Challenges and advances in wide-temperature rechargeable lithium batteries
Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLB...
Saved in:
Published in | Energy & environmental science Vol. 15; no. 5; pp. 1711 - 1759 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
18.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLBs are harnessed only in favourable environments rather than extreme climates/conditions such as ocean exploration, tropical areas, high altitude drones, and polar expeditions. When chronically or periodically exposed to harsh environments, conventional RLBs will fail to work, especially in low- and high-temperature zones (
i.e.
, below 0 °C and above 60 °C). Constructing alternative electrode materials and electrolyte systems with strong temperature tolerance lays the foundation for developing full-climate RLBs. Herein, the key stumbling blocks to realizing wide-temperature RLBs are first comprehensively discussed. Then the latest research progress to address the challenges at extreme temperatures is gradually introduced. And the fundamental operating mechanism and design strategies of electrolyte and electrode materials for RLBs working within a wide-temperature range are reviewed in detail. Finally, insights into and perspectives on energy materials and battery systems are provided to develop wide-temperature-operating range energy storage devices.
Building rechargeable lithium batteries for wide-temperature applications requires us to investigate the battery failure mechanism at low/high temperature, design advanced electrode/electrolyte materials, and optimize the battery management system. |
---|---|
AbstractList | Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLBs are harnessed only in favourable environments rather than extreme climates/conditions such as ocean exploration, tropical areas, high altitude drones, and polar expeditions. When chronically or periodically exposed to harsh environments, conventional RLBs will fail to work, especially in low- and high-temperature zones (
i.e.
, below 0 °C and above 60 °C). Constructing alternative electrode materials and electrolyte systems with strong temperature tolerance lays the foundation for developing full-climate RLBs. Herein, the key stumbling blocks to realizing wide-temperature RLBs are first comprehensively discussed. Then the latest research progress to address the challenges at extreme temperatures is gradually introduced. And the fundamental operating mechanism and design strategies of electrolyte and electrode materials for RLBs working within a wide-temperature range are reviewed in detail. Finally, insights into and perspectives on energy materials and battery systems are provided to develop wide-temperature-operating range energy storage devices. Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLBs are harnessed only in favourable environments rather than extreme climates/conditions such as ocean exploration, tropical areas, high altitude drones, and polar expeditions. When chronically or periodically exposed to harsh environments, conventional RLBs will fail to work, especially in low- and high-temperature zones ( i.e. , below 0 °C and above 60 °C). Constructing alternative electrode materials and electrolyte systems with strong temperature tolerance lays the foundation for developing full-climate RLBs. Herein, the key stumbling blocks to realizing wide-temperature RLBs are first comprehensively discussed. Then the latest research progress to address the challenges at extreme temperatures is gradually introduced. And the fundamental operating mechanism and design strategies of electrolyte and electrode materials for RLBs working within a wide-temperature range are reviewed in detail. Finally, insights into and perspectives on energy materials and battery systems are provided to develop wide-temperature-operating range energy storage devices. Building rechargeable lithium batteries for wide-temperature applications requires us to investigate the battery failure mechanism at low/high temperature, design advanced electrode/electrolyte materials, and optimize the battery management system. Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLBs are harnessed only in favourable environments rather than extreme climates/conditions such as ocean exploration, tropical areas, high altitude drones, and polar expeditions. When chronically or periodically exposed to harsh environments, conventional RLBs will fail to work, especially in low- and high-temperature zones (i.e., below 0 °C and above 60 °C). Constructing alternative electrode materials and electrolyte systems with strong temperature tolerance lays the foundation for developing full-climate RLBs. Herein, the key stumbling blocks to realizing wide-temperature RLBs are first comprehensively discussed. Then the latest research progress to address the challenges at extreme temperatures is gradually introduced. And the fundamental operating mechanism and design strategies of electrolyte and electrode materials for RLBs working within a wide-temperature range are reviewed in detail. Finally, insights into and perspectives on energy materials and battery systems are provided to develop wide-temperature-operating range energy storage devices. |
Author | Wu, Zhonghan Zhao, Qing Feng, Yang Chen, Jun Zhou, Limin Ma, Hua Li, Haixia Zhang, Kai |
AuthorAffiliation | Tianjin EV Energies Co., Ltd Haihe Laboratory of Sustainable Chemical Transformations Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University |
AuthorAffiliation_xml | – name: Tianjin EV Energies Co., Ltd – name: Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University – name: Haihe Laboratory of Sustainable Chemical Transformations |
Author_xml | – sequence: 1 givenname: Yang surname: Feng fullname: Feng, Yang – sequence: 2 givenname: Limin surname: Zhou fullname: Zhou, Limin – sequence: 3 givenname: Hua surname: Ma fullname: Ma, Hua – sequence: 4 givenname: Zhonghan surname: Wu fullname: Wu, Zhonghan – sequence: 5 givenname: Qing surname: Zhao fullname: Zhao, Qing – sequence: 6 givenname: Haixia surname: Li fullname: Li, Haixia – sequence: 7 givenname: Kai surname: Zhang fullname: Zhang, Kai – sequence: 8 givenname: Jun surname: Chen fullname: Chen, Jun |
BookMark | eNptkE1LxDAQhoOs4O7qxbtQ8CZUk7RNNkdZ6xcLXvRcJulkN0u3XZNU8d9bXT9APM078Lwz8EzIqO1aJOSY0XNGM3VRM0SaccVxj4yZLPK0kFSMvrNQ_IBMQlhTKjiVakzu5ytoGmyXGBJo6wTqF2jNsLg2eXU1phE3W_QQe4-JR7MCv0TQDSaNiyvXbxINMaJ3GA7JvoUm4NHXnJKn6_JxfpsuHm7u5peL1PAZi6lhWhiwsgBtKFBF80wLbaVERq1iSmnGmbRCQEFnNpdKZVybHG0BPOfWZlNyuru79d1zjyFW66737fCy4kIUBRcqZwNFd5TxXQgebWVchOi6NnpwTcVo9WGsumJl-WmsHCpnfypb7zbg3_6HT3awD-aH-9WfvQN2vnew |
CitedBy_id | crossref_primary_10_1016_j_ensm_2024_103177 crossref_primary_10_1021_acssuschemeng_4c07073 crossref_primary_10_1039_D2TA04540K crossref_primary_10_1016_j_geits_2024_100192 crossref_primary_10_1021_acs_inorgchem_3c03660 crossref_primary_10_1039_D3TA07253C crossref_primary_10_1002_ange_202408902 crossref_primary_10_1002_anie_202400797 crossref_primary_10_1016_j_pnsc_2024_12_013 crossref_primary_10_1016_j_jechem_2024_02_003 crossref_primary_10_1021_acsenergylett_4c00103 crossref_primary_10_1002_anie_202304503 crossref_primary_10_1016_j_ensm_2022_06_052 crossref_primary_10_1021_acsami_4c14141 crossref_primary_10_1002_adma_202308484 crossref_primary_10_1002_advs_202305280 crossref_primary_10_1007_s11426_023_1705_9 crossref_primary_10_1016_j_esci_2023_100179 crossref_primary_10_1007_s13391_024_00488_x crossref_primary_10_1016_j_ensm_2024_103281 crossref_primary_10_1016_j_jpowsour_2023_233066 crossref_primary_10_1021_acsenergylett_4c01328 crossref_primary_10_1016_j_biombioe_2024_107559 crossref_primary_10_1039_D2EE02411J crossref_primary_10_1002_smll_202401200 crossref_primary_10_1021_acsami_3c12301 crossref_primary_10_1002_adfm_202310747 crossref_primary_10_1002_aenm_202202432 crossref_primary_10_1002_anie_202303888 crossref_primary_10_1002_adsu_202300101 crossref_primary_10_1016_j_esci_2023_100173 crossref_primary_10_1016_j_est_2023_109415 crossref_primary_10_1002_ange_202414473 crossref_primary_10_1016_j_mtener_2024_101557 crossref_primary_10_1002_cssc_202202143 crossref_primary_10_1016_j_esci_2024_100328 crossref_primary_10_1002_adma_202413303 crossref_primary_10_1002_ange_202417605 crossref_primary_10_1039_D2TA06951B crossref_primary_10_1016_j_est_2024_111001 crossref_primary_10_1016_j_nxmate_2024_100307 crossref_primary_10_1016_j_ensm_2023_03_026 crossref_primary_10_1016_j_mtener_2022_101089 crossref_primary_10_1016_j_pmatsci_2024_101289 crossref_primary_10_1002_ange_202416506 crossref_primary_10_1002_adma_202311327 crossref_primary_10_1002_ange_202414201 crossref_primary_10_1007_s10008_023_05705_5 crossref_primary_10_1021_acs_energyfuels_4c02858 crossref_primary_10_1021_acs_energyfuels_2c04033 crossref_primary_10_1002_aenm_202300053 crossref_primary_10_1002_adfm_202418784 crossref_primary_10_1016_j_ensm_2023_103005 crossref_primary_10_1002_ange_202407012 crossref_primary_10_1021_acsami_4c15229 crossref_primary_10_1016_j_cej_2024_152294 crossref_primary_10_1016_j_xcrp_2024_101931 crossref_primary_10_1038_s41467_023_41276_9 crossref_primary_10_1039_D3CS00734K crossref_primary_10_1002_adma_202417353 crossref_primary_10_1039_D3TA01588B crossref_primary_10_1002_advs_202416120 crossref_primary_10_1002_advs_202308530 crossref_primary_10_1039_D3EE03176D crossref_primary_10_1039_D4SC02853H crossref_primary_10_1002_adma_202302625 crossref_primary_10_1016_j_matchar_2023_113089 crossref_primary_10_1021_acsnano_4c06231 crossref_primary_10_1016_j_ensm_2024_103656 crossref_primary_10_1016_j_jcis_2024_05_009 crossref_primary_10_1021_acs_energyfuels_4c03119 crossref_primary_10_1016_j_mser_2025_100955 crossref_primary_10_1016_j_ensm_2023_103098 crossref_primary_10_1016_j_est_2024_111666 crossref_primary_10_1039_D2CS00931E crossref_primary_10_1016_j_seta_2022_102915 crossref_primary_10_1002_aenm_202202342 crossref_primary_10_1038_s41467_024_55154_5 crossref_primary_10_1021_acs_energyfuels_4c06075 crossref_primary_10_1016_j_matre_2025_100317 crossref_primary_10_1016_j_cej_2024_153818 crossref_primary_10_1002_adfm_202212349 crossref_primary_10_1002_ange_202400797 crossref_primary_10_1016_j_ensm_2024_103402 crossref_primary_10_1016_j_esr_2024_101512 crossref_primary_10_1002_batt_202400055 crossref_primary_10_1016_j_matt_2023_04_012 crossref_primary_10_1016_j_jallcom_2023_169128 crossref_primary_10_1002_smll_202410866 crossref_primary_10_1016_j_ijsolstr_2022_112046 crossref_primary_10_1002_anie_202408902 crossref_primary_10_1016_j_joule_2025_101823 crossref_primary_10_1002_smll_202307848 crossref_primary_10_1002_aenm_202400314 crossref_primary_10_1007_s42114_024_01122_y crossref_primary_10_1016_j_cej_2023_142181 crossref_primary_10_1016_j_ijhydene_2025_01_237 crossref_primary_10_3390_batteries9070373 crossref_primary_10_1002_smll_202311652 crossref_primary_10_1039_D4TA06381C crossref_primary_10_1002_adsu_202300285 crossref_primary_10_1002_adfm_202414393 crossref_primary_10_1016_j_cej_2023_146418 crossref_primary_10_1016_j_est_2024_111445 crossref_primary_10_1021_acsenergylett_4c01616 crossref_primary_10_1016_j_mser_2025_100973 crossref_primary_10_1021_acsnano_3c06368 crossref_primary_10_1002_adfm_202310934 crossref_primary_10_1002_adma_202206009 crossref_primary_10_1080_1536383X_2023_2188201 crossref_primary_10_1016_j_cej_2023_147180 crossref_primary_10_1039_D3QM00759F crossref_primary_10_1038_s41467_023_40394_8 crossref_primary_10_1039_D4CS00832D crossref_primary_10_1039_D4EE05304D crossref_primary_10_26599_NRE_2023_9120077 crossref_primary_10_1002_anie_202414473 crossref_primary_10_1021_acsami_3c19401 crossref_primary_10_1007_s12209_023_00366_x crossref_primary_10_1002_cjoc_202200588 crossref_primary_10_1016_j_surfin_2024_104200 crossref_primary_10_1016_j_ensm_2024_103741 crossref_primary_10_1073_pnas_2310903120 crossref_primary_10_1002_aenm_202403851 crossref_primary_10_1007_s11814_024_00357_1 crossref_primary_10_1016_j_jpowsour_2024_235364 crossref_primary_10_1002_smm2_1185 crossref_primary_10_1002_adfm_202409232 crossref_primary_10_1016_j_jmst_2024_12_082 crossref_primary_10_1002_adma_202308193 crossref_primary_10_1016_j_ensm_2024_103857 crossref_primary_10_1002_adma_202311912 crossref_primary_10_1016_j_est_2023_109759 crossref_primary_10_1002_anie_202414201 crossref_primary_10_1016_j_ensm_2024_103330 crossref_primary_10_1002_anie_202416506 crossref_primary_10_1007_s40820_023_01245_9 crossref_primary_10_1016_j_nxmate_2024_100124 crossref_primary_10_1021_acselectrochem_4c00083 crossref_primary_10_1039_D4EE04657A crossref_primary_10_1016_j_cej_2024_158223 crossref_primary_10_1016_j_nanoen_2024_110472 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1021_acsaem_3c00814 crossref_primary_10_1039_D3QM00850A crossref_primary_10_1016_j_jcis_2023_10_064 crossref_primary_10_1016_j_jpowsour_2024_235589 crossref_primary_10_1007_s12274_022_5363_6 crossref_primary_10_1016_j_jechem_2023_11_044 crossref_primary_10_1021_acsenergylett_4c00621 crossref_primary_10_1016_j_cej_2024_156845 crossref_primary_10_1021_acs_energyfuels_3c02142 crossref_primary_10_1021_acsnano_2c04114 crossref_primary_10_1002_batt_202200256 crossref_primary_10_1039_D3CS00872J crossref_primary_10_1002_adma_202400537 crossref_primary_10_1002_adfm_202205393 crossref_primary_10_1002_aenm_202402381 crossref_primary_10_1002_adfm_202424022 crossref_primary_10_1002_anie_202417605 crossref_primary_10_1016_j_nanoen_2025_110769 crossref_primary_10_1021_jacs_4c16031 crossref_primary_10_1039_D2EE03019E crossref_primary_10_1002_chem_202401935 crossref_primary_10_1021_jacs_3c08313 crossref_primary_10_1002_ange_202417105 crossref_primary_10_1002_smll_202306438 crossref_primary_10_1016_j_jallcom_2024_174481 crossref_primary_10_1002_adfm_202501303 crossref_primary_10_1016_j_ensm_2025_104126 crossref_primary_10_1002_adfm_202210731 crossref_primary_10_1002_chem_202304152 crossref_primary_10_1002_smll_202401735 crossref_primary_10_1016_j_jcis_2023_12_012 crossref_primary_10_1002_anie_202407012 crossref_primary_10_1039_D3EE02535G crossref_primary_10_1002_aenm_202203449 crossref_primary_10_1016_j_ssi_2023_116289 crossref_primary_10_1016_j_ensm_2024_103548 crossref_primary_10_1039_D4TA07378A crossref_primary_10_1039_D4CY01171F crossref_primary_10_1016_j_cej_2023_141273 crossref_primary_10_1016_j_ensm_2024_103783 crossref_primary_10_1038_s41467_023_36198_5 crossref_primary_10_1021_acsami_3c06812 crossref_primary_10_1016_j_jpowsour_2024_235563 crossref_primary_10_1038_s41467_023_40221_0 crossref_primary_10_1016_j_mattod_2024_06_018 crossref_primary_10_1021_acs_jpclett_4c02771 crossref_primary_10_1016_j_apenergy_2024_125229 crossref_primary_10_1002_cphc_202400231 crossref_primary_10_1016_j_jallcom_2023_170160 crossref_primary_10_1016_j_ensm_2024_103374 crossref_primary_10_1002_smtd_202400587 crossref_primary_10_1016_j_prime_2025_100962 crossref_primary_10_1002_anie_202410046 crossref_primary_10_1002_aenm_202203708 crossref_primary_10_1021_jacs_3c11776 crossref_primary_10_1002_advs_202410329 crossref_primary_10_1016_j_ensm_2024_103490 crossref_primary_10_1016_j_matt_2023_06_010 crossref_primary_10_1016_j_cej_2024_157572 crossref_primary_10_1016_j_fub_2024_100007 crossref_primary_10_1002_asia_202300820 crossref_primary_10_3390_en17195001 crossref_primary_10_1016_j_ensm_2022_08_022 crossref_primary_10_1002_ange_202303888 crossref_primary_10_3390_batteries10120448 crossref_primary_10_1007_s12274_022_4983_1 crossref_primary_10_1021_acsnano_3c01895 crossref_primary_10_1002_adma_202412155 crossref_primary_10_1002_aenm_202301020 crossref_primary_10_1016_j_ese_2024_100490 crossref_primary_10_1016_j_ensm_2024_103807 crossref_primary_10_1016_j_ensm_2024_103366 crossref_primary_10_1002_adfm_202300502 crossref_primary_10_1039_D3QM00662J crossref_primary_10_1021_acsenergylett_4c03307 crossref_primary_10_1002_batt_202400578 crossref_primary_10_1016_j_jpowsour_2024_236075 crossref_primary_10_1002_aenm_202203841 crossref_primary_10_1002_ange_202304503 crossref_primary_10_1002_celc_202300759 crossref_primary_10_1039_D4EE05369A crossref_primary_10_1016_j_apenergy_2025_125509 crossref_primary_10_1002_smll_202303763 crossref_primary_10_1002_adfm_202409295 crossref_primary_10_1016_j_matlet_2023_135594 crossref_primary_10_1021_acsaem_4c01142 crossref_primary_10_1002_batt_202300596 crossref_primary_10_1021_acsami_4c00199 crossref_primary_10_59717_j_xinn_mater_2023_100030 crossref_primary_10_1021_jacs_4c08115 crossref_primary_10_1002_aenm_202401961 crossref_primary_10_1021_acsami_3c05075 crossref_primary_10_1016_j_ensm_2025_104045 crossref_primary_10_1073_pnas_2316914121 crossref_primary_10_1016_j_est_2024_112019 crossref_primary_10_1016_j_ensm_2024_103230 crossref_primary_10_1039_D3EE02082G crossref_primary_10_1039_D4NR00261J crossref_primary_10_1002_aenm_202301285 crossref_primary_10_1002_ange_202410046 crossref_primary_10_1039_D3CS00551H crossref_primary_10_1002_ange_202305840 crossref_primary_10_1016_j_est_2023_107616 crossref_primary_10_1002_anie_202417105 crossref_primary_10_1039_D3TA06057H crossref_primary_10_1002_smll_202409130 crossref_primary_10_1039_D4MH01710B crossref_primary_10_1038_s41467_025_57856_w crossref_primary_10_1016_j_ensm_2025_104176 crossref_primary_10_3390_batteries10120421 crossref_primary_10_1016_j_est_2025_115944 crossref_primary_10_1016_j_jechem_2024_05_025 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1002_aenm_202202851 crossref_primary_10_1021_acsenergylett_4c00379 crossref_primary_10_1007_s12274_022_4726_3 crossref_primary_10_1016_j_etran_2023_100290 crossref_primary_10_1002_cey2_504 crossref_primary_10_1016_j_esci_2024_100252 crossref_primary_10_1002_anie_202305840 |
Cites_doi | 10.1016/S0378-7753(02)00473-1 10.1016/j.apmate.2021.10.002 10.1016/j.jclepro.2019.119403 10.1002/advs.202002590 10.1039/C9EE04039K 10.1021/acs.chemrev.7b00115 10.1016/j.joule.2018.06.015 10.1016/j.ensm.2021.04.002 10.1021/acsami.9b03821 10.1126/science.1212741 10.1002/aenm.201800802 10.1038/natrevmats.2016.13 10.1016/j.esci.2021.10.003 10.1039/C9CS00728H 10.1016/j.ensm.2020.12.033 10.1038/s41560-020-0640-7 10.1016/j.jechem.2020.03.041 10.1002/aesr.202000059 10.1038/nature16502 10.1002/sstr.202100119 10.1016/j.esci.2021.08.002 10.1038/s41467-018-06877-9 10.1149/2.0511814jes 10.1021/acsenergylett.0c00643 10.1002/smm2.1015 10.1039/D1TA00895A 10.1021/acsenergylett.7b00292 10.1039/D1EE00049G 10.1038/s41560-020-00757-7 10.1002/aenm.202001235 10.1016/j.nanoen.2020.105510 10.1007/s41918-018-0001-4 10.1016/j.jpowsour.2013.01.014 10.1149/2.1041608jes 10.1016/j.ensm.2019.06.020 10.1002/aenm.202101775 10.1016/j.electacta.2020.136652 10.1016/j.ensm.2020.06.042 10.1002/smll.201603045 10.1016/j.joule.2018.01.017 10.1016/j.electacta.2021.138461 10.1038/nenergy.2016.132 10.1002/adfm.202101180 10.1002/adma.202004898 10.1038/ncomms1527 10.1002/aenm.201300159 10.1021/acsami.0c19909 10.1002/anie.202102593 10.1039/C9CS00883G 10.1002/advs.202000196 10.1016/j.jpowsour.2014.11.149 10.1002/aenm.201300510 10.1016/j.rser.2021.111437 10.1016/j.joule.2017.08.009 10.1149/2.0041502eel 10.1016/S0378-7753(01)01013-8 10.1016/j.electacta.2020.137344 10.1002/smll.201703454 10.1021/cr500003w 10.1038/nenergy.2017.12 10.1021/jacs.9b05531 10.1002/aenm.201500274 10.1016/j.joule.2019.03.028 10.1021/nl902315u 10.1016/j.electacta.2012.07.128 10.1002/adma.202008088 10.1016/j.ensm.2020.06.043 10.1002/aenm.202001972 10.1002/aenm.201904152 10.1002/smtd.201800272 10.1016/j.elecom.2013.08.009 10.1002/adma.202000952 10.1021/acsami.0c04842 10.1038/nmat3191 10.1002/adma.201801751 10.1016/j.joule.2018.04.019 10.1126/science.aas9343 10.1002/aenm.201802322 10.1039/D0CC03798B 10.1016/j.jpowsour.2013.07.056 10.1126/science.aax0704 10.1016/j.cclet.2020.09.007 10.1021/ja3091438 10.1038/nenergy.2016.71 10.1021/acs.nanolett.9b03330 10.1016/j.jpowsour.2010.05.001 10.1038/ncomms8436 10.1038/s41560-019-0474-3 10.1039/C6CP02816K 10.1016/j.ensm.2021.06.040 10.1039/C7CS00863E 10.1016/j.ensm.2021.08.028 10.1038/nenergy.2017.108 10.1038/s41560-019-0513-0 10.1038/s41467-021-23603-0 10.1021/acsenergylett.7b00845 10.1039/C9CC03246K 10.1016/j.chempr.2018.09.005 10.1016/j.joule.2019.09.021 10.1021/cr020731c 10.1002/anie.201710555 10.1126/sciadv.aba4098 10.1016/j.jallcom.2020.156859 10.1002/adfm.201704195 10.1039/C4TA05660D 10.1002/aenm.201902023 10.1038/s41560-019-0413-3 10.1038/s41560-018-0243-8 10.1038/nmat2725 10.1038/nmat3435 10.1038/s41560-018-0108-1 10.1039/D1EE00271F 10.1002/anie.201503072 10.1149/2.1291610jes 10.1002/aenm.202100935 10.1016/j.elecom.2006.06.016 10.1002/anie.201914972 10.1002/chem.202101407 10.20964/2020.09.50 10.1021/acs.chemrev.9b00531 10.1039/C6EE00123H 10.1038/s41560-020-0665-y 10.1021/cr100290v 10.1016/S0378-7753(00)00578-4 10.1038/s41560-021-00783-z 10.1039/C7EE03365F 10.1016/j.applthermaleng.2018.03.099 10.1021/acs.chemrev.9b00609 10.1038/35104644 10.20964/2020.12.71 10.1016/j.jechem.2020.02.052 10.1002/anie.201811291 10.1016/j.ensm.2019.03.005 10.1109/MELE.2018.2889545 10.1126/sciadv.aas9820 10.1126/sciadv.aay7633 10.1038/s41560-019-0338-x 10.1021/acsami.0c11068 10.1016/j.electacta.2015.02.004 10.1016/j.jpowsour.2020.228680 10.1039/C4CS00442F 10.1126/science.1253292 10.1016/j.mattod.2020.10.028 10.1039/C5SC01518A 10.1016/j.electacta.2005.05.012 10.1002/aenm.202003456 10.1002/eem2.12021 10.1039/C5NR08399K 10.1016/j.jpowsour.2010.10.063 10.1021/jacs.5b11744 10.1016/j.esci.2021.08.001 10.1016/j.jpowsour.2018.03.071 10.1039/C8TA03172J 10.1002/aenm.201802946 10.1021/acsnano.0c08808 10.1002/aenm.202000907 10.1038/s41560-018-0312-z 10.1002/anie.201902185 10.1039/b919877f 10.1021/acs.accounts.0c00772 10.1016/j.enconman.2017.08.016 10.1039/C9TA12137D 10.1039/C6CS00012F 10.1038/s41560-020-00764-8 10.1023/A:1004113825283 10.1038/d41586-020-01813-8 10.1002/anie.201900266 10.1002/aenm.201600218 10.1039/c0ee00559b 10.1002/aenm.201802624 10.1002/adma.202002168 10.1039/D0EE01446J 10.1093/nsr/nwx037 10.1021/jp0601522 10.1038/s41578-020-0218-9 10.1039/C8CS00009C 10.1126/science.abc5454 10.1016/j.jpowsour.2018.06.040 10.1002/aenm.202003905 10.1016/S0013-4686(02)00620-5 10.1016/j.jpowsour.2015.09.056 10.1016/j.nanoen.2019.104175 10.1002/inf2.12223 10.1002/adfm.202101420 10.1016/j.jechem.2021.05.018 10.1039/C4TA06264G 10.1021/acs.chemrev.9b00545 10.1149/2.0661914jes 10.1021/acsenergylett.0c01209 10.1002/aenm.201703638 10.1016/j.jpowsour.2012.05.018 10.1016/j.jpowsour.2015.09.001 10.1021/acsnano.1c05875 10.1039/D0CS01017K 10.1149/1.3507259 10.1016/j.jpowsour.2018.02.063 10.1016/j.applthermaleng.2021.117088 10.1002/adfm.202009397 10.1021/acssuschemeng.9b02042 10.1016/j.electacta.2018.12.161 10.1002/aenm.202002027 10.1002/aenm.202003559 10.1149/2.0861412jes 10.1002/aenm.201700715 10.1021/cr3001862 10.1039/C9TA02718A 10.1039/D0CC04049E 10.1021/jp509428c 10.1016/j.joule.2018.09.008 10.1038/s41560-018-0107-2 10.1016/j.ensm.2021.04.024 10.1016/j.jpowsour.2005.10.076 10.1016/j.cej.2021.128540 10.1016/j.jpowsour.2012.04.073 10.1126/science.aal4263 10.1021/acsnano.0c07907 10.1039/c3ta13043f 10.1016/j.elecom.2021.106948 10.1002/aenm.201903441 10.1016/j.ensm.2020.07.034 10.1002/adfm.202102347 10.1002/adfm.202107136 10.1002/aenm.201400107 10.1016/j.joule.2020.03.012 10.1038/s41467-020-15355-0 10.1021/acsami.6b13995 10.1021/acs.chemrev.0c00275 10.1021/acsenergylett.0c01889 10.1002/smll.201901689 10.1039/C6CS00875E 10.1016/j.mattod.2020.07.015 10.1002/anie.201713423 10.1002/aenm.202000368 10.1016/j.nanoen.2019.103927 10.1002/adfm.202005991 10.1038/natrevmats.2018.13 10.1016/j.jpowsour.2020.227911 10.1016/j.jpowsour.2012.09.020 10.1002/anie.202104124 10.1021/acs.accounts.1c00420 10.1002/adma.202005937 10.1038/s41467-021-22403-w 10.1016/j.esci.2021.10.002 10.1002/adfm.202001619 10.1021/acsami.7b13887 10.1016/j.joule.2019.06.008 10.1073/pnas.1807115115 10.1021/acsnano.8b05534 10.1021/acsenergylett.1c00743 10.1016/j.apenergy.2017.08.074 10.1002/adma.200400517 10.1021/acs.chemrev.1c00243 10.1002/adfm.201200698 10.1039/c3ee41638k 10.1016/j.jpowsour.2003.09.051 10.1007/s11426-021-1011-9 10.1039/D0TA00439A 10.1016/j.jechem.2020.03.034 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d1ee03292e |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1759 |
ExternalDocumentID | 10_1039_D1EE03292E d1ee03292e |
GroupedDBID | 0-7 0R 29G 4.4 5GY 70 705 7~J AAEMU AAGNR AAIWI AAJAE AANOJ AAXPP ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFRAH AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX CS3 EBS ECGLT EE0 EF- GNO HZ H~N J3I JG M4U N9A O-G O9- P2P RCNCU RIG RPMJG RRC RSCEA SKA SLH TOV UCJ 0R~ 70~ AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c281t-c1b6caf75abc0a09043b6bf77e10f9199b1217f66a508f479932bc4ef5a242ff3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:00:38 EDT 2025 Tue Jul 01 01:45:51 EDT 2025 Thu Apr 24 23:06:30 EDT 2025 Thu May 19 04:21:11 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-c1b6caf75abc0a09043b6bf77e10f9199b1217f66a508f479932bc4ef5a242ff3 |
Notes | Kai Zhang was born in Tianjin, China, in 1987 and earned his BS in science in 2010 from the College of Chemistry at Nankai University (China). In 2015, he received his PhD in engineering from Nankai University under the supervision of Professor Jun Chen. Then, he joined the group of Professor Yong-Mook Kang as a post-doc in the Department of Energy and Materials Engineering in Dongguk University-Seoul (Korea). Currently, he is a professor at Nankai University. He has been selected as a member of the Young Elite Scientist Sponsorship Program funded by CAST. His research focuses on advanced battery materials and wide-temperature electrochemical energy-storage devices. Limin Zhou received her PhD in 2019 from the Department of Materials Science and Engineering at Wuhan University of Technology and her MS degree from the College of Chemistry from Nankai University in 2015. Then, she jointed Professor Yong-Mook Kang's group as a postdoctoral researcher at the Department of Materials Science and Engineering in Korea University. Her current research focuses on synthesis and characterization of advanced materials for rechargeable batteries. eScience Yang Feng received his MS degree in 2021 from the School of Textile Science and Engineering at Tiangong University, Tianjin, China. Currently, he is a PhD student in Prof. Kai Zhang's group with the College of Chemistry at Nankai University, Tianjin, China. His current research focuses on synthesis and characterization of advanced materials for wide temperature rechargeable lithium-based batteries. Jun Chen received his BS and MS degrees from Nankai University in 1989 and 1992, respectively, and his PhD degree from the University of Wollongong (Australia) in 1999. He held a NEDO fellowship in the National Institute of AIST Kansai Center (Japan) from 1999 to 2002. Then he joined Nankai University as a Full Professor in 2002. He is currently an academician of the Chinese Academy of Sciences, a fellow of The World Academy of Sciences (TWAS), the Director of the Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), and the Vice President of Nankai University. His research focuses mainly on nanomaterials chemistry and high-energy batteries. He is the founding Editor-in-Chief of . ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8604-9689 0000-0001-8038-745X |
PQID | 2665526941 |
PQPubID | 2047494 |
PageCount | 49 |
ParticipantIDs | crossref_primary_10_1039_D1EE03292E rsc_primary_d1ee03292e crossref_citationtrail_10_1039_D1EE03292E proquest_journals_2665526941 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-18 |
PublicationDateYYYYMMDD | 2022-05-18 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ye (D1EE03292E/cit80/1) 2020; 32 Haregewoin (D1EE03292E/cit47/1) 2016; 9 Zhang (D1EE03292E/cit50/1) 2020; 2 Liu (D1EE03292E/cit17/1) 2018; 4 Solchenbach (D1EE03292E/cit161/1) 2018; 165 Feng (D1EE03292E/cit210/1) 2021; 365 Whittingham (D1EE03292E/cit70/1) 2004; 104 Wang (D1EE03292E/cit151/1) 2020; 5 Wu (D1EE03292E/cit77/1) 2013; 3 Zhu (D1EE03292E/cit35/1) 2015; 300 Li (D1EE03292E/cit57/1) 2021 Zhao (D1EE03292E/cit16/1) 2020; 8 Lee (D1EE03292E/cit170/1) 2013; 3 Liu (D1EE03292E/cit92/1) 2017; 56 Geng (D1EE03292E/cit146/1) 2019; 23 Kulova (D1EE03292E/cit19/1) 2020 Chang (D1EE03292E/cit150/1) 2021; 60 Holoubek (D1EE03292E/cit125/1) 2021; 6 Liu (D1EE03292E/cit189/1) 2021; 33 Ahmed (D1EE03292E/cit155/1) 2019; 298 Rustomji (D1EE03292E/cit60/1) 2017; 356 Zhang (D1EE03292E/cit87/1) 2002; 48 Peng (D1EE03292E/cit96/1) 2016; 8 Feng (D1EE03292E/cit118/1) 2020; 32 Wang (D1EE03292E/cit13/1) 2016; 529 Yu (D1EE03292E/cit81/1) 2020; 59 Liu (D1EE03292E/cit228/1) 2019; 11 Yaakov (D1EE03292E/cit30/1) 2010; 157 Choi (D1EE03292E/cit163/1) 2020; 10 Yang (D1EE03292E/cit207/1) 2019; 58 Pan (D1EE03292E/cit184/1) 2017; 4 Song (D1EE03292E/cit226/1) 2019; 66 Li (D1EE03292E/cit110/1) 2021; 1 Yang (D1EE03292E/cit242/1) 2021; 6 Nobili (D1EE03292E/cit90/1) 2005; 51 Zheng (D1EE03292E/cit108/1) 2020; 49 Shan (D1EE03292E/cit56/1) 2021; 3 Nagasubramanian (D1EE03292E/cit66/1) 2001; 31 Pan (D1EE03292E/cit223/1) 2018; 14 Sun (D1EE03292E/cit166/1) 2012; 11 Yang (D1EE03292E/cit169/1) 2009; 9 Hao (D1EE03292E/cit251/1) 2020; 249 Pang (D1EE03292E/cit117/1) 2016; 1 Hu (D1EE03292E/cit144/1) 2013; 35 Luo (D1EE03292E/cit211/1) 2020; 8 Ma (D1EE03292E/cit232/1) 2020; 32 Chen (D1EE03292E/cit176/1) 2013; 23 Yi (D1EE03292E/cit220/1) 2017; 2 Park (D1EE03292E/cit98/1) 2010; 39 Vaalma (D1EE03292E/cit261/1) 2018; 3 Liu (D1EE03292E/cit225/1) 2021; 41 Peng (D1EE03292E/cit237/1) 2021; 43 Yang (D1EE03292E/cit257/1) 2019; 3 Zhou (D1EE03292E/cit44/1) 2019; 10 Lu (D1EE03292E/cit103/1) 2019; 58 Wu (D1EE03292E/cit119/1) 2020; 49 Kang (D1EE03292E/cit139/1) 2020; 14 Lin (D1EE03292E/cit182/1) 2021; 15 Zhou (D1EE03292E/cit212/1) 2018; 396 Zhou (D1EE03292E/cit21/1) 2021; 31 Zhang (D1EE03292E/cit230/1) 2020; 10 Waqas (D1EE03292E/cit18/1) 2019; 15 Han (D1EE03292E/cit202/1) 2019; 4 Zhao (D1EE03292E/cit205/1) 2021; 1 He (D1EE03292E/cit40/1) 2021; 33 Liu (D1EE03292E/cit187/1) 2020; 477 Ren (D1EE03292E/cit229/1) 2020; 32 Xiang (D1EE03292E/cit234/1) 2021; 14 Xu (D1EE03292E/cit191/1) 2006; 110 Guo (D1EE03292E/cit178/1) 2015; 3 Zheng (D1EE03292E/cit198/1) 2017; 2 Chen (D1EE03292E/cit36/1) 2021; 14 Park (D1EE03292E/cit73/1) 2011; 4 Li (D1EE03292E/cit63/1) 2020; 5 Dechent (D1EE03292E/cit250/1) 2021; 6 Li (D1EE03292E/cit252/1) 2020; 5 Single (D1EE03292E/cit39/1) 2016; 18 Piątek (D1EE03292E/cit135/1) 2020; 11 Xu (D1EE03292E/cit158/1) 2015; 3 Jin (D1EE03292E/cit41/1) 2017; 7 Liao (D1EE03292E/cit54/1) 2018; 8 Rui (D1EE03292E/cit75/1) 2011; 196 Jiang (D1EE03292E/cit123/1) 2020; 31 Xia (D1EE03292E/cit222/1) 2018; 361 Liu (D1EE03292E/cit58/1) 2021; 2 Feng (D1EE03292E/cit121/1) 2021; 851 Xu (D1EE03292E/cit31/1) 2014; 114 Yuan (D1EE03292E/cit183/1) 2021; 31 Akolkar (D1EE03292E/cit28/1) 2013; 232 Yang (D1EE03292E/cit52/1) 2020; 56 Wang (D1EE03292E/cit238/1) 2021; 39 Wang (D1EE03292E/cit120/1) 2022; 64 Goodenough (D1EE03292E/cit10/1) 2013; 135 Zhao (D1EE03292E/cit37/1) 2015; 299 Dong (D1EE03292E/cit199/1) 2018; 11 Gao (D1EE03292E/cit116/1) 2020; 5 Liu (D1EE03292E/cit22/1) 2018; 2 Liu (D1EE03292E/cit213/1) 2021; 411 Zhang (D1EE03292E/cit149/1) 2019; 55 Song (D1EE03292E/cit188/1) 2021; 124 Cai (D1EE03292E/cit23/1) 2020; 49 Wang (D1EE03292E/cit126/1) 2021; 15 Yan (D1EE03292E/cit174/1) 2020; 49 Yu (D1EE03292E/cit200/1) 2021; 11 Na (D1EE03292E/cit34/1) 2020; 32 Hwang (D1EE03292E/cit196/1) 2020; 453 Dong (D1EE03292E/cit106/1) 2018; 2 Cai (D1EE03292E/cit62/1) 2021; 12 Lin (D1EE03292E/cit42/1) 2016; 45 Yang (D1EE03292E/cit179/1) 2020; 12 Liu (D1EE03292E/cit24/1) 2022 Park (D1EE03292E/cit165/1) 2021; 12 Liu (D1EE03292E/cit114/1) 2019; 4 MacNeil (D1EE03292E/cit172/1) 2002; 108 Plichta (D1EE03292E/cit48/1) 2000; 94 Lee (D1EE03292E/cit93/1) 2021; 31 Liu (D1EE03292E/cit255/1) 2018; 227 Liu (D1EE03292E/cit168/1) 2015; 5 Giordani (D1EE03292E/cit221/1) 2016; 138 Dong (D1EE03292E/cit25/1) 2021; 54 Li (D1EE03292E/cit156/1) 2017; 46 Kurita (D1EE03292E/cit197/1) 2012; 214 Li (D1EE03292E/cit231/1) 2018; 9 Liu (D1EE03292E/cit127/1) 2018; 1 Waldmann (D1EE03292E/cit159/1) 2018; 384 Rodrigues (D1EE03292E/cit195/1) 2016; 6 Dong (D1EE03292E/cit86/1) 2020; 7 Lin (D1EE03292E/cit14/1) 2020; 10 Yang (D1EE03292E/cit241/1) 2018; 115 Genovese (D1EE03292E/cit145/1) 2019; 166 Wang (D1EE03292E/cit215/1) 2020; 8 Li (D1EE03292E/cit46/1) 2020; 120 Huang (D1EE03292E/cit186/1) 2020; 41 Tan (D1EE03292E/cit67/1) 2015; 277 Li (D1EE03292E/cit260/1) 2019; 3 Sun (D1EE03292E/cit107/1) 2016; 1 Zhang (D1EE03292E/cit74/1) 2020; 15 Han (D1EE03292E/cit140/1) 2018; 28 Qiao (D1EE03292E/cit153/1) 2018; 8 Jung (D1EE03292E/cit227/1) 2011; 2 Li (D1EE03292E/cit133/1) 2020; 30 Chen (D1EE03292E/cit217/1) 2020; 50 Zhang (D1EE03292E/cit190/1) 2020; 120 Hou (D1EE03292E/cit38/1) 2020; 10 Tang (D1EE03292E/cit32/1) 2015; 44 Lu (D1EE03292E/cit11/1) 2018; 4 Song (D1EE03292E/cit131/1) 2020; 13 Thenuwara (D1EE03292E/cit115/1) 2019; 19 Ramadass (D1EE03292E/cit137/1) 2002; 112 Cai (D1EE03292E/cit94/1) 2021; 60 Wang (D1EE03292E/cit109/1) 2021; 50 Liu (D1EE03292E/cit132/1) 2017; 2 Su (D1EE03292E/cit185/1) 2021; 64 Tapesh Joshi (D1EE03292E/cit160/1) 2014; 161 Dong (D1EE03292E/cit49/1) 2019; 58 Cheng (D1EE03292E/cit88/1) 2017; 117 Fan (D1EE03292E/cit249/1) 2021; 195 Holoubek (D1EE03292E/cit112/1) 2020; 5 Ramanujapuram (D1EE03292E/cit33/1) 2018; 8 Subburaj (D1EE03292E/cit100/1) 2020; 354 Nobili (D1EE03292E/cit91/1) 2010; 195 Schmuch (D1EE03292E/cit7/1) 2018; 3 Li (D1EE03292E/cit51/1) 2017; 9 Chen (D1EE03292E/cit201/1) 2020; 4 Yu (D1EE03292E/cit26/1) 2020; 10 Tang (D1EE03292E/cit171/1) 2019; 7 Mao (D1EE03292E/cit254/1) 2018; 137 Yi (D1EE03292E/cit177/1) 2013; 222 Lin (D1EE03292E/cit248/1) 2021; 11 Lan (D1EE03292E/cit214/1) 2021; 13 Fan (D1EE03292E/cit224/1) 2019; 21 Zhang (D1EE03292E/cit167/1) 2018; 30 Yang (D1EE03292E/cit61/1) 2019; 3 Qie (D1EE03292E/cit83/1) 2013; 6 Manthiram (D1EE03292E/cit6/1) 2021; 6 Choi (D1EE03292E/cit101/1) 2017; 13 Tarascon (D1EE03292E/cit4/1) 2001; 414 Zhou (D1EE03292E/cit194/1) 2019; 10 Liu (D1EE03292E/cit246/1) 2017; 150 Sun (D1EE03292E/cit69/1) 2018; 9 Lin (D1EE03292E/cit152/1) 2015; 6 Fu (D1EE03292E/cit203/1) 2020; 32 Yang (D1EE03292E/cit2/1) 2011; 111 Zhu (D1EE03292E/cit162/1) 2021; 1 Yang (D1EE03292E/cit258/1) 2019; 7 Thenuwara (D1EE03292E/cit111/1) 2020; 5 Fu (D1EE03292E/cit180/1) 2021; 387 Zaghib (D1EE03292E/cit173/1) 2012; 219 Ma (D1EE03292E/cit104/1) 2018; 57 Zheng (D1EE03292E/cit193/1) 2021; 9 Chen (D1EE03292E/cit68/1) 2017; 9 Yamagiwa (D1EE03292E/cit142/1) 2015; 160 Xu (D1EE03292E/cit243/1) 2021; 150 Markevich (D1EE03292E/cit99/1) 2016; 163 Palacin (D1EE03292E/cit12/1) 2016; 351 Manthiram (D1EE03292E/cit157/1) 2020; 369 Wang (D1EE03292E/cit113/1) 2021; 11 Chen (D1EE03292E/cit218/1) 2021; 54 Chen (D1EE03292E/cit247/1) 2021; 31 Offer (D1EE03292E/cit245/1) 2020; 582 Chao (D1EE03292E/cit8/1) 2020; 6 Judez (D1EE03292E/cit259/1) 2018; 2 Zhang (D1EE03292E/cit128/1) 2018; 47 Xu (D1EE03292E/cit105/1) 2021; 1 Liu (D1EE03292E/cit130/1) 2020; 120 Gupta (D1EE03292E/cit15/1) 2020; 10 Choi (D1EE03292E/cit65/1) 2006; 158 Wu (D1EE03292E/cit129/1) 2018; 2 Wu (D1EE03292E/cit181/1) 2015; 54 Liu (D1EE03292E/cit53/1) 2021; 11 Huang (D1EE03292E/cit97/1) 2018; 6 Hao (D1EE03292E/cit240/1) 2018; 3 Lyu (D1EE03292E/cit43/1) 2020; 31 McKerracher (D1EE03292E/cit244/1) 2021; 2 Li (D1EE03292E/cit20/1) 2021; 27 Wang (D1EE03292E/cit192/1) 2019; 4 D1EE03292E/cit1/1 Kohlmeyer (D1EE03292E/cit134/1) 2019; 64 Zheng (D1EE03292E/cit143/1) 2021; 38 Dunn (D1EE03292E/cit3/1) 2011; 334 Chen (D1EE03292E/cit147/1) 2014; 2 Fan (D1EE03292E/cit235/1) 2019; 4 Luo (D1EE03292E/cit79/1) 2014; 4 Crabtree (D1EE03292E/cit5/1) 2019; 366 Liu (D1EE03292E/cit138/1) 2021; 43 Ge (D1EE03292E/cit141/1) 2020; 6 Manthiram (D1EE03292E/cit64/1) 2020; 11 Cai (D1EE03292E/cit124/1) 2020; 56 Tan (D1EE03292E/cit102/1) 2021; 36 Magasinski (D1EE03292E/cit84/1) 2010; 9 Rodrigues (D1EE03292E/cit45/1) 2017; 2 Love (D1EE03292E/cit29/1) 2015; 4 Bi (D1EE03292E/cit71/1) 2018; 389 Zhang (D1EE03292E/cit78/1) 2012; 83 Yu (D1EE03292E/cit208/1) 2020; 51 Akolkar (D1EE03292E/cit27/1) 2014; 246 Sides (D1EE03292E/cit85/1) 2005; 17 Li (D1EE03292E/cit216/1) 2020; 12 Choi (D1EE03292E/cit253/1) 2016; 1 Lu (D1EE03292E/cit89/1) 2018; 1 Huang (D1EE03292E/cit239/1) 2020; 5 Fan (D1EE03292E/cit122/1) 2018; 8 Zhang (D1EE03292E/cit148/1) 2006; 8 Wang (D1EE03292E/cit204/1) 2021; 31 Tron (D1EE03292E/cit59/1) 2019; 7 Yang (D1EE03292E/cit154/1) 2017; 1 Cano (D1EE03292E/cit256/1) 2018; 3 Kong (D1EE03292E/cit164/1) 2016; 163 Deng (D1EE03292E/cit206/1) 2018; 12 Pohjalainen (D1EE03292E/cit95/1) 2015; 119 Wu (D1EE03292E/cit136/1) 2020; 2 Li (D1EE03292E/cit233/1) 2015; 6 Zhang (D1EE03292E/cit72/1) 2019; 141 Yan (D1EE03292E/cit209/1) 2021; 80 Masquelier (D1EE03292E/cit76/1) 2013; 113 Kwak (D1EE03292E/cit219/1) 2020; 120 Cai (D1EE03292E/cit82/1) 2021; 121 Bruce (D1EE03292E/cit9/1) 2011; 11 Huang (D1EE03292E/cit55/1) 2019; 3 Lee (D1EE03292E/cit175/1) 2004; 128 Yang (D1EE03292E/cit236/1) 2020; 13 |
References_xml | – volume: 112 start-page: 614 year: 2002 ident: D1EE03292E/cit137/1 publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00473-1 – year: 2022 ident: D1EE03292E/cit24/1 publication-title: Adv. Powder Mater. doi: 10.1016/j.apmate.2021.10.002 – volume: 249 start-page: 119403 year: 2020 ident: D1EE03292E/cit251/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.119403 – volume: 8 start-page: 2002590 year: 2020 ident: D1EE03292E/cit16/1 publication-title: Adv. Sci. doi: 10.1002/advs.202002590 – start-page: nwab177 year: 2021 ident: D1EE03292E/cit57/1 publication-title: Natl. Sci. Rev. – volume: 13 start-page: 1205 year: 2020 ident: D1EE03292E/cit131/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE04039K – volume: 117 start-page: 10403 year: 2017 ident: D1EE03292E/cit88/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 2 start-page: 2047 year: 2018 ident: D1EE03292E/cit22/1 publication-title: Joule doi: 10.1016/j.joule.2018.06.015 – volume: 38 start-page: 599 year: 2021 ident: D1EE03292E/cit143/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.04.002 – volume: 11 start-page: 21496 year: 2019 ident: D1EE03292E/cit228/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03821 – volume: 334 start-page: 928 year: 2011 ident: D1EE03292E/cit3/1 publication-title: Science doi: 10.1126/science.1212741 – volume: 8 start-page: 1800802 year: 2018 ident: D1EE03292E/cit54/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800802 – volume: 1 start-page: 16013 year: 2016 ident: D1EE03292E/cit253/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.13 – volume: 1 start-page: 13 year: 2021 ident: D1EE03292E/cit162/1 publication-title: eScience doi: 10.1016/j.esci.2021.10.003 – volume: 49 start-page: 3806 year: 2020 ident: D1EE03292E/cit23/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00728H – volume: 36 start-page: 242 year: 2021 ident: D1EE03292E/cit102/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.12.033 – volume: 5 start-page: 534 year: 2020 ident: D1EE03292E/cit116/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0640-7 – volume: 50 start-page: 248 year: 2020 ident: D1EE03292E/cit217/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.041 – volume: 2 start-page: 2000059 year: 2021 ident: D1EE03292E/cit244/1 publication-title: Adv. Energy Sustainability Res. doi: 10.1002/aesr.202000059 – ident: D1EE03292E/cit1/1 – volume: 529 start-page: 515 year: 2016 ident: D1EE03292E/cit13/1 publication-title: Nature doi: 10.1038/nature16502 – volume: 2 start-page: 2100119 year: 2021 ident: D1EE03292E/cit58/1 publication-title: Small Struct. doi: 10.1002/sstr.202100119 – volume: 1 start-page: 60 year: 2021 ident: D1EE03292E/cit105/1 publication-title: eScience doi: 10.1016/j.esci.2021.08.002 – volume: 9 start-page: 4509 year: 2018 ident: D1EE03292E/cit231/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06877-9 – volume: 165 start-page: A3304 year: 2018 ident: D1EE03292E/cit161/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0511814jes – volume: 5 start-page: 1438 year: 2020 ident: D1EE03292E/cit112/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00643 – volume: 2 start-page: 5 year: 2020 ident: D1EE03292E/cit136/1 publication-title: SmartMat doi: 10.1002/smm2.1015 – volume: 9 start-page: 9307 year: 2021 ident: D1EE03292E/cit193/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00895A – volume: 2 start-page: 1378 year: 2017 ident: D1EE03292E/cit220/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00292 – volume: 14 start-page: 3510 year: 2021 ident: D1EE03292E/cit234/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00049G – volume: 6 start-page: 176 year: 2021 ident: D1EE03292E/cit242/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-00757-7 – volume: 10 start-page: 2001235 year: 2020 ident: D1EE03292E/cit14/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001235 – volume: 80 start-page: 105510 year: 2021 ident: D1EE03292E/cit209/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105510 – volume: 1 start-page: 35 year: 2018 ident: D1EE03292E/cit89/1 publication-title: Electrochem. Energy Rev. doi: 10.1007/s41918-018-0001-4 – volume: 232 start-page: 23 year: 2013 ident: D1EE03292E/cit28/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.01.014 – volume: 163 start-page: 1697 year: 2016 ident: D1EE03292E/cit164/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1041608jes – volume: 21 start-page: 457 year: 2019 ident: D1EE03292E/cit224/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.06.020 – volume: 11 start-page: 2101775 year: 2021 ident: D1EE03292E/cit248/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101775 – volume: 354 start-page: 136652 year: 2020 ident: D1EE03292E/cit100/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.136652 – volume: 31 start-page: 195 year: 2020 ident: D1EE03292E/cit43/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.06.042 – volume: 13 start-page: 1603045 year: 2017 ident: D1EE03292E/cit101/1 publication-title: Small doi: 10.1002/smll.201603045 – volume: 2 start-page: 902 year: 2018 ident: D1EE03292E/cit106/1 publication-title: Joule doi: 10.1016/j.joule.2018.01.017 – volume: 387 start-page: 138461 year: 2021 ident: D1EE03292E/cit180/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138461 – volume: 1 start-page: 16132 year: 2016 ident: D1EE03292E/cit117/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.132 – volume: 31 start-page: 2101180 year: 2021 ident: D1EE03292E/cit204/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101180 – volume: 32 start-page: 2004898 year: 2020 ident: D1EE03292E/cit229/1 publication-title: Adv. Mater. doi: 10.1002/adma.202004898 – volume: 2 start-page: 516 year: 2011 ident: D1EE03292E/cit227/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1527 – volume: 3 start-page: 1155 year: 2013 ident: D1EE03292E/cit77/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300159 – volume: 13 start-page: 2734 year: 2021 ident: D1EE03292E/cit214/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c19909 – volume: 60 start-page: 13007 year: 2021 ident: D1EE03292E/cit94/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202102593 – volume: 49 start-page: 2701 year: 2020 ident: D1EE03292E/cit108/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00883G – volume: 7 start-page: 2000196 year: 2020 ident: D1EE03292E/cit86/1 publication-title: Adv. Sci. doi: 10.1002/advs.202000196 – volume: 277 start-page: 139 year: 2015 ident: D1EE03292E/cit67/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.11.149 – volume: 3 start-page: 1623 year: 2013 ident: D1EE03292E/cit170/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300510 – volume: 150 start-page: 111437 year: 2021 ident: D1EE03292E/cit243/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2021.111437 – volume: 1 start-page: 122 year: 2017 ident: D1EE03292E/cit154/1 publication-title: Joule doi: 10.1016/j.joule.2017.08.009 – volume: 4 start-page: 24 year: 2015 ident: D1EE03292E/cit29/1 publication-title: ECS Electrochem. Lett. doi: 10.1149/2.0041502eel – volume: 108 start-page: 8 year: 2002 ident: D1EE03292E/cit172/1 publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)01013-8 – volume: 365 start-page: 137344 year: 2021 ident: D1EE03292E/cit210/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137344 – volume: 14 start-page: 1703454 year: 2018 ident: D1EE03292E/cit223/1 publication-title: Small doi: 10.1002/smll.201703454 – volume: 114 start-page: 11503 year: 2014 ident: D1EE03292E/cit31/1 publication-title: Chem. Rev. doi: 10.1021/cr500003w – volume: 2 start-page: 17012 year: 2017 ident: D1EE03292E/cit198/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.12 – volume: 141 start-page: 14038 year: 2019 ident: D1EE03292E/cit72/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05531 – volume: 5 start-page: 1500274 year: 2015 ident: D1EE03292E/cit168/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500274 – volume: 3 start-page: 911 year: 2019 ident: D1EE03292E/cit260/1 publication-title: Joule doi: 10.1016/j.joule.2019.03.028 – volume: 9 start-page: 4109 year: 2009 ident: D1EE03292E/cit169/1 publication-title: Nano Lett. doi: 10.1021/nl902315u – volume: 83 start-page: 341 year: 2012 ident: D1EE03292E/cit78/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.07.128 – volume: 33 start-page: 2008088 year: 2021 ident: D1EE03292E/cit189/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008088 – volume: 32 start-page: 320 year: 2020 ident: D1EE03292E/cit118/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.06.043 – volume: 10 start-page: 2001972 year: 2020 ident: D1EE03292E/cit15/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001972 – volume: 10 start-page: 1904152 year: 2020 ident: D1EE03292E/cit38/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201904152 – volume: 3 start-page: 1800272 year: 2019 ident: D1EE03292E/cit55/1 publication-title: Small Methods doi: 10.1002/smtd.201800272 – volume: 35 start-page: 76 year: 2013 ident: D1EE03292E/cit144/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.08.009 – volume: 32 start-page: e2000952 year: 2020 ident: D1EE03292E/cit203/1 publication-title: Adv. Mater. doi: 10.1002/adma.202000952 – volume: 12 start-page: 22971 year: 2020 ident: D1EE03292E/cit216/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04842 – volume: 11 start-page: 19 year: 2011 ident: D1EE03292E/cit9/1 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 30 start-page: 1801751 year: 2018 ident: D1EE03292E/cit167/1 publication-title: Adv. Mater. doi: 10.1002/adma.201801751 – volume: 2 start-page: 815 year: 2018 ident: D1EE03292E/cit129/1 publication-title: Joule doi: 10.1016/j.joule.2018.04.019 – volume: 361 start-page: 777 year: 2018 ident: D1EE03292E/cit222/1 publication-title: Science doi: 10.1126/science.aas9343 – volume: 8 start-page: 1802322 year: 2018 ident: D1EE03292E/cit153/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802322 – volume: 56 start-page: 9114 year: 2020 ident: D1EE03292E/cit124/1 publication-title: Chem. Commun. doi: 10.1039/D0CC03798B – volume: 246 start-page: 84 year: 2014 ident: D1EE03292E/cit27/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.07.056 – volume: 366 start-page: 422 year: 2019 ident: D1EE03292E/cit5/1 publication-title: Science doi: 10.1126/science.aax0704 – volume: 32 start-page: 973 year: 2020 ident: D1EE03292E/cit34/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.09.007 – volume: 135 start-page: 1167 year: 2013 ident: D1EE03292E/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 1 start-page: 16071 year: 2016 ident: D1EE03292E/cit107/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.71 – volume: 19 start-page: 8664 year: 2019 ident: D1EE03292E/cit115/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b03330 – volume: 195 start-page: 7090 year: 2010 ident: D1EE03292E/cit91/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.05.001 – volume: 6 start-page: 7436 year: 2015 ident: D1EE03292E/cit233/1 publication-title: Nat. Commun. doi: 10.1038/ncomms8436 – volume: 4 start-page: 882 year: 2019 ident: D1EE03292E/cit235/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0474-3 – volume: 18 start-page: 17810 year: 2016 ident: D1EE03292E/cit39/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP02816K – volume: 41 start-page: 703 year: 2021 ident: D1EE03292E/cit225/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.06.040 – volume: 49 start-page: 1569 year: 2020 ident: D1EE03292E/cit119/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00863E – volume: 43 start-page: 53 year: 2021 ident: D1EE03292E/cit237/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.08.028 – volume: 2 start-page: 17108 year: 2017 ident: D1EE03292E/cit45/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.108 – volume: 5 start-page: 26 year: 2020 ident: D1EE03292E/cit252/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0513-0 – volume: 12 start-page: 3395 year: 2021 ident: D1EE03292E/cit62/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23603-0 – volume: 2 start-page: 2525 year: 2017 ident: D1EE03292E/cit132/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00845 – volume: 55 start-page: 9785 year: 2019 ident: D1EE03292E/cit149/1 publication-title: Chem. Commun. doi: 10.1039/C9CC03246K – volume: 4 start-page: 2786 year: 2018 ident: D1EE03292E/cit11/1 publication-title: Chem doi: 10.1016/j.chempr.2018.09.005 – volume: 3 start-page: 3002 year: 2019 ident: D1EE03292E/cit257/1 publication-title: Joule doi: 10.1016/j.joule.2019.09.021 – volume: 104 start-page: 4271 year: 2004 ident: D1EE03292E/cit70/1 publication-title: Chem. Rev. doi: 10.1021/cr020731c – volume: 56 start-page: 16606 year: 2017 ident: D1EE03292E/cit92/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710555 – volume: 6 start-page: 4098 year: 2020 ident: D1EE03292E/cit8/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4098 – volume: 851 start-page: 156859 year: 2021 ident: D1EE03292E/cit121/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156859 – volume: 28 start-page: 1704195 year: 2018 ident: D1EE03292E/cit140/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704195 – volume: 3 start-page: 4938 year: 2015 ident: D1EE03292E/cit178/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05660D – volume: 10 start-page: 1902023 year: 2019 ident: D1EE03292E/cit44/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902023 – volume: 4 start-page: 664 year: 2019 ident: D1EE03292E/cit192/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0413-3 – volume: 3 start-page: 899 year: 2018 ident: D1EE03292E/cit240/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0243-8 – volume: 9 start-page: 353 year: 2010 ident: D1EE03292E/cit84/1 publication-title: Nat. Mater. doi: 10.1038/nmat2725 – volume: 11 start-page: 942 year: 2012 ident: D1EE03292E/cit166/1 publication-title: Nat. Mater. doi: 10.1038/nmat3435 – volume: 3 start-page: 279 year: 2018 ident: D1EE03292E/cit256/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0108-1 – volume: 14 start-page: 3323 year: 2021 ident: D1EE03292E/cit36/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00271F – volume: 54 start-page: 7354 year: 2015 ident: D1EE03292E/cit181/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503072 – volume: 163 start-page: 2407 year: 2016 ident: D1EE03292E/cit99/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1291610jes – volume: 11 start-page: 2100935 year: 2021 ident: D1EE03292E/cit113/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100935 – volume: 8 start-page: 1423 year: 2006 ident: D1EE03292E/cit148/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.06.016 – volume: 59 start-page: 6406 year: 2020 ident: D1EE03292E/cit81/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201914972 – volume: 27 start-page: 15842 year: 2021 ident: D1EE03292E/cit20/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202101407 – start-page: 8638 year: 2020 ident: D1EE03292E/cit19/1 publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2020.09.50 – volume: 120 start-page: 6783 year: 2020 ident: D1EE03292E/cit46/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00531 – volume: 9 start-page: 1955 year: 2016 ident: D1EE03292E/cit47/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00123H – volume: 5 start-page: 674 year: 2020 ident: D1EE03292E/cit239/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-0665-y – volume: 111 start-page: 3577 year: 2011 ident: D1EE03292E/cit2/1 publication-title: Chem. Rev. doi: 10.1021/cr100290v – volume: 94 start-page: 160 year: 2000 ident: D1EE03292E/cit48/1 publication-title: J. Power Sources doi: 10.1016/S0378-7753(00)00578-4 – volume: 6 start-page: 303 year: 2021 ident: D1EE03292E/cit125/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00783-z – volume: 11 start-page: 1197 year: 2018 ident: D1EE03292E/cit199/1 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03365F – volume: 137 start-page: 356 year: 2018 ident: D1EE03292E/cit254/1 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.03.099 – volume: 120 start-page: 6626 year: 2020 ident: D1EE03292E/cit219/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00609 – volume: 414 start-page: 359 year: 2001 ident: D1EE03292E/cit4/1 publication-title: Nature doi: 10.1038/35104644 – volume: 15 start-page: 12041 year: 2020 ident: D1EE03292E/cit74/1 publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2020.12.71 – volume: 49 start-page: 335 year: 2020 ident: D1EE03292E/cit174/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.02.052 – volume: 58 start-page: 791 year: 2019 ident: D1EE03292E/cit207/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811291 – volume: 23 start-page: 646 year: 2019 ident: D1EE03292E/cit146/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.03.005 – volume: 7 start-page: 12 year: 2019 ident: D1EE03292E/cit258/1 publication-title: IEEE Electrif. Mag. doi: 10.1109/MELE.2018.2889545 – volume: 4 start-page: eaas9820 year: 2018 ident: D1EE03292E/cit17/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9820 – volume: 6 start-page: eaay7633 year: 2020 ident: D1EE03292E/cit141/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay7633 – volume: 2 start-page: 1245 year: 2020 ident: D1EE03292E/cit50/1 publication-title: CCS Chem. – volume: 4 start-page: 180 year: 2019 ident: D1EE03292E/cit114/1 publication-title: Nat. Energy doi: 10.1038/s41560-019-0338-x – volume: 12 start-page: 42781 year: 2020 ident: D1EE03292E/cit179/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c11068 – volume: 160 start-page: 347 year: 2015 ident: D1EE03292E/cit142/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.02.004 – volume: 477 start-page: 228680 year: 2020 ident: D1EE03292E/cit187/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228680 – volume: 44 start-page: 5926 year: 2015 ident: D1EE03292E/cit32/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00442F – volume: 351 start-page: 1253292 year: 2016 ident: D1EE03292E/cit12/1 publication-title: Science doi: 10.1126/science.1253292 – volume: 43 start-page: 132 year: 2021 ident: D1EE03292E/cit138/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.10.028 – volume: 6 start-page: 6601 year: 2015 ident: D1EE03292E/cit152/1 publication-title: Chem. Sci. doi: 10.1039/C5SC01518A – volume: 51 start-page: 536 year: 2005 ident: D1EE03292E/cit90/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.05.012 – volume: 11 start-page: 2003456 year: 2020 ident: D1EE03292E/cit135/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003456 – volume: 1 start-page: 196 year: 2018 ident: D1EE03292E/cit127/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12021 – volume: 8 start-page: 2030 year: 2016 ident: D1EE03292E/cit96/1 publication-title: Nanoscale doi: 10.1039/C5NR08399K – volume: 196 start-page: 2109 year: 2011 ident: D1EE03292E/cit75/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.10.063 – volume: 138 start-page: 2656 year: 2016 ident: D1EE03292E/cit221/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11744 – volume: 1 start-page: 44 year: 2021 ident: D1EE03292E/cit205/1 publication-title: eScience doi: 10.1016/j.esci.2021.08.001 – volume: 389 start-page: 240 year: 2018 ident: D1EE03292E/cit71/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.071 – volume: 6 start-page: 14339 year: 2018 ident: D1EE03292E/cit97/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03172J – volume: 9 start-page: 1802946 year: 2018 ident: D1EE03292E/cit69/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802946 – volume: 15 start-page: 4594 year: 2021 ident: D1EE03292E/cit182/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c08808 – volume: 10 start-page: 2000907 year: 2020 ident: D1EE03292E/cit26/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000907 – volume: 4 start-page: 187 year: 2019 ident: D1EE03292E/cit202/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0312-z – volume: 58 start-page: 7020 year: 2019 ident: D1EE03292E/cit103/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902185 – volume: 39 start-page: 3115 year: 2010 ident: D1EE03292E/cit98/1 publication-title: Chem. Soc. Rev. doi: 10.1039/b919877f – volume: 54 start-page: 632 year: 2021 ident: D1EE03292E/cit218/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00772 – volume: 150 start-page: 304 year: 2017 ident: D1EE03292E/cit246/1 publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.08.016 – volume: 8 start-page: 1212 year: 2020 ident: D1EE03292E/cit215/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12137D – volume: 45 start-page: 5848 year: 2016 ident: D1EE03292E/cit42/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00012F – volume: 6 start-page: 323 year: 2021 ident: D1EE03292E/cit6/1 publication-title: Nat. Energy doi: 10.1038/s41560-020-00764-8 – volume: 31 start-page: 99 year: 2001 ident: D1EE03292E/cit66/1 publication-title: J. Appl. Electrochem. doi: 10.1023/A:1004113825283 – volume: 582 start-page: 485 year: 2020 ident: D1EE03292E/cit245/1 publication-title: Nature doi: 10.1038/d41586-020-01813-8 – volume: 58 start-page: 5623 year: 2019 ident: D1EE03292E/cit49/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201900266 – volume: 6 start-page: 1600218 year: 2016 ident: D1EE03292E/cit195/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600218 – volume: 4 start-page: 1621 year: 2011 ident: D1EE03292E/cit73/1 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00559b – volume: 8 start-page: 1802624 year: 2018 ident: D1EE03292E/cit33/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802624 – volume: 32 start-page: 2002168 year: 2020 ident: D1EE03292E/cit80/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002168 – volume: 13 start-page: 2209 year: 2020 ident: D1EE03292E/cit236/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01446J – volume: 4 start-page: 917 year: 2017 ident: D1EE03292E/cit184/1 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx037 – volume: 110 start-page: 7708 year: 2006 ident: D1EE03292E/cit191/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp0601522 – volume: 5 start-page: 787 year: 2020 ident: D1EE03292E/cit151/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0218-9 – volume: 47 start-page: 2921 year: 2018 ident: D1EE03292E/cit128/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00009C – volume: 369 start-page: 140 year: 2020 ident: D1EE03292E/cit157/1 publication-title: Science doi: 10.1126/science.abc5454 – volume: 396 start-page: 542 year: 2018 ident: D1EE03292E/cit212/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.06.040 – volume: 11 start-page: 2003905 year: 2021 ident: D1EE03292E/cit53/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003905 – volume: 48 start-page: 241 year: 2002 ident: D1EE03292E/cit87/1 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00620-5 – volume: 300 start-page: 29 year: 2015 ident: D1EE03292E/cit35/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.056 – volume: 66 start-page: 104175 year: 2019 ident: D1EE03292E/cit226/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104175 – volume: 3 start-page: 1028 year: 2021 ident: D1EE03292E/cit56/1 publication-title: InfoMat doi: 10.1002/inf2.12223 – volume: 31 start-page: 2101420 year: 2021 ident: D1EE03292E/cit183/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101420 – volume: 64 start-page: 496 year: 2022 ident: D1EE03292E/cit120/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.05.018 – volume: 3 start-page: 4092 year: 2015 ident: D1EE03292E/cit158/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06264G – volume: 120 start-page: 6558 year: 2020 ident: D1EE03292E/cit130/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00545 – volume: 166 start-page: 3342 year: 2019 ident: D1EE03292E/cit145/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0661914jes – volume: 5 start-page: 2411 year: 2020 ident: D1EE03292E/cit111/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01209 – volume: 8 start-page: 1703638 year: 2018 ident: D1EE03292E/cit122/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703638 – volume: 219 start-page: 36 year: 2012 ident: D1EE03292E/cit173/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.05.018 – volume: 299 start-page: 557 year: 2015 ident: D1EE03292E/cit37/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.001 – volume: 15 start-page: 13847 year: 2021 ident: D1EE03292E/cit126/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c05875 – volume: 50 start-page: 3178 year: 2021 ident: D1EE03292E/cit109/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01017K – volume: 157 start-page: A1383 year: 2010 ident: D1EE03292E/cit30/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3507259 – volume: 384 start-page: 107 year: 2018 ident: D1EE03292E/cit159/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.063 – volume: 195 start-page: 117088 year: 2021 ident: D1EE03292E/cit249/1 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117088 – volume: 31 start-page: 2009397 year: 2021 ident: D1EE03292E/cit93/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009397 – volume: 7 start-page: 14531 year: 2019 ident: D1EE03292E/cit59/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b02042 – volume: 298 start-page: 709 year: 2019 ident: D1EE03292E/cit155/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.161 – volume: 10 start-page: 2002027 year: 2020 ident: D1EE03292E/cit163/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002027 – volume: 11 start-page: 2003559 year: 2021 ident: D1EE03292E/cit200/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003559 – volume: 161 start-page: A1915 year: 2014 ident: D1EE03292E/cit160/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0861412jes – volume: 7 start-page: 1700715 year: 2017 ident: D1EE03292E/cit41/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700715 – volume: 113 start-page: 6552 year: 2013 ident: D1EE03292E/cit76/1 publication-title: Chem. Rev. doi: 10.1021/cr3001862 – volume: 7 start-page: 13364 year: 2019 ident: D1EE03292E/cit171/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02718A – volume: 56 start-page: 9640 year: 2020 ident: D1EE03292E/cit52/1 publication-title: Chem. Commun. doi: 10.1039/D0CC04049E – volume: 119 start-page: 2277 year: 2015 ident: D1EE03292E/cit95/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp509428c – volume: 2 start-page: 2208 year: 2018 ident: D1EE03292E/cit259/1 publication-title: Joule doi: 10.1016/j.joule.2018.09.008 – volume: 3 start-page: 267 year: 2018 ident: D1EE03292E/cit7/1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0107-2 – volume: 39 start-page: 139 year: 2021 ident: D1EE03292E/cit238/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.04.024 – volume: 158 start-page: 1419 year: 2006 ident: D1EE03292E/cit65/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.10.076 – volume: 411 start-page: 128540 year: 2021 ident: D1EE03292E/cit213/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128540 – volume: 214 start-page: 166 year: 2012 ident: D1EE03292E/cit197/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.04.073 – volume: 356 start-page: 1351 year: 2017 ident: D1EE03292E/cit60/1 publication-title: Science doi: 10.1126/science.aal4263 – volume: 14 start-page: 14549 year: 2020 ident: D1EE03292E/cit139/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c07907 – volume: 2 start-page: 2346 year: 2014 ident: D1EE03292E/cit147/1 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13043f – volume: 124 start-page: 106948 year: 2021 ident: D1EE03292E/cit188/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2021.106948 – volume: 10 start-page: 1903441 year: 2019 ident: D1EE03292E/cit194/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903441 – volume: 32 start-page: 46 year: 2020 ident: D1EE03292E/cit232/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.07.034 – volume: 31 start-page: 2102347 year: 2021 ident: D1EE03292E/cit247/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102347 – volume: 31 start-page: 2107136 year: 2021 ident: D1EE03292E/cit21/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107136 – volume: 4 start-page: 1400107 year: 2014 ident: D1EE03292E/cit79/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400107 – volume: 4 start-page: 812 year: 2020 ident: D1EE03292E/cit201/1 publication-title: Joule doi: 10.1016/j.joule.2020.03.012 – volume: 11 start-page: 1550 year: 2020 ident: D1EE03292E/cit64/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15355-0 – volume: 9 start-page: 8641 year: 2017 ident: D1EE03292E/cit68/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13995 – volume: 120 start-page: 13312 year: 2020 ident: D1EE03292E/cit190/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00275 – volume: 5 start-page: 3498 year: 2020 ident: D1EE03292E/cit63/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01889 – volume: 15 start-page: 1901689 year: 2019 ident: D1EE03292E/cit18/1 publication-title: Small doi: 10.1002/smll.201901689 – volume: 46 start-page: 3006 year: 2017 ident: D1EE03292E/cit156/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00875E – volume: 41 start-page: 143 year: 2020 ident: D1EE03292E/cit186/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.07.015 – volume: 57 start-page: 3158 year: 2018 ident: D1EE03292E/cit104/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201713423 – volume: 10 start-page: 2000368 year: 2020 ident: D1EE03292E/cit230/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000368 – volume: 64 start-page: 103927 year: 2019 ident: D1EE03292E/cit134/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103927 – volume: 31 start-page: 2005991 year: 2020 ident: D1EE03292E/cit123/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005991 – volume: 3 start-page: 18013 year: 2018 ident: D1EE03292E/cit261/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.13 – volume: 453 start-page: 227911 year: 2020 ident: D1EE03292E/cit196/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.227911 – volume: 222 start-page: 448 year: 2013 ident: D1EE03292E/cit177/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.09.020 – volume: 60 start-page: 15572 year: 2021 ident: D1EE03292E/cit150/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104124 – volume: 54 start-page: 3883 year: 2021 ident: D1EE03292E/cit25/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00420 – volume: 33 start-page: 2005937 year: 2021 ident: D1EE03292E/cit40/1 publication-title: Adv. Mater. doi: 10.1002/adma.202005937 – volume: 12 start-page: 2145 year: 2021 ident: D1EE03292E/cit165/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22403-w – volume: 1 start-page: 3 year: 2021 ident: D1EE03292E/cit110/1 publication-title: eScience doi: 10.1016/j.esci.2021.10.002 – volume: 30 start-page: 2001619 year: 2020 ident: D1EE03292E/cit133/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001619 – volume: 9 start-page: 42761 year: 2017 ident: D1EE03292E/cit51/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13887 – volume: 3 start-page: 1986 year: 2019 ident: D1EE03292E/cit61/1 publication-title: Joule doi: 10.1016/j.joule.2019.06.008 – volume: 115 start-page: 7266 year: 2018 ident: D1EE03292E/cit241/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1807115115 – volume: 12 start-page: 11120 year: 2018 ident: D1EE03292E/cit206/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b05534 – volume: 6 start-page: 2351 year: 2021 ident: D1EE03292E/cit250/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00743 – volume: 227 start-page: 324 year: 2018 ident: D1EE03292E/cit255/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.074 – volume: 17 start-page: 125 year: 2005 ident: D1EE03292E/cit85/1 publication-title: Adv. Mater. doi: 10.1002/adma.200400517 – volume: 121 start-page: 12278 year: 2021 ident: D1EE03292E/cit82/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00243 – volume: 23 start-page: 959 year: 2013 ident: D1EE03292E/cit176/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200698 – volume: 6 start-page: 2497 year: 2013 ident: D1EE03292E/cit83/1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41638k – volume: 128 start-page: 61 year: 2004 ident: D1EE03292E/cit175/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.09.051 – volume: 64 start-page: 1131 year: 2021 ident: D1EE03292E/cit185/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1011-9 – volume: 8 start-page: 14788 year: 2020 ident: D1EE03292E/cit211/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00439A – volume: 51 start-page: 154 year: 2020 ident: D1EE03292E/cit208/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.034 |
SSID | ssj0062079 |
Score | 2.7124317 |
SecondaryResourceType | review_article |
Snippet | Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1711 |
SubjectTerms | Batteries Electrochemistry Electrode materials Electrodes Electrolytes Energy storage Expeditions Harsh environments High altitude High temperature Lithium Lithium batteries Lithium ions Rechargeable batteries Temperature tolerance Underwater exploration |
Title | Challenges and advances in wide-temperature rechargeable lithium batteries |
URI | https://www.proquest.com/docview/2665526941 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gIHxKtiaUGW4IKqFNvxoz6WsrAqKqdWlFNkJ067Ek1Ruyskfj1jx47Tx6FwiRLLjnY9X-Zhe75B6J1TRDPa-DKpqi24c6SwjZVFzcD4MyVEQ3y-8-E3OT_mByfiJO_ohuySpd2p_9yZV_I_UoU2kKvPkv0HyQ4vhQa4B_nCFSQM13vJeD9VQumJluN-fjjh-nvRuMLzTkXS5G3QbJ4UyYVUKfC9zxar820b2DXTOcK0QN-nA3pMjNLgUvJkRgJMRdATP0y0fmH9-WLVh_rniwF2h8FBna-yBQh9oG93ehbRGRceIGb1nKVjXakEL4TsS9ntuFGbIvKaghUjIImRtqQqKloXH3ty8FtanZSeFPUTnc1IyTSbZduV9utvmLThoGHYYi91lceuoXUGEQWboPW9rx-_fE9mWzISiBmHf5W4bEv9IY--7r3kkGTtMtWLCX7J0RP0OAYUeK9Hx1P0wHXP0KMRzeRzdJBxggEnOOEELzp8Eyd4jBMccYIHnLxAx59nR_vzItbQgK9tly6LmlpZm1YJY2tiiCa8tNK2SjlKWk21thSC0lZKA556yxW4q8zW3LXCgPPWtuUGmnQXnXuJcFkLbWVJLBGWW02too46R6UxXJtdPkXv09xUdSSY93VOfla3pTBFb4e-v3palTt7baUpruJnd1WBRylEyL-eog2Y9mF8Az8mjHOv7vX2TfQww3oLTZaXK_caPMylfROx8RdsonmJ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+advances+in+wide-temperature+rechargeable+lithium+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Feng%2C+Yang&rft.au=Zhou%2C+Limin&rft.au=Ma%2C+Hua&rft.au=Wu%2C+Zhonghan&rft.date=2022-05-18&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=5&rft.spage=1711&rft.epage=1759&rft_id=info:doi/10.1039%2FD1EE03292E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1EE03292E |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |