Kumar (D3SE00336A/cit11/1) 2019; 2 Yu (D3SE00336A/cit18/1) 2018; 129 Kumar (D3SE00336A/cit136/1) 2020; 146 King (D3SE00336A/cit80/1) 2019; 14 Lee (D3SE00336A/cit27/1) 2018; 162 Raja (D3SE00336A/cit111/1) 2022; 303 Xie (D3SE00336A/cit77/1) 2022; 313 Kumar (D3SE00336A/cit32/1) 2022; 8 Lædre (D3SE00336A/cit58/1) 2022; 169 Karikalan (D3SE00336A/cit69/1) 2019; 44 Tajuddin (D3SE00336A/cit73/1) 2021; 46 Liu (D3SE00336A/cit54/1) 2018; 97 Siracusano (D3SE00336A/cit125/1) 2015; 164 Lim (D3SE00336A/cit4/1) 2021 Li (D3SE00336A/cit47/1) 2020; 5 Lin (D3SE00336A/cit91/1) 2022; 169 Gabbasa (D3SE00336A/cit49/1) 2014; 39 Luo (D3SE00336A/cit23/1) 2023; 146 Suermann (D3SE00336A/cit19/1) 2019; 166 Zhao (D3SE00336A/cit94/1) 2018; 28 Lee (D3SE00336A/cit8/1) 2021; 9 Zhang (D3SE00336A/cit109/1) 2022; 18 Sánchez-Molina (D3SE00336A/cit64/1) 2021; 46 Simens Energy (D3SE00336A/cit151/1) 19 May 2023 Park (D3SE00336A/cit117/1) 2019; 58 Lv (D3SE00336A/cit131/1) 2017; 7 Nichols (D3SE00336A/cit92/1) 2022; 10 Siracusano (D3SE00336A/cit123/1) 2017; 40 Shiva Kumar (D3SE00336A/cit130/1) 2018; 24 Amores (D3SE00336A/cit40/1) 2021 Jiang (D3SE00336A/cit79/1) 2022; 47 Lee (D3SE00336A/cit20/1) 2020; 224 Fouda-Onana (D3SE00336A/cit120/1) 2016; 41 Weiß (D3SE00336A/cit26/1) 2019; 166 Omrani (D3SE00336A/cit51/1) 2017; 42 Teuku (D3SE00336A/cit56/1) 2021; 45 Zhang (D3SE00336A/cit87/1) 2021; 60 Dharman (D3SE00336A/cit81/1) 2022 Salehmin (D3SE00336A/cit41/1) 2022; 268 Holzapfel (D3SE00336A/cit71/1) 2020; 16 Sun (D3SE00336A/cit122/1) 2014; 267 Lee (D3SE00336A/cit6/1) 2021; 143 Lee (D3SE00336A/cit10/1) 2019; 3 Posso (D3SE00336A/cit148/1) 2015; 40 Xie (D3SE00336A/cit135/1) 2021; 410 Siracusano (D3SE00336A/cit48/1) 2022; 47 Olateju (D3SE00336A/cit145/1) 2016; 41 Feng (D3SE00336A/cit107/1) 2022; 892 Zheng (D3SE00336A/cit114/1) 2019; 131 H-Tech Systems (D3SE00336A/cit158/1) Zhang (D3SE00336A/cit59/1) 2012; 198 Gopinath (D3SE00336A/cit3/1) 2022; 47 Audichon (D3SE00336A/cit126/1) 2014; 39 Choi (D3SE00336A/cit45/1) 2022; 526 Han (D3SE00336A/cit102/1) 2020; 45 Yang (D3SE00336A/cit115/1) 2018; 10 Wang (D3SE00336A/cit89/1) 2021; 133 Wakayama (D3SE00336A/cit62/1) 2022 Wang (D3SE00336A/cit103/1) 2021; 419 Yan (D3SE00336A/cit96/1) 2016; 4 Menanteau (D3SE00336A/cit141/1) 2011; 39 Shiva Kumar (D3SE00336A/cit35/1) 2018; 24 Rakočević (D3SE00336A/cit72/1) 2021; 11 Xu (D3SE00336A/cit90/1) 2020; 8 Umicore.com (D3SE00336A/cit150/1) 04th August 2022 Nnabuife (D3SE00336A/cit1/1) 2022 Shen (D3SE00336A/cit14/1) 2020; 474 Ouimet (D3SE00336A/cit98/1) 2022; 12 Ouimet (D3SE00336A/cit34/1) 2022; 12 Choe (D3SE00336A/cit15/1) 2022; 161 Joo (D3SE00336A/cit112/1) 2022; 6 Rahimi (D3SE00336A/cit144/1) 2014; 67 Yu (D3SE00336A/cit118/1) 2018; 239 Ohmium International (D3SE00336A/cit159/1) Genç (D3SE00336A/cit143/1) 2012; 37 El-Shafie (D3SE00336A/cit9/1) 2019; 7 Carmo (D3SE00336A/cit24/1) 2013; 38 Lin (D3SE00336A/cit61/1) 2013; 544 Jang (D3SE00336A/cit78/1) 2020; 78 Urhan (D3SE00336A/cit76/1) 2022; 47 Sayedin (D3SE00336A/cit139/1) 2016; 118 Bernt (D3SE00336A/cit33/1) 2020; 92 Wei (D3SE00336A/cit44/1) 2010; 35 Doan (D3SE00336A/cit50/1) 2021; 45 Chen (D3SE00336A/cit110/1) 2022; 15 Ng (D3SE00336A/cit138/1) 2015; 8 Chan (D3SE00336A/cit86/1) 2021; 584 ITM Power (D3SE00336A/cit154/1) Liu (D3SE00336A/cit55/1) 2021; 11 Goñi-Urtiaga (D3SE00336A/cit43/1) 2012; 37 Hao (D3SE00336A/cit101/1) 2020; 11 Hegge (D3SE00336A/cit119/1) 2020; 3 Hao (D3SE00336A/cit133/1) 2021; 16 Kıstı (D3SE00336A/cit53/1) 2022; 324 Ni (D3SE00336A/cit65/1) 2023; 48 Kumar (D3SE00336A/cit7/1) 2018; 25 Skulimowska (D3SE00336A/cit46/1) 2014; 39 Shiva Kumar (D3SE00336A/cit37/1) 2018; 15 Toghyani (D3SE00336A/cit66/1) 2018; 267 |
References_xml | – issn: 19 May 2023 publication-title: HyLYZER®-4000 doi: Cummins Inc – publication-title: E-1000 doi: Elogen – publication-title: Lotus™ Mark 2 doi: Ohmium International – issn: 19 May 2023 publication-title: M5000 doi: Nel Hydrogen – publication-title: ME450 doi: H-Tech Systems – issn: 2020 publication-title: Scaling up electrolysers to meet the 1.5 C climate goal doi: Reduction – publication-title: HGas3SP doi: ITM Power – issn: 2021 volume-title: Renewable hydrogen production by water electrolysis end-page: p 271-313 publication-title: Sustainable Fuel Technologies Handbook doi: Amores Sánchez Rojas Sánchez-Molina – issn: 04th August 2022 doi: Umicore.com – publication-title: Plug EX-4250D doi: Plug Power – issn: 19 May 2023 publication-title: Silyzer 300 doi: Simens Energy – publication-title: M400 doi: Proton onsite – volume: 2 start-page: 442 year: 2019 ident: D3SE00336A/cit11/1 publication-title: Mater. Sci. Energy Technol. contributor: fullname: Kumar – volume: 239 start-page: 133 year: 2018 ident: D3SE00336A/cit118/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.07.064 contributor: fullname: Yu – volume: 245 start-page: 114516 year: 2021 ident: D3SE00336A/cit5/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.114516 contributor: fullname: Lim – volume: 9 start-page: 106349 year: 2021 ident: D3SE00336A/cit8/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106349 contributor: fullname: Lee – volume: 92 start-page: 31 year: 2020 ident: D3SE00336A/cit33/1 publication-title: Chem. Ing. Tech. doi: 10.1002/cite.201900101 contributor: fullname: Bernt – volume: 45 start-page: 16842 year: 2021 ident: D3SE00336A/cit134/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.6936 contributor: fullname: Yoon – volume: 590 start-page: 154 year: 2021 ident: D3SE00336A/cit85/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.01.049 contributor: fullname: Pang – volume: 39 start-page: 16785 year: 2014 ident: D3SE00336A/cit126/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.07.170 contributor: fullname: Audichon – volume: 97 start-page: 96 year: 2018 ident: D3SE00336A/cit54/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2018.10.021 contributor: fullname: Liu – volume: 46 start-page: 20825 year: 2021 ident: D3SE00336A/cit105/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.203 contributor: fullname: Kaya – volume: 44 start-page: 9164 year: 2019 ident: D3SE00336A/cit69/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.110 contributor: fullname: Karikalan – volume: 41 start-page: 20447 year: 2016 ident: D3SE00336A/cit137/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.08.195 contributor: fullname: Ramakrishna – volume: 40 start-page: 618 year: 2017 ident: D3SE00336A/cit123/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.014 contributor: fullname: Siracusano – volume: 419 start-page: 129455 year: 2021 ident: D3SE00336A/cit103/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129455 contributor: fullname: Wang – volume: 9 start-page: 2354 year: 2016 ident: D3SE00336A/cit140/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02573G contributor: fullname: Shaner – volume: 10 start-page: 107682 year: 2022 ident: D3SE00336A/cit82/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.107682 contributor: fullname: Pérez – volume: 118 start-page: 438 year: 2016 ident: D3SE00336A/cit139/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.04.021 contributor: fullname: Sayedin – volume: 161 start-page: 112398 year: 2022 ident: D3SE00336A/cit15/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2022.112398 contributor: fullname: Choe – volume: 11 start-page: 1 year: 2020 ident: D3SE00336A/cit101/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 contributor: fullname: Hao – volume: 44 start-page: 4398 year: 2019 ident: D3SE00336A/cit121/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.229 contributor: fullname: Sarno – volume: 46 start-page: 38603 year: 2021 ident: D3SE00336A/cit73/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.116 contributor: fullname: Tajuddin – volume: 129 start-page: 800 year: 2018 ident: D3SE00336A/cit18/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2017.04.028 contributor: fullname: Yu – volume: 25 start-page: 2615 year: 2019 ident: D3SE00336A/cit36/1 publication-title: Ionics doi: 10.1007/s11581-018-2783-0 contributor: fullname: Shiva Kumar – volume: 8 start-page: 3512 year: 2015 ident: D3SE00336A/cit138/1 publication-title: ChemSusChem doi: 10.1002/cssc.201500334 contributor: fullname: Ng – volume: 385 start-page: 138391 year: 2021 ident: D3SE00336A/cit104/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138391 contributor: fullname: Min – volume: 34 start-page: 385 year: 2017 ident: D3SE00336A/cit124/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.02.045 contributor: fullname: Wang – volume: 42 start-page: 30470 year: 2017 ident: D3SE00336A/cit25/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.10.045 contributor: fullname: Schmidt – volume: 38 start-page: 4901 year: 2013 ident: D3SE00336A/cit24/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.01.151 contributor: fullname: Carmo – volume: 28 start-page: 1803291 year: 2018 ident: D3SE00336A/cit94/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803291 contributor: fullname: Zhao – volume: 47 start-page: 4631 year: 2022 ident: D3SE00336A/cit76/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.11.101 contributor: fullname: Urhan – volume: 37 start-page: 12158 year: 2012 ident: D3SE00336A/cit143/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.05.058 contributor: fullname: Genç – volume: 3 start-page: 2521 year: 2019 ident: D3SE00336A/cit21/1 publication-title: Sustainable Energy Fuels doi: 10.1039/C9SE00275H contributor: fullname: Lee – volume: 12 start-page: 6159 year: 2022 ident: D3SE00336A/cit98/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c00570 contributor: fullname: Ouimet – start-page: 2200130 year: 2022 ident: D3SE00336A/cit28/1 publication-title: Small Struct. contributor: fullname: Chen – volume: 324 start-page: 124775 year: 2022 ident: D3SE00336A/cit53/1 publication-title: Fuel doi: 10.1016/j.fuel.2022.124775 contributor: fullname: Kıstı – volume: 342 start-page: 947 year: 2017 ident: D3SE00336A/cit132/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.01.021 contributor: fullname: Zeng – start-page: 111876 year: 2021 ident: D3SE00336A/cit4/1 publication-title: Renewable Sustainable Energy Rev. contributor: fullname: Lim – volume: 306 start-page: 118016 year: 2022 ident: D3SE00336A/cit38/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118016 contributor: fullname: Upadhyay – volume: 124 start-page: 106941 year: 2021 ident: D3SE00336A/cit63/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2021.106941 contributor: fullname: Young – volume: 907 start-page: 164506 year: 2022 ident: D3SE00336A/cit93/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.164506 contributor: fullname: Balaji – volume: 10 start-page: 13100 year: 2022 ident: D3SE00336A/cit113/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c03597 contributor: fullname: Uzgören – volume: 16 start-page: 6631 year: 2012 ident: D3SE00336A/cit142/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2012.08.011 contributor: fullname: Genç – volume: 169 start-page: 034504 year: 2022 ident: D3SE00336A/cit58/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac56a3 contributor: fullname: Lædre – volume-title: E-1000 ident: D3SE00336A/cit157/1 contributor: fullname: Elogen – volume: 39 start-page: 6307 year: 2014 ident: D3SE00336A/cit46/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.02.082 contributor: fullname: Skulimowska – start-page: 271 volume-title: Sustainable Fuel Technologies Handbook year: 2021 ident: D3SE00336A/cit40/1 doi: 10.1016/B978-0-12-822989-7.00010-X contributor: fullname: Amores – volume: 267 start-page: 234 year: 2018 ident: D3SE00336A/cit66/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.02.078 contributor: fullname: Toghyani – volume: 166 start-page: F645 year: 2019 ident: D3SE00336A/cit19/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1451910jes contributor: fullname: Suermann – volume: 38 start-page: 875 year: 2014 ident: D3SE00336A/cit129/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.3081 contributor: fullname: Lim – volume: 45 start-page: 26217 year: 2020 ident: D3SE00336A/cit70/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.02.041 contributor: fullname: Muntean – volume: 10 start-page: 5962 year: 2022 ident: D3SE00336A/cit92/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06240A contributor: fullname: Nichols – volume: 39 start-page: 2957 year: 2011 ident: D3SE00336A/cit141/1 publication-title: Energy Policy doi: 10.1016/j.enpol.2011.03.005 contributor: fullname: Menanteau – volume: 45 start-page: 20583 year: 2021 ident: D3SE00336A/cit56/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.7182 contributor: fullname: Teuku – volume: 8 start-page: 13793 year: 2022 ident: D3SE00336A/cit32/1 publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.10.127 contributor: fullname: Kumar – volume: 123 start-page: 52 year: 2018 ident: D3SE00336A/cit17/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2018.02.024 contributor: fullname: Siracusano – start-page: 1 year: 2022 ident: D3SE00336A/cit62/1 publication-title: Electrocatalysis contributor: fullname: Wakayama – volume: 47 start-page: 15557 year: 2022 ident: D3SE00336A/cit48/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.061 contributor: fullname: Siracusano – volume: 16 start-page: 1371 year: 2021 ident: D3SE00336A/cit133/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00986-1 contributor: fullname: Hao – volume: 268 start-page: 115985 year: 2022 ident: D3SE00336A/cit41/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2022.115985 contributor: fullname: Salehmin – volume: 11 start-page: 481 year: 2021 ident: D3SE00336A/cit72/1 publication-title: Catalysts doi: 10.3390/catal11040481 contributor: fullname: Rakočević – volume: 36 start-page: 5695 year: 2011 ident: D3SE00336A/cit60/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.01.154 contributor: fullname: Zhang – volume: 8 start-page: 19729 year: 2020 ident: D3SE00336A/cit90/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05628F contributor: fullname: Xu – volume: 7 start-page: 107 year: 2019 ident: D3SE00336A/cit9/1 publication-title: J. Power Energy Eng. doi: 10.4236/jpee.2019.71007 contributor: fullname: El-Shafie – volume: 146 start-page: 19 year: 2023 ident: D3SE00336A/cit23/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.10.039 contributor: fullname: Luo – volume: 48 start-page: 16176 year: 2023 ident: D3SE00336A/cit65/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.01.032 contributor: fullname: Ni – volume: 892 start-page: 162113 year: 2022 ident: D3SE00336A/cit107/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.162113 contributor: fullname: Feng – volume: 224 start-page: 113477 year: 2020 ident: D3SE00336A/cit20/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2020.113477 contributor: fullname: Lee – volume: 39 start-page: 17765 year: 2014 ident: D3SE00336A/cit49/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.08.121 contributor: fullname: Gabbasa – volume-title: Silyzer 300 year: 19 May 2023 ident: D3SE00336A/cit151/1 contributor: fullname: Simens Energy – volume: 6 start-page: 2101236 year: 2022 ident: D3SE00336A/cit112/1 publication-title: Small Methods doi: 10.1002/smtd.202101236 contributor: fullname: Joo – volume: 16 start-page: 2003161 year: 2020 ident: D3SE00336A/cit71/1 publication-title: Small doi: 10.1002/smll.202003161 contributor: fullname: Holzapfel – volume: 18 start-page: 2108031 year: 2022 ident: D3SE00336A/cit109/1 publication-title: Small doi: 10.1002/smll.202108031 contributor: fullname: Zhang – volume: 169 start-page: 016518 year: 2022 ident: D3SE00336A/cit91/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac4c76 contributor: fullname: Lin – volume: 41 start-page: 16627 year: 2016 ident: D3SE00336A/cit120/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.125 contributor: fullname: Fouda-Onana – volume: 198 start-page: 196 year: 2012 ident: D3SE00336A/cit59/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.10.022 contributor: fullname: Zhang – volume: 526 start-page: 231146 year: 2022 ident: D3SE00336A/cit45/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231146 contributor: fullname: Choi – volume: 37 start-page: 3358 year: 2012 ident: D3SE00336A/cit43/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.09.152 contributor: fullname: Goñi-Urtiaga – volume: 45 start-page: 20765 year: 2020 ident: D3SE00336A/cit39/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.05.164 contributor: fullname: Upadhyay – volume: 25 start-page: 54 year: 2018 ident: D3SE00336A/cit7/1 publication-title: S. Afr. J. Chem. Eng. contributor: fullname: Kumar – volume: 47 start-page: 28894 year: 2022 ident: D3SE00336A/cit79/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.217 contributor: fullname: Jiang – volume: 67 start-page: 381 year: 2014 ident: D3SE00336A/cit144/1 publication-title: Energy doi: 10.1016/j.energy.2014.01.072 contributor: fullname: Rahimi – volume: 57 start-page: 18 year: 2015 ident: D3SE00336A/cit146/1 publication-title: Geothermics doi: 10.1016/j.geothermics.2015.05.005 contributor: fullname: Yilmaz – volume: 39 start-page: 23 year: 2019 ident: D3SE00336A/cit99/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.01.011 contributor: fullname: Jiang – volume: 3 start-page: 8276 year: 2020 ident: D3SE00336A/cit119/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00735 contributor: fullname: Hegge – volume: 4 start-page: 17587 year: 2016 ident: D3SE00336A/cit96/1 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08075H contributor: fullname: Yan – volume-title: M5000 year: 19 May 2023 ident: D3SE00336A/cit153/1 contributor: fullname: Nel Hydrogen – volume: 5 start-page: 17628 year: 2020 ident: D3SE00336A/cit47/1 publication-title: ACS Omega doi: 10.1021/acsomega.0c02110 contributor: fullname: Li – volume-title: M400 ident: D3SE00336A/cit156/1 contributor: fullname: Proton onsite – volume: 47 start-page: 37742 year: 2022 ident: D3SE00336A/cit3/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.08.297 contributor: fullname: Gopinath – volume: 474 start-page: 228618 year: 2020 ident: D3SE00336A/cit14/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228618 contributor: fullname: Shen – volume: 166 start-page: F487 year: 2019 ident: D3SE00336A/cit26/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0421908jes contributor: fullname: Weiß – volume: 410 start-page: 128333 year: 2021 ident: D3SE00336A/cit135/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128333 contributor: fullname: Xie – volume: 42 start-page: 24612 year: 2017 ident: D3SE00336A/cit22/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.08.033 contributor: fullname: Lee – volume: 24 start-page: 3113 year: 2018 ident: D3SE00336A/cit35/1 publication-title: Ionics doi: 10.1007/s11581-018-2471-0 contributor: fullname: Shiva Kumar – volume: 326 start-page: 120 year: 2016 ident: D3SE00336A/cit127/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.06.082 contributor: fullname: Rakousky – volume: 9 start-page: 15807 year: 2021 ident: D3SE00336A/cit16/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c05152 contributor: fullname: Lee – volume-title: Plug EX-4250D ident: D3SE00336A/cit155/1 contributor: fullname: Plug Power – volume: 12 start-page: 6159 year: 2022 ident: D3SE00336A/cit34/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c00570 contributor: fullname: Ouimet – volume: 10 start-page: 1 year: 2019 ident: D3SE00336A/cit100/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 contributor: fullname: Lin – volume-title: HGas3SP ident: D3SE00336A/cit154/1 contributor: fullname: ITM Power – volume: 40 start-page: 15432 year: 2015 ident: D3SE00336A/cit148/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.08.109 contributor: fullname: Posso – volume: 146 start-page: 2281 year: 2020 ident: D3SE00336A/cit136/1 publication-title: Renewable Energy doi: 10.1016/j.renene.2019.08.068 contributor: fullname: Kumar – volume: 6 start-page: 4161 year: 2021 ident: D3SE00336A/cit57/1 publication-title: ACS Omega doi: 10.1021/acsomega.0c04786 contributor: fullname: Wakayama – volume: 46 start-page: 23581 year: 2021 ident: D3SE00336A/cit97/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.04.174 contributor: fullname: Minke – volume-title: Scaling up electrolysers to meet the 1.5 C climate goal year: 2020 ident: D3SE00336A/cit31/1 contributor: fullname: Reduction – volume: 584 start-page: 729 year: 2021 ident: D3SE00336A/cit86/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.09.099 contributor: fullname: Chan – start-page: 116905 year: 2022 ident: D3SE00336A/cit81/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2022.116905 contributor: fullname: Dharman – volume: 64 start-page: 626 year: 2014 ident: D3SE00336A/cit147/1 publication-title: Energy doi: 10.1016/j.energy.2013.11.012 contributor: fullname: Pelaez-Samaniego – volume: 78 start-page: 105151 year: 2020 ident: D3SE00336A/cit78/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105151 contributor: fullname: Jang – start-page: 1 year: 2022 ident: D3SE00336A/cit108/1 publication-title: Nat. Mater. contributor: fullname: Wu – volume: 6 start-page: 1824 year: 2022 ident: D3SE00336A/cit52/1 publication-title: Sustainable Energy Fuels doi: 10.1039/D2SE00260D contributor: fullname: Yuan – volume: 162 start-page: 139 year: 2018 ident: D3SE00336A/cit27/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.02.041 contributor: fullname: Lee – volume: 544 start-page: 162 year: 2013 ident: D3SE00336A/cit61/1 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.03.130 contributor: fullname: Lin – volume: 24 start-page: 2411 year: 2018 ident: D3SE00336A/cit130/1 publication-title: Ionics doi: 10.1007/s11581-017-2359-4 contributor: fullname: Shiva Kumar – volume: 15 start-page: 1301 year: 2023 ident: D3SE00336A/cit13/1 publication-title: Polymers doi: 10.3390/polym15051301 contributor: fullname: Noor Azam – volume: 133 start-page: 23576 year: 2021 ident: D3SE00336A/cit89/1 publication-title: Angew. Chem. doi: 10.1002/ange.202110335 contributor: fullname: Wang – volume: 303 start-page: 120899 year: 2022 ident: D3SE00336A/cit111/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120899 contributor: fullname: Raja – volume: 46 start-page: 21454 year: 2021 ident: D3SE00336A/cit88/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.225 contributor: fullname: Yoo – volume-title: ME450 ident: D3SE00336A/cit158/1 contributor: fullname: H-Tech Systems – volume: 46 start-page: 38983 year: 2021 ident: D3SE00336A/cit64/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.09.152 contributor: fullname: Sánchez-Molina – volume: 60 start-page: 19068 year: 2021 ident: D3SE00336A/cit87/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202106547 contributor: fullname: Zhang – volume: 58 start-page: 158 year: 2019 ident: D3SE00336A/cit117/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.043 contributor: fullname: Park – volume: 313 start-page: 121458 year: 2022 ident: D3SE00336A/cit77/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121458 contributor: fullname: Xie – volume: 115 start-page: 604 year: 2016 ident: D3SE00336A/cit149/1 publication-title: Energy doi: 10.1016/j.energy.2016.08.101 contributor: fullname: Olateju – volume: 45 start-page: 14207 year: 2021 ident: D3SE00336A/cit50/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.6739 contributor: fullname: Doan – volume: 3 start-page: 14942 year: 2015 ident: D3SE00336A/cit68/1 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02974K contributor: fullname: Zeng – volume: 41 start-page: 8755 year: 2016 ident: D3SE00336A/cit145/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.177 contributor: fullname: Olateju – volume: 6 start-page: 1611 year: 2016 ident: D3SE00336A/cit84/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY02299A contributor: fullname: Pan – volume: 7 start-page: 40427 year: 2017 ident: D3SE00336A/cit131/1 publication-title: RSC Adv. doi: 10.1039/C7RA06534E contributor: fullname: Lv – volume: 169 start-page: 044526 year: 2022 ident: D3SE00336A/cit12/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac5f1d contributor: fullname: Hassan – volume: 11 start-page: 2002926 year: 2021 ident: D3SE00336A/cit55/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002926 contributor: fullname: Liu – volume: 12 start-page: 203 year: 2021 ident: D3SE00336A/cit74/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20503-7 contributor: fullname: Hu – start-page: 100042 year: 2022 ident: D3SE00336A/cit1/1 publication-title: Carbon Capture Sci. Technol. doi: 10.1016/j.ccst.2022.100042 contributor: fullname: Nnabuife – volume: 15 start-page: 1853 year: 2022 ident: D3SE00336A/cit110/1 publication-title: Nano Res. doi: 10.1007/s12274-021-3778-0 contributor: fullname: Chen – volume: 13 start-page: 15073 year: 2021 ident: D3SE00336A/cit106/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c20791 contributor: fullname: Jiang – volume: 10 start-page: 11893 year: 2022 ident: D3SE00336A/cit128/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA09887J contributor: fullname: Jiang – year: 04th August 2022 ident: D3SE00336A/cit150/1 contributor: fullname: Umicore.com – volume: 3 start-page: 1799 year: 2019 ident: D3SE00336A/cit10/1 publication-title: Sustainable Energy Fuels doi: 10.1039/C9SE00148D contributor: fullname: Lee – volume-title: HyLYZER®-4000 year: 19 May 2023 ident: D3SE00336A/cit152/1 contributor: fullname: Cummins Inc – volume: 169 start-page: 064505 year: 2022 ident: D3SE00336A/cit30/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac6d14 contributor: fullname: Möckl – volume: 12 start-page: 2103670 year: 2022 ident: D3SE00336A/cit95/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103670 contributor: fullname: Chen – volume: 82 start-page: 2440 year: 2018 ident: D3SE00336A/cit29/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2017.09.003 contributor: fullname: Buttler – volume: 42 start-page: 28515 year: 2017 ident: D3SE00336A/cit51/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.09.132 contributor: fullname: Omrani – volume: 164 start-page: 488 year: 2015 ident: D3SE00336A/cit125/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.09.005 contributor: fullname: Siracusano – volume: 45 start-page: 1409 year: 2020 ident: D3SE00336A/cit102/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.11.109 contributor: fullname: Han – volume: 267 start-page: 515 year: 2014 ident: D3SE00336A/cit122/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.05.117 contributor: fullname: Sun – volume: 96 start-page: 371 year: 2021 ident: D3SE00336A/cit75/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2021.02.003 contributor: fullname: Kim – volume-title: Lotus™ Mark 2 ident: D3SE00336A/cit159/1 contributor: fullname: Ohmium International – volume: 158 start-page: 632 year: 2018 ident: D3SE00336A/cit2/1 publication-title: Energy doi: 10.1016/j.energy.2018.06.073 contributor: fullname: Mohammadi – volume: 14 start-page: 1071 year: 2019 ident: D3SE00336A/cit80/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0550-7 contributor: fullname: King – volume: 131 start-page: 14906 year: 2019 ident: D3SE00336A/cit114/1 publication-title: Angew. Chem. doi: 10.1002/ange.201909369 contributor: fullname: Zheng – volume: 143 start-page: 110963 year: 2021 ident: D3SE00336A/cit6/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.110963 contributor: fullname: Lee – volume: 35 start-page: 7778 year: 2010 ident: D3SE00336A/cit44/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.041 contributor: fullname: Wei – volume: 152 start-page: J23 year: 2005 ident: D3SE00336A/cit67/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 contributor: fullname: Nørskov – volume: 15 start-page: 558 year: 2018 ident: D3SE00336A/cit37/1 publication-title: Int. J. Green Energy doi: 10.1080/15435075.2018.1508468 contributor: fullname: Shiva Kumar – volume: 10 start-page: 1152 year: 2019 ident: D3SE00336A/cit116/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b04922 contributor: fullname: Chen – volume: 896 start-page: 115076 year: 2021 ident: D3SE00336A/cit83/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115076 contributor: fullname: Davodi – volume: 10 start-page: 9268 year: 2018 ident: D3SE00336A/cit115/1 publication-title: Nanoscale doi: 10.1039/C8NR01572D contributor: fullname: Yang – volume: 570 start-page: 69 year: 2019 ident: D3SE00336A/cit42/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.09.063 contributor: fullname: Giancola |
SSID | ssj0002124257 |
Score | 2.4266164 |
Snippet | Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 356 |
SubjectTerms | Alternative energy sources Commercialization Diffusion layers Diffusion plating Electrocatalysts Electrolysis Energy efficiency Energy resources Gaseous diffusion Green hydrogen Hydrogen Hydrogen production Membranes Production costs Protons R&D Renewable energy sources Renewable resources Research & development Reviews Sustainable production Systems design |
Title | Recent advances in hydrogen production through proton exchange membrane water electrolysis - a review |
URI | https://www.proquest.com/docview/2841314565 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVoe4ED4qsiUJAluEVbNh47WR8rCAqocEkq9bay1962Qt2gNG1VTvwH_iG_hPGO96O0h8JlFVmypey8Hb-xZ94w9lYUVhYlFBiWhGtGAJEYbVziQBWZtWXqTKhG_vJ1PDuQnw_VYXeUXVeXrO1u8ePWupL_sSqOoV1Dlew_WLZdFAfwN9oXn2hhfN7Jxsj56hRxusevM1uPr9xqeUSJV46UYdtePEGTYRlE_anad3jqTzFWRpZ5aYJUYuyIQxolTRIEDE0sb-nT2Hmv7MpT9WCAUHlO4szXk7fnu8P58clF6__3qYHzzFTfLiMo4rGDgHCeSSXK5J2CbmAidUqu1N8yFt3rpI8i1fOVoKiTQNx3QVFHmxs-PYUgifoB5tPQeG7cqqJ2wtl_bWhtmmF9wQ467-ZusC2BHgld4dbedPFpvz2Owx1cki5s-ycaMVvQ77oFrtOXLibZWDUNY2pisnjEHsaIgu8RPB6ze756wh70dCafsiMCCm-Awk8q3gCFd0DhESicgMIboPAGKLwGCu8Dhf_--YsbThB5xg4-ThfvZ0nssJEUIhutE6cz6XXmbWkKjBw8gBXIn0vrMIq2UqYwMc5MZKm0LQtAtpwF2VgM05H32dTANtuslpV_zrhHLqqkLr1Ghi18qqVUVhk31qqQwooBe9O8uPw7CankN-0zYDvNO83jh3aWI4MawSiEHgO2je-5ne_gzNfzzIs7rf6S3e-gvMM216tz_wo55dq-jnj4A9fnd48 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+hydrogen+production+through+proton+exchange+membrane+water+electrolysis+%E2%80%93+a+review&rft.jtitle=Sustainable+energy+%26+fuels&rft.au=Kumar%2C+S.+Shiva&rft.au=Lim%2C+Hankwon&rft.date=2023-07-25&rft.issn=2398-4902&rft.eissn=2398-4902&rft.volume=7&rft.issue=15&rft.spage=3560&rft.epage=3583&rft_id=info:doi/10.1039%2FD3SE00336A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3SE00336A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-4902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-4902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-4902&client=summon |