Challenges and advances in wide-temperature rechargeable lithium batteries

Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLB...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 15; no. 5; pp. 1711 - 1759
Main Authors Feng, Yang, Zhou, Limin, Ma, Hua, Wu, Zhonghan, Zhao, Qing, Li, Haixia, Zhang, Kai, Chen, Jun
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 18.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLBs are harnessed only in favourable environments rather than extreme climates/conditions such as ocean exploration, tropical areas, high altitude drones, and polar expeditions. When chronically or periodically exposed to harsh environments, conventional RLBs will fail to work, especially in low- and high-temperature zones ( i.e. , below 0 °C and above 60 °C). Constructing alternative electrode materials and electrolyte systems with strong temperature tolerance lays the foundation for developing full-climate RLBs. Herein, the key stumbling blocks to realizing wide-temperature RLBs are first comprehensively discussed. Then the latest research progress to address the challenges at extreme temperatures is gradually introduced. And the fundamental operating mechanism and design strategies of electrolyte and electrode materials for RLBs working within a wide-temperature range are reviewed in detail. Finally, insights into and perspectives on energy materials and battery systems are provided to develop wide-temperature-operating range energy storage devices. Building rechargeable lithium batteries for wide-temperature applications requires us to investigate the battery failure mechanism at low/high temperature, design advanced electrode/electrolyte materials, and optimize the battery management system.
AbstractList Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLBs are harnessed only in favourable environments rather than extreme climates/conditions such as ocean exploration, tropical areas, high altitude drones, and polar expeditions. When chronically or periodically exposed to harsh environments, conventional RLBs will fail to work, especially in low- and high-temperature zones ( i.e. , below 0 °C and above 60 °C). Constructing alternative electrode materials and electrolyte systems with strong temperature tolerance lays the foundation for developing full-climate RLBs. Herein, the key stumbling blocks to realizing wide-temperature RLBs are first comprehensively discussed. Then the latest research progress to address the challenges at extreme temperatures is gradually introduced. And the fundamental operating mechanism and design strategies of electrolyte and electrode materials for RLBs working within a wide-temperature range are reviewed in detail. Finally, insights into and perspectives on energy materials and battery systems are provided to develop wide-temperature-operating range energy storage devices.
Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLBs are harnessed only in favourable environments rather than extreme climates/conditions such as ocean exploration, tropical areas, high altitude drones, and polar expeditions. When chronically or periodically exposed to harsh environments, conventional RLBs will fail to work, especially in low- and high-temperature zones ( i.e. , below 0 °C and above 60 °C). Constructing alternative electrode materials and electrolyte systems with strong temperature tolerance lays the foundation for developing full-climate RLBs. Herein, the key stumbling blocks to realizing wide-temperature RLBs are first comprehensively discussed. Then the latest research progress to address the challenges at extreme temperatures is gradually introduced. And the fundamental operating mechanism and design strategies of electrolyte and electrode materials for RLBs working within a wide-temperature range are reviewed in detail. Finally, insights into and perspectives on energy materials and battery systems are provided to develop wide-temperature-operating range energy storage devices. Building rechargeable lithium batteries for wide-temperature applications requires us to investigate the battery failure mechanism at low/high temperature, design advanced electrode/electrolyte materials, and optimize the battery management system.
Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical energy storage (EES) devices due to their low cost, sustainability, environmental friendliness, and temporal and spatial transferability. Most RLBs are harnessed only in favourable environments rather than extreme climates/conditions such as ocean exploration, tropical areas, high altitude drones, and polar expeditions. When chronically or periodically exposed to harsh environments, conventional RLBs will fail to work, especially in low- and high-temperature zones (i.e., below 0 °C and above 60 °C). Constructing alternative electrode materials and electrolyte systems with strong temperature tolerance lays the foundation for developing full-climate RLBs. Herein, the key stumbling blocks to realizing wide-temperature RLBs are first comprehensively discussed. Then the latest research progress to address the challenges at extreme temperatures is gradually introduced. And the fundamental operating mechanism and design strategies of electrolyte and electrode materials for RLBs working within a wide-temperature range are reviewed in detail. Finally, insights into and perspectives on energy materials and battery systems are provided to develop wide-temperature-operating range energy storage devices.
Author Wu, Zhonghan
Zhao, Qing
Feng, Yang
Chen, Jun
Zhou, Limin
Ma, Hua
Li, Haixia
Zhang, Kai
AuthorAffiliation Tianjin EV Energies Co., Ltd
Haihe Laboratory of Sustainable Chemical Transformations
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University
AuthorAffiliation_xml – name: Tianjin EV Energies Co., Ltd
– name: Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University
– name: Haihe Laboratory of Sustainable Chemical Transformations
Author_xml – sequence: 1
  givenname: Yang
  surname: Feng
  fullname: Feng, Yang
– sequence: 2
  givenname: Limin
  surname: Zhou
  fullname: Zhou, Limin
– sequence: 3
  givenname: Hua
  surname: Ma
  fullname: Ma, Hua
– sequence: 4
  givenname: Zhonghan
  surname: Wu
  fullname: Wu, Zhonghan
– sequence: 5
  givenname: Qing
  surname: Zhao
  fullname: Zhao, Qing
– sequence: 6
  givenname: Haixia
  surname: Li
  fullname: Li, Haixia
– sequence: 7
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
– sequence: 8
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
BookMark eNptkE1LxDAQhoOs4O7qxbtQ8CZUk7RNNkdZ6xcLXvRcJulkN0u3XZNU8d9bXT9APM078Lwz8EzIqO1aJOSY0XNGM3VRM0SaccVxj4yZLPK0kFSMvrNQ_IBMQlhTKjiVakzu5ytoGmyXGBJo6wTqF2jNsLg2eXU1phE3W_QQe4-JR7MCv0TQDSaNiyvXbxINMaJ3GA7JvoUm4NHXnJKn6_JxfpsuHm7u5peL1PAZi6lhWhiwsgBtKFBF80wLbaVERq1iSmnGmbRCQEFnNpdKZVybHG0BPOfWZlNyuru79d1zjyFW66737fCy4kIUBRcqZwNFd5TxXQgebWVchOi6NnpwTcVo9WGsumJl-WmsHCpnfypb7zbg3_6HT3awD-aH-9WfvQN2vnew
CitedBy_id crossref_primary_10_1016_j_ensm_2024_103177
crossref_primary_10_1021_acssuschemeng_4c07073
crossref_primary_10_1039_D2TA04540K
crossref_primary_10_1016_j_geits_2024_100192
crossref_primary_10_1021_acs_inorgchem_3c03660
crossref_primary_10_1039_D3TA07253C
crossref_primary_10_1002_ange_202408902
crossref_primary_10_1002_anie_202400797
crossref_primary_10_1016_j_pnsc_2024_12_013
crossref_primary_10_1016_j_jechem_2024_02_003
crossref_primary_10_1021_acsenergylett_4c00103
crossref_primary_10_1002_anie_202304503
crossref_primary_10_1016_j_ensm_2022_06_052
crossref_primary_10_1021_acsami_4c14141
crossref_primary_10_1002_adma_202308484
crossref_primary_10_1002_advs_202305280
crossref_primary_10_1007_s11426_023_1705_9
crossref_primary_10_1016_j_esci_2023_100179
crossref_primary_10_1007_s13391_024_00488_x
crossref_primary_10_1016_j_ensm_2024_103281
crossref_primary_10_1016_j_jpowsour_2023_233066
crossref_primary_10_1021_acsenergylett_4c01328
crossref_primary_10_1016_j_biombioe_2024_107559
crossref_primary_10_1039_D2EE02411J
crossref_primary_10_1002_smll_202401200
crossref_primary_10_1021_acsami_3c12301
crossref_primary_10_1002_adfm_202310747
crossref_primary_10_1002_aenm_202202432
crossref_primary_10_1002_anie_202303888
crossref_primary_10_1002_adsu_202300101
crossref_primary_10_1016_j_esci_2023_100173
crossref_primary_10_1016_j_est_2023_109415
crossref_primary_10_1002_ange_202414473
crossref_primary_10_1016_j_mtener_2024_101557
crossref_primary_10_1002_cssc_202202143
crossref_primary_10_1016_j_esci_2024_100328
crossref_primary_10_1002_adma_202413303
crossref_primary_10_1002_ange_202417605
crossref_primary_10_1039_D2TA06951B
crossref_primary_10_1016_j_est_2024_111001
crossref_primary_10_1016_j_nxmate_2024_100307
crossref_primary_10_1016_j_ensm_2023_03_026
crossref_primary_10_1016_j_mtener_2022_101089
crossref_primary_10_1016_j_pmatsci_2024_101289
crossref_primary_10_1002_ange_202416506
crossref_primary_10_1002_adma_202311327
crossref_primary_10_1002_ange_202414201
crossref_primary_10_1007_s10008_023_05705_5
crossref_primary_10_1021_acs_energyfuels_4c02858
crossref_primary_10_1021_acs_energyfuels_2c04033
crossref_primary_10_1002_aenm_202300053
crossref_primary_10_1002_adfm_202418784
crossref_primary_10_1016_j_ensm_2023_103005
crossref_primary_10_1002_ange_202407012
crossref_primary_10_1021_acsami_4c15229
crossref_primary_10_1016_j_cej_2024_152294
crossref_primary_10_1016_j_xcrp_2024_101931
crossref_primary_10_1038_s41467_023_41276_9
crossref_primary_10_1039_D3CS00734K
crossref_primary_10_1002_adma_202417353
crossref_primary_10_1039_D3TA01588B
crossref_primary_10_1002_advs_202416120
crossref_primary_10_1002_advs_202308530
crossref_primary_10_1039_D3EE03176D
crossref_primary_10_1039_D4SC02853H
crossref_primary_10_1002_adma_202302625
crossref_primary_10_1016_j_matchar_2023_113089
crossref_primary_10_1021_acsnano_4c06231
crossref_primary_10_1016_j_ensm_2024_103656
crossref_primary_10_1016_j_jcis_2024_05_009
crossref_primary_10_1021_acs_energyfuels_4c03119
crossref_primary_10_1016_j_mser_2025_100955
crossref_primary_10_1016_j_ensm_2023_103098
crossref_primary_10_1016_j_est_2024_111666
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1016_j_seta_2022_102915
crossref_primary_10_1002_aenm_202202342
crossref_primary_10_1038_s41467_024_55154_5
crossref_primary_10_1021_acs_energyfuels_4c06075
crossref_primary_10_1016_j_matre_2025_100317
crossref_primary_10_1016_j_cej_2024_153818
crossref_primary_10_1002_adfm_202212349
crossref_primary_10_1002_ange_202400797
crossref_primary_10_1016_j_ensm_2024_103402
crossref_primary_10_1016_j_esr_2024_101512
crossref_primary_10_1002_batt_202400055
crossref_primary_10_1016_j_matt_2023_04_012
crossref_primary_10_1016_j_jallcom_2023_169128
crossref_primary_10_1002_smll_202410866
crossref_primary_10_1016_j_ijsolstr_2022_112046
crossref_primary_10_1002_anie_202408902
crossref_primary_10_1016_j_joule_2025_101823
crossref_primary_10_1002_smll_202307848
crossref_primary_10_1002_aenm_202400314
crossref_primary_10_1007_s42114_024_01122_y
crossref_primary_10_1016_j_cej_2023_142181
crossref_primary_10_1016_j_ijhydene_2025_01_237
crossref_primary_10_3390_batteries9070373
crossref_primary_10_1002_smll_202311652
crossref_primary_10_1039_D4TA06381C
crossref_primary_10_1002_adsu_202300285
crossref_primary_10_1002_adfm_202414393
crossref_primary_10_1016_j_cej_2023_146418
crossref_primary_10_1016_j_est_2024_111445
crossref_primary_10_1021_acsenergylett_4c01616
crossref_primary_10_1016_j_mser_2025_100973
crossref_primary_10_1021_acsnano_3c06368
crossref_primary_10_1002_adfm_202310934
crossref_primary_10_1002_adma_202206009
crossref_primary_10_1080_1536383X_2023_2188201
crossref_primary_10_1016_j_cej_2023_147180
crossref_primary_10_1039_D3QM00759F
crossref_primary_10_1038_s41467_023_40394_8
crossref_primary_10_1039_D4CS00832D
crossref_primary_10_1039_D4EE05304D
crossref_primary_10_26599_NRE_2023_9120077
crossref_primary_10_1002_anie_202414473
crossref_primary_10_1021_acsami_3c19401
crossref_primary_10_1007_s12209_023_00366_x
crossref_primary_10_1002_cjoc_202200588
crossref_primary_10_1016_j_surfin_2024_104200
crossref_primary_10_1016_j_ensm_2024_103741
crossref_primary_10_1073_pnas_2310903120
crossref_primary_10_1002_aenm_202403851
crossref_primary_10_1007_s11814_024_00357_1
crossref_primary_10_1016_j_jpowsour_2024_235364
crossref_primary_10_1002_smm2_1185
crossref_primary_10_1002_adfm_202409232
crossref_primary_10_1016_j_jmst_2024_12_082
crossref_primary_10_1002_adma_202308193
crossref_primary_10_1016_j_ensm_2024_103857
crossref_primary_10_1002_adma_202311912
crossref_primary_10_1016_j_est_2023_109759
crossref_primary_10_1002_anie_202414201
crossref_primary_10_1016_j_ensm_2024_103330
crossref_primary_10_1002_anie_202416506
crossref_primary_10_1007_s40820_023_01245_9
crossref_primary_10_1016_j_nxmate_2024_100124
crossref_primary_10_1021_acselectrochem_4c00083
crossref_primary_10_1039_D4EE04657A
crossref_primary_10_1016_j_cej_2024_158223
crossref_primary_10_1016_j_nanoen_2024_110472
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1021_acsaem_3c00814
crossref_primary_10_1039_D3QM00850A
crossref_primary_10_1016_j_jcis_2023_10_064
crossref_primary_10_1016_j_jpowsour_2024_235589
crossref_primary_10_1007_s12274_022_5363_6
crossref_primary_10_1016_j_jechem_2023_11_044
crossref_primary_10_1021_acsenergylett_4c00621
crossref_primary_10_1016_j_cej_2024_156845
crossref_primary_10_1021_acs_energyfuels_3c02142
crossref_primary_10_1021_acsnano_2c04114
crossref_primary_10_1002_batt_202200256
crossref_primary_10_1039_D3CS00872J
crossref_primary_10_1002_adma_202400537
crossref_primary_10_1002_adfm_202205393
crossref_primary_10_1002_aenm_202402381
crossref_primary_10_1002_adfm_202424022
crossref_primary_10_1002_anie_202417605
crossref_primary_10_1016_j_nanoen_2025_110769
crossref_primary_10_1021_jacs_4c16031
crossref_primary_10_1039_D2EE03019E
crossref_primary_10_1002_chem_202401935
crossref_primary_10_1021_jacs_3c08313
crossref_primary_10_1002_ange_202417105
crossref_primary_10_1002_smll_202306438
crossref_primary_10_1016_j_jallcom_2024_174481
crossref_primary_10_1002_adfm_202501303
crossref_primary_10_1016_j_ensm_2025_104126
crossref_primary_10_1002_adfm_202210731
crossref_primary_10_1002_chem_202304152
crossref_primary_10_1002_smll_202401735
crossref_primary_10_1016_j_jcis_2023_12_012
crossref_primary_10_1002_anie_202407012
crossref_primary_10_1039_D3EE02535G
crossref_primary_10_1002_aenm_202203449
crossref_primary_10_1016_j_ssi_2023_116289
crossref_primary_10_1016_j_ensm_2024_103548
crossref_primary_10_1039_D4TA07378A
crossref_primary_10_1039_D4CY01171F
crossref_primary_10_1016_j_cej_2023_141273
crossref_primary_10_1016_j_ensm_2024_103783
crossref_primary_10_1038_s41467_023_36198_5
crossref_primary_10_1021_acsami_3c06812
crossref_primary_10_1016_j_jpowsour_2024_235563
crossref_primary_10_1038_s41467_023_40221_0
crossref_primary_10_1016_j_mattod_2024_06_018
crossref_primary_10_1021_acs_jpclett_4c02771
crossref_primary_10_1016_j_apenergy_2024_125229
crossref_primary_10_1002_cphc_202400231
crossref_primary_10_1016_j_jallcom_2023_170160
crossref_primary_10_1016_j_ensm_2024_103374
crossref_primary_10_1002_smtd_202400587
crossref_primary_10_1016_j_prime_2025_100962
crossref_primary_10_1002_anie_202410046
crossref_primary_10_1002_aenm_202203708
crossref_primary_10_1021_jacs_3c11776
crossref_primary_10_1002_advs_202410329
crossref_primary_10_1016_j_ensm_2024_103490
crossref_primary_10_1016_j_matt_2023_06_010
crossref_primary_10_1016_j_cej_2024_157572
crossref_primary_10_1016_j_fub_2024_100007
crossref_primary_10_1002_asia_202300820
crossref_primary_10_3390_en17195001
crossref_primary_10_1016_j_ensm_2022_08_022
crossref_primary_10_1002_ange_202303888
crossref_primary_10_3390_batteries10120448
crossref_primary_10_1007_s12274_022_4983_1
crossref_primary_10_1021_acsnano_3c01895
crossref_primary_10_1002_adma_202412155
crossref_primary_10_1002_aenm_202301020
crossref_primary_10_1016_j_ese_2024_100490
crossref_primary_10_1016_j_ensm_2024_103807
crossref_primary_10_1016_j_ensm_2024_103366
crossref_primary_10_1002_adfm_202300502
crossref_primary_10_1039_D3QM00662J
crossref_primary_10_1021_acsenergylett_4c03307
crossref_primary_10_1002_batt_202400578
crossref_primary_10_1016_j_jpowsour_2024_236075
crossref_primary_10_1002_aenm_202203841
crossref_primary_10_1002_ange_202304503
crossref_primary_10_1002_celc_202300759
crossref_primary_10_1039_D4EE05369A
crossref_primary_10_1016_j_apenergy_2025_125509
crossref_primary_10_1002_smll_202303763
crossref_primary_10_1002_adfm_202409295
crossref_primary_10_1016_j_matlet_2023_135594
crossref_primary_10_1021_acsaem_4c01142
crossref_primary_10_1002_batt_202300596
crossref_primary_10_1021_acsami_4c00199
crossref_primary_10_59717_j_xinn_mater_2023_100030
crossref_primary_10_1021_jacs_4c08115
crossref_primary_10_1002_aenm_202401961
crossref_primary_10_1021_acsami_3c05075
crossref_primary_10_1016_j_ensm_2025_104045
crossref_primary_10_1073_pnas_2316914121
crossref_primary_10_1016_j_est_2024_112019
crossref_primary_10_1016_j_ensm_2024_103230
crossref_primary_10_1039_D3EE02082G
crossref_primary_10_1039_D4NR00261J
crossref_primary_10_1002_aenm_202301285
crossref_primary_10_1002_ange_202410046
crossref_primary_10_1039_D3CS00551H
crossref_primary_10_1002_ange_202305840
crossref_primary_10_1016_j_est_2023_107616
crossref_primary_10_1002_anie_202417105
crossref_primary_10_1039_D3TA06057H
crossref_primary_10_1002_smll_202409130
crossref_primary_10_1039_D4MH01710B
crossref_primary_10_1038_s41467_025_57856_w
crossref_primary_10_1016_j_ensm_2025_104176
crossref_primary_10_3390_batteries10120421
crossref_primary_10_1016_j_est_2025_115944
crossref_primary_10_1016_j_jechem_2024_05_025
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1002_aenm_202202851
crossref_primary_10_1021_acsenergylett_4c00379
crossref_primary_10_1007_s12274_022_4726_3
crossref_primary_10_1016_j_etran_2023_100290
crossref_primary_10_1002_cey2_504
crossref_primary_10_1016_j_esci_2024_100252
crossref_primary_10_1002_anie_202305840
Cites_doi 10.1016/S0378-7753(02)00473-1
10.1016/j.apmate.2021.10.002
10.1016/j.jclepro.2019.119403
10.1002/advs.202002590
10.1039/C9EE04039K
10.1021/acs.chemrev.7b00115
10.1016/j.joule.2018.06.015
10.1016/j.ensm.2021.04.002
10.1021/acsami.9b03821
10.1126/science.1212741
10.1002/aenm.201800802
10.1038/natrevmats.2016.13
10.1016/j.esci.2021.10.003
10.1039/C9CS00728H
10.1016/j.ensm.2020.12.033
10.1038/s41560-020-0640-7
10.1016/j.jechem.2020.03.041
10.1002/aesr.202000059
10.1038/nature16502
10.1002/sstr.202100119
10.1016/j.esci.2021.08.002
10.1038/s41467-018-06877-9
10.1149/2.0511814jes
10.1021/acsenergylett.0c00643
10.1002/smm2.1015
10.1039/D1TA00895A
10.1021/acsenergylett.7b00292
10.1039/D1EE00049G
10.1038/s41560-020-00757-7
10.1002/aenm.202001235
10.1016/j.nanoen.2020.105510
10.1007/s41918-018-0001-4
10.1016/j.jpowsour.2013.01.014
10.1149/2.1041608jes
10.1016/j.ensm.2019.06.020
10.1002/aenm.202101775
10.1016/j.electacta.2020.136652
10.1016/j.ensm.2020.06.042
10.1002/smll.201603045
10.1016/j.joule.2018.01.017
10.1016/j.electacta.2021.138461
10.1038/nenergy.2016.132
10.1002/adfm.202101180
10.1002/adma.202004898
10.1038/ncomms1527
10.1002/aenm.201300159
10.1021/acsami.0c19909
10.1002/anie.202102593
10.1039/C9CS00883G
10.1002/advs.202000196
10.1016/j.jpowsour.2014.11.149
10.1002/aenm.201300510
10.1016/j.rser.2021.111437
10.1016/j.joule.2017.08.009
10.1149/2.0041502eel
10.1016/S0378-7753(01)01013-8
10.1016/j.electacta.2020.137344
10.1002/smll.201703454
10.1021/cr500003w
10.1038/nenergy.2017.12
10.1021/jacs.9b05531
10.1002/aenm.201500274
10.1016/j.joule.2019.03.028
10.1021/nl902315u
10.1016/j.electacta.2012.07.128
10.1002/adma.202008088
10.1016/j.ensm.2020.06.043
10.1002/aenm.202001972
10.1002/aenm.201904152
10.1002/smtd.201800272
10.1016/j.elecom.2013.08.009
10.1002/adma.202000952
10.1021/acsami.0c04842
10.1038/nmat3191
10.1002/adma.201801751
10.1016/j.joule.2018.04.019
10.1126/science.aas9343
10.1002/aenm.201802322
10.1039/D0CC03798B
10.1016/j.jpowsour.2013.07.056
10.1126/science.aax0704
10.1016/j.cclet.2020.09.007
10.1021/ja3091438
10.1038/nenergy.2016.71
10.1021/acs.nanolett.9b03330
10.1016/j.jpowsour.2010.05.001
10.1038/ncomms8436
10.1038/s41560-019-0474-3
10.1039/C6CP02816K
10.1016/j.ensm.2021.06.040
10.1039/C7CS00863E
10.1016/j.ensm.2021.08.028
10.1038/nenergy.2017.108
10.1038/s41560-019-0513-0
10.1038/s41467-021-23603-0
10.1021/acsenergylett.7b00845
10.1039/C9CC03246K
10.1016/j.chempr.2018.09.005
10.1016/j.joule.2019.09.021
10.1021/cr020731c
10.1002/anie.201710555
10.1126/sciadv.aba4098
10.1016/j.jallcom.2020.156859
10.1002/adfm.201704195
10.1039/C4TA05660D
10.1002/aenm.201902023
10.1038/s41560-019-0413-3
10.1038/s41560-018-0243-8
10.1038/nmat2725
10.1038/nmat3435
10.1038/s41560-018-0108-1
10.1039/D1EE00271F
10.1002/anie.201503072
10.1149/2.1291610jes
10.1002/aenm.202100935
10.1016/j.elecom.2006.06.016
10.1002/anie.201914972
10.1002/chem.202101407
10.20964/2020.09.50
10.1021/acs.chemrev.9b00531
10.1039/C6EE00123H
10.1038/s41560-020-0665-y
10.1021/cr100290v
10.1016/S0378-7753(00)00578-4
10.1038/s41560-021-00783-z
10.1039/C7EE03365F
10.1016/j.applthermaleng.2018.03.099
10.1021/acs.chemrev.9b00609
10.1038/35104644
10.20964/2020.12.71
10.1016/j.jechem.2020.02.052
10.1002/anie.201811291
10.1016/j.ensm.2019.03.005
10.1109/MELE.2018.2889545
10.1126/sciadv.aas9820
10.1126/sciadv.aay7633
10.1038/s41560-019-0338-x
10.1021/acsami.0c11068
10.1016/j.electacta.2015.02.004
10.1016/j.jpowsour.2020.228680
10.1039/C4CS00442F
10.1126/science.1253292
10.1016/j.mattod.2020.10.028
10.1039/C5SC01518A
10.1016/j.electacta.2005.05.012
10.1002/aenm.202003456
10.1002/eem2.12021
10.1039/C5NR08399K
10.1016/j.jpowsour.2010.10.063
10.1021/jacs.5b11744
10.1016/j.esci.2021.08.001
10.1016/j.jpowsour.2018.03.071
10.1039/C8TA03172J
10.1002/aenm.201802946
10.1021/acsnano.0c08808
10.1002/aenm.202000907
10.1038/s41560-018-0312-z
10.1002/anie.201902185
10.1039/b919877f
10.1021/acs.accounts.0c00772
10.1016/j.enconman.2017.08.016
10.1039/C9TA12137D
10.1039/C6CS00012F
10.1038/s41560-020-00764-8
10.1023/A:1004113825283
10.1038/d41586-020-01813-8
10.1002/anie.201900266
10.1002/aenm.201600218
10.1039/c0ee00559b
10.1002/aenm.201802624
10.1002/adma.202002168
10.1039/D0EE01446J
10.1093/nsr/nwx037
10.1021/jp0601522
10.1038/s41578-020-0218-9
10.1039/C8CS00009C
10.1126/science.abc5454
10.1016/j.jpowsour.2018.06.040
10.1002/aenm.202003905
10.1016/S0013-4686(02)00620-5
10.1016/j.jpowsour.2015.09.056
10.1016/j.nanoen.2019.104175
10.1002/inf2.12223
10.1002/adfm.202101420
10.1016/j.jechem.2021.05.018
10.1039/C4TA06264G
10.1021/acs.chemrev.9b00545
10.1149/2.0661914jes
10.1021/acsenergylett.0c01209
10.1002/aenm.201703638
10.1016/j.jpowsour.2012.05.018
10.1016/j.jpowsour.2015.09.001
10.1021/acsnano.1c05875
10.1039/D0CS01017K
10.1149/1.3507259
10.1016/j.jpowsour.2018.02.063
10.1016/j.applthermaleng.2021.117088
10.1002/adfm.202009397
10.1021/acssuschemeng.9b02042
10.1016/j.electacta.2018.12.161
10.1002/aenm.202002027
10.1002/aenm.202003559
10.1149/2.0861412jes
10.1002/aenm.201700715
10.1021/cr3001862
10.1039/C9TA02718A
10.1039/D0CC04049E
10.1021/jp509428c
10.1016/j.joule.2018.09.008
10.1038/s41560-018-0107-2
10.1016/j.ensm.2021.04.024
10.1016/j.jpowsour.2005.10.076
10.1016/j.cej.2021.128540
10.1016/j.jpowsour.2012.04.073
10.1126/science.aal4263
10.1021/acsnano.0c07907
10.1039/c3ta13043f
10.1016/j.elecom.2021.106948
10.1002/aenm.201903441
10.1016/j.ensm.2020.07.034
10.1002/adfm.202102347
10.1002/adfm.202107136
10.1002/aenm.201400107
10.1016/j.joule.2020.03.012
10.1038/s41467-020-15355-0
10.1021/acsami.6b13995
10.1021/acs.chemrev.0c00275
10.1021/acsenergylett.0c01889
10.1002/smll.201901689
10.1039/C6CS00875E
10.1016/j.mattod.2020.07.015
10.1002/anie.201713423
10.1002/aenm.202000368
10.1016/j.nanoen.2019.103927
10.1002/adfm.202005991
10.1038/natrevmats.2018.13
10.1016/j.jpowsour.2020.227911
10.1016/j.jpowsour.2012.09.020
10.1002/anie.202104124
10.1021/acs.accounts.1c00420
10.1002/adma.202005937
10.1038/s41467-021-22403-w
10.1016/j.esci.2021.10.002
10.1002/adfm.202001619
10.1021/acsami.7b13887
10.1016/j.joule.2019.06.008
10.1073/pnas.1807115115
10.1021/acsnano.8b05534
10.1021/acsenergylett.1c00743
10.1016/j.apenergy.2017.08.074
10.1002/adma.200400517
10.1021/acs.chemrev.1c00243
10.1002/adfm.201200698
10.1039/c3ee41638k
10.1016/j.jpowsour.2003.09.051
10.1007/s11426-021-1011-9
10.1039/D0TA00439A
10.1016/j.jechem.2020.03.034
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d1ee03292e
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1759
ExternalDocumentID 10_1039_D1EE03292E
d1ee03292e
GroupedDBID 0-7
0R
29G
4.4
5GY
70
705
7~J
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFRAH
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
M4U
N9A
O-G
O9-
P2P
RCNCU
RIG
RPMJG
RRC
RSCEA
SKA
SLH
TOV
UCJ
0R~
70~
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c281t-c1b6caf75abc0a09043b6bf77e10f9199b1217f66a508f479932bc4ef5a242ff3
ISSN 1754-5692
IngestDate Mon Jun 30 12:00:38 EDT 2025
Tue Jul 01 01:45:51 EDT 2025
Thu Apr 24 23:06:30 EDT 2025
Thu May 19 04:21:11 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-c1b6caf75abc0a09043b6bf77e10f9199b1217f66a508f479932bc4ef5a242ff3
Notes Kai Zhang was born in Tianjin, China, in 1987 and earned his BS in science in 2010 from the College of Chemistry at Nankai University (China). In 2015, he received his PhD in engineering from Nankai University under the supervision of Professor Jun Chen. Then, he joined the group of Professor Yong-Mook Kang as a post-doc in the Department of Energy and Materials Engineering in Dongguk University-Seoul (Korea). Currently, he is a professor at Nankai University. He has been selected as a member of the Young Elite Scientist Sponsorship Program funded by CAST. His research focuses on advanced battery materials and wide-temperature electrochemical energy-storage devices.
Limin Zhou received her PhD in 2019 from the Department of Materials Science and Engineering at Wuhan University of Technology and her MS degree from the College of Chemistry from Nankai University in 2015. Then, she jointed Professor Yong-Mook Kang's group as a postdoctoral researcher at the Department of Materials Science and Engineering in Korea University. Her current research focuses on synthesis and characterization of advanced materials for rechargeable batteries.
eScience
Yang Feng received his MS degree in 2021 from the School of Textile Science and Engineering at Tiangong University, Tianjin, China. Currently, he is a PhD student in Prof. Kai Zhang's group with the College of Chemistry at Nankai University, Tianjin, China. His current research focuses on synthesis and characterization of advanced materials for wide temperature rechargeable lithium-based batteries.
Jun Chen received his BS and MS degrees from Nankai University in 1989 and 1992, respectively, and his PhD degree from the University of Wollongong (Australia) in 1999. He held a NEDO fellowship in the National Institute of AIST Kansai Center (Japan) from 1999 to 2002. Then he joined Nankai University as a Full Professor in 2002. He is currently an academician of the Chinese Academy of Sciences, a fellow of The World Academy of Sciences (TWAS), the Director of the Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), and the Vice President of Nankai University. His research focuses mainly on nanomaterials chemistry and high-energy batteries. He is the founding Editor-in-Chief of
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8604-9689
0000-0001-8038-745X
PQID 2665526941
PQPubID 2047494
PageCount 49
ParticipantIDs crossref_primary_10_1039_D1EE03292E
rsc_primary_d1ee03292e
crossref_citationtrail_10_1039_D1EE03292E
proquest_journals_2665526941
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-18
PublicationDateYYYYMMDD 2022-05-18
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-18
  day: 18
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ye (D1EE03292E/cit80/1) 2020; 32
Haregewoin (D1EE03292E/cit47/1) 2016; 9
Zhang (D1EE03292E/cit50/1) 2020; 2
Liu (D1EE03292E/cit17/1) 2018; 4
Solchenbach (D1EE03292E/cit161/1) 2018; 165
Feng (D1EE03292E/cit210/1) 2021; 365
Whittingham (D1EE03292E/cit70/1) 2004; 104
Wang (D1EE03292E/cit151/1) 2020; 5
Wu (D1EE03292E/cit77/1) 2013; 3
Zhu (D1EE03292E/cit35/1) 2015; 300
Li (D1EE03292E/cit57/1) 2021
Zhao (D1EE03292E/cit16/1) 2020; 8
Lee (D1EE03292E/cit170/1) 2013; 3
Liu (D1EE03292E/cit92/1) 2017; 56
Geng (D1EE03292E/cit146/1) 2019; 23
Kulova (D1EE03292E/cit19/1) 2020
Chang (D1EE03292E/cit150/1) 2021; 60
Holoubek (D1EE03292E/cit125/1) 2021; 6
Liu (D1EE03292E/cit189/1) 2021; 33
Ahmed (D1EE03292E/cit155/1) 2019; 298
Rustomji (D1EE03292E/cit60/1) 2017; 356
Zhang (D1EE03292E/cit87/1) 2002; 48
Peng (D1EE03292E/cit96/1) 2016; 8
Feng (D1EE03292E/cit118/1) 2020; 32
Wang (D1EE03292E/cit13/1) 2016; 529
Yu (D1EE03292E/cit81/1) 2020; 59
Liu (D1EE03292E/cit228/1) 2019; 11
Yaakov (D1EE03292E/cit30/1) 2010; 157
Choi (D1EE03292E/cit163/1) 2020; 10
Yang (D1EE03292E/cit207/1) 2019; 58
Pan (D1EE03292E/cit184/1) 2017; 4
Song (D1EE03292E/cit226/1) 2019; 66
Li (D1EE03292E/cit110/1) 2021; 1
Yang (D1EE03292E/cit242/1) 2021; 6
Nobili (D1EE03292E/cit90/1) 2005; 51
Zheng (D1EE03292E/cit108/1) 2020; 49
Shan (D1EE03292E/cit56/1) 2021; 3
Nagasubramanian (D1EE03292E/cit66/1) 2001; 31
Pan (D1EE03292E/cit223/1) 2018; 14
Sun (D1EE03292E/cit166/1) 2012; 11
Yang (D1EE03292E/cit169/1) 2009; 9
Hao (D1EE03292E/cit251/1) 2020; 249
Pang (D1EE03292E/cit117/1) 2016; 1
Hu (D1EE03292E/cit144/1) 2013; 35
Luo (D1EE03292E/cit211/1) 2020; 8
Ma (D1EE03292E/cit232/1) 2020; 32
Chen (D1EE03292E/cit176/1) 2013; 23
Yi (D1EE03292E/cit220/1) 2017; 2
Park (D1EE03292E/cit98/1) 2010; 39
Vaalma (D1EE03292E/cit261/1) 2018; 3
Liu (D1EE03292E/cit225/1) 2021; 41
Peng (D1EE03292E/cit237/1) 2021; 43
Yang (D1EE03292E/cit257/1) 2019; 3
Zhou (D1EE03292E/cit44/1) 2019; 10
Lu (D1EE03292E/cit103/1) 2019; 58
Wu (D1EE03292E/cit119/1) 2020; 49
Kang (D1EE03292E/cit139/1) 2020; 14
Lin (D1EE03292E/cit182/1) 2021; 15
Zhou (D1EE03292E/cit212/1) 2018; 396
Zhou (D1EE03292E/cit21/1) 2021; 31
Zhang (D1EE03292E/cit230/1) 2020; 10
Waqas (D1EE03292E/cit18/1) 2019; 15
Han (D1EE03292E/cit202/1) 2019; 4
Zhao (D1EE03292E/cit205/1) 2021; 1
He (D1EE03292E/cit40/1) 2021; 33
Liu (D1EE03292E/cit187/1) 2020; 477
Ren (D1EE03292E/cit229/1) 2020; 32
Xiang (D1EE03292E/cit234/1) 2021; 14
Xu (D1EE03292E/cit191/1) 2006; 110
Guo (D1EE03292E/cit178/1) 2015; 3
Zheng (D1EE03292E/cit198/1) 2017; 2
Chen (D1EE03292E/cit36/1) 2021; 14
Park (D1EE03292E/cit73/1) 2011; 4
Li (D1EE03292E/cit63/1) 2020; 5
Dechent (D1EE03292E/cit250/1) 2021; 6
Li (D1EE03292E/cit252/1) 2020; 5
Single (D1EE03292E/cit39/1) 2016; 18
Piątek (D1EE03292E/cit135/1) 2020; 11
Xu (D1EE03292E/cit158/1) 2015; 3
Jin (D1EE03292E/cit41/1) 2017; 7
Liao (D1EE03292E/cit54/1) 2018; 8
Rui (D1EE03292E/cit75/1) 2011; 196
Jiang (D1EE03292E/cit123/1) 2020; 31
Xia (D1EE03292E/cit222/1) 2018; 361
Liu (D1EE03292E/cit58/1) 2021; 2
Feng (D1EE03292E/cit121/1) 2021; 851
Xu (D1EE03292E/cit31/1) 2014; 114
Yuan (D1EE03292E/cit183/1) 2021; 31
Akolkar (D1EE03292E/cit28/1) 2013; 232
Yang (D1EE03292E/cit52/1) 2020; 56
Wang (D1EE03292E/cit238/1) 2021; 39
Wang (D1EE03292E/cit120/1) 2022; 64
Goodenough (D1EE03292E/cit10/1) 2013; 135
Zhao (D1EE03292E/cit37/1) 2015; 299
Dong (D1EE03292E/cit199/1) 2018; 11
Gao (D1EE03292E/cit116/1) 2020; 5
Liu (D1EE03292E/cit22/1) 2018; 2
Liu (D1EE03292E/cit213/1) 2021; 411
Zhang (D1EE03292E/cit149/1) 2019; 55
Song (D1EE03292E/cit188/1) 2021; 124
Cai (D1EE03292E/cit23/1) 2020; 49
Wang (D1EE03292E/cit126/1) 2021; 15
Yan (D1EE03292E/cit174/1) 2020; 49
Yu (D1EE03292E/cit200/1) 2021; 11
Na (D1EE03292E/cit34/1) 2020; 32
Hwang (D1EE03292E/cit196/1) 2020; 453
Dong (D1EE03292E/cit106/1) 2018; 2
Cai (D1EE03292E/cit62/1) 2021; 12
Lin (D1EE03292E/cit42/1) 2016; 45
Yang (D1EE03292E/cit179/1) 2020; 12
Liu (D1EE03292E/cit24/1) 2022
Park (D1EE03292E/cit165/1) 2021; 12
Liu (D1EE03292E/cit114/1) 2019; 4
MacNeil (D1EE03292E/cit172/1) 2002; 108
Plichta (D1EE03292E/cit48/1) 2000; 94
Lee (D1EE03292E/cit93/1) 2021; 31
Liu (D1EE03292E/cit255/1) 2018; 227
Liu (D1EE03292E/cit168/1) 2015; 5
Giordani (D1EE03292E/cit221/1) 2016; 138
Dong (D1EE03292E/cit25/1) 2021; 54
Li (D1EE03292E/cit156/1) 2017; 46
Kurita (D1EE03292E/cit197/1) 2012; 214
Li (D1EE03292E/cit231/1) 2018; 9
Liu (D1EE03292E/cit127/1) 2018; 1
Waldmann (D1EE03292E/cit159/1) 2018; 384
Rodrigues (D1EE03292E/cit195/1) 2016; 6
Dong (D1EE03292E/cit86/1) 2020; 7
Lin (D1EE03292E/cit14/1) 2020; 10
Yang (D1EE03292E/cit241/1) 2018; 115
Genovese (D1EE03292E/cit145/1) 2019; 166
Wang (D1EE03292E/cit215/1) 2020; 8
Li (D1EE03292E/cit46/1) 2020; 120
Huang (D1EE03292E/cit186/1) 2020; 41
Tan (D1EE03292E/cit67/1) 2015; 277
Li (D1EE03292E/cit260/1) 2019; 3
Sun (D1EE03292E/cit107/1) 2016; 1
Zhang (D1EE03292E/cit74/1) 2020; 15
Han (D1EE03292E/cit140/1) 2018; 28
Qiao (D1EE03292E/cit153/1) 2018; 8
Jung (D1EE03292E/cit227/1) 2011; 2
Li (D1EE03292E/cit133/1) 2020; 30
Chen (D1EE03292E/cit217/1) 2020; 50
Zhang (D1EE03292E/cit190/1) 2020; 120
Hou (D1EE03292E/cit38/1) 2020; 10
Tang (D1EE03292E/cit32/1) 2015; 44
Lu (D1EE03292E/cit11/1) 2018; 4
Song (D1EE03292E/cit131/1) 2020; 13
Thenuwara (D1EE03292E/cit115/1) 2019; 19
Ramadass (D1EE03292E/cit137/1) 2002; 112
Cai (D1EE03292E/cit94/1) 2021; 60
Wang (D1EE03292E/cit109/1) 2021; 50
Liu (D1EE03292E/cit132/1) 2017; 2
Su (D1EE03292E/cit185/1) 2021; 64
Tapesh Joshi (D1EE03292E/cit160/1) 2014; 161
Dong (D1EE03292E/cit49/1) 2019; 58
Cheng (D1EE03292E/cit88/1) 2017; 117
Fan (D1EE03292E/cit249/1) 2021; 195
Holoubek (D1EE03292E/cit112/1) 2020; 5
Ramanujapuram (D1EE03292E/cit33/1) 2018; 8
Subburaj (D1EE03292E/cit100/1) 2020; 354
Nobili (D1EE03292E/cit91/1) 2010; 195
Schmuch (D1EE03292E/cit7/1) 2018; 3
Li (D1EE03292E/cit51/1) 2017; 9
Chen (D1EE03292E/cit201/1) 2020; 4
Yu (D1EE03292E/cit26/1) 2020; 10
Tang (D1EE03292E/cit171/1) 2019; 7
Mao (D1EE03292E/cit254/1) 2018; 137
Yi (D1EE03292E/cit177/1) 2013; 222
Lin (D1EE03292E/cit248/1) 2021; 11
Lan (D1EE03292E/cit214/1) 2021; 13
Fan (D1EE03292E/cit224/1) 2019; 21
Zhang (D1EE03292E/cit167/1) 2018; 30
Yang (D1EE03292E/cit61/1) 2019; 3
Qie (D1EE03292E/cit83/1) 2013; 6
Manthiram (D1EE03292E/cit6/1) 2021; 6
Choi (D1EE03292E/cit101/1) 2017; 13
Tarascon (D1EE03292E/cit4/1) 2001; 414
Zhou (D1EE03292E/cit194/1) 2019; 10
Liu (D1EE03292E/cit246/1) 2017; 150
Sun (D1EE03292E/cit69/1) 2018; 9
Lin (D1EE03292E/cit152/1) 2015; 6
Fu (D1EE03292E/cit203/1) 2020; 32
Yang (D1EE03292E/cit2/1) 2011; 111
Zhu (D1EE03292E/cit162/1) 2021; 1
Yang (D1EE03292E/cit258/1) 2019; 7
Thenuwara (D1EE03292E/cit111/1) 2020; 5
Fu (D1EE03292E/cit180/1) 2021; 387
Zaghib (D1EE03292E/cit173/1) 2012; 219
Ma (D1EE03292E/cit104/1) 2018; 57
Zheng (D1EE03292E/cit193/1) 2021; 9
Chen (D1EE03292E/cit68/1) 2017; 9
Yamagiwa (D1EE03292E/cit142/1) 2015; 160
Xu (D1EE03292E/cit243/1) 2021; 150
Markevich (D1EE03292E/cit99/1) 2016; 163
Palacin (D1EE03292E/cit12/1) 2016; 351
Manthiram (D1EE03292E/cit157/1) 2020; 369
Wang (D1EE03292E/cit113/1) 2021; 11
Chen (D1EE03292E/cit218/1) 2021; 54
Chen (D1EE03292E/cit247/1) 2021; 31
Offer (D1EE03292E/cit245/1) 2020; 582
Chao (D1EE03292E/cit8/1) 2020; 6
Judez (D1EE03292E/cit259/1) 2018; 2
Zhang (D1EE03292E/cit128/1) 2018; 47
Xu (D1EE03292E/cit105/1) 2021; 1
Liu (D1EE03292E/cit130/1) 2020; 120
Gupta (D1EE03292E/cit15/1) 2020; 10
Choi (D1EE03292E/cit65/1) 2006; 158
Wu (D1EE03292E/cit129/1) 2018; 2
Wu (D1EE03292E/cit181/1) 2015; 54
Liu (D1EE03292E/cit53/1) 2021; 11
Huang (D1EE03292E/cit97/1) 2018; 6
Hao (D1EE03292E/cit240/1) 2018; 3
Lyu (D1EE03292E/cit43/1) 2020; 31
McKerracher (D1EE03292E/cit244/1) 2021; 2
Li (D1EE03292E/cit20/1) 2021; 27
Wang (D1EE03292E/cit192/1) 2019; 4
D1EE03292E/cit1/1
Kohlmeyer (D1EE03292E/cit134/1) 2019; 64
Zheng (D1EE03292E/cit143/1) 2021; 38
Dunn (D1EE03292E/cit3/1) 2011; 334
Chen (D1EE03292E/cit147/1) 2014; 2
Fan (D1EE03292E/cit235/1) 2019; 4
Luo (D1EE03292E/cit79/1) 2014; 4
Crabtree (D1EE03292E/cit5/1) 2019; 366
Liu (D1EE03292E/cit138/1) 2021; 43
Ge (D1EE03292E/cit141/1) 2020; 6
Manthiram (D1EE03292E/cit64/1) 2020; 11
Cai (D1EE03292E/cit124/1) 2020; 56
Tan (D1EE03292E/cit102/1) 2021; 36
Magasinski (D1EE03292E/cit84/1) 2010; 9
Rodrigues (D1EE03292E/cit45/1) 2017; 2
Love (D1EE03292E/cit29/1) 2015; 4
Bi (D1EE03292E/cit71/1) 2018; 389
Zhang (D1EE03292E/cit78/1) 2012; 83
Yu (D1EE03292E/cit208/1) 2020; 51
Akolkar (D1EE03292E/cit27/1) 2014; 246
Sides (D1EE03292E/cit85/1) 2005; 17
Li (D1EE03292E/cit216/1) 2020; 12
Choi (D1EE03292E/cit253/1) 2016; 1
Lu (D1EE03292E/cit89/1) 2018; 1
Huang (D1EE03292E/cit239/1) 2020; 5
Fan (D1EE03292E/cit122/1) 2018; 8
Zhang (D1EE03292E/cit148/1) 2006; 8
Wang (D1EE03292E/cit204/1) 2021; 31
Tron (D1EE03292E/cit59/1) 2019; 7
Yang (D1EE03292E/cit154/1) 2017; 1
Cano (D1EE03292E/cit256/1) 2018; 3
Kong (D1EE03292E/cit164/1) 2016; 163
Deng (D1EE03292E/cit206/1) 2018; 12
Pohjalainen (D1EE03292E/cit95/1) 2015; 119
Wu (D1EE03292E/cit136/1) 2020; 2
Li (D1EE03292E/cit233/1) 2015; 6
Zhang (D1EE03292E/cit72/1) 2019; 141
Yan (D1EE03292E/cit209/1) 2021; 80
Masquelier (D1EE03292E/cit76/1) 2013; 113
Kwak (D1EE03292E/cit219/1) 2020; 120
Cai (D1EE03292E/cit82/1) 2021; 121
Bruce (D1EE03292E/cit9/1) 2011; 11
Huang (D1EE03292E/cit55/1) 2019; 3
Lee (D1EE03292E/cit175/1) 2004; 128
Yang (D1EE03292E/cit236/1) 2020; 13
References_xml – volume: 112
  start-page: 614
  year: 2002
  ident: D1EE03292E/cit137/1
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00473-1
– year: 2022
  ident: D1EE03292E/cit24/1
  publication-title: Adv. Powder Mater.
  doi: 10.1016/j.apmate.2021.10.002
– volume: 249
  start-page: 119403
  year: 2020
  ident: D1EE03292E/cit251/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.119403
– volume: 8
  start-page: 2002590
  year: 2020
  ident: D1EE03292E/cit16/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002590
– start-page: nwab177
  year: 2021
  ident: D1EE03292E/cit57/1
  publication-title: Natl. Sci. Rev.
– volume: 13
  start-page: 1205
  year: 2020
  ident: D1EE03292E/cit131/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE04039K
– volume: 117
  start-page: 10403
  year: 2017
  ident: D1EE03292E/cit88/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 2
  start-page: 2047
  year: 2018
  ident: D1EE03292E/cit22/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.015
– volume: 38
  start-page: 599
  year: 2021
  ident: D1EE03292E/cit143/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.04.002
– volume: 11
  start-page: 21496
  year: 2019
  ident: D1EE03292E/cit228/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03821
– volume: 334
  start-page: 928
  year: 2011
  ident: D1EE03292E/cit3/1
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 8
  start-page: 1800802
  year: 2018
  ident: D1EE03292E/cit54/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800802
– volume: 1
  start-page: 16013
  year: 2016
  ident: D1EE03292E/cit253/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.13
– volume: 1
  start-page: 13
  year: 2021
  ident: D1EE03292E/cit162/1
  publication-title: eScience
  doi: 10.1016/j.esci.2021.10.003
– volume: 49
  start-page: 3806
  year: 2020
  ident: D1EE03292E/cit23/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00728H
– volume: 36
  start-page: 242
  year: 2021
  ident: D1EE03292E/cit102/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.12.033
– volume: 5
  start-page: 534
  year: 2020
  ident: D1EE03292E/cit116/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0640-7
– volume: 50
  start-page: 248
  year: 2020
  ident: D1EE03292E/cit217/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.041
– volume: 2
  start-page: 2000059
  year: 2021
  ident: D1EE03292E/cit244/1
  publication-title: Adv. Energy Sustainability Res.
  doi: 10.1002/aesr.202000059
– ident: D1EE03292E/cit1/1
– volume: 529
  start-page: 515
  year: 2016
  ident: D1EE03292E/cit13/1
  publication-title: Nature
  doi: 10.1038/nature16502
– volume: 2
  start-page: 2100119
  year: 2021
  ident: D1EE03292E/cit58/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202100119
– volume: 1
  start-page: 60
  year: 2021
  ident: D1EE03292E/cit105/1
  publication-title: eScience
  doi: 10.1016/j.esci.2021.08.002
– volume: 9
  start-page: 4509
  year: 2018
  ident: D1EE03292E/cit231/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06877-9
– volume: 165
  start-page: A3304
  year: 2018
  ident: D1EE03292E/cit161/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0511814jes
– volume: 5
  start-page: 1438
  year: 2020
  ident: D1EE03292E/cit112/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00643
– volume: 2
  start-page: 5
  year: 2020
  ident: D1EE03292E/cit136/1
  publication-title: SmartMat
  doi: 10.1002/smm2.1015
– volume: 9
  start-page: 9307
  year: 2021
  ident: D1EE03292E/cit193/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00895A
– volume: 2
  start-page: 1378
  year: 2017
  ident: D1EE03292E/cit220/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00292
– volume: 14
  start-page: 3510
  year: 2021
  ident: D1EE03292E/cit234/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00049G
– volume: 6
  start-page: 176
  year: 2021
  ident: D1EE03292E/cit242/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00757-7
– volume: 10
  start-page: 2001235
  year: 2020
  ident: D1EE03292E/cit14/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001235
– volume: 80
  start-page: 105510
  year: 2021
  ident: D1EE03292E/cit209/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105510
– volume: 1
  start-page: 35
  year: 2018
  ident: D1EE03292E/cit89/1
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-018-0001-4
– volume: 232
  start-page: 23
  year: 2013
  ident: D1EE03292E/cit28/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.01.014
– volume: 163
  start-page: 1697
  year: 2016
  ident: D1EE03292E/cit164/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1041608jes
– volume: 21
  start-page: 457
  year: 2019
  ident: D1EE03292E/cit224/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.020
– volume: 11
  start-page: 2101775
  year: 2021
  ident: D1EE03292E/cit248/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101775
– volume: 354
  start-page: 136652
  year: 2020
  ident: D1EE03292E/cit100/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.136652
– volume: 31
  start-page: 195
  year: 2020
  ident: D1EE03292E/cit43/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.06.042
– volume: 13
  start-page: 1603045
  year: 2017
  ident: D1EE03292E/cit101/1
  publication-title: Small
  doi: 10.1002/smll.201603045
– volume: 2
  start-page: 902
  year: 2018
  ident: D1EE03292E/cit106/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.01.017
– volume: 387
  start-page: 138461
  year: 2021
  ident: D1EE03292E/cit180/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138461
– volume: 1
  start-page: 16132
  year: 2016
  ident: D1EE03292E/cit117/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.132
– volume: 31
  start-page: 2101180
  year: 2021
  ident: D1EE03292E/cit204/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101180
– volume: 32
  start-page: 2004898
  year: 2020
  ident: D1EE03292E/cit229/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004898
– volume: 2
  start-page: 516
  year: 2011
  ident: D1EE03292E/cit227/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1527
– volume: 3
  start-page: 1155
  year: 2013
  ident: D1EE03292E/cit77/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300159
– volume: 13
  start-page: 2734
  year: 2021
  ident: D1EE03292E/cit214/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c19909
– volume: 60
  start-page: 13007
  year: 2021
  ident: D1EE03292E/cit94/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202102593
– volume: 49
  start-page: 2701
  year: 2020
  ident: D1EE03292E/cit108/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00883G
– volume: 7
  start-page: 2000196
  year: 2020
  ident: D1EE03292E/cit86/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000196
– volume: 277
  start-page: 139
  year: 2015
  ident: D1EE03292E/cit67/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.11.149
– volume: 3
  start-page: 1623
  year: 2013
  ident: D1EE03292E/cit170/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300510
– volume: 150
  start-page: 111437
  year: 2021
  ident: D1EE03292E/cit243/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2021.111437
– volume: 1
  start-page: 122
  year: 2017
  ident: D1EE03292E/cit154/1
  publication-title: Joule
  doi: 10.1016/j.joule.2017.08.009
– volume: 4
  start-page: 24
  year: 2015
  ident: D1EE03292E/cit29/1
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.0041502eel
– volume: 108
  start-page: 8
  year: 2002
  ident: D1EE03292E/cit172/1
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)01013-8
– volume: 365
  start-page: 137344
  year: 2021
  ident: D1EE03292E/cit210/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137344
– volume: 14
  start-page: 1703454
  year: 2018
  ident: D1EE03292E/cit223/1
  publication-title: Small
  doi: 10.1002/smll.201703454
– volume: 114
  start-page: 11503
  year: 2014
  ident: D1EE03292E/cit31/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr500003w
– volume: 2
  start-page: 17012
  year: 2017
  ident: D1EE03292E/cit198/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.12
– volume: 141
  start-page: 14038
  year: 2019
  ident: D1EE03292E/cit72/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05531
– volume: 5
  start-page: 1500274
  year: 2015
  ident: D1EE03292E/cit168/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500274
– volume: 3
  start-page: 911
  year: 2019
  ident: D1EE03292E/cit260/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.028
– volume: 9
  start-page: 4109
  year: 2009
  ident: D1EE03292E/cit169/1
  publication-title: Nano Lett.
  doi: 10.1021/nl902315u
– volume: 83
  start-page: 341
  year: 2012
  ident: D1EE03292E/cit78/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.07.128
– volume: 33
  start-page: 2008088
  year: 2021
  ident: D1EE03292E/cit189/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008088
– volume: 32
  start-page: 320
  year: 2020
  ident: D1EE03292E/cit118/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.06.043
– volume: 10
  start-page: 2001972
  year: 2020
  ident: D1EE03292E/cit15/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001972
– volume: 10
  start-page: 1904152
  year: 2020
  ident: D1EE03292E/cit38/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201904152
– volume: 3
  start-page: 1800272
  year: 2019
  ident: D1EE03292E/cit55/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800272
– volume: 35
  start-page: 76
  year: 2013
  ident: D1EE03292E/cit144/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.08.009
– volume: 32
  start-page: e2000952
  year: 2020
  ident: D1EE03292E/cit203/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000952
– volume: 12
  start-page: 22971
  year: 2020
  ident: D1EE03292E/cit216/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04842
– volume: 11
  start-page: 19
  year: 2011
  ident: D1EE03292E/cit9/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 30
  start-page: 1801751
  year: 2018
  ident: D1EE03292E/cit167/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801751
– volume: 2
  start-page: 815
  year: 2018
  ident: D1EE03292E/cit129/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.019
– volume: 361
  start-page: 777
  year: 2018
  ident: D1EE03292E/cit222/1
  publication-title: Science
  doi: 10.1126/science.aas9343
– volume: 8
  start-page: 1802322
  year: 2018
  ident: D1EE03292E/cit153/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802322
– volume: 56
  start-page: 9114
  year: 2020
  ident: D1EE03292E/cit124/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03798B
– volume: 246
  start-page: 84
  year: 2014
  ident: D1EE03292E/cit27/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.07.056
– volume: 366
  start-page: 422
  year: 2019
  ident: D1EE03292E/cit5/1
  publication-title: Science
  doi: 10.1126/science.aax0704
– volume: 32
  start-page: 973
  year: 2020
  ident: D1EE03292E/cit34/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.09.007
– volume: 135
  start-page: 1167
  year: 2013
  ident: D1EE03292E/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 1
  start-page: 16071
  year: 2016
  ident: D1EE03292E/cit107/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.71
– volume: 19
  start-page: 8664
  year: 2019
  ident: D1EE03292E/cit115/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b03330
– volume: 195
  start-page: 7090
  year: 2010
  ident: D1EE03292E/cit91/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.05.001
– volume: 6
  start-page: 7436
  year: 2015
  ident: D1EE03292E/cit233/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8436
– volume: 4
  start-page: 882
  year: 2019
  ident: D1EE03292E/cit235/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0474-3
– volume: 18
  start-page: 17810
  year: 2016
  ident: D1EE03292E/cit39/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP02816K
– volume: 41
  start-page: 703
  year: 2021
  ident: D1EE03292E/cit225/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.06.040
– volume: 49
  start-page: 1569
  year: 2020
  ident: D1EE03292E/cit119/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00863E
– volume: 43
  start-page: 53
  year: 2021
  ident: D1EE03292E/cit237/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.08.028
– volume: 2
  start-page: 17108
  year: 2017
  ident: D1EE03292E/cit45/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.108
– volume: 5
  start-page: 26
  year: 2020
  ident: D1EE03292E/cit252/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0513-0
– volume: 12
  start-page: 3395
  year: 2021
  ident: D1EE03292E/cit62/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23603-0
– volume: 2
  start-page: 2525
  year: 2017
  ident: D1EE03292E/cit132/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00845
– volume: 55
  start-page: 9785
  year: 2019
  ident: D1EE03292E/cit149/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03246K
– volume: 4
  start-page: 2786
  year: 2018
  ident: D1EE03292E/cit11/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.09.005
– volume: 3
  start-page: 3002
  year: 2019
  ident: D1EE03292E/cit257/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.09.021
– volume: 104
  start-page: 4271
  year: 2004
  ident: D1EE03292E/cit70/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr020731c
– volume: 56
  start-page: 16606
  year: 2017
  ident: D1EE03292E/cit92/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710555
– volume: 6
  start-page: 4098
  year: 2020
  ident: D1EE03292E/cit8/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4098
– volume: 851
  start-page: 156859
  year: 2021
  ident: D1EE03292E/cit121/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.156859
– volume: 28
  start-page: 1704195
  year: 2018
  ident: D1EE03292E/cit140/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704195
– volume: 3
  start-page: 4938
  year: 2015
  ident: D1EE03292E/cit178/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05660D
– volume: 10
  start-page: 1902023
  year: 2019
  ident: D1EE03292E/cit44/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902023
– volume: 4
  start-page: 664
  year: 2019
  ident: D1EE03292E/cit192/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0413-3
– volume: 3
  start-page: 899
  year: 2018
  ident: D1EE03292E/cit240/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0243-8
– volume: 9
  start-page: 353
  year: 2010
  ident: D1EE03292E/cit84/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2725
– volume: 11
  start-page: 942
  year: 2012
  ident: D1EE03292E/cit166/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3435
– volume: 3
  start-page: 279
  year: 2018
  ident: D1EE03292E/cit256/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0108-1
– volume: 14
  start-page: 3323
  year: 2021
  ident: D1EE03292E/cit36/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00271F
– volume: 54
  start-page: 7354
  year: 2015
  ident: D1EE03292E/cit181/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503072
– volume: 163
  start-page: 2407
  year: 2016
  ident: D1EE03292E/cit99/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1291610jes
– volume: 11
  start-page: 2100935
  year: 2021
  ident: D1EE03292E/cit113/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100935
– volume: 8
  start-page: 1423
  year: 2006
  ident: D1EE03292E/cit148/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.06.016
– volume: 59
  start-page: 6406
  year: 2020
  ident: D1EE03292E/cit81/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201914972
– volume: 27
  start-page: 15842
  year: 2021
  ident: D1EE03292E/cit20/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202101407
– start-page: 8638
  year: 2020
  ident: D1EE03292E/cit19/1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2020.09.50
– volume: 120
  start-page: 6783
  year: 2020
  ident: D1EE03292E/cit46/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00531
– volume: 9
  start-page: 1955
  year: 2016
  ident: D1EE03292E/cit47/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00123H
– volume: 5
  start-page: 674
  year: 2020
  ident: D1EE03292E/cit239/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0665-y
– volume: 111
  start-page: 3577
  year: 2011
  ident: D1EE03292E/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr100290v
– volume: 94
  start-page: 160
  year: 2000
  ident: D1EE03292E/cit48/1
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(00)00578-4
– volume: 6
  start-page: 303
  year: 2021
  ident: D1EE03292E/cit125/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00783-z
– volume: 11
  start-page: 1197
  year: 2018
  ident: D1EE03292E/cit199/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03365F
– volume: 137
  start-page: 356
  year: 2018
  ident: D1EE03292E/cit254/1
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.03.099
– volume: 120
  start-page: 6626
  year: 2020
  ident: D1EE03292E/cit219/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00609
– volume: 414
  start-page: 359
  year: 2001
  ident: D1EE03292E/cit4/1
  publication-title: Nature
  doi: 10.1038/35104644
– volume: 15
  start-page: 12041
  year: 2020
  ident: D1EE03292E/cit74/1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2020.12.71
– volume: 49
  start-page: 335
  year: 2020
  ident: D1EE03292E/cit174/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.02.052
– volume: 58
  start-page: 791
  year: 2019
  ident: D1EE03292E/cit207/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811291
– volume: 23
  start-page: 646
  year: 2019
  ident: D1EE03292E/cit146/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.03.005
– volume: 7
  start-page: 12
  year: 2019
  ident: D1EE03292E/cit258/1
  publication-title: IEEE Electrif. Mag.
  doi: 10.1109/MELE.2018.2889545
– volume: 4
  start-page: eaas9820
  year: 2018
  ident: D1EE03292E/cit17/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aas9820
– volume: 6
  start-page: eaay7633
  year: 2020
  ident: D1EE03292E/cit141/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay7633
– volume: 2
  start-page: 1245
  year: 2020
  ident: D1EE03292E/cit50/1
  publication-title: CCS Chem.
– volume: 4
  start-page: 180
  year: 2019
  ident: D1EE03292E/cit114/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0338-x
– volume: 12
  start-page: 42781
  year: 2020
  ident: D1EE03292E/cit179/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11068
– volume: 160
  start-page: 347
  year: 2015
  ident: D1EE03292E/cit142/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.02.004
– volume: 477
  start-page: 228680
  year: 2020
  ident: D1EE03292E/cit187/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228680
– volume: 44
  start-page: 5926
  year: 2015
  ident: D1EE03292E/cit32/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00442F
– volume: 351
  start-page: 1253292
  year: 2016
  ident: D1EE03292E/cit12/1
  publication-title: Science
  doi: 10.1126/science.1253292
– volume: 43
  start-page: 132
  year: 2021
  ident: D1EE03292E/cit138/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.10.028
– volume: 6
  start-page: 6601
  year: 2015
  ident: D1EE03292E/cit152/1
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC01518A
– volume: 51
  start-page: 536
  year: 2005
  ident: D1EE03292E/cit90/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2005.05.012
– volume: 11
  start-page: 2003456
  year: 2020
  ident: D1EE03292E/cit135/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003456
– volume: 1
  start-page: 196
  year: 2018
  ident: D1EE03292E/cit127/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12021
– volume: 8
  start-page: 2030
  year: 2016
  ident: D1EE03292E/cit96/1
  publication-title: Nanoscale
  doi: 10.1039/C5NR08399K
– volume: 196
  start-page: 2109
  year: 2011
  ident: D1EE03292E/cit75/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.10.063
– volume: 138
  start-page: 2656
  year: 2016
  ident: D1EE03292E/cit221/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11744
– volume: 1
  start-page: 44
  year: 2021
  ident: D1EE03292E/cit205/1
  publication-title: eScience
  doi: 10.1016/j.esci.2021.08.001
– volume: 389
  start-page: 240
  year: 2018
  ident: D1EE03292E/cit71/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.071
– volume: 6
  start-page: 14339
  year: 2018
  ident: D1EE03292E/cit97/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03172J
– volume: 9
  start-page: 1802946
  year: 2018
  ident: D1EE03292E/cit69/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802946
– volume: 15
  start-page: 4594
  year: 2021
  ident: D1EE03292E/cit182/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08808
– volume: 10
  start-page: 2000907
  year: 2020
  ident: D1EE03292E/cit26/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000907
– volume: 4
  start-page: 187
  year: 2019
  ident: D1EE03292E/cit202/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0312-z
– volume: 58
  start-page: 7020
  year: 2019
  ident: D1EE03292E/cit103/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902185
– volume: 39
  start-page: 3115
  year: 2010
  ident: D1EE03292E/cit98/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b919877f
– volume: 54
  start-page: 632
  year: 2021
  ident: D1EE03292E/cit218/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00772
– volume: 150
  start-page: 304
  year: 2017
  ident: D1EE03292E/cit246/1
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.08.016
– volume: 8
  start-page: 1212
  year: 2020
  ident: D1EE03292E/cit215/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12137D
– volume: 45
  start-page: 5848
  year: 2016
  ident: D1EE03292E/cit42/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00012F
– volume: 6
  start-page: 323
  year: 2021
  ident: D1EE03292E/cit6/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-00764-8
– volume: 31
  start-page: 99
  year: 2001
  ident: D1EE03292E/cit66/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1004113825283
– volume: 582
  start-page: 485
  year: 2020
  ident: D1EE03292E/cit245/1
  publication-title: Nature
  doi: 10.1038/d41586-020-01813-8
– volume: 58
  start-page: 5623
  year: 2019
  ident: D1EE03292E/cit49/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201900266
– volume: 6
  start-page: 1600218
  year: 2016
  ident: D1EE03292E/cit195/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600218
– volume: 4
  start-page: 1621
  year: 2011
  ident: D1EE03292E/cit73/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00559b
– volume: 8
  start-page: 1802624
  year: 2018
  ident: D1EE03292E/cit33/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802624
– volume: 32
  start-page: 2002168
  year: 2020
  ident: D1EE03292E/cit80/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002168
– volume: 13
  start-page: 2209
  year: 2020
  ident: D1EE03292E/cit236/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01446J
– volume: 4
  start-page: 917
  year: 2017
  ident: D1EE03292E/cit184/1
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx037
– volume: 110
  start-page: 7708
  year: 2006
  ident: D1EE03292E/cit191/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0601522
– volume: 5
  start-page: 787
  year: 2020
  ident: D1EE03292E/cit151/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0218-9
– volume: 47
  start-page: 2921
  year: 2018
  ident: D1EE03292E/cit128/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00009C
– volume: 369
  start-page: 140
  year: 2020
  ident: D1EE03292E/cit157/1
  publication-title: Science
  doi: 10.1126/science.abc5454
– volume: 396
  start-page: 542
  year: 2018
  ident: D1EE03292E/cit212/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.06.040
– volume: 11
  start-page: 2003905
  year: 2021
  ident: D1EE03292E/cit53/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003905
– volume: 48
  start-page: 241
  year: 2002
  ident: D1EE03292E/cit87/1
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00620-5
– volume: 300
  start-page: 29
  year: 2015
  ident: D1EE03292E/cit35/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.056
– volume: 66
  start-page: 104175
  year: 2019
  ident: D1EE03292E/cit226/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104175
– volume: 3
  start-page: 1028
  year: 2021
  ident: D1EE03292E/cit56/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12223
– volume: 31
  start-page: 2101420
  year: 2021
  ident: D1EE03292E/cit183/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101420
– volume: 64
  start-page: 496
  year: 2022
  ident: D1EE03292E/cit120/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.05.018
– volume: 3
  start-page: 4092
  year: 2015
  ident: D1EE03292E/cit158/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06264G
– volume: 120
  start-page: 6558
  year: 2020
  ident: D1EE03292E/cit130/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00545
– volume: 166
  start-page: 3342
  year: 2019
  ident: D1EE03292E/cit145/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0661914jes
– volume: 5
  start-page: 2411
  year: 2020
  ident: D1EE03292E/cit111/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01209
– volume: 8
  start-page: 1703638
  year: 2018
  ident: D1EE03292E/cit122/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703638
– volume: 219
  start-page: 36
  year: 2012
  ident: D1EE03292E/cit173/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.05.018
– volume: 299
  start-page: 557
  year: 2015
  ident: D1EE03292E/cit37/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.001
– volume: 15
  start-page: 13847
  year: 2021
  ident: D1EE03292E/cit126/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05875
– volume: 50
  start-page: 3178
  year: 2021
  ident: D1EE03292E/cit109/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01017K
– volume: 157
  start-page: A1383
  year: 2010
  ident: D1EE03292E/cit30/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3507259
– volume: 384
  start-page: 107
  year: 2018
  ident: D1EE03292E/cit159/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.063
– volume: 195
  start-page: 117088
  year: 2021
  ident: D1EE03292E/cit249/1
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117088
– volume: 31
  start-page: 2009397
  year: 2021
  ident: D1EE03292E/cit93/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009397
– volume: 7
  start-page: 14531
  year: 2019
  ident: D1EE03292E/cit59/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b02042
– volume: 298
  start-page: 709
  year: 2019
  ident: D1EE03292E/cit155/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.161
– volume: 10
  start-page: 2002027
  year: 2020
  ident: D1EE03292E/cit163/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002027
– volume: 11
  start-page: 2003559
  year: 2021
  ident: D1EE03292E/cit200/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003559
– volume: 161
  start-page: A1915
  year: 2014
  ident: D1EE03292E/cit160/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0861412jes
– volume: 7
  start-page: 1700715
  year: 2017
  ident: D1EE03292E/cit41/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700715
– volume: 113
  start-page: 6552
  year: 2013
  ident: D1EE03292E/cit76/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr3001862
– volume: 7
  start-page: 13364
  year: 2019
  ident: D1EE03292E/cit171/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02718A
– volume: 56
  start-page: 9640
  year: 2020
  ident: D1EE03292E/cit52/1
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC04049E
– volume: 119
  start-page: 2277
  year: 2015
  ident: D1EE03292E/cit95/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp509428c
– volume: 2
  start-page: 2208
  year: 2018
  ident: D1EE03292E/cit259/1
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.008
– volume: 3
  start-page: 267
  year: 2018
  ident: D1EE03292E/cit7/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0107-2
– volume: 39
  start-page: 139
  year: 2021
  ident: D1EE03292E/cit238/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.04.024
– volume: 158
  start-page: 1419
  year: 2006
  ident: D1EE03292E/cit65/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.10.076
– volume: 411
  start-page: 128540
  year: 2021
  ident: D1EE03292E/cit213/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128540
– volume: 214
  start-page: 166
  year: 2012
  ident: D1EE03292E/cit197/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.04.073
– volume: 356
  start-page: 1351
  year: 2017
  ident: D1EE03292E/cit60/1
  publication-title: Science
  doi: 10.1126/science.aal4263
– volume: 14
  start-page: 14549
  year: 2020
  ident: D1EE03292E/cit139/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07907
– volume: 2
  start-page: 2346
  year: 2014
  ident: D1EE03292E/cit147/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13043f
– volume: 124
  start-page: 106948
  year: 2021
  ident: D1EE03292E/cit188/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2021.106948
– volume: 10
  start-page: 1903441
  year: 2019
  ident: D1EE03292E/cit194/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903441
– volume: 32
  start-page: 46
  year: 2020
  ident: D1EE03292E/cit232/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.07.034
– volume: 31
  start-page: 2102347
  year: 2021
  ident: D1EE03292E/cit247/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102347
– volume: 31
  start-page: 2107136
  year: 2021
  ident: D1EE03292E/cit21/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107136
– volume: 4
  start-page: 1400107
  year: 2014
  ident: D1EE03292E/cit79/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400107
– volume: 4
  start-page: 812
  year: 2020
  ident: D1EE03292E/cit201/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.012
– volume: 11
  start-page: 1550
  year: 2020
  ident: D1EE03292E/cit64/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15355-0
– volume: 9
  start-page: 8641
  year: 2017
  ident: D1EE03292E/cit68/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13995
– volume: 120
  start-page: 13312
  year: 2020
  ident: D1EE03292E/cit190/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00275
– volume: 5
  start-page: 3498
  year: 2020
  ident: D1EE03292E/cit63/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01889
– volume: 15
  start-page: 1901689
  year: 2019
  ident: D1EE03292E/cit18/1
  publication-title: Small
  doi: 10.1002/smll.201901689
– volume: 46
  start-page: 3006
  year: 2017
  ident: D1EE03292E/cit156/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00875E
– volume: 41
  start-page: 143
  year: 2020
  ident: D1EE03292E/cit186/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.07.015
– volume: 57
  start-page: 3158
  year: 2018
  ident: D1EE03292E/cit104/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201713423
– volume: 10
  start-page: 2000368
  year: 2020
  ident: D1EE03292E/cit230/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000368
– volume: 64
  start-page: 103927
  year: 2019
  ident: D1EE03292E/cit134/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103927
– volume: 31
  start-page: 2005991
  year: 2020
  ident: D1EE03292E/cit123/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005991
– volume: 3
  start-page: 18013
  year: 2018
  ident: D1EE03292E/cit261/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.13
– volume: 453
  start-page: 227911
  year: 2020
  ident: D1EE03292E/cit196/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227911
– volume: 222
  start-page: 448
  year: 2013
  ident: D1EE03292E/cit177/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.09.020
– volume: 60
  start-page: 15572
  year: 2021
  ident: D1EE03292E/cit150/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104124
– volume: 54
  start-page: 3883
  year: 2021
  ident: D1EE03292E/cit25/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.1c00420
– volume: 33
  start-page: 2005937
  year: 2021
  ident: D1EE03292E/cit40/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005937
– volume: 12
  start-page: 2145
  year: 2021
  ident: D1EE03292E/cit165/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22403-w
– volume: 1
  start-page: 3
  year: 2021
  ident: D1EE03292E/cit110/1
  publication-title: eScience
  doi: 10.1016/j.esci.2021.10.002
– volume: 30
  start-page: 2001619
  year: 2020
  ident: D1EE03292E/cit133/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001619
– volume: 9
  start-page: 42761
  year: 2017
  ident: D1EE03292E/cit51/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13887
– volume: 3
  start-page: 1986
  year: 2019
  ident: D1EE03292E/cit61/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.008
– volume: 115
  start-page: 7266
  year: 2018
  ident: D1EE03292E/cit241/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1807115115
– volume: 12
  start-page: 11120
  year: 2018
  ident: D1EE03292E/cit206/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05534
– volume: 6
  start-page: 2351
  year: 2021
  ident: D1EE03292E/cit250/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00743
– volume: 227
  start-page: 324
  year: 2018
  ident: D1EE03292E/cit255/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.074
– volume: 17
  start-page: 125
  year: 2005
  ident: D1EE03292E/cit85/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400517
– volume: 121
  start-page: 12278
  year: 2021
  ident: D1EE03292E/cit82/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00243
– volume: 23
  start-page: 959
  year: 2013
  ident: D1EE03292E/cit176/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200698
– volume: 6
  start-page: 2497
  year: 2013
  ident: D1EE03292E/cit83/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41638k
– volume: 128
  start-page: 61
  year: 2004
  ident: D1EE03292E/cit175/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.09.051
– volume: 64
  start-page: 1131
  year: 2021
  ident: D1EE03292E/cit185/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1011-9
– volume: 8
  start-page: 14788
  year: 2020
  ident: D1EE03292E/cit211/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00439A
– volume: 51
  start-page: 154
  year: 2020
  ident: D1EE03292E/cit208/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.03.034
SSID ssj0062079
Score 2.7124317
SecondaryResourceType review_article
Snippet Rechargeable lithium batteries (RLBs), including lithium-ion and lithium-metal systems, have recently received considerable attention for electrochemical...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1711
SubjectTerms Batteries
Electrochemistry
Electrode materials
Electrodes
Electrolytes
Energy storage
Expeditions
Harsh environments
High altitude
High temperature
Lithium
Lithium batteries
Lithium ions
Rechargeable batteries
Temperature tolerance
Underwater exploration
Title Challenges and advances in wide-temperature rechargeable lithium batteries
URI https://www.proquest.com/docview/2665526941
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gIHxKtiaUGW4IKqFNvxoz6WsrAqKqdWlFNkJ067Ek1Ruyskfj1jx47Tx6FwiRLLjnY9X-Zhe75B6J1TRDPa-DKpqi24c6SwjZVFzcD4MyVEQ3y-8-E3OT_mByfiJO_ohuySpd2p_9yZV_I_UoU2kKvPkv0HyQ4vhQa4B_nCFSQM13vJeD9VQumJluN-fjjh-nvRuMLzTkXS5G3QbJ4UyYVUKfC9zxar820b2DXTOcK0QN-nA3pMjNLgUvJkRgJMRdATP0y0fmH9-WLVh_rniwF2h8FBna-yBQh9oG93ehbRGRceIGb1nKVjXakEL4TsS9ntuFGbIvKaghUjIImRtqQqKloXH3ty8FtanZSeFPUTnc1IyTSbZduV9utvmLThoGHYYi91lceuoXUGEQWboPW9rx-_fE9mWzISiBmHf5W4bEv9IY--7r3kkGTtMtWLCX7J0RP0OAYUeK9Hx1P0wHXP0KMRzeRzdJBxggEnOOEELzp8Eyd4jBMccYIHnLxAx59nR_vzItbQgK9tly6LmlpZm1YJY2tiiCa8tNK2SjlKWk21thSC0lZKA556yxW4q8zW3LXCgPPWtuUGmnQXnXuJcFkLbWVJLBGWW02too46R6UxXJtdPkXv09xUdSSY93VOfla3pTBFb4e-v3palTt7baUpruJnd1WBRylEyL-eog2Y9mF8Az8mjHOv7vX2TfQww3oLTZaXK_caPMylfROx8RdsonmJ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+advances+in+wide-temperature+rechargeable+lithium+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Feng%2C+Yang&rft.au=Zhou%2C+Limin&rft.au=Ma%2C+Hua&rft.au=Wu%2C+Zhonghan&rft.date=2022-05-18&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=5&rft.spage=1711&rft.epage=1759&rft_id=info:doi/10.1039%2FD1EE03292E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1EE03292E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon