Sustainable and rapidly degradable poly(butylene carbonate--cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties

Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic rin...

Full description

Saved in:
Bibliographic Details
Published inPolymer chemistry Vol. 1; no. 14; pp. 1812 - 1822
Main Authors Hu, Han, Zhang, Ruoyu, Ying, Wu Bin, Shi, Lei, Yao, Chenkai, Kong, Zhengyang, Wang, Kai, Wang, Jinggang, Zhu, Jin
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a t 1/2 of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate- co -terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering. Sustainable and fast biodegradable PBCCEs copolyesters have potential applications in green packaging and tissue engineering.
AbstractList Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a t1/2 of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate-co-terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering.
Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a t 1/2 of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate- co -terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering.
Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a t 1/2 of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate- co -terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering. Sustainable and fast biodegradable PBCCEs copolyesters have potential applications in green packaging and tissue engineering.
Author Zhu, Jin
Zhang, Ruoyu
Wang, Jinggang
Hu, Han
Ying, Wu Bin
Shi, Lei
Wang, Kai
Yao, Chenkai
Kong, Zhengyang
AuthorAffiliation Ningbo Institute of Materials Technology and Engineering
Chinese Academy of Sciences
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
University of Chinese Academy of Sciences
AuthorAffiliation_xml – sequence: 0
  name: Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
– sequence: 0
  name: Ningbo Institute of Materials Technology and Engineering
– sequence: 0
  name: University of Chinese Academy of Sciences
– sequence: 0
  name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Han
  surname: Hu
  fullname: Hu, Han
– sequence: 2
  givenname: Ruoyu
  surname: Zhang
  fullname: Zhang, Ruoyu
– sequence: 3
  givenname: Wu Bin
  surname: Ying
  fullname: Ying, Wu Bin
– sequence: 4
  givenname: Lei
  surname: Shi
  fullname: Shi, Lei
– sequence: 5
  givenname: Chenkai
  surname: Yao
  fullname: Yao, Chenkai
– sequence: 6
  givenname: Zhengyang
  surname: Kong
  fullname: Kong, Zhengyang
– sequence: 7
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
– sequence: 8
  givenname: Jinggang
  surname: Wang
  fullname: Wang, Jinggang
– sequence: 9
  givenname: Jin
  surname: Zhu
  fullname: Zhu, Jin
BookMark eNptkUFLHTEUhYMoaNVN90Kgmyodm0xm5iXu5KFtQVCom66GTHJTI3nJNMmA03_Uf9k4TywUIZBw8p17Es47tOuDB4TeU3JOCROflRhnQghnZgcd0FUrKiG6evf13Db76Dilx8IQRpuadQfoz_cpZWm9HBxg6TWOcrTazVjDzyj1Io_BzR-HKc8OPGAl4xC8zFBValYuPMCT9KDtoj_NrtycXmDrjZvAK8DBYBU2Y0g22-BxWTYnrOJccp2zv-Wz_AlvQD1IX6a45RmDjNFCxGMMI8RsIR2hPSNdguOX_RDdX1_dr79WN7dfvq0vbypVc5qrQbfEtHrQ0BjTqUZSTpXhQjfMrMSKa1LzooJQjIrOFIqbgUmpBKe84ewQfdiOLcm_Jki5fwxT9CWxr-vipV3H2kKRLaViSCmC6ZXNy09ylNb1lPTPlfRrcfdjqeS6WM7-s4zRbmSc34ZPtnBM6pX71y_7C1eIniQ
CitedBy_id crossref_primary_10_1039_D2QM00063F
crossref_primary_10_1021_acsabm_9b00487
crossref_primary_10_1016_j_polymdegradstab_2022_110148
crossref_primary_10_1007_s10924_022_02689_7
crossref_primary_10_1021_acssuschemeng_9b04210
crossref_primary_10_1016_j_eurpolymj_2022_111677
crossref_primary_10_1038_s41428_021_00567_y
crossref_primary_10_1016_j_polymdegradstab_2021_109795
crossref_primary_10_3390_molecules28104056
crossref_primary_10_1007_s13369_024_09811_y
crossref_primary_10_1016_j_polymer_2025_128297
crossref_primary_10_1021_acssuschemeng_3c03394
crossref_primary_10_1021_acs_biomac_3c00691
crossref_primary_10_1002_cssc_202300553
crossref_primary_10_1021_acssuschemeng_3c05515
crossref_primary_10_1039_D0GC01549K
crossref_primary_10_1016_j_scitotenv_2023_165980
crossref_primary_10_1002_pi_5953
crossref_primary_10_1016_j_cej_2020_128363
crossref_primary_10_1039_D1MA00797A
crossref_primary_10_1007_s10965_024_03936_2
crossref_primary_10_1016_j_eurpolymj_2020_109846
crossref_primary_10_1016_j_giant_2024_100276
crossref_primary_10_1002_marc_202000498
crossref_primary_10_2139_ssrn_3986048
crossref_primary_10_1021_acssuschemeng_3c07667
crossref_primary_10_1021_acssuschemeng_0c08274
crossref_primary_10_1021_acssuschemeng_4c09157
Cites_doi 10.1016/j.polymdegradstab.2017.06.018
10.1002/macp.201000065
10.3390/polym10050502
10.1016/j.tca.2017.01.004
10.1039/C8CS00161H
10.1021/ma7028709
10.1007/s10924-011-0317-1
10.1126/sciadv.1700782
10.1021/ma0210877
10.1016/j.msec.2013.08.013
10.1016/j.tifs.2008.07.003
10.1021/ie401781d
10.1016/j.polymdegradstab.2018.09.007
10.1002/macp.201100052
10.1002/pola.23985
10.1002/mabi.200700106
10.1002/pi.3043
10.1002/pat.275
10.1016/j.polymdegradstab.2018.06.017
10.1039/C2CS35268K
10.1021/ma0205966
10.1080/15583720701834240
10.1021/ma400360w
10.1039/C6RA13495E
10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F
10.1002/anie.201801287
10.1016/j.eurpolymj.2018.03.009
10.1002/app.41952
10.3144/expresspolymlett.2015.88
10.1016/j.polymer.2017.10.009
10.3390/polym8010020
10.1016/j.eurpolymj.2016.06.022
10.1016/0141-3910(89)90133-X
10.1002/(SICI)1099-1581(199704)8:4<203::AID-PAT627>3.0.CO;2-3
10.1021/ma301714f
10.1002/app.44674
10.1016/j.polymdegradstab.2015.04.026
10.1021/acssuschemeng.8b00174
10.1016/j.polymer.2007.08.065
10.1039/C4PY00976B
10.1016/j.polymdegradstab.2014.12.013
10.1016/j.polymdegradstab.2014.04.006
10.1002/macp.200800125
10.1039/C6RA16325D
10.1021/ie300547g
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1039/c9py00083f
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-9962
EndPage 1822
ExternalDocumentID 10_1039_C9PY00083F
c9py00083f
GroupedDBID -JG
0-7
0R~
29O
4.4
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADNWM
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
AAYXX
AFRZK
AKMSF
CITATION
7SR
8FD
JG9
M4U
ID FETCH-LOGICAL-c281t-bd50f5dbde4ff6c4a181cf89d43f7978d028c4ae9c3196fe4f8fb3aac9818483
ISSN 1759-9954
IngestDate Mon Jun 30 06:42:21 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Tue Jul 01 02:28:14 EDT 2025
Tue Dec 17 21:00:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-bd50f5dbde4ff6c4a181cf89d43f7978d028c4ae9c3196fe4f8fb3aac9818483
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c9py00083f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3502-8738
PQID 2202816635
PQPubID 2047483
PageCount 11
ParticipantIDs rsc_primary_c9py00083f
crossref_citationtrail_10_1039_C9PY00083F
crossref_primary_10_1039_C9PY00083F
proquest_journals_2202816635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-14
PublicationDateYYYYMMDD 2019-04-14
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-14
  day: 14
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Polymer chemistry
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Soccio (C9PY00083F-(cit25)/*[position()=1]) 2016; 81
Liu (C9PY00083F-(cit35)/*[position()=1]) 2016; 6
Zini (C9PY00083F-(cit32)/*[position()=1]) 2008; 41
Tempelaar (C9PY00083F-(cit8)/*[position()=1]) 2013; 42
Gigli (C9PY00083F-(cit20)/*[position()=1]) 2013; 52
Siracusa (C9PY00083F-(cit38)/*[position()=1]) 2015; 119
Kwiatkowska (C9PY00083F-(cit26)/*[position()=1]) 2017; 130
Siracusa (C9PY00083F-(cit1)/*[position()=1]) 2008; 19
Luinstra (C9PY00083F-(cit7)/*[position()=1]) 2008; 48
Zhang (C9PY00083F-(cit13)/*[position()=1]) 2015; 132
Amass (C9PY00083F-(cit4)/*[position()=1]) 1998; 47
Artham (C9PY00083F-(cit6)/*[position()=1]) 2008; 8
Liu (C9PY00083F-(cit21)/*[position()=1]) 2016; 6
Berti (C9PY00083F-(cit24)/*[position()=1]) 2008; 209
Ye (C9PY00083F-(cit43)/*[position()=1]) 2018; 47
Wang (C9PY00083F-(cit12)/*[position()=1]) 2012; 51
Feng (C9PY00083F-(cit14)/*[position()=1]) 2015; 6
Genovese (C9PY00083F-(cit36)/*[position()=1]) 2015; 9
Peng (C9PY00083F-(cit40)/*[position()=1]) 2016; 134
Liu (C9PY00083F-(cit10)/*[position()=1]) 2015; 112
Berti (C9PY00083F-(cit23)/*[position()=1]) 2010; 211
Hu (C9PY00083F-(cit19)/*[position()=1]) 2018; 57
Bi (C9PY00083F-(cit44)/*[position()=1]) 2018; 155
Celli (C9PY00083F-(cit22)/*[position()=1]) 2011; 212
Gigli (C9PY00083F-(cit17)/*[position()=1]) 2014; 34
Teng (C9PY00083F-(cit30)/*[position()=1]) 2017; 649
Luckachan (C9PY00083F-(cit2)/*[position()=1]) 2011; 19
Focarete (C9PY00083F-(cit33)/*[position()=1]) 2002; 35
Gigli (C9PY00083F-(cit18)/*[position()=1]) 2014; 105
Nogales (C9PY00083F-(cit28)/*[position()=1]) 2003; 36
Mcneill (C9PY00083F-(cit31)/*[position()=1]) 1989; 24
Hoelscher (C9PY00083F-(cit39)/*[position()=1]) 2018; 156
Cai (C9PY00083F-(cit16)/*[position()=1]) 2017; 143
Feng (C9PY00083F-(cit27)/*[position()=1]) 2007; 48
Kamal (C9PY00083F-(cit29)/*[position()=1]) 2012; 45
Geyer (C9PY00083F-(cit5)/*[position()=1]) 2017; 3
Hu (C9PY00083F-(cit15)/*[position()=1]) 2018; 6
Zhu (C9PY00083F-(cit11)/*[position()=1]) 2011; 60
Liu (C9PY00083F-(cit34)/*[position()=1]) 2010; 48
Goldbart (C9PY00083F-(cit42)/*[position()=1]) 2010; 13
Mochizuki (C9PY00083F-(cit45)/*[position()=1]) 2015; 8
Siracusa (C9PY00083F-(cit37)/*[position()=1]) 2018; 10
Manavitehrani (C9PY00083F-(cit3)/*[position()=1]) 2016; 8
Hu (C9PY00083F-(cit41)/*[position()=1]) 2018; 102
Park (C9PY00083F-(cit9)/*[position()=1]) 2013; 46
References_xml – volume: 143
  start-page: 35
  year: 2017
  ident: C9PY00083F-(cit16)/*[position()=1]
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2017.06.018
– volume: 211
  start-page: 1559
  year: 2010
  ident: C9PY00083F-(cit23)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201000065
– volume: 10
  start-page: 502
  year: 2018
  ident: C9PY00083F-(cit37)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym10050502
– volume: 649
  start-page: 22
  year: 2017
  ident: C9PY00083F-(cit30)/*[position()=1]
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2017.01.004
– volume: 47
  start-page: 4545
  year: 2018
  ident: C9PY00083F-(cit43)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00161H
– volume: 41
  start-page: 4681
  year: 2008
  ident: C9PY00083F-(cit32)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma7028709
– volume: 19
  start-page: 637
  year: 2011
  ident: C9PY00083F-(cit2)/*[position()=1]
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-011-0317-1
– volume: 3
  start-page: e1700782
  year: 2017
  ident: C9PY00083F-(cit5)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– volume: 36
  start-page: 4827
  year: 2003
  ident: C9PY00083F-(cit28)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma0210877
– volume: 34
  start-page: 86
  year: 2014
  ident: C9PY00083F-(cit17)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2013.08.013
– volume: 19
  start-page: 634
  year: 2008
  ident: C9PY00083F-(cit1)/*[position()=1]
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2008.07.003
– volume: 52
  start-page: 12876
  year: 2013
  ident: C9PY00083F-(cit20)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie401781d
– volume: 156
  start-page: 211
  year: 2018
  ident: C9PY00083F-(cit39)/*[position()=1]
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2018.09.007
– volume: 212
  start-page: 1524
  year: 2011
  ident: C9PY00083F-(cit22)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201100052
– volume: 48
  start-page: 2162
  year: 2010
  ident: C9PY00083F-(cit34)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.23985
– volume: 8
  start-page: 14
  year: 2008
  ident: C9PY00083F-(cit6)/*[position()=1]
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200700106
– volume: 60
  start-page: 1060
  year: 2011
  ident: C9PY00083F-(cit11)/*[position()=1]
  publication-title: Polym. Int.
  doi: 10.1002/pi.3043
– volume: 13
  start-page: 1006
  year: 2010
  ident: C9PY00083F-(cit42)/*[position()=1]
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.275
– volume: 155
  start-page: 9
  year: 2018
  ident: C9PY00083F-(cit44)/*[position()=1]
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2018.06.017
– volume: 42
  start-page: 1312
  year: 2013
  ident: C9PY00083F-(cit8)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35268K
– volume: 35
  start-page: 8066
  year: 2002
  ident: C9PY00083F-(cit33)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma0205966
– volume: 48
  start-page: 192
  year: 2008
  ident: C9PY00083F-(cit7)/*[position()=1]
  publication-title: Polym. Rev.
  doi: 10.1080/15583720701834240
– volume: 46
  start-page: 3301
  year: 2013
  ident: C9PY00083F-(cit9)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma400360w
– volume: 6
  start-page: 65889
  year: 2016
  ident: C9PY00083F-(cit21)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA13495E
– volume: 47
  start-page: 89
  year: 1998
  ident: C9PY00083F-(cit4)/*[position()=1]
  publication-title: Polym. Int.
  doi: 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F
– volume: 57
  start-page: 6901
  year: 2018
  ident: C9PY00083F-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801287
– volume: 102
  start-page: 101
  year: 2018
  ident: C9PY00083F-(cit41)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.03.009
– volume: 132
  start-page: 41952
  year: 2015
  ident: C9PY00083F-(cit13)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.41952
– volume: 9
  start-page: 972
  year: 2015
  ident: C9PY00083F-(cit36)/*[position()=1]
  publication-title: eXPRESS Polym. Lett.
  doi: 10.3144/expresspolymlett.2015.88
– volume: 130
  start-page: 26
  year: 2017
  ident: C9PY00083F-(cit26)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.10.009
– volume: 8
  start-page: 20
  year: 2016
  ident: C9PY00083F-(cit3)/*[position()=1]
  publication-title: Polymers
  doi: 10.3390/polym8010020
– volume: 81
  start-page: 397
  year: 2016
  ident: C9PY00083F-(cit25)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2016.06.022
– volume: 24
  start-page: 59
  year: 1989
  ident: C9PY00083F-(cit31)/*[position()=1]
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/0141-3910(89)90133-X
– volume: 8
  start-page: 203
  year: 2015
  ident: C9PY00083F-(cit45)/*[position()=1]
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/(SICI)1099-1581(199704)8:4<203::AID-PAT627>3.0.CO;2-3
– volume: 45
  start-page: 8752
  year: 2012
  ident: C9PY00083F-(cit29)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma301714f
– volume: 134
  start-page: 44674
  year: 2016
  ident: C9PY00083F-(cit40)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.44674
– volume: 119
  start-page: 35
  year: 2015
  ident: C9PY00083F-(cit38)/*[position()=1]
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2015.04.026
– volume: 6
  start-page: 7488
  year: 2018
  ident: C9PY00083F-(cit15)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00174
– volume: 48
  start-page: 6867
  year: 2007
  ident: C9PY00083F-(cit27)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.08.065
– volume: 6
  start-page: 633
  year: 2015
  ident: C9PY00083F-(cit14)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY00976B
– volume: 112
  start-page: 70
  year: 2015
  ident: C9PY00083F-(cit10)/*[position()=1]
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2014.12.013
– volume: 105
  start-page: 96
  year: 2014
  ident: C9PY00083F-(cit18)/*[position()=1]
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2014.04.006
– volume: 209
  start-page: 1333
  year: 2008
  ident: C9PY00083F-(cit24)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200800125
– volume: 6
  start-page: 95527
  year: 2016
  ident: C9PY00083F-(cit35)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA16325D
– volume: 51
  start-page: 10785
  year: 2012
  ident: C9PY00083F-(cit12)/*[position()=1]
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300547g
SSID ssj0000314236
Score 2.39828
Snippet Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1812
SubjectTerms Aliphatic compounds
Biodegradability
Crystallization
Glass transition temperature
Lamellar structure
Mechanical properties
Melt temperature
Modulus of elasticity
Oligomers
Plastics industry
Polycarbonate resins
Polymer chemistry
Polymers
Small angle X ray scattering
Terephthalate
Thermal degradation
Thermal stability
Thermodynamic properties
Tissue engineering
Weight loss
Title Sustainable and rapidly degradable poly(butylene carbonate--cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties
URI https://www.proquest.com/docview/2202816635
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFeELeJwkCW4IGpBJpbG_O2TSsTjDFBJ7qnKLZjrVLWVCGRCH-J38H_4hwnjsM0oYFURZVzqZXvq8_F50LIiygFGc0Fd8AWAAMFRLTDvShxkilzeRIKMUnQof_xZHJ0FrxfhIvB4Fcvaqkq-Wvx49q8kv9BFcYAV8yS_Qdku4fCAHwHfOEICMPxRhh_6WU_6TjxZL2UWT2SWAFC6uF1jq2kI16VNcgXDPIqODrMU0fkjqhFll9ghoveroEz3-sMS1l4DD0FS9PAxMSetwFeuMGA-w2iqOH3s6xN5US0LlPMJO4qEPCk0B3x1ujyL0oTsNgqw6cwt0s4K0zTOcsxLREtcTu39ucqr6tOkFSj_eVqdG6kr6402WR7p8u-O8PVOzOudWc2ThMTsaojUvpTaBbpacgcrGPXyLD-2JWVfdxncNBbp1Gv6cl8MLK8a-XJ2MdyrIKta62sKis1TaTAyad4dnZ8HM8PF_MNsuWBtQLL7dbeh_13XztnH_YI8HS7ym7uplSuz97Yx_-pHFmLZ6Mw7Wi02jO_S-609grda8h3jwzS1X1yq3tdD8jPHgkpYE5bElJLQookfGkoSG9Ewd23tKMfzRXt0Y_CB-hHr9DvFbXk0xNpyUct-R6S-exwfnDktB1AHOFFbulwGY5VKLlMA6UmIkgAN6EiJgNfTdk0kqAdw2jKBEoSBVdFivtJIhjooUHkb5PNVb5KHxEaTJSQoA3zFG5Gv0wopIgEWitCuFINya5587Foq-Njk5Ys1lEaPosP2Om5Rmk2JM-7a9dNTZhrr9oxAMbtmvEt9jyYsYta_pBsA6jd_ZYDj_9-3xNy2_5tdshmWVTpU9CLS_6sZd1vwjjGKw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+and+rapidly+degradable+poly%28butylene+carbonate-co-cyclohexanedicarboxylate%29%3A+influence+of+composition+on+its+crystallization%2C+mechanical+and+barrier+properties&rft.jtitle=Polymer+chemistry&rft.au=Hu%2C+Han&rft.au=Zhang%2C+Ruoyu&rft.au=Wu+Bin+Ying&rft.au=Shi%2C+Lei&rft.date=2019-04-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=10&rft.issue=14&rft.spage=1812&rft.epage=1822&rft_id=info:doi/10.1039%2Fc9py00083f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon