Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods
In this article, the finite element (FE) method has been used to assess the coupled static behavior of hygro-thermo-magneto-electroelastic (HTMEE) beam. Influence of externally applied hygrothermal loads on the direct (displacements, electric and magnetic potentials) and derived quantities (stresses...
Saved in:
Published in | Journal of thermal stresses Vol. 41; no. 8; pp. 1063 - 1079 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis Ltd
03.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, the finite element (FE) method has been used to assess the coupled static behavior of hygro-thermo-magneto-electroelastic (HTMEE) beam. Influence of externally applied hygrothermal loads on the direct (displacements, electric and magnetic potentials) and derived quantities (stresses, electric displacement and magnetic flux densities) of HTMEE beam have been studied in detail. The principle of total potential energy and the coupled constitutive equations of HTMEE material are used for the FE formulation. A generalized condensation technique is adopted to solve the global FE equations of motion. Numerical examples are discussed to examine the effect of hygrothermal loads and distinct effect of moisture concentration on the behavior of the beam. Particular emphasis has been placed to analyze the influence of temperature and moisture dependent elastic stiffness coefficients associated with empirical constants. Considering the independent effect of temperature and moisture on the coupled static responses, the most significant combination of the empirical constants corresponding to temperature dependency and moisture dependency are explored. Extensive computational examples are considered to examine the significant effect of boundary conditions, temperature gradient, moisture concentration gradient and empirical constants on the static behavior of HTMEE beam. It is observed that the static behavior of HTMEE beam is significantly influenced by the hygrothermal loads and empirical constants. The results presented in this article would serve as a benchmark results in design and analysis of HTMEE structures for sensors and actuators applications. |
---|---|
AbstractList | In this article, the finite element (FE) method has been used to assess the coupled static behavior of hygro-thermo-magneto-electroelastic (HTMEE) beam. Influence of externally applied hygrothermal loads on the direct (displacements, electric and magnetic potentials) and derived quantities (stresses, electric displacement and magnetic flux densities) of HTMEE beam have been studied in detail. The principle of total potential energy and the coupled constitutive equations of HTMEE material are used for the FE formulation. A generalized condensation technique is adopted to solve the global FE equations of motion. Numerical examples are discussed to examine the effect of hygrothermal loads and distinct effect of moisture concentration on the behavior of the beam. Particular emphasis has been placed to analyze the influence of temperature and moisture dependent elastic stiffness coefficients associated with empirical constants. Considering the independent effect of temperature and moisture on the coupled static responses, the most significant combination of the empirical constants corresponding to temperature dependency and moisture dependency are explored. Extensive computational examples are considered to examine the significant effect of boundary conditions, temperature gradient, moisture concentration gradient and empirical constants on the static behavior of HTMEE beam. It is observed that the static behavior of HTMEE beam is significantly influenced by the hygrothermal loads and empirical constants. The results presented in this article would serve as a benchmark results in design and analysis of HTMEE structures for sensors and actuators applications. |
Author | Joladarashi, Sharnappa Kattimani, Subhas Chandra Vinyas, M. |
Author_xml | – sequence: 1 givenname: M. surname: Vinyas fullname: Vinyas, M. organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India – sequence: 2 givenname: Subhas Chandra orcidid: 0000-0002-2477-3783 surname: Kattimani fullname: Kattimani, Subhas Chandra organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India – sequence: 3 givenname: Sharnappa surname: Joladarashi fullname: Joladarashi, Sharnappa organization: Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore, India |
BookMark | eNo10M1KAzEUhuEgFazVSxACrqee_EwnXUpRKxTcKAguQpI5aafMTGqSWfTu7dC6OpuHA997SyZ96JGQBwZzBgqegMllWYnlnANTcyZlpcrFFZmykrMCKvk9IdPRFCO6Ibcp7QFgoZSYkp_1cRtD3mHsTEtdGA5t02-p6U17TE2iwdPObHvMocAWXY4BW5Ny46hF0yU6pJH7pm8y0pPosM-0w7wLdboj1960Ce8vd0a-Xl8-V-ti8_H2vnreFI4rlgunBPeiFlbUiiu7rIFzXoOvEKX1jAnrSy69cWCF8wBGLoVcWCkUKm-sEzPyeP57iOF3wJT1PgzxtCBpDoJXTJUgT6o8KxdDShG9PsSmM_GoGeixo_7vqMeO-tJR_AG3WGmG |
CitedBy_id | crossref_primary_10_1080_15376494_2023_2195406 crossref_primary_10_1142_S0219876221410036 crossref_primary_10_1016_j_dt_2019_11_016 crossref_primary_10_1016_j_compstruct_2020_112696 crossref_primary_10_1007_s11831_020_09406_4 crossref_primary_10_1007_s12666_023_03039_4 crossref_primary_10_1007_s40819_023_01549_9 crossref_primary_10_1016_j_enganabound_2021_10_015 crossref_primary_10_1016_j_compstruct_2020_112044 crossref_primary_10_1016_j_dt_2020_02_009 crossref_primary_10_1088_2053_1591_aae0c8 crossref_primary_10_1002_mma_6858 crossref_primary_10_1016_j_ijmecsci_2022_107565 crossref_primary_10_1007_s11043_024_09698_0 crossref_primary_10_1007_s42791_024_00069_x crossref_primary_10_1007_s00366_019_00864_4 crossref_primary_10_1080_15397734_2021_2008257 crossref_primary_10_1007_s00231_023_03355_x crossref_primary_10_1080_15376494_2023_2188326 crossref_primary_10_1088_2053_1591_ab6649 crossref_primary_10_1177_0954406220954485 crossref_primary_10_1177_1045389X19862386 crossref_primary_10_1016_j_compstruct_2022_116227 crossref_primary_10_1016_j_cma_2020_112975 crossref_primary_10_1016_j_compstruct_2019_02_010 crossref_primary_10_1155_2023_2857678 crossref_primary_10_1016_j_enganabound_2023_02_049 crossref_primary_10_1016_j_compscitech_2020_108130 crossref_primary_10_1177_0954406220938409 crossref_primary_10_1016_j_dt_2020_03_012 crossref_primary_10_1140_epjp_i2019_12806_8 crossref_primary_10_1016_j_jmmm_2020_166649 crossref_primary_10_1080_15376494_2020_1805059 |
Cites_doi | 10.1080/107594100305438 10.1016/j.ijengsci.2004.09.006 10.1016/j.ijengsci.2010.09.022 10.1016/j.compstruct.2016.12.040 10.1016/j.ijengsci.2007.03.005 10.1007/s10999-014-9252-3 10.1016/j.ijpvp.2014.02.001 10.12989/csm.2013.2.1.001 10.1115/1.1380385 10.1177/1045389×17740739 10.1080/01495739.2015.1038487 10.1016/j.ijsolstr.2005.05.030 10.1016/j.mechrescom.2013.12.007 10.1080/014957300280443 10.1016/j.compstruct.2017.06.068 10.1016/j.compstruct.2012.09.058 10.1016/j.compstruct.2013.08.032 10.1016/j.compstruct.2017.10.073 10.1016/j.compstruct.2014.03.050 10.1016/j.jsv.2005.08.004 10.1080/01495739.2013.818887 10.1088/0964-1726/16/2/006 10.1016/j.ijmecsci.2015.05.012 10.1108/15736101011095145 10.2514/2.1862 10.1061/(asce)0733-9445(2003)129:5(699) 10.12989/csm.2012.1.2.205 10.1080/01495730150500424 10.1016/j.apm.2012.05.023 10.1088/0964-1726/23/3/035004 10.1080/01495739.2016.1215726 10.1016/j.compstruc.2004.03.026 10.1016/j.compstruct.2014.11.030 10.1016/j.compstruct.2004.04.013 10.1088/0964-1726/21/12/125013 10.1115/1.4025529 10.1016/j.jsv.2007.03.021 10.1016/j.compstruct.2017.08.015 |
ContentType | Journal Article |
Copyright | 2018 Taylor & Francis |
Copyright_xml | – notice: 2018 Taylor & Francis |
DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 H8D JG9 KR7 L7M |
DOI | 10.1080/01495739.2018.1447856 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Aerospace Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-074X |
EndPage | 1079 |
ExternalDocumentID | 10_1080_01495739_2018_1447856 |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFWLO AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CITATION CS3 DGEBU DKSSO DU5 EAP EBS EJD EMK EPL EST ESX E~A E~B GEVLZ GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ 7SR 7TB 8BQ 8FD FR3 H8D JG9 KR7 L7M |
ID | FETCH-LOGICAL-c281t-c832f3d3b3d828b9d0222d0f7ee4bf113bf524fac0b3cf00a49346b438e8fabc3 |
ISSN | 0149-5739 |
IngestDate | Tue Nov 05 15:42:24 EST 2024 Fri Aug 23 03:42:37 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-c832f3d3b3d828b9d0222d0f7ee4bf113bf524fac0b3cf00a49346b438e8fabc3 |
ORCID | 0000-0002-2477-3783 |
PQID | 2032718504 |
PQPubID | 52901 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2032718504 crossref_primary_10_1080_01495739_2018_1447856 |
PublicationCentury | 2000 |
PublicationDate | 2018-08-03 |
PublicationDateYYYYMMDD | 2018-08-03 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Journal of thermal stresses |
PublicationYear | 2018 |
Publisher | Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 Smittakorn W. (CIT0001) 2001; 33 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 CIT0039 CIT0019 CIT0040 CIT0021 CIT0020 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 Vinyas M. (CIT0032) 2017; 62 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0006 doi: 10.1080/107594100305438 – ident: CIT0016 doi: 10.1016/j.ijengsci.2004.09.006 – ident: CIT0013 doi: 10.1016/j.ijengsci.2010.09.022 – ident: CIT0031 doi: 10.1016/j.compstruct.2016.12.040 – ident: CIT0018 doi: 10.1016/j.ijengsci.2007.03.005 – ident: CIT0024 doi: 10.1007/s10999-014-9252-3 – volume: 33 start-page: 595 issue: 4 year: 2001 ident: CIT0001 publication-title: Wood Fib. Sci. contributor: fullname: Smittakorn W. – ident: CIT0007 doi: 10.1016/j.ijpvp.2014.02.001 – ident: CIT0030 doi: 10.12989/csm.2013.2.1.001 – ident: CIT0010 doi: 10.1115/1.1380385 – ident: CIT0035 doi: 10.1177/1045389×17740739 – ident: CIT0005 doi: 10.1080/01495739.2015.1038487 – ident: CIT0017 doi: 10.1016/j.ijsolstr.2005.05.030 – ident: CIT0020 doi: 10.1016/j.mechrescom.2013.12.007 – ident: CIT0009 doi: 10.1080/014957300280443 – ident: CIT0033 doi: 10.1016/j.compstruct.2017.06.068 – ident: CIT0038 doi: 10.1016/j.compstruct.2012.09.058 – ident: CIT0019 doi: 10.1016/j.compstruct.2013.08.032 – ident: CIT0036 doi: 10.1016/j.compstruct.2017.10.073 – ident: CIT0022 doi: 10.1016/j.compstruct.2014.03.050 – ident: CIT0011 doi: 10.1016/j.jsv.2005.08.004 – ident: CIT0008 doi: 10.1080/01495739.2013.818887 – ident: CIT0027 doi: 10.1088/0964-1726/16/2/006 – ident: CIT0023 doi: 10.1016/j.ijmecsci.2015.05.012 – ident: CIT0028 doi: 10.1108/15736101011095145 – ident: CIT0025 doi: 10.2514/2.1862 – ident: CIT0002 doi: 10.1061/(asce)0733-9445(2003)129:5(699) – ident: CIT0029 doi: 10.12989/csm.2012.1.2.205 – ident: CIT0004 doi: 10.1080/01495730150500424 – ident: CIT0021 doi: 10.1016/j.apm.2012.05.023 – ident: CIT0040 doi: 10.1088/0964-1726/23/3/035004 – ident: CIT0003 doi: 10.1080/01495739.2016.1215726 – ident: CIT0015 doi: 10.1016/j.compstruc.2004.03.026 – ident: CIT0014 doi: 10.1016/j.compstruct.2014.11.030 – ident: CIT0026 doi: 10.1016/j.compstruct.2004.04.013 – ident: CIT0037 doi: 10.1088/0964-1726/21/12/125013 – ident: CIT0039 doi: 10.1115/1.4025529 – ident: CIT0012 doi: 10.1016/j.jsv.2007.03.021 – ident: CIT0034 doi: 10.1016/j.compstruct.2017.08.015 – volume: 62 start-page: 519 issue: 5 year: 2017 ident: CIT0032 publication-title: Struct. Eng. Mech. contributor: fullname: Vinyas M. |
SSID | ssj0006883 |
Score | 2.388604 |
Snippet | In this article, the finite element (FE) method has been used to assess the coupled static behavior of hygro-thermo-magneto-electroelastic (HTMEE) beam.... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 1063 |
SubjectTerms | Concentration gradient Condensates Constants Constitutive equations Constitutive relationships Elastic properties Empirical analysis Equations of motion Finite element method Loads (forces) Magnetic flux Moisture Potential energy Stiffness coefficients Temperature dependence Temperature effects Temperature gradients |
Title | Hygrothermal coupling analysis of magneto-electroelastic beams using finite element methods |
URI | https://www.proquest.com/docview/2032718504 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFMUWrQHbmgj27uO18cKqKJKcGohgoO1a8-2kYgTJc6h_Rn9xcw-7DjIIMrFilarceL5PI_NzDeEvIsnJuMgBctMHjHBdc6kSoGh9xEGZKK1cVW-XybTS3E-S2ej0V2vamnb6HF5O9hX8j9axTXUq-2SvYdmO6G4gJ9Rv3hFDeP1n3Q8vblauw6qhWP52K5--pbDHc_IQl3V0CxZmHYDGCtbhlYNlohh684JzNyGne_B15GHkdKbPwSt7c18i8mu_vDrvL7xrWGfx50NV00zX_iZUdZAXauNa2ao1p0rOMfEulJrO9DJbbpWeKNVGIEeziJi6Srh-N7xZM7SzNMTjSGY1CRmGKjM-jbXk10FbMmeAcUMlfecMSan-aChD5WRNr_LXMNRLO3_1JlMB4i1f3N4XRli3PKjBjGFFVMEMQ_IYYLGC63m4en04_dvnX-fSE_u2v7Wti_MMrYPfZ_9iGff4bso5uIJeRw0SU89lp6SEdTPyKMeKeVz8qOPKtqiiraooktDh1FFHaqoQxX1qKIBVTSg6gW5PPt08WHKwggOViYybliJBt_wimteYWqu88qeD1SRyQCENnHM8VVOhFFlpHlpokiJnIuJFlyCNEqX_CU5qJc1vCIUDX8JZVLhdozBAbTJTMpFhvkurkt9RMbtYypWnmml-KuCjshx-zCL8FJucANPMNxKI_H6vvLekIc7TB-Tg2a9hROMOBv9NkDgF2esf1o |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hygrothermal+coupling+analysis+of+magneto-electroelastic+beams+using+finite+element+methods&rft.jtitle=Journal+of+thermal+stresses&rft.au=Vinyas%2C+M.&rft.au=Kattimani%2C+Subhas+Chandra&rft.au=Joladarashi%2C+Sharnappa&rft.date=2018-08-03&rft.issn=0149-5739&rft.eissn=1521-074X&rft.volume=41&rft.issue=8&rft.spage=1063&rft.epage=1079&rft_id=info:doi/10.1080%2F01495739.2018.1447856&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01495739_2018_1447856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5739&client=summon |