Recent advances in hydrogen production through proton exchange membrane water electrolysis - a review

Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. Moreover, PEM water electrolysis has several benefits such as compact system design with high operat...

Full description

Saved in:
Bibliographic Details
Published inSustainable energy & fuels Vol. 7; no. 15; pp. 356 - 3583
Main Authors Kumar, S. Shiva, Lim, Hankwon
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 25.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. Moreover, PEM water electrolysis has several benefits such as compact system design with high operating current density, high hydrogen purity, greater energy efficiency and rapid response when combined with renewable energy sources. However, the use of costly electrocatalysts and cell components leads to expensive and limited commercial applications. In this review, various water electrolysis technologies and their technical specifications including hydrogen production costs were briefly summarized from a commercial perspective. Furthermore, we have mainly focused on PEM water electrolysis including recent developments in cell components such as membranes, gas diffusion layers, bipolar plates, and electrocatalysts. Moreover, some of the most effective results also were described and the research gaps and their challenges for cost reduction and commercialization were identified. Furthermore, we concluded by outlining our thoughts and potential solutions for future research directions that should be pursued to develop inexpensive electrocatalysts and cell components for efficient production of green hydrogen. This review aims to provide possible directions and a road map for future research and development towards the development of inexpensive PEM electrolysers. Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources.
AbstractList Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. Moreover, PEM water electrolysis has several benefits such as compact system design with high operating current density, high hydrogen purity, greater energy efficiency and rapid response when combined with renewable energy sources. However, the use of costly electrocatalysts and cell components leads to expensive and limited commercial applications. In this review, various water electrolysis technologies and their technical specifications including hydrogen production costs were briefly summarized from a commercial perspective. Furthermore, we have mainly focused on PEM water electrolysis including recent developments in cell components such as membranes, gas diffusion layers, bipolar plates, and electrocatalysts. Moreover, some of the most effective results also were described and the research gaps and their challenges for cost reduction and commercialization were identified. Furthermore, we concluded by outlining our thoughts and potential solutions for future research directions that should be pursued to develop inexpensive electrocatalysts and cell components for efficient production of green hydrogen. This review aims to provide possible directions and a road map for future research and development towards the development of inexpensive PEM electrolysers.
Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources. Moreover, PEM water electrolysis has several benefits such as compact system design with high operating current density, high hydrogen purity, greater energy efficiency and rapid response when combined with renewable energy sources. However, the use of costly electrocatalysts and cell components leads to expensive and limited commercial applications. In this review, various water electrolysis technologies and their technical specifications including hydrogen production costs were briefly summarized from a commercial perspective. Furthermore, we have mainly focused on PEM water electrolysis including recent developments in cell components such as membranes, gas diffusion layers, bipolar plates, and electrocatalysts. Moreover, some of the most effective results also were described and the research gaps and their challenges for cost reduction and commercialization were identified. Furthermore, we concluded by outlining our thoughts and potential solutions for future research directions that should be pursued to develop inexpensive electrocatalysts and cell components for efficient production of green hydrogen. This review aims to provide possible directions and a road map for future research and development towards the development of inexpensive PEM electrolysers. Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water and intermittent renewable energy sources.
Author Kumar, S. Shiva
Lim, Hankwon
AuthorAffiliation Graduate School of Carbon Neutrality
School of Energy and Chemical Engineering
Carbon Neutrality Demonstration and Research Center
Ulsan National Institute of Science and Technology
AuthorAffiliation_xml – name: School of Energy and Chemical Engineering
– name: Ulsan National Institute of Science and Technology
– name: Graduate School of Carbon Neutrality
– name: Carbon Neutrality Demonstration and Research Center
Author_xml – sequence: 1
  givenname: S. Shiva
  surname: Kumar
  fullname: Kumar, S. Shiva
– sequence: 2
  givenname: Hankwon
  surname: Lim
  fullname: Lim, Hankwon
BookMark eNpNkMtLAzEQh4NUsNZevAsBb8Jqnt3ssdT6gILg47xks7PdLW1Sk2wf_71bK-ppZn58zAzfOepZZwGhS0puKeHZXckDEML5SJ-gPuOZSkRGWO9ff4aGISwIIYwywWTaR_AKBmzEutxoayDgxuJ6X3o3B4vX3pWtiY2zONbetfP6EMVuhJ2ptZ0DXsGq8NoC3uoIHsMSTPRuuQ9NwAnW2MOmge0FOq30MsDwpw7Qx8P0ffKUzF4enyfjWWKYojEpMyUgU1BU2ihCgPOCCS6roqQjUQhBeKpLnYpKZkVluCRSCcVSppigsiCaD9D1cW_35mcLIeYL13rbncyZEpRTIUeyo26OlPEuBA9VvvbNSvt9Tkl-MJnf87fpt8lxB18dYR_ML_dnmn8BVJZyJQ
CitedBy_id crossref_primary_10_1038_s41524_024_01268_9
crossref_primary_10_1039_D3TA03769J
crossref_primary_10_1039_D3YA00492A
crossref_primary_10_1021_acs_chemrev_3c00712
crossref_primary_10_1002_cite_202300151
crossref_primary_10_1039_D3DT02969G
crossref_primary_10_1021_acs_inorgchem_4c00881
crossref_primary_10_3390_cleantechnol5040067
crossref_primary_10_1002_ente_202301603
crossref_primary_10_1016_j_cclet_2024_109557
crossref_primary_10_1016_j_renene_2024_120911
crossref_primary_10_1039_D3RA05164A
crossref_primary_10_1039_D3SE01343J
crossref_primary_10_1039_D3SE01486J
crossref_primary_10_1002_solr_202301047
crossref_primary_10_1039_D3NH00506B
crossref_primary_10_1021_acsaem_3c03260
crossref_primary_10_1088_1755_1315_1348_1_012058
crossref_primary_10_1039_D4YA00143E
Cites_doi 10.1016/j.apcatb.2018.07.064
10.1016/j.enconman.2021.114516
10.1016/j.jece.2021.106349
10.1002/cite.201900101
10.1002/er.6936
10.1016/j.jcis.2021.01.049
10.1016/j.ijhydene.2014.07.170
10.1016/j.elecom.2018.10.021
10.1016/j.ijhydene.2021.03.203
10.1016/j.ijhydene.2019.02.110
10.1016/j.ijhydene.2016.08.195
10.1016/j.nanoen.2017.09.014
10.1016/j.cej.2021.129455
10.1039/C5EE02573G
10.1016/j.jece.2022.107682
10.1016/j.enconman.2016.04.021
10.1016/j.rser.2022.112398
10.1038/s41467-019-13993-7
10.1016/j.ijhydene.2018.10.229
10.1016/j.ijhydene.2021.09.116
10.1016/j.renene.2017.04.028
10.1007/s11581-018-2783-0
10.1002/cssc.201500334
10.1016/j.electacta.2021.138391
10.1016/j.nanoen.2017.02.045
10.1016/j.ijhydene.2017.10.045
10.1016/j.ijhydene.2013.01.151
10.1002/adfm.201803291
10.1016/j.ijhydene.2021.11.101
10.1016/j.ijhydene.2012.05.058
10.1039/C9SE00275H
10.1021/acscatal.2c00570
10.1016/j.fuel.2022.124775
10.1016/j.jpowsour.2017.01.021
10.1016/j.apenergy.2021.118016
10.1016/j.elecom.2021.106941
10.1016/j.jallcom.2022.164506
10.1021/acssuschemeng.2c03597
10.1016/j.rser.2012.08.011
10.1149/1945-7111/ac56a3
10.1016/j.ijhydene.2014.02.082
10.1016/B978-0-12-822989-7.00010-X
10.1016/j.electacta.2018.02.078
10.1149/2.1451910jes
10.1002/er.3081
10.1016/j.ijhydene.2020.02.041
10.1039/D1TA06240A
10.1016/j.enpol.2011.03.005
10.1002/er.7182
10.1016/j.egyr.2022.10.127
10.1016/j.renene.2018.02.024
10.1016/j.ijhydene.2022.03.061
10.1038/s41565-021-00986-1
10.1016/j.enconman.2022.115985
10.3390/catal11040481
10.1016/j.ijhydene.2011.01.154
10.1039/D0TA05628F
10.4236/jpee.2019.71007
10.1016/j.jmst.2022.10.039
10.1016/j.ijhydene.2023.01.032
10.1016/j.jallcom.2021.162113
10.1016/j.enconman.2020.113477
10.1016/j.ijhydene.2014.08.121
10.1002/smtd.202101236
10.1002/smll.202003161
10.1002/smll.202108031
10.1149/1945-7111/ac4c76
10.1016/j.ijhydene.2016.07.125
10.1016/j.jpowsour.2011.10.022
10.1016/j.jpowsour.2022.231146
10.1016/j.ijhydene.2011.09.152
10.1016/j.ijhydene.2020.05.164
10.1016/j.ijhydene.2022.06.217
10.1016/j.energy.2014.01.072
10.1016/j.geothermics.2015.05.005
10.1016/j.jechem.2019.01.011
10.1021/acsaem.0c00735
10.1039/C6TA08075H
10.1021/acsomega.0c02110
10.1016/j.ijhydene.2022.08.297
10.1016/j.jpowsour.2020.228618
10.1149/2.0421908jes
10.1016/j.cej.2020.128333
10.1016/j.ijhydene.2017.08.033
10.1007/s11581-018-2471-0
10.1016/j.jpowsour.2016.06.082
10.1021/acssuschemeng.1c05152
10.1038/s41467-018-07882-8
10.1016/j.ijhydene.2015.08.109
10.1016/j.renene.2019.08.068
10.1021/acsomega.0c04786
10.1016/j.ijhydene.2021.04.174
10.1016/j.jcis.2020.09.099
10.1016/j.jelechem.2022.116905
10.1016/j.energy.2013.11.012
10.1016/j.nanoen.2020.105151
10.1039/D2SE00260D
10.1016/j.enconman.2018.02.041
10.1016/j.tsf.2013.03.130
10.1007/s11581-017-2359-4
10.3390/polym15051301
10.1002/ange.202110335
10.1016/j.apcatb.2021.120899
10.1016/j.ijhydene.2021.03.225
10.1016/j.ijhydene.2021.09.152
10.1002/anie.202106547
10.1016/j.nanoen.2019.01.043
10.1016/j.apcatb.2022.121458
10.1016/j.energy.2016.08.101
10.1002/er.6739
10.1039/C5TA02974K
10.1016/j.ijhydene.2016.03.177
10.1039/C5CY02299A
10.1039/C7RA06534E
10.1149/1945-7111/ac5f1d
10.1002/aenm.202002926
10.1038/s41467-020-20503-7
10.1016/j.ccst.2022.100042
10.1007/s12274-021-3778-0
10.1021/acsami.0c20791
10.1039/D1TA09887J
10.1039/C9SE00148D
10.1149/1945-7111/ac6d14
10.1002/aenm.202103670
10.1016/j.rser.2017.09.003
10.1016/j.ijhydene.2017.09.132
10.1016/j.apcatb.2014.09.005
10.1016/j.ijhydene.2019.11.109
10.1016/j.jpowsour.2014.05.117
10.1016/j.jiec.2021.02.003
10.1016/j.energy.2018.06.073
10.1038/s41565-019-0550-7
10.1002/ange.201909369
10.1016/j.rser.2021.110963
10.1016/j.ijhydene.2010.05.041
10.1149/1.1856988
10.1080/15435075.2018.1508468
10.1021/acscatal.9b04922
10.1016/j.jelechem.2021.115076
10.1039/C8NR01572D
10.1016/j.memsci.2018.09.063
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7QO
7SP
7ST
7U6
8FD
C1K
FR3
L7M
P64
DOI 10.1039/d3se00336a
DatabaseName CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Sustainability Science Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Biotechnology Research Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2398-4902
EndPage 3583
ExternalDocumentID 10_1039_D3SE00336A
d3se00336a
GroupedDBID 0R~
AAEMU
AAIWI
AAJAE
AANOJ
ABASK
ABDVN
ABRYZ
AETIL
AFOGI
AGRSR
ALMA_UNASSIGNED_HOLDINGS
ANUXI
BLAPV
C6K
EBS
ECGLT
H13
O9-
OK1
RAOCF
RCNCU
RRC
RSCEA
RVUXY
AARTK
AAXHV
AAYXX
ABPDG
AENGV
AGEGJ
AKBGW
APEMP
CITATION
GGIMP
7QO
7SP
7ST
7U6
8FD
C1K
FR3
L7M
P64
ID FETCH-LOGICAL-c281t-d984e98ebfac800e33b2435fbd164b44037ada74f59bfc350584827282415b0a3
ISSN 2398-4902
IngestDate Thu Oct 10 17:27:26 EDT 2024
Fri Aug 23 01:31:36 EDT 2024
Wed Jul 26 04:23:32 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-d984e98ebfac800e33b2435fbd164b44037ada74f59bfc350584827282415b0a3
Notes 2
electrolysis, fuel cells and CO
capture technologies, including synthesis of nanostructured functional materials for the HER/OER/ORR, membrane electrode assemblies (MEAs) and designing of prototype electrolysers.
Hankwon Lim is a Full Professor and a Director of the Carbon Neutrality Demonstration and Research Center at Ulsan National Institute of Science and Technology (UNIST) in Korea. He received BS from Sogang University in 2000, MS from Georgia Tech in 2003, and PhD from Virginia Tech in 2007 all in chemical engineering. He also had industrial experience in an R&D center at Praxair (now Linde) as a development specialist. His research is well balanced between experimental and theoretical studies and primary research areas are process design, economics, life cycle assessment, scale-up, plant design, computational fluid dynamics, H
Dr S. Shiva Kumar is currently working as a postdoctoral researcher at the Ulsan National Institute of Science and Technology, South Korea. He received his Ph.D. in Chemistry from Jawaharlal Nehru Technological University Hyderabad (JNTUH), India. After completing his Ph.D., he continued his postdoctoral research at JNTUH, in the field of hydrogen production through water electrolysis. Additionally, he has industrial experience as a Deputy Manager-Team Lead for hydrogen projects at Axis Energy Ventures India Pvt. Ltd. His current research expertise is in the field of low-temperature water electrolysis (alkaline/AEM/PEM), CO
energy, CO
capture & utilization, ammonia synthesis, battery management, plastic recycling, and machine learning-based engineering applications. His research also aims at an integrative engineering approach for commercialization of technologies of interest from laboratory to industrial scales through low carbon/carbon neutral processes coupled with sustainability and ESG.
ORCID 0000-0002-1074-0251
PQID 2841314565
PQPubID 2048882
PageCount 24
ParticipantIDs proquest_journals_2841314565
crossref_primary_10_1039_D3SE00336A
rsc_primary_d3se00336a
PublicationCentury 2000
PublicationDate 2023-07-25
PublicationDateYYYYMMDD 2023-07-25
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Sustainable energy & fuels
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Balaji (D3SE00336A/cit93/1) 2022; 907
Chen (D3SE00336A/cit95/1) 2022; 12
Wakayama (D3SE00336A/cit57/1) 2021; 6
Lee (D3SE00336A/cit22/1) 2017; 42
Jiang (D3SE00336A/cit106/1) 2021; 13
Cummins Inc (D3SE00336A/cit152/1) 19 May 2023
Genç (D3SE00336A/cit142/1) 2012; 16
Olateju (D3SE00336A/cit149/1) 2016; 115
Young (D3SE00336A/cit63/1) 2021; 124
Ramakrishna (D3SE00336A/cit137/1) 2016; 41
Pérez (D3SE00336A/cit82/1) 2022; 10
Pang (D3SE00336A/cit85/1) 2021; 590
Jiang (D3SE00336A/cit128/1) 2022; 10
Nel Hydrogen (D3SE00336A/cit153/1) 19 May 2023
Hu (D3SE00336A/cit74/1) 2021; 12
Lim (D3SE00336A/cit129/1) 2014; 38
Plug Power (D3SE00336A/cit155/1)
Elogen (D3SE00336A/cit157/1)
Jiang (D3SE00336A/cit99/1) 2019; 39
Möckl (D3SE00336A/cit30/1) 2022; 169
Mohammadi (D3SE00336A/cit2/1) 2018; 158
Lee (D3SE00336A/cit21/1) 2019; 3
Chen (D3SE00336A/cit116/1) 2019; 10
Hassan (D3SE00336A/cit12/1) 2022; 169
Sarno (D3SE00336A/cit121/1) 2019; 44
Yoo (D3SE00336A/cit88/1) 2021; 46
Uzgören (D3SE00336A/cit113/1) 2022; 10
Lim (D3SE00336A/cit5/1) 2021; 245
Yoon (D3SE00336A/cit134/1) 2021; 45
Buttler (D3SE00336A/cit29/1) 2018; 82
Lee (D3SE00336A/cit16/1) 2021; 9
Kim (D3SE00336A/cit75/1) 2021; 96
Wang (D3SE00336A/cit124/1) 2017; 34
Reduction (D3SE00336A/cit31/1) 2020
Yuan (D3SE00336A/cit52/1) 2022; 6
Chen (D3SE00336A/cit28/1) 2022
Upadhyay (D3SE00336A/cit38/1) 2022; 306
Noor Azam (D3SE00336A/cit13/1) 2023; 15
Proton onsite (D3SE00336A/cit156/1)
Min (D3SE00336A/cit104/1) 2021; 385
Shiva Kumar (D3SE00336A/cit36/1) 2019; 25
Upadhyay (D3SE00336A/cit39/1) 2020; 45
Pan (D3SE00336A/cit84/1) 2016; 6
Muntean (D3SE00336A/cit70/1) 2020; 45
Giancola (D3SE00336A/cit42/1) 2019; 570
Nørskov (D3SE00336A/cit67/1) 2005; 152
Lin (D3SE00336A/cit100/1) 2019; 10
Zhang (D3SE00336A/cit60/1) 2011; 36
Zeng (D3SE00336A/cit68/1) 2015; 3
Kaya (D3SE00336A/cit105/1) 2021; 46
Shaner (D3SE00336A/cit140/1) 2016; 9
Rakousky (D3SE00336A/cit127/1) 2016; 326
Siracusano (D3SE00336A/cit17/1) 2018; 123
Davodi (D3SE00336A/cit83/1) 2021; 896
Yilmaz (D3SE00336A/cit146/1) 2015; 57
Schmidt (D3SE00336A/cit25/1) 2017; 42
Zeng (D3SE00336A/cit132/1) 2017; 342
Pelaez-Samaniego (D3SE00336A/cit147/1) 2014; 64
Minke (D3SE00336A/cit97/1) 2021; 46
Wu (D3SE00336A/cit108/1) 2022
Kumar (D3SE00336A/cit11/1) 2019; 2
Yu (D3SE00336A/cit18/1) 2018; 129
Kumar (D3SE00336A/cit136/1) 2020; 146
King (D3SE00336A/cit80/1) 2019; 14
Lee (D3SE00336A/cit27/1) 2018; 162
Raja (D3SE00336A/cit111/1) 2022; 303
Xie (D3SE00336A/cit77/1) 2022; 313
Kumar (D3SE00336A/cit32/1) 2022; 8
Lædre (D3SE00336A/cit58/1) 2022; 169
Karikalan (D3SE00336A/cit69/1) 2019; 44
Tajuddin (D3SE00336A/cit73/1) 2021; 46
Liu (D3SE00336A/cit54/1) 2018; 97
Siracusano (D3SE00336A/cit125/1) 2015; 164
Lim (D3SE00336A/cit4/1) 2021
Li (D3SE00336A/cit47/1) 2020; 5
Lin (D3SE00336A/cit91/1) 2022; 169
Gabbasa (D3SE00336A/cit49/1) 2014; 39
Luo (D3SE00336A/cit23/1) 2023; 146
Suermann (D3SE00336A/cit19/1) 2019; 166
Zhao (D3SE00336A/cit94/1) 2018; 28
Lee (D3SE00336A/cit8/1) 2021; 9
Zhang (D3SE00336A/cit109/1) 2022; 18
Sánchez-Molina (D3SE00336A/cit64/1) 2021; 46
Simens Energy (D3SE00336A/cit151/1) 19 May 2023
Park (D3SE00336A/cit117/1) 2019; 58
Lv (D3SE00336A/cit131/1) 2017; 7
Nichols (D3SE00336A/cit92/1) 2022; 10
Siracusano (D3SE00336A/cit123/1) 2017; 40
Shiva Kumar (D3SE00336A/cit130/1) 2018; 24
Amores (D3SE00336A/cit40/1) 2021
Jiang (D3SE00336A/cit79/1) 2022; 47
Lee (D3SE00336A/cit20/1) 2020; 224
Fouda-Onana (D3SE00336A/cit120/1) 2016; 41
Weiß (D3SE00336A/cit26/1) 2019; 166
Omrani (D3SE00336A/cit51/1) 2017; 42
Teuku (D3SE00336A/cit56/1) 2021; 45
Zhang (D3SE00336A/cit87/1) 2021; 60
Dharman (D3SE00336A/cit81/1) 2022
Salehmin (D3SE00336A/cit41/1) 2022; 268
Holzapfel (D3SE00336A/cit71/1) 2020; 16
Sun (D3SE00336A/cit122/1) 2014; 267
Lee (D3SE00336A/cit6/1) 2021; 143
Lee (D3SE00336A/cit10/1) 2019; 3
Posso (D3SE00336A/cit148/1) 2015; 40
Xie (D3SE00336A/cit135/1) 2021; 410
Siracusano (D3SE00336A/cit48/1) 2022; 47
Olateju (D3SE00336A/cit145/1) 2016; 41
Feng (D3SE00336A/cit107/1) 2022; 892
Zheng (D3SE00336A/cit114/1) 2019; 131
H-Tech Systems (D3SE00336A/cit158/1)
Zhang (D3SE00336A/cit59/1) 2012; 198
Gopinath (D3SE00336A/cit3/1) 2022; 47
Audichon (D3SE00336A/cit126/1) 2014; 39
Choi (D3SE00336A/cit45/1) 2022; 526
Han (D3SE00336A/cit102/1) 2020; 45
Yang (D3SE00336A/cit115/1) 2018; 10
Wang (D3SE00336A/cit89/1) 2021; 133
Wakayama (D3SE00336A/cit62/1) 2022
Wang (D3SE00336A/cit103/1) 2021; 419
Yan (D3SE00336A/cit96/1) 2016; 4
Menanteau (D3SE00336A/cit141/1) 2011; 39
Shiva Kumar (D3SE00336A/cit35/1) 2018; 24
Rakočević (D3SE00336A/cit72/1) 2021; 11
Xu (D3SE00336A/cit90/1) 2020; 8
Umicore.com (D3SE00336A/cit150/1) 04th August 2022
Nnabuife (D3SE00336A/cit1/1) 2022
Shen (D3SE00336A/cit14/1) 2020; 474
Ouimet (D3SE00336A/cit98/1) 2022; 12
Ouimet (D3SE00336A/cit34/1) 2022; 12
Choe (D3SE00336A/cit15/1) 2022; 161
Joo (D3SE00336A/cit112/1) 2022; 6
Rahimi (D3SE00336A/cit144/1) 2014; 67
Yu (D3SE00336A/cit118/1) 2018; 239
Ohmium International (D3SE00336A/cit159/1)
Genç (D3SE00336A/cit143/1) 2012; 37
El-Shafie (D3SE00336A/cit9/1) 2019; 7
Carmo (D3SE00336A/cit24/1) 2013; 38
Lin (D3SE00336A/cit61/1) 2013; 544
Jang (D3SE00336A/cit78/1) 2020; 78
Urhan (D3SE00336A/cit76/1) 2022; 47
Sayedin (D3SE00336A/cit139/1) 2016; 118
Bernt (D3SE00336A/cit33/1) 2020; 92
Wei (D3SE00336A/cit44/1) 2010; 35
Doan (D3SE00336A/cit50/1) 2021; 45
Chen (D3SE00336A/cit110/1) 2022; 15
Ng (D3SE00336A/cit138/1) 2015; 8
Chan (D3SE00336A/cit86/1) 2021; 584
ITM Power (D3SE00336A/cit154/1)
Liu (D3SE00336A/cit55/1) 2021; 11
Goñi-Urtiaga (D3SE00336A/cit43/1) 2012; 37
Hao (D3SE00336A/cit101/1) 2020; 11
Hegge (D3SE00336A/cit119/1) 2020; 3
Hao (D3SE00336A/cit133/1) 2021; 16
Kıstı (D3SE00336A/cit53/1) 2022; 324
Ni (D3SE00336A/cit65/1) 2023; 48
Kumar (D3SE00336A/cit7/1) 2018; 25
Skulimowska (D3SE00336A/cit46/1) 2014; 39
Shiva Kumar (D3SE00336A/cit37/1) 2018; 15
Toghyani (D3SE00336A/cit66/1) 2018; 267
References_xml – issn: 19 May 2023
  publication-title: HyLYZER®-4000
  doi: Cummins Inc
– publication-title: E-1000
  doi: Elogen
– publication-title: Lotus™ Mark 2
  doi: Ohmium International
– issn: 19 May 2023
  publication-title: M5000
  doi: Nel Hydrogen
– publication-title: ME450
  doi: H-Tech Systems
– issn: 2020
  publication-title: Scaling up electrolysers to meet the 1.5 C climate goal
  doi: Reduction
– publication-title: HGas3SP
  doi: ITM Power
– issn: 2021
  volume-title: Renewable hydrogen production by water electrolysis
  end-page: p 271-313
  publication-title: Sustainable Fuel Technologies Handbook
  doi: Amores Sánchez Rojas Sánchez-Molina
– issn: 04th August 2022
  doi: Umicore.com
– publication-title: Plug EX-4250D
  doi: Plug Power
– issn: 19 May 2023
  publication-title: Silyzer 300
  doi: Simens Energy
– publication-title: M400
  doi: Proton onsite
– volume: 2
  start-page: 442
  year: 2019
  ident: D3SE00336A/cit11/1
  publication-title: Mater. Sci. Energy Technol.
  contributor:
    fullname: Kumar
– volume: 239
  start-page: 133
  year: 2018
  ident: D3SE00336A/cit118/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2018.07.064
  contributor:
    fullname: Yu
– volume: 245
  start-page: 114516
  year: 2021
  ident: D3SE00336A/cit5/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.114516
  contributor:
    fullname: Lim
– volume: 9
  start-page: 106349
  year: 2021
  ident: D3SE00336A/cit8/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106349
  contributor:
    fullname: Lee
– volume: 92
  start-page: 31
  year: 2020
  ident: D3SE00336A/cit33/1
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.201900101
  contributor:
    fullname: Bernt
– volume: 45
  start-page: 16842
  year: 2021
  ident: D3SE00336A/cit134/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6936
  contributor:
    fullname: Yoon
– volume: 590
  start-page: 154
  year: 2021
  ident: D3SE00336A/cit85/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.01.049
  contributor:
    fullname: Pang
– volume: 39
  start-page: 16785
  year: 2014
  ident: D3SE00336A/cit126/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.07.170
  contributor:
    fullname: Audichon
– volume: 97
  start-page: 96
  year: 2018
  ident: D3SE00336A/cit54/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2018.10.021
  contributor:
    fullname: Liu
– volume: 46
  start-page: 20825
  year: 2021
  ident: D3SE00336A/cit105/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.03.203
  contributor:
    fullname: Kaya
– volume: 44
  start-page: 9164
  year: 2019
  ident: D3SE00336A/cit69/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.110
  contributor:
    fullname: Karikalan
– volume: 41
  start-page: 20447
  year: 2016
  ident: D3SE00336A/cit137/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.08.195
  contributor:
    fullname: Ramakrishna
– volume: 40
  start-page: 618
  year: 2017
  ident: D3SE00336A/cit123/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.014
  contributor:
    fullname: Siracusano
– volume: 419
  start-page: 129455
  year: 2021
  ident: D3SE00336A/cit103/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129455
  contributor:
    fullname: Wang
– volume: 9
  start-page: 2354
  year: 2016
  ident: D3SE00336A/cit140/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02573G
  contributor:
    fullname: Shaner
– volume: 10
  start-page: 107682
  year: 2022
  ident: D3SE00336A/cit82/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.107682
  contributor:
    fullname: Pérez
– volume: 118
  start-page: 438
  year: 2016
  ident: D3SE00336A/cit139/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.04.021
  contributor:
    fullname: Sayedin
– volume: 161
  start-page: 112398
  year: 2022
  ident: D3SE00336A/cit15/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2022.112398
  contributor:
    fullname: Choe
– volume: 11
  start-page: 1
  year: 2020
  ident: D3SE00336A/cit101/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
  contributor:
    fullname: Hao
– volume: 44
  start-page: 4398
  year: 2019
  ident: D3SE00336A/cit121/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.229
  contributor:
    fullname: Sarno
– volume: 46
  start-page: 38603
  year: 2021
  ident: D3SE00336A/cit73/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.116
  contributor:
    fullname: Tajuddin
– volume: 129
  start-page: 800
  year: 2018
  ident: D3SE00336A/cit18/1
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.04.028
  contributor:
    fullname: Yu
– volume: 25
  start-page: 2615
  year: 2019
  ident: D3SE00336A/cit36/1
  publication-title: Ionics
  doi: 10.1007/s11581-018-2783-0
  contributor:
    fullname: Shiva Kumar
– volume: 8
  start-page: 3512
  year: 2015
  ident: D3SE00336A/cit138/1
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500334
  contributor:
    fullname: Ng
– volume: 385
  start-page: 138391
  year: 2021
  ident: D3SE00336A/cit104/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138391
  contributor:
    fullname: Min
– volume: 34
  start-page: 385
  year: 2017
  ident: D3SE00336A/cit124/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.02.045
  contributor:
    fullname: Wang
– volume: 42
  start-page: 30470
  year: 2017
  ident: D3SE00336A/cit25/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.10.045
  contributor:
    fullname: Schmidt
– volume: 38
  start-page: 4901
  year: 2013
  ident: D3SE00336A/cit24/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.01.151
  contributor:
    fullname: Carmo
– volume: 28
  start-page: 1803291
  year: 2018
  ident: D3SE00336A/cit94/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803291
  contributor:
    fullname: Zhao
– volume: 47
  start-page: 4631
  year: 2022
  ident: D3SE00336A/cit76/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.11.101
  contributor:
    fullname: Urhan
– volume: 37
  start-page: 12158
  year: 2012
  ident: D3SE00336A/cit143/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.05.058
  contributor:
    fullname: Genç
– volume: 3
  start-page: 2521
  year: 2019
  ident: D3SE00336A/cit21/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C9SE00275H
  contributor:
    fullname: Lee
– volume: 12
  start-page: 6159
  year: 2022
  ident: D3SE00336A/cit98/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00570
  contributor:
    fullname: Ouimet
– start-page: 2200130
  year: 2022
  ident: D3SE00336A/cit28/1
  publication-title: Small Struct.
  contributor:
    fullname: Chen
– volume: 324
  start-page: 124775
  year: 2022
  ident: D3SE00336A/cit53/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.124775
  contributor:
    fullname: Kıstı
– volume: 342
  start-page: 947
  year: 2017
  ident: D3SE00336A/cit132/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.021
  contributor:
    fullname: Zeng
– start-page: 111876
  year: 2021
  ident: D3SE00336A/cit4/1
  publication-title: Renewable Sustainable Energy Rev.
  contributor:
    fullname: Lim
– volume: 306
  start-page: 118016
  year: 2022
  ident: D3SE00336A/cit38/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118016
  contributor:
    fullname: Upadhyay
– volume: 124
  start-page: 106941
  year: 2021
  ident: D3SE00336A/cit63/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2021.106941
  contributor:
    fullname: Young
– volume: 907
  start-page: 164506
  year: 2022
  ident: D3SE00336A/cit93/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.164506
  contributor:
    fullname: Balaji
– volume: 10
  start-page: 13100
  year: 2022
  ident: D3SE00336A/cit113/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c03597
  contributor:
    fullname: Uzgören
– volume: 16
  start-page: 6631
  year: 2012
  ident: D3SE00336A/cit142/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2012.08.011
  contributor:
    fullname: Genç
– volume: 169
  start-page: 034504
  year: 2022
  ident: D3SE00336A/cit58/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac56a3
  contributor:
    fullname: Lædre
– volume-title: E-1000
  ident: D3SE00336A/cit157/1
  contributor:
    fullname: Elogen
– volume: 39
  start-page: 6307
  year: 2014
  ident: D3SE00336A/cit46/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.02.082
  contributor:
    fullname: Skulimowska
– start-page: 271
  volume-title: Sustainable Fuel Technologies Handbook
  year: 2021
  ident: D3SE00336A/cit40/1
  doi: 10.1016/B978-0-12-822989-7.00010-X
  contributor:
    fullname: Amores
– volume: 267
  start-page: 234
  year: 2018
  ident: D3SE00336A/cit66/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.078
  contributor:
    fullname: Toghyani
– volume: 166
  start-page: F645
  year: 2019
  ident: D3SE00336A/cit19/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1451910jes
  contributor:
    fullname: Suermann
– volume: 38
  start-page: 875
  year: 2014
  ident: D3SE00336A/cit129/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3081
  contributor:
    fullname: Lim
– volume: 45
  start-page: 26217
  year: 2020
  ident: D3SE00336A/cit70/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.041
  contributor:
    fullname: Muntean
– volume: 10
  start-page: 5962
  year: 2022
  ident: D3SE00336A/cit92/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA06240A
  contributor:
    fullname: Nichols
– volume: 39
  start-page: 2957
  year: 2011
  ident: D3SE00336A/cit141/1
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.03.005
  contributor:
    fullname: Menanteau
– volume: 45
  start-page: 20583
  year: 2021
  ident: D3SE00336A/cit56/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7182
  contributor:
    fullname: Teuku
– volume: 8
  start-page: 13793
  year: 2022
  ident: D3SE00336A/cit32/1
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.10.127
  contributor:
    fullname: Kumar
– volume: 123
  start-page: 52
  year: 2018
  ident: D3SE00336A/cit17/1
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.02.024
  contributor:
    fullname: Siracusano
– start-page: 1
  year: 2022
  ident: D3SE00336A/cit62/1
  publication-title: Electrocatalysis
  contributor:
    fullname: Wakayama
– volume: 47
  start-page: 15557
  year: 2022
  ident: D3SE00336A/cit48/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.03.061
  contributor:
    fullname: Siracusano
– volume: 16
  start-page: 1371
  year: 2021
  ident: D3SE00336A/cit133/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00986-1
  contributor:
    fullname: Hao
– volume: 268
  start-page: 115985
  year: 2022
  ident: D3SE00336A/cit41/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2022.115985
  contributor:
    fullname: Salehmin
– volume: 11
  start-page: 481
  year: 2021
  ident: D3SE00336A/cit72/1
  publication-title: Catalysts
  doi: 10.3390/catal11040481
  contributor:
    fullname: Rakočević
– volume: 36
  start-page: 5695
  year: 2011
  ident: D3SE00336A/cit60/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.154
  contributor:
    fullname: Zhang
– volume: 8
  start-page: 19729
  year: 2020
  ident: D3SE00336A/cit90/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05628F
  contributor:
    fullname: Xu
– volume: 7
  start-page: 107
  year: 2019
  ident: D3SE00336A/cit9/1
  publication-title: J. Power Energy Eng.
  doi: 10.4236/jpee.2019.71007
  contributor:
    fullname: El-Shafie
– volume: 146
  start-page: 19
  year: 2023
  ident: D3SE00336A/cit23/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.10.039
  contributor:
    fullname: Luo
– volume: 48
  start-page: 16176
  year: 2023
  ident: D3SE00336A/cit65/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.01.032
  contributor:
    fullname: Ni
– volume: 892
  start-page: 162113
  year: 2022
  ident: D3SE00336A/cit107/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.162113
  contributor:
    fullname: Feng
– volume: 224
  start-page: 113477
  year: 2020
  ident: D3SE00336A/cit20/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2020.113477
  contributor:
    fullname: Lee
– volume: 39
  start-page: 17765
  year: 2014
  ident: D3SE00336A/cit49/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.08.121
  contributor:
    fullname: Gabbasa
– volume-title: Silyzer 300
  year: 19 May 2023
  ident: D3SE00336A/cit151/1
  contributor:
    fullname: Simens Energy
– volume: 6
  start-page: 2101236
  year: 2022
  ident: D3SE00336A/cit112/1
  publication-title: Small Methods
  doi: 10.1002/smtd.202101236
  contributor:
    fullname: Joo
– volume: 16
  start-page: 2003161
  year: 2020
  ident: D3SE00336A/cit71/1
  publication-title: Small
  doi: 10.1002/smll.202003161
  contributor:
    fullname: Holzapfel
– volume: 18
  start-page: 2108031
  year: 2022
  ident: D3SE00336A/cit109/1
  publication-title: Small
  doi: 10.1002/smll.202108031
  contributor:
    fullname: Zhang
– volume: 169
  start-page: 016518
  year: 2022
  ident: D3SE00336A/cit91/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac4c76
  contributor:
    fullname: Lin
– volume: 41
  start-page: 16627
  year: 2016
  ident: D3SE00336A/cit120/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.125
  contributor:
    fullname: Fouda-Onana
– volume: 198
  start-page: 196
  year: 2012
  ident: D3SE00336A/cit59/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.10.022
  contributor:
    fullname: Zhang
– volume: 526
  start-page: 231146
  year: 2022
  ident: D3SE00336A/cit45/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231146
  contributor:
    fullname: Choi
– volume: 37
  start-page: 3358
  year: 2012
  ident: D3SE00336A/cit43/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.09.152
  contributor:
    fullname: Goñi-Urtiaga
– volume: 45
  start-page: 20765
  year: 2020
  ident: D3SE00336A/cit39/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.05.164
  contributor:
    fullname: Upadhyay
– volume: 25
  start-page: 54
  year: 2018
  ident: D3SE00336A/cit7/1
  publication-title: S. Afr. J. Chem. Eng.
  contributor:
    fullname: Kumar
– volume: 47
  start-page: 28894
  year: 2022
  ident: D3SE00336A/cit79/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.217
  contributor:
    fullname: Jiang
– volume: 67
  start-page: 381
  year: 2014
  ident: D3SE00336A/cit144/1
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.072
  contributor:
    fullname: Rahimi
– volume: 57
  start-page: 18
  year: 2015
  ident: D3SE00336A/cit146/1
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2015.05.005
  contributor:
    fullname: Yilmaz
– volume: 39
  start-page: 23
  year: 2019
  ident: D3SE00336A/cit99/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.01.011
  contributor:
    fullname: Jiang
– volume: 3
  start-page: 8276
  year: 2020
  ident: D3SE00336A/cit119/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00735
  contributor:
    fullname: Hegge
– volume: 4
  start-page: 17587
  year: 2016
  ident: D3SE00336A/cit96/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08075H
  contributor:
    fullname: Yan
– volume-title: M5000
  year: 19 May 2023
  ident: D3SE00336A/cit153/1
  contributor:
    fullname: Nel Hydrogen
– volume: 5
  start-page: 17628
  year: 2020
  ident: D3SE00336A/cit47/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c02110
  contributor:
    fullname: Li
– volume-title: M400
  ident: D3SE00336A/cit156/1
  contributor:
    fullname: Proton onsite
– volume: 47
  start-page: 37742
  year: 2022
  ident: D3SE00336A/cit3/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.08.297
  contributor:
    fullname: Gopinath
– volume: 474
  start-page: 228618
  year: 2020
  ident: D3SE00336A/cit14/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228618
  contributor:
    fullname: Shen
– volume: 166
  start-page: F487
  year: 2019
  ident: D3SE00336A/cit26/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0421908jes
  contributor:
    fullname: Weiß
– volume: 410
  start-page: 128333
  year: 2021
  ident: D3SE00336A/cit135/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128333
  contributor:
    fullname: Xie
– volume: 42
  start-page: 24612
  year: 2017
  ident: D3SE00336A/cit22/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.08.033
  contributor:
    fullname: Lee
– volume: 24
  start-page: 3113
  year: 2018
  ident: D3SE00336A/cit35/1
  publication-title: Ionics
  doi: 10.1007/s11581-018-2471-0
  contributor:
    fullname: Shiva Kumar
– volume: 326
  start-page: 120
  year: 2016
  ident: D3SE00336A/cit127/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.06.082
  contributor:
    fullname: Rakousky
– volume: 9
  start-page: 15807
  year: 2021
  ident: D3SE00336A/cit16/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c05152
  contributor:
    fullname: Lee
– volume-title: Plug EX-4250D
  ident: D3SE00336A/cit155/1
  contributor:
    fullname: Plug Power
– volume: 12
  start-page: 6159
  year: 2022
  ident: D3SE00336A/cit34/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c00570
  contributor:
    fullname: Ouimet
– volume: 10
  start-page: 1
  year: 2019
  ident: D3SE00336A/cit100/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
  contributor:
    fullname: Lin
– volume-title: HGas3SP
  ident: D3SE00336A/cit154/1
  contributor:
    fullname: ITM Power
– volume: 40
  start-page: 15432
  year: 2015
  ident: D3SE00336A/cit148/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.08.109
  contributor:
    fullname: Posso
– volume: 146
  start-page: 2281
  year: 2020
  ident: D3SE00336A/cit136/1
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.08.068
  contributor:
    fullname: Kumar
– volume: 6
  start-page: 4161
  year: 2021
  ident: D3SE00336A/cit57/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c04786
  contributor:
    fullname: Wakayama
– volume: 46
  start-page: 23581
  year: 2021
  ident: D3SE00336A/cit97/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.04.174
  contributor:
    fullname: Minke
– volume-title: Scaling up electrolysers to meet the 1.5 C climate goal
  year: 2020
  ident: D3SE00336A/cit31/1
  contributor:
    fullname: Reduction
– volume: 584
  start-page: 729
  year: 2021
  ident: D3SE00336A/cit86/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.09.099
  contributor:
    fullname: Chan
– start-page: 116905
  year: 2022
  ident: D3SE00336A/cit81/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2022.116905
  contributor:
    fullname: Dharman
– volume: 64
  start-page: 626
  year: 2014
  ident: D3SE00336A/cit147/1
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.012
  contributor:
    fullname: Pelaez-Samaniego
– volume: 78
  start-page: 105151
  year: 2020
  ident: D3SE00336A/cit78/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105151
  contributor:
    fullname: Jang
– start-page: 1
  year: 2022
  ident: D3SE00336A/cit108/1
  publication-title: Nat. Mater.
  contributor:
    fullname: Wu
– volume: 6
  start-page: 1824
  year: 2022
  ident: D3SE00336A/cit52/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/D2SE00260D
  contributor:
    fullname: Yuan
– volume: 162
  start-page: 139
  year: 2018
  ident: D3SE00336A/cit27/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.041
  contributor:
    fullname: Lee
– volume: 544
  start-page: 162
  year: 2013
  ident: D3SE00336A/cit61/1
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.03.130
  contributor:
    fullname: Lin
– volume: 24
  start-page: 2411
  year: 2018
  ident: D3SE00336A/cit130/1
  publication-title: Ionics
  doi: 10.1007/s11581-017-2359-4
  contributor:
    fullname: Shiva Kumar
– volume: 15
  start-page: 1301
  year: 2023
  ident: D3SE00336A/cit13/1
  publication-title: Polymers
  doi: 10.3390/polym15051301
  contributor:
    fullname: Noor Azam
– volume: 133
  start-page: 23576
  year: 2021
  ident: D3SE00336A/cit89/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202110335
  contributor:
    fullname: Wang
– volume: 303
  start-page: 120899
  year: 2022
  ident: D3SE00336A/cit111/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120899
  contributor:
    fullname: Raja
– volume: 46
  start-page: 21454
  year: 2021
  ident: D3SE00336A/cit88/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.03.225
  contributor:
    fullname: Yoo
– volume-title: ME450
  ident: D3SE00336A/cit158/1
  contributor:
    fullname: H-Tech Systems
– volume: 46
  start-page: 38983
  year: 2021
  ident: D3SE00336A/cit64/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.09.152
  contributor:
    fullname: Sánchez-Molina
– volume: 60
  start-page: 19068
  year: 2021
  ident: D3SE00336A/cit87/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202106547
  contributor:
    fullname: Zhang
– volume: 58
  start-page: 158
  year: 2019
  ident: D3SE00336A/cit117/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.043
  contributor:
    fullname: Park
– volume: 313
  start-page: 121458
  year: 2022
  ident: D3SE00336A/cit77/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121458
  contributor:
    fullname: Xie
– volume: 115
  start-page: 604
  year: 2016
  ident: D3SE00336A/cit149/1
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.101
  contributor:
    fullname: Olateju
– volume: 45
  start-page: 14207
  year: 2021
  ident: D3SE00336A/cit50/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6739
  contributor:
    fullname: Doan
– volume: 3
  start-page: 14942
  year: 2015
  ident: D3SE00336A/cit68/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02974K
  contributor:
    fullname: Zeng
– volume: 41
  start-page: 8755
  year: 2016
  ident: D3SE00336A/cit145/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.177
  contributor:
    fullname: Olateju
– volume: 6
  start-page: 1611
  year: 2016
  ident: D3SE00336A/cit84/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY02299A
  contributor:
    fullname: Pan
– volume: 7
  start-page: 40427
  year: 2017
  ident: D3SE00336A/cit131/1
  publication-title: RSC Adv.
  doi: 10.1039/C7RA06534E
  contributor:
    fullname: Lv
– volume: 169
  start-page: 044526
  year: 2022
  ident: D3SE00336A/cit12/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac5f1d
  contributor:
    fullname: Hassan
– volume: 11
  start-page: 2002926
  year: 2021
  ident: D3SE00336A/cit55/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002926
  contributor:
    fullname: Liu
– volume: 12
  start-page: 203
  year: 2021
  ident: D3SE00336A/cit74/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20503-7
  contributor:
    fullname: Hu
– start-page: 100042
  year: 2022
  ident: D3SE00336A/cit1/1
  publication-title: Carbon Capture Sci. Technol.
  doi: 10.1016/j.ccst.2022.100042
  contributor:
    fullname: Nnabuife
– volume: 15
  start-page: 1853
  year: 2022
  ident: D3SE00336A/cit110/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3778-0
  contributor:
    fullname: Chen
– volume: 13
  start-page: 15073
  year: 2021
  ident: D3SE00336A/cit106/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c20791
  contributor:
    fullname: Jiang
– volume: 10
  start-page: 11893
  year: 2022
  ident: D3SE00336A/cit128/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA09887J
  contributor:
    fullname: Jiang
– year: 04th August 2022
  ident: D3SE00336A/cit150/1
  contributor:
    fullname: Umicore.com
– volume: 3
  start-page: 1799
  year: 2019
  ident: D3SE00336A/cit10/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/C9SE00148D
  contributor:
    fullname: Lee
– volume-title: HyLYZER®-4000
  year: 19 May 2023
  ident: D3SE00336A/cit152/1
  contributor:
    fullname: Cummins Inc
– volume: 169
  start-page: 064505
  year: 2022
  ident: D3SE00336A/cit30/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac6d14
  contributor:
    fullname: Möckl
– volume: 12
  start-page: 2103670
  year: 2022
  ident: D3SE00336A/cit95/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103670
  contributor:
    fullname: Chen
– volume: 82
  start-page: 2440
  year: 2018
  ident: D3SE00336A/cit29/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2017.09.003
  contributor:
    fullname: Buttler
– volume: 42
  start-page: 28515
  year: 2017
  ident: D3SE00336A/cit51/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.09.132
  contributor:
    fullname: Omrani
– volume: 164
  start-page: 488
  year: 2015
  ident: D3SE00336A/cit125/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.09.005
  contributor:
    fullname: Siracusano
– volume: 45
  start-page: 1409
  year: 2020
  ident: D3SE00336A/cit102/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.11.109
  contributor:
    fullname: Han
– volume: 267
  start-page: 515
  year: 2014
  ident: D3SE00336A/cit122/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.05.117
  contributor:
    fullname: Sun
– volume: 96
  start-page: 371
  year: 2021
  ident: D3SE00336A/cit75/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2021.02.003
  contributor:
    fullname: Kim
– volume-title: Lotus™ Mark 2
  ident: D3SE00336A/cit159/1
  contributor:
    fullname: Ohmium International
– volume: 158
  start-page: 632
  year: 2018
  ident: D3SE00336A/cit2/1
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.073
  contributor:
    fullname: Mohammadi
– volume: 14
  start-page: 1071
  year: 2019
  ident: D3SE00336A/cit80/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0550-7
  contributor:
    fullname: King
– volume: 131
  start-page: 14906
  year: 2019
  ident: D3SE00336A/cit114/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201909369
  contributor:
    fullname: Zheng
– volume: 143
  start-page: 110963
  year: 2021
  ident: D3SE00336A/cit6/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.110963
  contributor:
    fullname: Lee
– volume: 35
  start-page: 7778
  year: 2010
  ident: D3SE00336A/cit44/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.05.041
  contributor:
    fullname: Wei
– volume: 152
  start-page: J23
  year: 2005
  ident: D3SE00336A/cit67/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
  contributor:
    fullname: Nørskov
– volume: 15
  start-page: 558
  year: 2018
  ident: D3SE00336A/cit37/1
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2018.1508468
  contributor:
    fullname: Shiva Kumar
– volume: 10
  start-page: 1152
  year: 2019
  ident: D3SE00336A/cit116/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04922
  contributor:
    fullname: Chen
– volume: 896
  start-page: 115076
  year: 2021
  ident: D3SE00336A/cit83/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.115076
  contributor:
    fullname: Davodi
– volume: 10
  start-page: 9268
  year: 2018
  ident: D3SE00336A/cit115/1
  publication-title: Nanoscale
  doi: 10.1039/C8NR01572D
  contributor:
    fullname: Yang
– volume: 570
  start-page: 69
  year: 2019
  ident: D3SE00336A/cit42/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.09.063
  contributor:
    fullname: Giancola
SSID ssj0002124257
Score 2.4266164
Snippet Proton exchange membrane (PEM) water electrolysis is recognized as the most promising technology for the sustainable production of green hydrogen from water...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 356
SubjectTerms Alternative energy sources
Commercialization
Diffusion layers
Diffusion plating
Electrocatalysts
Electrolysis
Energy efficiency
Energy resources
Gaseous diffusion
Green hydrogen
Hydrogen
Hydrogen production
Membranes
Production costs
Protons
R&D
Renewable energy sources
Renewable resources
Research & development
Reviews
Sustainable production
Systems design
Title Recent advances in hydrogen production through proton exchange membrane water electrolysis - a review
URI https://www.proquest.com/docview/2841314565
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVoe4ED4qsiUJAluEVbNh47WR8rCAqocEkq9bay1962Qt2gNG1VTvwH_iG_hPGO96O0h8JlFVmypey8Hb-xZ94w9lYUVhYlFBiWhGtGAJEYbVziQBWZtWXqTKhG_vJ1PDuQnw_VYXeUXVeXrO1u8ePWupL_sSqOoV1Dlew_WLZdFAfwN9oXn2hhfN7Jxsj56hRxusevM1uPr9xqeUSJV46UYdtePEGTYRlE_anad3jqTzFWRpZ5aYJUYuyIQxolTRIEDE0sb-nT2Hmv7MpT9WCAUHlO4szXk7fnu8P58clF6__3qYHzzFTfLiMo4rGDgHCeSSXK5J2CbmAidUqu1N8yFt3rpI8i1fOVoKiTQNx3QVFHmxs-PYUgifoB5tPQeG7cqqJ2wtl_bWhtmmF9wQ467-ZusC2BHgld4dbedPFpvz2Owx1cki5s-ycaMVvQ77oFrtOXLibZWDUNY2pisnjEHsaIgu8RPB6ze756wh70dCafsiMCCm-Awk8q3gCFd0DhESicgMIboPAGKLwGCu8Dhf_--YsbThB5xg4-ThfvZ0nssJEUIhutE6cz6XXmbWkKjBw8gBXIn0vrMIq2UqYwMc5MZKm0LQtAtpwF2VgM05H32dTANtuslpV_zrhHLqqkLr1Ghi18qqVUVhk31qqQwooBe9O8uPw7CankN-0zYDvNO83jh3aWI4MawSiEHgO2je-5ne_gzNfzzIs7rf6S3e-gvMM216tz_wo55dq-jnj4A9fnd48
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+hydrogen+production+through+proton+exchange+membrane+water+electrolysis+%E2%80%93+a+review&rft.jtitle=Sustainable+energy+%26+fuels&rft.au=Kumar%2C+S.+Shiva&rft.au=Lim%2C+Hankwon&rft.date=2023-07-25&rft.issn=2398-4902&rft.eissn=2398-4902&rft.volume=7&rft.issue=15&rft.spage=3560&rft.epage=3583&rft_id=info:doi/10.1039%2FD3SE00336A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3SE00336A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-4902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-4902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-4902&client=summon