Realizing good combinations of strength-ductility and corrosion resistance in a Co-free Fe4Ni4Mn2CrTi high-entropy alloy via tailoring Ni/Ti-rich precipitates and heterogeneous structure
The development of alloys with good combinations of strength-ductility and corrosion resistance is a long-standing research theme for advanced materials engineering, which also holds true for the newly emerged high-entropy alloys (HEAs). Here, Ni/Ti-rich precipitates and heterogeneous structure were...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 878; p. 145223 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
30.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of alloys with good combinations of strength-ductility and corrosion resistance is a long-standing research theme for advanced materials engineering, which also holds true for the newly emerged high-entropy alloys (HEAs). Here, Ni/Ti-rich precipitates and heterogeneous structure were introduced for the primary purpose of improving strength-plasticity synergy of a Co-free Fe4Ni4Mn2CrTi HEA with good anti-corrosion performance. Specifically, four typical states of this HEA were tailored and compared, including i) as-cast, ii) homogenized, iii) post deformation annealing (PDA) sample with heterogeneous structure and iv) PDA sample with homogeneous structure. The structural features, mechanical properties, and underlying phase transformation mechanisms were systematically investigated. Phase transformation of η-D024 to γ′-L12 was realized during annealing treatments, based on the intrinsic stacking faults formed by repeating removal of the (0001) planes in the η structure. Compared with the homogenized counterpart, the strength-ductility synergy was achieved in the alloy iv, showing an evident increment of ∼43.4% in yield strength (σ0.2) and ∼57.8% in ultimate tensile strength (σUTS), respectively, resulting from solid-solution strengthening, grain-boundary strengthening and precipitation strengthening, yet without sacrificing ductility. Good combinations of strength and ductility were also achieved in the alloy iii with heterogeneous structure, possessing an even higher σ0.2 and σUTS yet maintaining a moderate elongation, whose strength contribution from hetero-deformation induced hardening is recognized as a significant strengthening mechanism. Additionally, in comparison with the conventional corrosion-resistant 304 stainless steel, compact TiO2 and Cr2O3 in the passive film give rise to more superior anti-corrosion properties of the homogenized HEA. This paper provides a new paradigm in the controllable design of novel low-cost high-performance HEAs for achieving their potential structural and functional engineering applications. |
---|---|
AbstractList | The development of alloys with good combinations of strength-ductility and corrosion resistance is a long-standing research theme for advanced materials engineering, which also holds true for the newly emerged high-entropy alloys (HEAs). Here, Ni/Ti-rich precipitates and heterogeneous structure were introduced for the primary purpose of improving strength-plasticity synergy of a Co-free Fe4Ni4Mn2CrTi HEA with good anti-corrosion performance. Specifically, four typical states of this HEA were tailored and compared, including i) as-cast, ii) homogenized, iii) post deformation annealing (PDA) sample with heterogeneous structure and iv) PDA sample with homogeneous structure. The structural features, mechanical properties, and underlying phase transformation mechanisms were systematically investigated. Phase transformation of η-D024 to γ′-L12 was realized during annealing treatments, based on the intrinsic stacking faults formed by repeating removal of the (0001) planes in the η structure. Compared with the homogenized counterpart, the strength-ductility synergy was achieved in the alloy iv, showing an evident increment of ∼43.4% in yield strength (σ0.2) and ∼57.8% in ultimate tensile strength (σUTS), respectively, resulting from solid-solution strengthening, grain-boundary strengthening and precipitation strengthening, yet without sacrificing ductility. Good combinations of strength and ductility were also achieved in the alloy iii with heterogeneous structure, possessing an even higher σ0.2 and σUTS yet maintaining a moderate elongation, whose strength contribution from hetero-deformation induced hardening is recognized as a significant strengthening mechanism. Additionally, in comparison with the conventional corrosion-resistant 304 stainless steel, compact TiO2 and Cr2O3 in the passive film give rise to more superior anti-corrosion properties of the homogenized HEA. This paper provides a new paradigm in the controllable design of novel low-cost high-performance HEAs for achieving their potential structural and functional engineering applications. |
ArticleNumber | 145223 |
Author | Chen, Weiping Fu, Zhiqiang Zhu, Dezhi Chu, Chenliang Huang, Liran Wang, Hao |
Author_xml | – sequence: 1 givenname: Chenliang surname: Chu fullname: Chu, Chenliang organization: Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, 510641, China – sequence: 2 givenname: Weiping surname: Chen fullname: Chen, Weiping organization: Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, 510641, China – sequence: 3 givenname: Zhiqiang orcidid: 0000-0002-3187-7900 surname: Fu fullname: Fu, Zhiqiang email: zhiqiangfu2019@scut.edu.cn organization: Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, 510641, China – sequence: 4 givenname: Liran surname: Huang fullname: Huang, Liran organization: Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, 510641, China – sequence: 5 givenname: Hao surname: Wang fullname: Wang, Hao organization: Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, 510641, China – sequence: 6 givenname: Dezhi surname: Zhu fullname: Zhu, Dezhi organization: Guangdong Key Laboratory for Advanced Metallic Materials Processing, South China University of Technology, Guangzhou, Guangdong, 510641, China |
BookMark | eNp9kU2OEzEQhS00SGQGLsDKF3DGP91OW2KDIgaQhkFCYW057uruijp2ZDsjhaNxOtyEFYtZ1aLqq3qv3i25CTEAIe8FXwsu9P1hfczg1pJLtRZNK6V6RVai2yjWGKVvyIobKVjLjXpDbnM-cM5Fw9sV-f0D3Iy_MIx0jLGnPh73GFzBGDKNA80lQRjLxPqzLzhjuVAXlrGUYq5DNEHGXFzwQDFQR7eRDQmAPkDzhM23ILdph3TCcWIQSoqnumCe44U-o6PF4RzTcvwJ73fIEvqJnhJ4PGFxBfLfYxMUSHGEAPGcF0VVyjnBW_J6cHOGd__qHfn58Gm3_cIev3_-uv34yLzsRGG9lL0GM0hQfJBa88603jglXc-5abyvfdfsnd6otoeN5H4wmuu97rzem2ZQd6S77vXVck4wWL-Iq-ZLqvqt4HbJwB7skoFdMrDXDCoq_0NPCY8uXV6GPlwhqKaeEZLNHqE-uMf6mWL7iC_hfwBw7Kdk |
CitedBy_id | crossref_primary_10_1016_j_triboint_2024_110108 crossref_primary_10_1016_j_corsci_2024_112452 crossref_primary_10_1016_j_jmrt_2024_01_119 crossref_primary_10_1007_s10853_024_10392_2 crossref_primary_10_1016_j_corsci_2024_112560 crossref_primary_10_1039_D3RA01420G crossref_primary_10_1016_j_ijplas_2024_103939 crossref_primary_10_1016_j_jmst_2025_02_022 crossref_primary_10_1016_j_matchar_2024_114490 crossref_primary_10_1016_j_msea_2024_147172 crossref_primary_10_1016_j_jallcom_2024_175299 crossref_primary_10_1016_j_jallcom_2023_172093 crossref_primary_10_1016_j_jallcom_2024_177235 crossref_primary_10_1016_j_jallcom_2024_177700 crossref_primary_10_1016_j_msea_2024_146369 crossref_primary_10_1016_j_msea_2024_146513 crossref_primary_10_1016_j_msea_2024_146832 |
Cites_doi | 10.1016/j.msea.2018.04.022 10.1016/j.ijplas.2022.103398 10.1016/j.jallcom.2022.166751 10.1016/j.matdes.2016.12.036 10.1063/5.0058011 10.3390/met7020043 10.1016/j.intermet.2022.107600 10.1016/j.actamat.2019.04.017 10.1016/j.jmst.2021.11.058 10.1016/j.jallcom.2020.154457 10.1016/j.jmst.2019.10.020 10.1016/j.matchemphys.2020.124007 10.1016/j.actamat.2020.11.012 10.1016/j.msea.2017.05.031 10.1016/j.actamat.2018.05.009 10.1016/j.msea.2022.143111 10.1016/j.jmst.2020.05.010 10.1016/j.actamat.2016.08.081 10.1016/j.actamat.2021.117480 10.1016/j.scriptamat.2019.01.016 10.1016/j.scriptamat.2021.114473 10.1016/j.apsusc.2019.143903 10.1016/j.matchar.2021.111251 10.1016/j.corsci.2020.109043 10.1002/adem.202200780 10.1016/j.ijplas.2017.10.005 10.1016/j.actamat.2015.08.076 10.1016/j.msea.2021.142429 10.1016/0036-9748(68)90123-3 10.1007/s12598-021-01953-4 10.1126/science.abb6830 10.1016/j.corsci.2018.02.031 10.1016/j.pmatsci.2022.101019 10.1016/j.msea.2019.138803 10.1080/21663831.2019.1616331 10.1002/adem.200300567 10.1016/j.pmatsci.2020.100709 10.1038/s41467-020-16085-z 10.1007/s12598-022-02019-9 10.1016/j.jallcom.2022.165728 10.1016/j.jmst.2021.04.030 10.1016/j.jallcom.2019.153104 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.msea.2023.145223 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4936 |
ExternalDocumentID | 10_1016_j_msea_2023_145223 S0921509323006470 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSM SSZ T5K ~02 ~G- 29M 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SMS SSH WUQ |
ID | FETCH-LOGICAL-c281t-d22d6e9f2e30f2660895c9a32ad0094cc22da4ba6735de720cf9606b68c6b94f3 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Tue Jul 01 01:27:02 EDT 2025 Thu Apr 24 23:08:09 EDT 2025 Fri Feb 23 02:34:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Corrosion resistance Phase transformation Mechanical behavior Heterogeneous structure High-entropy alloy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c281t-d22d6e9f2e30f2660895c9a32ad0094cc22da4ba6735de720cf9606b68c6b94f3 |
ORCID | 0000-0002-3187-7900 |
ParticipantIDs | crossref_citationtrail_10_1016_j_msea_2023_145223 crossref_primary_10_1016_j_msea_2023_145223 elsevier_sciencedirect_doi_10_1016_j_msea_2023_145223 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-30 |
PublicationDateYYYYMMDD | 2023-06-30 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Guo, Li, Li, Chen, Zhan, Chang, Zhang (bib39) 2020; 820 Du, Li, Chang, Yang, Duan, Wu, Huang, Chen, Liu, Chuang, Lu, Sui, Huang (bib24) 2020; 11 Zhou, Liao, Chen, Huang (bib25) 2021; 178 Shi, Yang, Liaw (bib6) 2017; 7 Niu, Wu, Zhang, Gong, Tang (bib19) 2018; 725 Cao, Wang, Yang, Liu (bib11) 2021; 119 Chu, Hao, Chen, Xiong, Niu, Fu (bib2) 2022; 832 Luo, Li, Mingers, Raabe (bib5) 2018; 134 Qi, Wang, Yang, Zhang, Ye, Su, Li, Chen (bib7) 2022; 925 Zhu, Wu (bib22) 2019; 7 Sathiyamoorthi, Kim (bib21) 2022; 123 Hou, Cao, Xiao, Jiao, Yang (bib3) 2022; 41 Peng, Hu, Li, Zhang (bib14) 2020; 772 Zhou, Jiang, Liao, Chen, Zhang, Zhu (bib32) 2022 Gwalani, Gorsse, Choudhuri, Styles, Zheng, Mishra, Banerjee (bib36) 2018; 153 Wei, Zhang, Chen, Han, Wang, Chen, Jiang, Hu, Li (bib27) 2020; 57 Fan, Ji, Fu, Wang, Ma, Sun, Wen, Shan (bib23) 2022; 157 Schneider, Laplanche (bib26) 2021; 204 Gu, Zhuang, Huang (bib33) 2022; 147 He, Wang, Huang, Xu, Chen, Wu, Liu, Nieh, An, Lu (bib15) 2016; 102 Zhu, Wu (bib42) 2023; 131 Kim, Kim, Lee (bib4) 2022; 97 Shim, Pouraliakbar, Hong (bib28) 2022; 210 Chen, Deng, Xie, Wang, Yang, Zhang, Xiong, Liu, Wang, Fang, Liu (bib40) 2020; 828 Fan, Fu, Sun, Xu, Ding, Wen, Shan (bib9) 2022; 118 Ming, Bi, Wang (bib41) 2018; 100 Zhao, Li, Yeli, Luan, Liu, Lin, Chen, Liu, Kai, Liu, Yang (bib13) 2022; 223 Chu, Chen, Liu, Chen, Fu (bib8) 2022; 41 Wang, Xin, Sun, Xiao, Sun (bib20) 2017; 702 Dai, Zhao, Du, Liu, Zhang (bib31) 2020; 46 Yeh, Chen, Lin, Gan, Chin, Shun, Tsau, Chang (bib1) 2004; 6 Mihalisin, Decker (bib34) 1960; 218 Huang, Wang, Zhao, Wang, Yang (bib17) 2021; 259 Yoshida, Ikeuchi, Bhattacharjee, Bai, Shibata, Tsuji (bib38) 2019; 171 Sathiyamoorthi, Moon, Bae, Asghari-Rad, Kim (bib10) 2019; 163 Yang, Zhao, Li, Yu, Luan, Lin, Fan, Jiao, Liu, Liu, Kai, Huang, Liu (bib37) 2020; 369 Xiao, Zhou, Wu, Diao, Gao, Song, Liaw (bib16) 2017; 116 Song, Li, Chen, Liang (bib18) 2022; 919 Chen, Chu, Chen, Chen, Hu, Chen, Fu (bib44) 2023; 25 Dai, Luo, Li, Du, Liu, Yao (bib30) 2020; 499 Yuan, Wu, Liaw, Luan, Jiao, Li, Han, Qiao (bib12) 2022; 842 Miracle, Senkov (bib29) 2017; 122 Kear, Giamei, Silcock, Ham (bib35) 1968; 2 Neetu, Katiyar, Sangal, Mondal (bib43) 2021; 178 Kear (10.1016/j.msea.2023.145223_bib35) 1968; 2 Guo (10.1016/j.msea.2023.145223_bib39) 2020; 820 Shim (10.1016/j.msea.2023.145223_bib28) 2022; 210 Mihalisin (10.1016/j.msea.2023.145223_bib34) 1960; 218 Hou (10.1016/j.msea.2023.145223_bib3) 2022; 41 Yeh (10.1016/j.msea.2023.145223_bib1) 2004; 6 Wang (10.1016/j.msea.2023.145223_bib20) 2017; 702 Dai (10.1016/j.msea.2023.145223_bib31) 2020; 46 Chen (10.1016/j.msea.2023.145223_bib40) 2020; 828 Ming (10.1016/j.msea.2023.145223_bib41) 2018; 100 Yoshida (10.1016/j.msea.2023.145223_bib38) 2019; 171 Huang (10.1016/j.msea.2023.145223_bib17) 2021; 259 Zhu (10.1016/j.msea.2023.145223_bib22) 2019; 7 Yang (10.1016/j.msea.2023.145223_bib37) 2020; 369 Zhou (10.1016/j.msea.2023.145223_bib32) 2022 Zhu (10.1016/j.msea.2023.145223_bib42) 2023; 131 Chu (10.1016/j.msea.2023.145223_bib2) 2022; 832 Kim (10.1016/j.msea.2023.145223_bib4) 2022; 97 Schneider (10.1016/j.msea.2023.145223_bib26) 2021; 204 Gwalani (10.1016/j.msea.2023.145223_bib36) 2018; 153 Du (10.1016/j.msea.2023.145223_bib24) 2020; 11 Miracle (10.1016/j.msea.2023.145223_bib29) 2017; 122 Shi (10.1016/j.msea.2023.145223_bib6) 2017; 7 Qi (10.1016/j.msea.2023.145223_bib7) 2022; 925 Xiao (10.1016/j.msea.2023.145223_bib16) 2017; 116 Neetu (10.1016/j.msea.2023.145223_bib43) 2021; 178 Fan (10.1016/j.msea.2023.145223_bib23) 2022; 157 Zhao (10.1016/j.msea.2023.145223_bib13) 2022; 223 Niu (10.1016/j.msea.2023.145223_bib19) 2018; 725 Chu (10.1016/j.msea.2023.145223_bib8) 2022; 41 Fan (10.1016/j.msea.2023.145223_bib9) 2022; 118 Song (10.1016/j.msea.2023.145223_bib18) 2022; 919 He (10.1016/j.msea.2023.145223_bib15) 2016; 102 Sathiyamoorthi (10.1016/j.msea.2023.145223_bib21) 2022; 123 Chen (10.1016/j.msea.2023.145223_bib44) 2023; 25 Gu (10.1016/j.msea.2023.145223_bib33) 2022; 147 Peng (10.1016/j.msea.2023.145223_bib14) 2020; 772 Yuan (10.1016/j.msea.2023.145223_bib12) 2022; 842 Wei (10.1016/j.msea.2023.145223_bib27) 2020; 57 Zhou (10.1016/j.msea.2023.145223_bib25) 2021; 178 Dai (10.1016/j.msea.2023.145223_bib30) 2020; 499 Luo (10.1016/j.msea.2023.145223_bib5) 2018; 134 Sathiyamoorthi (10.1016/j.msea.2023.145223_bib10) 2019; 163 Cao (10.1016/j.msea.2023.145223_bib11) 2021; 119 |
References_xml | – volume: 832 year: 2022 ident: bib2 article-title: Phase transformations and mechanical behavior in a non-equiatomic Ti publication-title: Mater. Sci. Eng. – volume: 25 year: 2023 ident: bib44 article-title: Microstructural evolution, mechanical properties, and corrosion behavior of an Al publication-title: Adv. Eng. Mater. – volume: 57 start-page: 153 year: 2020 end-page: 158 ident: bib27 article-title: Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures publication-title: J. Mater. Sci. Technol. – volume: 210 year: 2022 ident: bib28 article-title: Hierarchical structured as-cast CrFeNiMn publication-title: Scripta Mater. – year: 2022 ident: bib32 article-title: A comparative study on corrosion behaviors of Fe publication-title: Adv. Eng. Mater. – volume: 116 start-page: 438 year: 2017 end-page: 447 ident: bib16 article-title: Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys publication-title: Mater. Des. – volume: 118 start-page: 25 year: 2022 end-page: 34 ident: bib9 article-title: Unveiling the precipitation behavior and mechanical properties of Co-free Ni publication-title: J. Mater. Sci. Technol. – volume: 7 start-page: 393 year: 2019 end-page: 398 ident: bib22 article-title: Perspective on hetero-deformation induced (HDI) hardening and back stress publication-title: Mater. Res. Lett. – volume: 157 year: 2022 ident: bib23 article-title: Achieving exceptional strength-ductility synergy in a complex-concentrated alloy via architected heterogeneous grains and nano-sized precipitates publication-title: Int. J. Plast. – volume: 134 start-page: 131 year: 2018 end-page: 139 ident: bib5 article-title: Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution publication-title: Corrosion Sci. – volume: 204 year: 2021 ident: bib26 article-title: Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy publication-title: Acta Mater. – volume: 499 year: 2020 ident: bib30 article-title: X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMo publication-title: Appl. Surf. Sci. – volume: 147 year: 2022 ident: bib33 article-title: Corrosion behaviors related to the microstructural evolutions of as-cast Al publication-title: Intermetallics – volume: 828 year: 2020 ident: bib40 article-title: Tailoring microstructures and tensile properties of a precipitation-strengthened (FeCoNi) publication-title: J. Alloys Compd. – volume: 919 year: 2022 ident: bib18 article-title: The role of Ti in cavitation erosion and corrosion behaviours of NAB alloy in 3.5 % NaCl solution publication-title: J. Alloys Compd. – volume: 131 year: 2023 ident: bib42 article-title: Heterostructured materials publication-title: Prog. Mater. Sci. – volume: 842 year: 2022 ident: bib12 article-title: Remarkable cryogenic strengthening and toughening in nano-coherent CoCrFeNiTi publication-title: Mater. Sci. Eng. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib29 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 97 start-page: 10 year: 2022 end-page: 19 ident: bib4 article-title: 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion publication-title: J. Mater. Sci. Technol. – volume: 259 year: 2021 ident: bib17 article-title: Analysis on the key role in corrosion behavior of CoCrNiAlTi-based high entropy alloy publication-title: Mater. Chem. Phys. – volume: 163 start-page: 152 year: 2019 end-page: 156 ident: bib10 article-title: Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing publication-title: Scripta Mater. – volume: 772 year: 2020 ident: bib14 article-title: Ripening of L1 publication-title: Mater. Sci. Eng. – volume: 102 start-page: 187 year: 2016 end-page: 196 ident: bib15 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. – volume: 11 start-page: 2390 year: 2020 ident: bib24 article-title: Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy publication-title: Nat. Commun. – volume: 171 start-page: 201 year: 2019 end-page: 215 ident: bib38 article-title: Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys publication-title: Acta Mater. – volume: 123 year: 2022 ident: bib21 article-title: High-entropy alloys with heterogeneous microstructure: processing and mechanical properties publication-title: Prog. Mater. Sci. – volume: 218 start-page: 507 year: 1960 end-page: 515 ident: bib34 article-title: Phase transformations in nickel-rich nickel-titanium-aluminum alloys publication-title: Trans. Am. Inst. Min. Metall. Eng. – volume: 153 start-page: 169 year: 2018 end-page: 185 ident: bib36 article-title: Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing publication-title: Acta Mater. – volume: 820 year: 2020 ident: bib39 article-title: Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys publication-title: J. Alloys Compd. – volume: 41 start-page: 2002 year: 2022 end-page: 2015 ident: bib3 article-title: Compositionally complex coherent precipitation-strengthened high-entropy alloys: a critical review publication-title: Rare Met. – volume: 7 year: 2017 ident: bib6 article-title: Corrosion-resistant high-entropy alloys: a review publication-title: Metals – volume: 925 year: 2022 ident: bib7 article-title: Effects of Al and Ti co-doping on the strength-ductility-corrosion resistance of CoCrFeNi-AlTi high-entropy alloys publication-title: J. Alloys Compd. – volume: 178 year: 2021 ident: bib25 article-title: Effects of hot-forging and subsequent annealing on microstructure and mechanical behaviors of Fe publication-title: Mater. Char. – volume: 41 start-page: 2864 year: 2022 end-page: 2876 ident: bib8 article-title: Achieving strength–ductility synergy in a non-equiatomic Cr publication-title: Rare Met. – volume: 2 start-page: 287 year: 1968 end-page: 293 ident: bib35 article-title: Slip and climb processes in γ′ precipitation hardened nickel-base alloys publication-title: Scripta Metall. – volume: 223 year: 2022 ident: bib13 article-title: Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates publication-title: Acta Mater. – volume: 100 start-page: 177 year: 2018 end-page: 191 ident: bib41 article-title: Realizing strength-ductility combination of coarse-grained Al publication-title: Int. J. Plast. – volume: 178 year: 2021 ident: bib43 article-title: Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels publication-title: Corrosion Sci. – volume: 119 year: 2021 ident: bib11 article-title: Interstitially strengthened metastable FeCoCr-based medium-entropy alloys with both high strength and large ductility publication-title: Appl. Phys. Lett. – volume: 725 start-page: 187 year: 2018 end-page: 195 ident: bib19 article-title: Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility publication-title: Mater. Sci. Eng. – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 369 start-page: 427 year: 2020 end-page: 432 ident: bib37 article-title: Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces publication-title: Science – volume: 46 start-page: 64 year: 2020 end-page: 73 ident: bib31 article-title: Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo publication-title: J. Mater. Sci. Technol. – volume: 702 start-page: 125 year: 2017 end-page: 132 ident: bib20 article-title: Biaxial tension-torsion fatigue behavior of gradient nano-grained pure titanium fabricated by surface nanocrystallization publication-title: Mater. Sci. Eng. – volume: 725 start-page: 187 year: 2018 ident: 10.1016/j.msea.2023.145223_bib19 article-title: Heterogeneous nano/ultrafine-grained medium Mn austenitic stainless steel with high strength and ductility publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2018.04.022 – volume: 157 year: 2022 ident: 10.1016/j.msea.2023.145223_bib23 article-title: Achieving exceptional strength-ductility synergy in a complex-concentrated alloy via architected heterogeneous grains and nano-sized precipitates publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103398 – volume: 925 year: 2022 ident: 10.1016/j.msea.2023.145223_bib7 article-title: Effects of Al and Ti co-doping on the strength-ductility-corrosion resistance of CoCrFeNi-AlTi high-entropy alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166751 – volume: 116 start-page: 438 year: 2017 ident: 10.1016/j.msea.2023.145223_bib16 article-title: Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.12.036 – volume: 119 year: 2021 ident: 10.1016/j.msea.2023.145223_bib11 article-title: Interstitially strengthened metastable FeCoCr-based medium-entropy alloys with both high strength and large ductility publication-title: Appl. Phys. Lett. doi: 10.1063/5.0058011 – volume: 7 year: 2017 ident: 10.1016/j.msea.2023.145223_bib6 article-title: Corrosion-resistant high-entropy alloys: a review publication-title: Metals doi: 10.3390/met7020043 – volume: 147 year: 2022 ident: 10.1016/j.msea.2023.145223_bib33 article-title: Corrosion behaviors related to the microstructural evolutions of as-cast Al0.3CoCrFeNi high entropy alloy with addition of Si and Ti elements publication-title: Intermetallics doi: 10.1016/j.intermet.2022.107600 – volume: 171 start-page: 201 year: 2019 ident: 10.1016/j.msea.2023.145223_bib38 article-title: Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic high/medium entropy alloys publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.04.017 – volume: 118 start-page: 25 year: 2022 ident: 10.1016/j.msea.2023.145223_bib9 article-title: Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-xFe30Cr12Mn8AlxTi3 high-entropy alloys publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.11.058 – volume: 828 year: 2020 ident: 10.1016/j.msea.2023.145223_bib40 article-title: Tailoring microstructures and tensile properties of a precipitation-strengthened (FeCoNi)94Ti6 medium-entropy alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154457 – volume: 46 start-page: 64 year: 2020 ident: 10.1016/j.msea.2023.145223_bib31 article-title: Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.10.020 – volume: 259 year: 2021 ident: 10.1016/j.msea.2023.145223_bib17 article-title: Analysis on the key role in corrosion behavior of CoCrNiAlTi-based high entropy alloy publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.124007 – volume: 204 year: 2021 ident: 10.1016/j.msea.2023.145223_bib26 article-title: Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2020.11.012 – volume: 702 start-page: 125 year: 2017 ident: 10.1016/j.msea.2023.145223_bib20 article-title: Biaxial tension-torsion fatigue behavior of gradient nano-grained pure titanium fabricated by surface nanocrystallization publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2017.05.031 – volume: 153 start-page: 169 year: 2018 ident: 10.1016/j.msea.2023.145223_bib36 article-title: Modifying transformation pathways in high entropy alloys or complex concentrated alloys via thermo-mechanical processing publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.05.009 – volume: 842 year: 2022 ident: 10.1016/j.msea.2023.145223_bib12 article-title: Remarkable cryogenic strengthening and toughening in nano-coherent CoCrFeNiTi0.2 high-entropy alloys via energetically-tuning polymorphous precipitates publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2022.143111 – volume: 57 start-page: 153 year: 2020 ident: 10.1016/j.msea.2023.145223_bib27 article-title: Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.05.010 – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.msea.2023.145223_bib29 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 223 year: 2022 ident: 10.1016/j.msea.2023.145223_bib13 article-title: Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117480 – volume: 163 start-page: 152 year: 2019 ident: 10.1016/j.msea.2023.145223_bib10 article-title: Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2019.01.016 – volume: 210 year: 2022 ident: 10.1016/j.msea.2023.145223_bib28 article-title: Hierarchical structured as-cast CrFeNiMn0.5Cu0.5 high entropy alloy with excellent tensile strength/ductility properties publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2021.114473 – volume: 499 year: 2020 ident: 10.1016/j.msea.2023.145223_bib30 article-title: X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143903 – volume: 178 year: 2021 ident: 10.1016/j.msea.2023.145223_bib25 article-title: Effects of hot-forging and subsequent annealing on microstructure and mechanical behaviors of Fe35Ni35Cr20Mn10 high-entropy alloy publication-title: Mater. Char. doi: 10.1016/j.matchar.2021.111251 – volume: 178 year: 2021 ident: 10.1016/j.msea.2023.145223_bib43 article-title: Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2020.109043 – volume: 25 year: 2023 ident: 10.1016/j.msea.2023.145223_bib44 article-title: Microstructural evolution, mechanical properties, and corrosion behavior of an Al7.5Co20.5Fe24Ni24Cr24 high-entropy alloy publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202200780 – volume: 100 start-page: 177 year: 2018 ident: 10.1016/j.msea.2023.145223_bib41 article-title: Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.10.005 – volume: 102 start-page: 187 year: 2016 ident: 10.1016/j.msea.2023.145223_bib15 article-title: A precipitation-hardened high-entropy alloy with outstanding tensile properties publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.08.076 – volume: 832 year: 2022 ident: 10.1016/j.msea.2023.145223_bib2 article-title: Phase transformations and mechanical behavior in a non-equiatomic Ti10Fe30Co30Ni30 medium-entropy alloy publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2021.142429 – volume: 2 start-page: 287 year: 1968 ident: 10.1016/j.msea.2023.145223_bib35 article-title: Slip and climb processes in γ′ precipitation hardened nickel-base alloys publication-title: Scripta Metall. doi: 10.1016/0036-9748(68)90123-3 – volume: 41 start-page: 2002 year: 2022 ident: 10.1016/j.msea.2023.145223_bib3 article-title: Compositionally complex coherent precipitation-strengthened high-entropy alloys: a critical review publication-title: Rare Met. doi: 10.1007/s12598-021-01953-4 – volume: 369 start-page: 427 year: 2020 ident: 10.1016/j.msea.2023.145223_bib37 article-title: Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces publication-title: Science doi: 10.1126/science.abb6830 – volume: 134 start-page: 131 year: 2018 ident: 10.1016/j.msea.2023.145223_bib5 article-title: Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution publication-title: Corrosion Sci. doi: 10.1016/j.corsci.2018.02.031 – volume: 131 year: 2023 ident: 10.1016/j.msea.2023.145223_bib42 article-title: Heterostructured materials publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2022.101019 – volume: 772 year: 2020 ident: 10.1016/j.msea.2023.145223_bib14 article-title: Ripening of L12 nanoparticles and their effects on mechanical properties of Ni28Co28Fe21Cr15Al4Ti4 high-entropy alloys publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2019.138803 – volume: 7 start-page: 393 year: 2019 ident: 10.1016/j.msea.2023.145223_bib22 article-title: Perspective on hetero-deformation induced (HDI) hardening and back stress publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2019.1616331 – volume: 218 start-page: 507 year: 1960 ident: 10.1016/j.msea.2023.145223_bib34 article-title: Phase transformations in nickel-rich nickel-titanium-aluminum alloys publication-title: Trans. Am. Inst. Min. Metall. Eng. – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.msea.2023.145223_bib1 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – volume: 123 year: 2022 ident: 10.1016/j.msea.2023.145223_bib21 article-title: High-entropy alloys with heterogeneous microstructure: processing and mechanical properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100709 – volume: 11 start-page: 2390 year: 2020 ident: 10.1016/j.msea.2023.145223_bib24 article-title: Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy publication-title: Nat. Commun. doi: 10.1038/s41467-020-16085-z – volume: 41 start-page: 2864 year: 2022 ident: 10.1016/j.msea.2023.145223_bib8 article-title: Achieving strength–ductility synergy in a non-equiatomic Cr10Co30Fe30Ni30 high-entropy alloy with heterogeneous grain structures publication-title: Rare Met. doi: 10.1007/s12598-022-02019-9 – volume: 919 year: 2022 ident: 10.1016/j.msea.2023.145223_bib18 article-title: The role of Ti in cavitation erosion and corrosion behaviours of NAB alloy in 3.5 % NaCl solution publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.165728 – volume: 97 start-page: 10 year: 2022 ident: 10.1016/j.msea.2023.145223_bib4 article-title: 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.04.030 – year: 2022 ident: 10.1016/j.msea.2023.145223_bib32 article-title: A comparative study on corrosion behaviors of Fe35Mn10Cr20Ni35 high-entropy alloy and 304 stainless steel in sulfuric acid aqueous solution publication-title: Adv. Eng. Mater. – volume: 820 year: 2020 ident: 10.1016/j.msea.2023.145223_bib39 article-title: Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.153104 |
SSID | ssj0001405 |
Score | 2.5271764 |
Snippet | The development of alloys with good combinations of strength-ductility and corrosion resistance is a long-standing research theme for advanced materials... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 145223 |
SubjectTerms | Corrosion resistance Heterogeneous structure High-entropy alloy Mechanical behavior Phase transformation |
Title | Realizing good combinations of strength-ductility and corrosion resistance in a Co-free Fe4Ni4Mn2CrTi high-entropy alloy via tailoring Ni/Ti-rich precipitates and heterogeneous structure |
URI | https://dx.doi.org/10.1016/j.msea.2023.145223 |
Volume | 878 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQvcChorQVj4Lm0BtysvF6X0cUEQWq5lASKbeV12sTo7COQqhED_1h_DpmdjcUJJRDb_sYr9ee0Tysz58Z-x6UKjI6ibgtejWpdkmUtzGPYtsTiU4p6hDaYhQPJ_JqGk23WH-9F4Zgla3vb3x67a3bJ912NrsL57rXQYbhCgtyTKJpxyTV7VImZOWdv_9gHlhA1DBGFOYk3W6caTBed2hOHTpAHB0GJiLh-8HpVcAZ7LGPbaYI583PfGJbptpnu6_4Az-zp1-Y5rk_eA033peAg8BCt1mDA2-BNoJUN6sZJ1JXAsE-gqpIbIndoxBgrU35Iw4aXAUK-p7bpTEwMHLk5M9K9JdjB0RpzGkV2C_wA_O5f4TfTgFhT2v4Hoxcd-w4etQZLIgtg04iwRS27mxGeBuPZmr8wz00dLUPS_OFTQYX4_6Qt4cxcC3S3oqXQpSxyawwYWAxqgdpFulMhUKVhE7UGt8rWag4CaPSJCLQloqjIk51XGTShl_ZduUrc8Ag02ESiSwtpbWyEEZhiY5fwmSzsIGJg0PWW2sh1y1TOR2YMc_XkLTbnDSXk-byRnOH7OylzaLh6dgoHa2Vm7-xthwDyYZ2R__Z7pjt0F2DM_zGtnGuzQkmM6vitLbWU_bh_PLHcPQM_yf2qQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKOUAPFZ-ifM4BTsjdrOM4yYEDWlhtabsH2Eq9Bcexu0bbeLXdFi0H_hQ3fh0zSRaKhHpA6i1KbMfxJDNvouc3jL2MKp1Ykybclf1GVLsiyVvFE-X6IjUZRR1iW4zV6Eh-OE6ON9iP9V4YolV2vr_16Y237s70utXszb3vfYpyDFeYkCOIph2TUces3Lerr5i3nb3Ze4dGfiXE8P1kMOJdaQFuRNZf8kqIStncCRtHDmNUlOWJyXUsdEVcO2PwupalVmmcVDYVkXEE9UuVGVXm0sU47g12U6K7oLIJu9__8EowY2l4kzg7TtPrduq0pLJTnOMuVSxHD4XIJ_53NLwU4YZ32HYHTeFt-_R32Yat77GtS4KF99nPj4gr_Tc8hpMQKsBVw8y6_ekHwQHtPKlPllNOKrLEul2BrqnZAm-PjQCTewKsuMrga9AwCNwtrIWhlWMvD2sxWEw8kIYyp9_OYY4DzGZhBRdeA5FdG74gjH1v4jm68CnMSZ6DSp8gZm5uNiWCT8DvwobzM2j1cc8X9gE7uhYTPWSbdajtIwa5idNE5FklnZOlsFqqHEdCdFu6yKpoh_XXVihMJ41OFTpmxZoD96UgyxVkuaK13A57_bvPvBUGubJ1sjZu8dfrXWDkuqLf4__s94LdGk0OD4qDvfH-E3abrrQkx6dsE9fdPkMktSyfN28usM_X_an8AtiBMiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realizing+good+combinations+of+strength-ductility+and+corrosion+resistance+in+a+Co-free+Fe4Ni4Mn2CrTi+high-entropy+alloy+via+tailoring+Ni%2FTi-rich+precipitates+and+heterogeneous+structure&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Chu%2C+Chenliang&rft.au=Chen%2C+Weiping&rft.au=Fu%2C+Zhiqiang&rft.au=Huang%2C+Liran&rft.date=2023-06-30&rft.pub=Elsevier+B.V&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=878&rft_id=info:doi/10.1016%2Fj.msea.2023.145223&rft.externalDocID=S0921509323006470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |