Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods

In this article, the finite element (FE) method has been used to assess the coupled static behavior of hygro-thermo-magneto-electroelastic (HTMEE) beam. Influence of externally applied hygrothermal loads on the direct (displacements, electric and magnetic potentials) and derived quantities (stresses...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal stresses Vol. 41; no. 8; pp. 1063 - 1079
Main Authors Vinyas, M., Kattimani, Subhas Chandra, Joladarashi, Sharnappa
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Ltd 03.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, the finite element (FE) method has been used to assess the coupled static behavior of hygro-thermo-magneto-electroelastic (HTMEE) beam. Influence of externally applied hygrothermal loads on the direct (displacements, electric and magnetic potentials) and derived quantities (stresses, electric displacement and magnetic flux densities) of HTMEE beam have been studied in detail. The principle of total potential energy and the coupled constitutive equations of HTMEE material are used for the FE formulation. A generalized condensation technique is adopted to solve the global FE equations of motion. Numerical examples are discussed to examine the effect of hygrothermal loads and distinct effect of moisture concentration on the behavior of the beam. Particular emphasis has been placed to analyze the influence of temperature and moisture dependent elastic stiffness coefficients associated with empirical constants. Considering the independent effect of temperature and moisture on the coupled static responses, the most significant combination of the empirical constants corresponding to temperature dependency and moisture dependency are explored. Extensive computational examples are considered to examine the significant effect of boundary conditions, temperature gradient, moisture concentration gradient and empirical constants on the static behavior of HTMEE beam. It is observed that the static behavior of HTMEE beam is significantly influenced by the hygrothermal loads and empirical constants. The results presented in this article would serve as a benchmark results in design and analysis of HTMEE structures for sensors and actuators applications.
AbstractList In this article, the finite element (FE) method has been used to assess the coupled static behavior of hygro-thermo-magneto-electroelastic (HTMEE) beam. Influence of externally applied hygrothermal loads on the direct (displacements, electric and magnetic potentials) and derived quantities (stresses, electric displacement and magnetic flux densities) of HTMEE beam have been studied in detail. The principle of total potential energy and the coupled constitutive equations of HTMEE material are used for the FE formulation. A generalized condensation technique is adopted to solve the global FE equations of motion. Numerical examples are discussed to examine the effect of hygrothermal loads and distinct effect of moisture concentration on the behavior of the beam. Particular emphasis has been placed to analyze the influence of temperature and moisture dependent elastic stiffness coefficients associated with empirical constants. Considering the independent effect of temperature and moisture on the coupled static responses, the most significant combination of the empirical constants corresponding to temperature dependency and moisture dependency are explored. Extensive computational examples are considered to examine the significant effect of boundary conditions, temperature gradient, moisture concentration gradient and empirical constants on the static behavior of HTMEE beam. It is observed that the static behavior of HTMEE beam is significantly influenced by the hygrothermal loads and empirical constants. The results presented in this article would serve as a benchmark results in design and analysis of HTMEE structures for sensors and actuators applications.
Author Joladarashi, Sharnappa
Kattimani, Subhas Chandra
Vinyas, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Vinyas
  fullname: Vinyas, M.
  organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
– sequence: 2
  givenname: Subhas Chandra
  orcidid: 0000-0002-2477-3783
  surname: Kattimani
  fullname: Kattimani, Subhas Chandra
  organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
– sequence: 3
  givenname: Sharnappa
  surname: Joladarashi
  fullname: Joladarashi, Sharnappa
  organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India
BookMark eNo10M1KAzEUhuEgFazVSxACrqee_EwnXUpRKxTcKAguQpI5aafMTGqSWfTu7dC6OpuHA997SyZ96JGQBwZzBgqegMllWYnlnANTcyZlpcrFFZmykrMCKvk9IdPRFCO6Ibcp7QFgoZSYkp_1cRtD3mHsTEtdGA5t02-p6U17TE2iwdPObHvMocAWXY4BW5Ny46hF0yU6pJH7pm8y0pPosM-0w7wLdboj1960Ce8vd0a-Xl8-V-ti8_H2vnreFI4rlgunBPeiFlbUiiu7rIFzXoOvEKX1jAnrSy69cWCF8wBGLoVcWCkUKm-sEzPyeP57iOF3wJT1PgzxtCBpDoJXTJUgT6o8KxdDShG9PsSmM_GoGeixo_7vqMeO-tJR_AG3WGmG
CitedBy_id crossref_primary_10_1080_15376494_2023_2195406
crossref_primary_10_1142_S0219876221410036
crossref_primary_10_1016_j_dt_2019_11_016
crossref_primary_10_1016_j_compstruct_2020_112696
crossref_primary_10_1007_s11831_020_09406_4
crossref_primary_10_1007_s12666_023_03039_4
crossref_primary_10_1007_s40819_023_01549_9
crossref_primary_10_1016_j_enganabound_2021_10_015
crossref_primary_10_1016_j_compstruct_2020_112044
crossref_primary_10_1016_j_dt_2020_02_009
crossref_primary_10_1088_2053_1591_aae0c8
crossref_primary_10_1002_mma_6858
crossref_primary_10_1016_j_ijmecsci_2022_107565
crossref_primary_10_1007_s11043_024_09698_0
crossref_primary_10_1007_s42791_024_00069_x
crossref_primary_10_1007_s00366_019_00864_4
crossref_primary_10_1080_15397734_2021_2008257
crossref_primary_10_1007_s00231_023_03355_x
crossref_primary_10_1080_15376494_2023_2188326
crossref_primary_10_1088_2053_1591_ab6649
crossref_primary_10_1177_0954406220954485
crossref_primary_10_1177_1045389X19862386
crossref_primary_10_1016_j_compstruct_2022_116227
crossref_primary_10_1016_j_cma_2020_112975
crossref_primary_10_1016_j_compstruct_2019_02_010
crossref_primary_10_1155_2023_2857678
crossref_primary_10_1016_j_enganabound_2023_02_049
crossref_primary_10_1016_j_compscitech_2020_108130
crossref_primary_10_1177_0954406220938409
crossref_primary_10_1016_j_dt_2020_03_012
crossref_primary_10_1140_epjp_i2019_12806_8
crossref_primary_10_1016_j_jmmm_2020_166649
crossref_primary_10_1080_15376494_2020_1805059
Cites_doi 10.1080/107594100305438
10.1016/j.ijengsci.2004.09.006
10.1016/j.ijengsci.2010.09.022
10.1016/j.compstruct.2016.12.040
10.1016/j.ijengsci.2007.03.005
10.1007/s10999-014-9252-3
10.1016/j.ijpvp.2014.02.001
10.12989/csm.2013.2.1.001
10.1115/1.1380385
10.1177/1045389×17740739
10.1080/01495739.2015.1038487
10.1016/j.ijsolstr.2005.05.030
10.1016/j.mechrescom.2013.12.007
10.1080/014957300280443
10.1016/j.compstruct.2017.06.068
10.1016/j.compstruct.2012.09.058
10.1016/j.compstruct.2013.08.032
10.1016/j.compstruct.2017.10.073
10.1016/j.compstruct.2014.03.050
10.1016/j.jsv.2005.08.004
10.1080/01495739.2013.818887
10.1088/0964-1726/16/2/006
10.1016/j.ijmecsci.2015.05.012
10.1108/15736101011095145
10.2514/2.1862
10.1061/(asce)0733-9445(2003)129:5(699)
10.12989/csm.2012.1.2.205
10.1080/01495730150500424
10.1016/j.apm.2012.05.023
10.1088/0964-1726/23/3/035004
10.1080/01495739.2016.1215726
10.1016/j.compstruc.2004.03.026
10.1016/j.compstruct.2014.11.030
10.1016/j.compstruct.2004.04.013
10.1088/0964-1726/21/12/125013
10.1115/1.4025529
10.1016/j.jsv.2007.03.021
10.1016/j.compstruct.2017.08.015
ContentType Journal Article
Copyright 2018 Taylor & Francis
Copyright_xml – notice: 2018 Taylor & Francis
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
H8D
JG9
KR7
L7M
DOI 10.1080/01495739.2018.1447856
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Aerospace Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-074X
EndPage 1079
ExternalDocumentID 10_1080_01495739_2018_1447856
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFWLO
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CITATION
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EJD
EMK
EPL
EST
ESX
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
7SR
7TB
8BQ
8FD
FR3
H8D
JG9
KR7
L7M
ID FETCH-LOGICAL-c281t-c832f3d3b3d828b9d0222d0f7ee4bf113bf524fac0b3cf00a49346b438e8fabc3
ISSN 0149-5739
IngestDate Tue Nov 05 15:42:24 EST 2024
Fri Aug 23 03:42:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-c832f3d3b3d828b9d0222d0f7ee4bf113bf524fac0b3cf00a49346b438e8fabc3
ORCID 0000-0002-2477-3783
PQID 2032718504
PQPubID 52901
PageCount 17
ParticipantIDs proquest_journals_2032718504
crossref_primary_10_1080_01495739_2018_1447856
PublicationCentury 2000
PublicationDate 2018-08-03
PublicationDateYYYYMMDD 2018-08-03
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Journal of thermal stresses
PublicationYear 2018
Publisher Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Smittakorn W. (CIT0001) 2001; 33
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
CIT0039
CIT0019
CIT0040
CIT0021
CIT0020
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
Vinyas M. (CIT0032) 2017; 62
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0006
  doi: 10.1080/107594100305438
– ident: CIT0016
  doi: 10.1016/j.ijengsci.2004.09.006
– ident: CIT0013
  doi: 10.1016/j.ijengsci.2010.09.022
– ident: CIT0031
  doi: 10.1016/j.compstruct.2016.12.040
– ident: CIT0018
  doi: 10.1016/j.ijengsci.2007.03.005
– ident: CIT0024
  doi: 10.1007/s10999-014-9252-3
– volume: 33
  start-page: 595
  issue: 4
  year: 2001
  ident: CIT0001
  publication-title: Wood Fib. Sci.
  contributor:
    fullname: Smittakorn W.
– ident: CIT0007
  doi: 10.1016/j.ijpvp.2014.02.001
– ident: CIT0030
  doi: 10.12989/csm.2013.2.1.001
– ident: CIT0010
  doi: 10.1115/1.1380385
– ident: CIT0035
  doi: 10.1177/1045389×17740739
– ident: CIT0005
  doi: 10.1080/01495739.2015.1038487
– ident: CIT0017
  doi: 10.1016/j.ijsolstr.2005.05.030
– ident: CIT0020
  doi: 10.1016/j.mechrescom.2013.12.007
– ident: CIT0009
  doi: 10.1080/014957300280443
– ident: CIT0033
  doi: 10.1016/j.compstruct.2017.06.068
– ident: CIT0038
  doi: 10.1016/j.compstruct.2012.09.058
– ident: CIT0019
  doi: 10.1016/j.compstruct.2013.08.032
– ident: CIT0036
  doi: 10.1016/j.compstruct.2017.10.073
– ident: CIT0022
  doi: 10.1016/j.compstruct.2014.03.050
– ident: CIT0011
  doi: 10.1016/j.jsv.2005.08.004
– ident: CIT0008
  doi: 10.1080/01495739.2013.818887
– ident: CIT0027
  doi: 10.1088/0964-1726/16/2/006
– ident: CIT0023
  doi: 10.1016/j.ijmecsci.2015.05.012
– ident: CIT0028
  doi: 10.1108/15736101011095145
– ident: CIT0025
  doi: 10.2514/2.1862
– ident: CIT0002
  doi: 10.1061/(asce)0733-9445(2003)129:5(699)
– ident: CIT0029
  doi: 10.12989/csm.2012.1.2.205
– ident: CIT0004
  doi: 10.1080/01495730150500424
– ident: CIT0021
  doi: 10.1016/j.apm.2012.05.023
– ident: CIT0040
  doi: 10.1088/0964-1726/23/3/035004
– ident: CIT0003
  doi: 10.1080/01495739.2016.1215726
– ident: CIT0015
  doi: 10.1016/j.compstruc.2004.03.026
– ident: CIT0014
  doi: 10.1016/j.compstruct.2014.11.030
– ident: CIT0026
  doi: 10.1016/j.compstruct.2004.04.013
– ident: CIT0037
  doi: 10.1088/0964-1726/21/12/125013
– ident: CIT0039
  doi: 10.1115/1.4025529
– ident: CIT0012
  doi: 10.1016/j.jsv.2007.03.021
– ident: CIT0034
  doi: 10.1016/j.compstruct.2017.08.015
– volume: 62
  start-page: 519
  issue: 5
  year: 2017
  ident: CIT0032
  publication-title: Struct. Eng. Mech.
  contributor:
    fullname: Vinyas M.
SSID ssj0006883
Score 2.388604
Snippet In this article, the finite element (FE) method has been used to assess the coupled static behavior of hygro-thermo-magneto-electroelastic (HTMEE) beam....
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 1063
SubjectTerms Concentration gradient
Condensates
Constants
Constitutive equations
Constitutive relationships
Elastic properties
Empirical analysis
Equations of motion
Finite element method
Loads (forces)
Magnetic flux
Moisture
Potential energy
Stiffness coefficients
Temperature dependence
Temperature effects
Temperature gradients
Title Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods
URI https://www.proquest.com/docview/2032718504
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFMUWrQHbmgj27uO18cKqKJKcGohgoO1a8-2kYgTJc6h_Rn9xcw-7DjIIMrFilarceL5PI_NzDeEvIsnJuMgBctMHjHBdc6kSoGh9xEGZKK1cVW-XybTS3E-S2ej0V2vamnb6HF5O9hX8j9axTXUq-2SvYdmO6G4gJ9Rv3hFDeP1n3Q8vblauw6qhWP52K5--pbDHc_IQl3V0CxZmHYDGCtbhlYNlohh684JzNyGne_B15GHkdKbPwSt7c18i8mu_vDrvL7xrWGfx50NV00zX_iZUdZAXauNa2ao1p0rOMfEulJrO9DJbbpWeKNVGIEeziJi6Srh-N7xZM7SzNMTjSGY1CRmGKjM-jbXk10FbMmeAcUMlfecMSan-aChD5WRNr_LXMNRLO3_1JlMB4i1f3N4XRli3PKjBjGFFVMEMQ_IYYLGC63m4en04_dvnX-fSE_u2v7Wti_MMrYPfZ_9iGff4bso5uIJeRw0SU89lp6SEdTPyKMeKeVz8qOPKtqiiraooktDh1FFHaqoQxX1qKIBVTSg6gW5PPt08WHKwggOViYybliJBt_wimteYWqu88qeD1SRyQCENnHM8VVOhFFlpHlpokiJnIuJFlyCNEqX_CU5qJc1vCIUDX8JZVLhdozBAbTJTMpFhvkurkt9RMbtYypWnmml-KuCjshx-zCL8FJucANPMNxKI_H6vvLekIc7TB-Tg2a9hROMOBv9NkDgF2esf1o
link.rule.ids 315,783,787,27936,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hygrothermal+coupling+analysis+of+magneto-electroelastic+beams+using+finite+element+methods&rft.jtitle=Journal+of+thermal+stresses&rft.au=Vinyas%2C+M.&rft.au=Kattimani%2C+Subhas+Chandra&rft.au=Joladarashi%2C+Sharnappa&rft.date=2018-08-03&rft.issn=0149-5739&rft.eissn=1521-074X&rft.volume=41&rft.issue=8&rft.spage=1063&rft.epage=1079&rft_id=info:doi/10.1080%2F01495739.2018.1447856&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01495739_2018_1447856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5739&client=summon