Sustainable and rapidly degradable poly(butylene carbonate--cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties
Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic rin...
Saved in:
Published in | Polymer chemistry Vol. 1; no. 14; pp. 1812 - 1822 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a
t
1/2
of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate-
co
-terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering.
Sustainable and fast biodegradable PBCCEs copolyesters have potential applications in green packaging and tissue engineering. |
---|---|
AbstractList | Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a t1/2 of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate-co-terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering. Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a t 1/2 of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate- co -terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering. Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their application. Here, poly(butylene carbonate) (PBC) was modified with 1,4-cyclohexanedicarboxylic acid (CHDA), a biomass-derived aliphatic ring monomer. Thermal degradation of short butylene carbonate segments was effectively avoided by one-step melt polycondensation of the oligomers. All the PBCCEs were random copolymers, and the trans content of CHDA in all cases was no less than 90%; this ensured the crystallizability of the butylene cyclohexanedicarboxylate (BCE) units. The glass transition temperature, melting temperature and thermal stability increased with the number of BCE units. The PBCCEs were semi-crystalline after thermal equilibrium was reached, and PBCCE50 to PBCCE90 contained PBCE crystals while PBCCE20 possessed XRD diffraction peaks similar to those of PBC. Small-angle X-ray scattering suggested that the randomly oriented lamellar structure of the PBCCEs became more ordered as the number of BCE units increased. PBCCE70-PBCE revealed a t 1/2 of less than 30 s, indicating the rapid crystallization rate of the BCE units. The mechanical properties were closely related to the crystallization ability, and PBCCE50 to PBCCE90 showed good elastic moduli (87 to 520 MPa), high tensile strengths (22.8 to 39.5 MPa) and large elongations at break (930% to 413%). The gas barrier properties gradually increased with the number of BCE units, showing results several times higher than those of commercial poly(butylene adipate- co -terephthalate) (PBAT). Moreover, the addition of aliphatic rings slightly weakened the biodegradability, and obvious weight loss could be observed for PBCCE70. This result was higher than those of most aliphatic-aromatic copolyesters, which are degradable when their aromatic diacid content is less than 60%. PBCCE50 displayed a weight loss greater than 90% after 30 days, which is much faster than that of PBC. The results of this study indicate that PBCCE copolyesters exhibit great potential for applications in the plastics industry, such as green packaging and tissue engineering. Sustainable and fast biodegradable PBCCEs copolyesters have potential applications in green packaging and tissue engineering. |
Author | Zhu, Jin Zhang, Ruoyu Wang, Jinggang Hu, Han Ying, Wu Bin Shi, Lei Wang, Kai Yao, Chenkai Kong, Zhengyang |
AuthorAffiliation | Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province University of Chinese Academy of Sciences |
AuthorAffiliation_xml | – sequence: 0 name: Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province – sequence: 0 name: Ningbo Institute of Materials Technology and Engineering – sequence: 0 name: University of Chinese Academy of Sciences – sequence: 0 name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Han surname: Hu fullname: Hu, Han – sequence: 2 givenname: Ruoyu surname: Zhang fullname: Zhang, Ruoyu – sequence: 3 givenname: Wu Bin surname: Ying fullname: Ying, Wu Bin – sequence: 4 givenname: Lei surname: Shi fullname: Shi, Lei – sequence: 5 givenname: Chenkai surname: Yao fullname: Yao, Chenkai – sequence: 6 givenname: Zhengyang surname: Kong fullname: Kong, Zhengyang – sequence: 7 givenname: Kai surname: Wang fullname: Wang, Kai – sequence: 8 givenname: Jinggang surname: Wang fullname: Wang, Jinggang – sequence: 9 givenname: Jin surname: Zhu fullname: Zhu, Jin |
BookMark | eNptkUFLHTEUhYMoaNVN90Kgmyodm0xm5iXu5KFtQVCom66GTHJTI3nJNMmA03_Uf9k4TywUIZBw8p17Es47tOuDB4TeU3JOCROflRhnQghnZgcd0FUrKiG6evf13Db76Dilx8IQRpuadQfoz_cpZWm9HBxg6TWOcrTazVjDzyj1Io_BzR-HKc8OPGAl4xC8zFBValYuPMCT9KDtoj_NrtycXmDrjZvAK8DBYBU2Y0g22-BxWTYnrOJccp2zv-Wz_AlvQD1IX6a45RmDjNFCxGMMI8RsIR2hPSNdguOX_RDdX1_dr79WN7dfvq0vbypVc5qrQbfEtHrQ0BjTqUZSTpXhQjfMrMSKa1LzooJQjIrOFIqbgUmpBKe84ewQfdiOLcm_Jki5fwxT9CWxr-vipV3H2kKRLaViSCmC6ZXNy09ylNb1lPTPlfRrcfdjqeS6WM7-s4zRbmSc34ZPtnBM6pX71y_7C1eIniQ |
CitedBy_id | crossref_primary_10_1039_D2QM00063F crossref_primary_10_1021_acsabm_9b00487 crossref_primary_10_1016_j_polymdegradstab_2022_110148 crossref_primary_10_1007_s10924_022_02689_7 crossref_primary_10_1021_acssuschemeng_9b04210 crossref_primary_10_1016_j_eurpolymj_2022_111677 crossref_primary_10_1038_s41428_021_00567_y crossref_primary_10_1016_j_polymdegradstab_2021_109795 crossref_primary_10_3390_molecules28104056 crossref_primary_10_1007_s13369_024_09811_y crossref_primary_10_1016_j_polymer_2025_128297 crossref_primary_10_1021_acssuschemeng_3c03394 crossref_primary_10_1021_acs_biomac_3c00691 crossref_primary_10_1002_cssc_202300553 crossref_primary_10_1021_acssuschemeng_3c05515 crossref_primary_10_1039_D0GC01549K crossref_primary_10_1016_j_scitotenv_2023_165980 crossref_primary_10_1002_pi_5953 crossref_primary_10_1016_j_cej_2020_128363 crossref_primary_10_1039_D1MA00797A crossref_primary_10_1007_s10965_024_03936_2 crossref_primary_10_1016_j_eurpolymj_2020_109846 crossref_primary_10_1016_j_giant_2024_100276 crossref_primary_10_1002_marc_202000498 crossref_primary_10_2139_ssrn_3986048 crossref_primary_10_1021_acssuschemeng_3c07667 crossref_primary_10_1021_acssuschemeng_0c08274 crossref_primary_10_1021_acssuschemeng_4c09157 |
Cites_doi | 10.1016/j.polymdegradstab.2017.06.018 10.1002/macp.201000065 10.3390/polym10050502 10.1016/j.tca.2017.01.004 10.1039/C8CS00161H 10.1021/ma7028709 10.1007/s10924-011-0317-1 10.1126/sciadv.1700782 10.1021/ma0210877 10.1016/j.msec.2013.08.013 10.1016/j.tifs.2008.07.003 10.1021/ie401781d 10.1016/j.polymdegradstab.2018.09.007 10.1002/macp.201100052 10.1002/pola.23985 10.1002/mabi.200700106 10.1002/pi.3043 10.1002/pat.275 10.1016/j.polymdegradstab.2018.06.017 10.1039/C2CS35268K 10.1021/ma0205966 10.1080/15583720701834240 10.1021/ma400360w 10.1039/C6RA13495E 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F 10.1002/anie.201801287 10.1016/j.eurpolymj.2018.03.009 10.1002/app.41952 10.3144/expresspolymlett.2015.88 10.1016/j.polymer.2017.10.009 10.3390/polym8010020 10.1016/j.eurpolymj.2016.06.022 10.1016/0141-3910(89)90133-X 10.1002/(SICI)1099-1581(199704)8:4<203::AID-PAT627>3.0.CO;2-3 10.1021/ma301714f 10.1002/app.44674 10.1016/j.polymdegradstab.2015.04.026 10.1021/acssuschemeng.8b00174 10.1016/j.polymer.2007.08.065 10.1039/C4PY00976B 10.1016/j.polymdegradstab.2014.12.013 10.1016/j.polymdegradstab.2014.04.006 10.1002/macp.200800125 10.1039/C6RA16325D 10.1021/ie300547g |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1039/c9py00083f |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-9962 |
EndPage | 1822 |
ExternalDocumentID | 10_1039_C9PY00083F c9py00083f |
GroupedDBID | -JG 0-7 0R~ 29O 4.4 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADNWM ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD GGIMP H13 HZ~ H~N J3I O-G O9- P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKF SKH SKJ SKM SKR SKZ SLC SLF AAYXX AFRZK AKMSF CITATION 7SR 8FD JG9 M4U |
ID | FETCH-LOGICAL-c281t-bd50f5dbde4ff6c4a181cf89d43f7978d028c4ae9c3196fe4f8fb3aac9818483 |
ISSN | 1759-9954 |
IngestDate | Mon Jun 30 06:42:21 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Tue Jul 01 02:28:14 EDT 2025 Tue Dec 17 21:00:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-bd50f5dbde4ff6c4a181cf89d43f7978d028c4ae9c3196fe4f8fb3aac9818483 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c9py00083f ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3502-8738 |
PQID | 2202816635 |
PQPubID | 2047483 |
PageCount | 11 |
ParticipantIDs | rsc_primary_c9py00083f crossref_citationtrail_10_1039_C9PY00083F crossref_primary_10_1039_C9PY00083F proquest_journals_2202816635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-14 |
PublicationDateYYYYMMDD | 2019-04-14 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Polymer chemistry |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Soccio (C9PY00083F-(cit25)/*[position()=1]) 2016; 81 Liu (C9PY00083F-(cit35)/*[position()=1]) 2016; 6 Zini (C9PY00083F-(cit32)/*[position()=1]) 2008; 41 Tempelaar (C9PY00083F-(cit8)/*[position()=1]) 2013; 42 Gigli (C9PY00083F-(cit20)/*[position()=1]) 2013; 52 Siracusa (C9PY00083F-(cit38)/*[position()=1]) 2015; 119 Kwiatkowska (C9PY00083F-(cit26)/*[position()=1]) 2017; 130 Siracusa (C9PY00083F-(cit1)/*[position()=1]) 2008; 19 Luinstra (C9PY00083F-(cit7)/*[position()=1]) 2008; 48 Zhang (C9PY00083F-(cit13)/*[position()=1]) 2015; 132 Amass (C9PY00083F-(cit4)/*[position()=1]) 1998; 47 Artham (C9PY00083F-(cit6)/*[position()=1]) 2008; 8 Liu (C9PY00083F-(cit21)/*[position()=1]) 2016; 6 Berti (C9PY00083F-(cit24)/*[position()=1]) 2008; 209 Ye (C9PY00083F-(cit43)/*[position()=1]) 2018; 47 Wang (C9PY00083F-(cit12)/*[position()=1]) 2012; 51 Feng (C9PY00083F-(cit14)/*[position()=1]) 2015; 6 Genovese (C9PY00083F-(cit36)/*[position()=1]) 2015; 9 Peng (C9PY00083F-(cit40)/*[position()=1]) 2016; 134 Liu (C9PY00083F-(cit10)/*[position()=1]) 2015; 112 Berti (C9PY00083F-(cit23)/*[position()=1]) 2010; 211 Hu (C9PY00083F-(cit19)/*[position()=1]) 2018; 57 Bi (C9PY00083F-(cit44)/*[position()=1]) 2018; 155 Celli (C9PY00083F-(cit22)/*[position()=1]) 2011; 212 Gigli (C9PY00083F-(cit17)/*[position()=1]) 2014; 34 Teng (C9PY00083F-(cit30)/*[position()=1]) 2017; 649 Luckachan (C9PY00083F-(cit2)/*[position()=1]) 2011; 19 Focarete (C9PY00083F-(cit33)/*[position()=1]) 2002; 35 Gigli (C9PY00083F-(cit18)/*[position()=1]) 2014; 105 Nogales (C9PY00083F-(cit28)/*[position()=1]) 2003; 36 Mcneill (C9PY00083F-(cit31)/*[position()=1]) 1989; 24 Hoelscher (C9PY00083F-(cit39)/*[position()=1]) 2018; 156 Cai (C9PY00083F-(cit16)/*[position()=1]) 2017; 143 Feng (C9PY00083F-(cit27)/*[position()=1]) 2007; 48 Kamal (C9PY00083F-(cit29)/*[position()=1]) 2012; 45 Geyer (C9PY00083F-(cit5)/*[position()=1]) 2017; 3 Hu (C9PY00083F-(cit15)/*[position()=1]) 2018; 6 Zhu (C9PY00083F-(cit11)/*[position()=1]) 2011; 60 Liu (C9PY00083F-(cit34)/*[position()=1]) 2010; 48 Goldbart (C9PY00083F-(cit42)/*[position()=1]) 2010; 13 Mochizuki (C9PY00083F-(cit45)/*[position()=1]) 2015; 8 Siracusa (C9PY00083F-(cit37)/*[position()=1]) 2018; 10 Manavitehrani (C9PY00083F-(cit3)/*[position()=1]) 2016; 8 Hu (C9PY00083F-(cit41)/*[position()=1]) 2018; 102 Park (C9PY00083F-(cit9)/*[position()=1]) 2013; 46 |
References_xml | – volume: 143 start-page: 35 year: 2017 ident: C9PY00083F-(cit16)/*[position()=1] publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2017.06.018 – volume: 211 start-page: 1559 year: 2010 ident: C9PY00083F-(cit23)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201000065 – volume: 10 start-page: 502 year: 2018 ident: C9PY00083F-(cit37)/*[position()=1] publication-title: Polymers doi: 10.3390/polym10050502 – volume: 649 start-page: 22 year: 2017 ident: C9PY00083F-(cit30)/*[position()=1] publication-title: Thermochim. Acta doi: 10.1016/j.tca.2017.01.004 – volume: 47 start-page: 4545 year: 2018 ident: C9PY00083F-(cit43)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00161H – volume: 41 start-page: 4681 year: 2008 ident: C9PY00083F-(cit32)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma7028709 – volume: 19 start-page: 637 year: 2011 ident: C9PY00083F-(cit2)/*[position()=1] publication-title: J. Polym. Environ. doi: 10.1007/s10924-011-0317-1 – volume: 3 start-page: e1700782 year: 2017 ident: C9PY00083F-(cit5)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1700782 – volume: 36 start-page: 4827 year: 2003 ident: C9PY00083F-(cit28)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma0210877 – volume: 34 start-page: 86 year: 2014 ident: C9PY00083F-(cit17)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2013.08.013 – volume: 19 start-page: 634 year: 2008 ident: C9PY00083F-(cit1)/*[position()=1] publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2008.07.003 – volume: 52 start-page: 12876 year: 2013 ident: C9PY00083F-(cit20)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie401781d – volume: 156 start-page: 211 year: 2018 ident: C9PY00083F-(cit39)/*[position()=1] publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2018.09.007 – volume: 212 start-page: 1524 year: 2011 ident: C9PY00083F-(cit22)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201100052 – volume: 48 start-page: 2162 year: 2010 ident: C9PY00083F-(cit34)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.23985 – volume: 8 start-page: 14 year: 2008 ident: C9PY00083F-(cit6)/*[position()=1] publication-title: Macromol. Biosci. doi: 10.1002/mabi.200700106 – volume: 60 start-page: 1060 year: 2011 ident: C9PY00083F-(cit11)/*[position()=1] publication-title: Polym. Int. doi: 10.1002/pi.3043 – volume: 13 start-page: 1006 year: 2010 ident: C9PY00083F-(cit42)/*[position()=1] publication-title: Polym. Adv. Technol. doi: 10.1002/pat.275 – volume: 155 start-page: 9 year: 2018 ident: C9PY00083F-(cit44)/*[position()=1] publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2018.06.017 – volume: 42 start-page: 1312 year: 2013 ident: C9PY00083F-(cit8)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35268K – volume: 35 start-page: 8066 year: 2002 ident: C9PY00083F-(cit33)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma0205966 – volume: 48 start-page: 192 year: 2008 ident: C9PY00083F-(cit7)/*[position()=1] publication-title: Polym. Rev. doi: 10.1080/15583720701834240 – volume: 46 start-page: 3301 year: 2013 ident: C9PY00083F-(cit9)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma400360w – volume: 6 start-page: 65889 year: 2016 ident: C9PY00083F-(cit21)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA13495E – volume: 47 start-page: 89 year: 1998 ident: C9PY00083F-(cit4)/*[position()=1] publication-title: Polym. Int. doi: 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F – volume: 57 start-page: 6901 year: 2018 ident: C9PY00083F-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801287 – volume: 102 start-page: 101 year: 2018 ident: C9PY00083F-(cit41)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.03.009 – volume: 132 start-page: 41952 year: 2015 ident: C9PY00083F-(cit13)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41952 – volume: 9 start-page: 972 year: 2015 ident: C9PY00083F-(cit36)/*[position()=1] publication-title: eXPRESS Polym. Lett. doi: 10.3144/expresspolymlett.2015.88 – volume: 130 start-page: 26 year: 2017 ident: C9PY00083F-(cit26)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2017.10.009 – volume: 8 start-page: 20 year: 2016 ident: C9PY00083F-(cit3)/*[position()=1] publication-title: Polymers doi: 10.3390/polym8010020 – volume: 81 start-page: 397 year: 2016 ident: C9PY00083F-(cit25)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.06.022 – volume: 24 start-page: 59 year: 1989 ident: C9PY00083F-(cit31)/*[position()=1] publication-title: Polym. Degrad. Stab. doi: 10.1016/0141-3910(89)90133-X – volume: 8 start-page: 203 year: 2015 ident: C9PY00083F-(cit45)/*[position()=1] publication-title: Polym. Adv. Technol. doi: 10.1002/(SICI)1099-1581(199704)8:4<203::AID-PAT627>3.0.CO;2-3 – volume: 45 start-page: 8752 year: 2012 ident: C9PY00083F-(cit29)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma301714f – volume: 134 start-page: 44674 year: 2016 ident: C9PY00083F-(cit40)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.44674 – volume: 119 start-page: 35 year: 2015 ident: C9PY00083F-(cit38)/*[position()=1] publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2015.04.026 – volume: 6 start-page: 7488 year: 2018 ident: C9PY00083F-(cit15)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b00174 – volume: 48 start-page: 6867 year: 2007 ident: C9PY00083F-(cit27)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2007.08.065 – volume: 6 start-page: 633 year: 2015 ident: C9PY00083F-(cit14)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C4PY00976B – volume: 112 start-page: 70 year: 2015 ident: C9PY00083F-(cit10)/*[position()=1] publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2014.12.013 – volume: 105 start-page: 96 year: 2014 ident: C9PY00083F-(cit18)/*[position()=1] publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2014.04.006 – volume: 209 start-page: 1333 year: 2008 ident: C9PY00083F-(cit24)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200800125 – volume: 6 start-page: 95527 year: 2016 ident: C9PY00083F-(cit35)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA16325D – volume: 51 start-page: 10785 year: 2012 ident: C9PY00083F-(cit12)/*[position()=1] publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300547g |
SSID | ssj0000314236 |
Score | 2.39828 |
Snippet | Aliphatic polycarbonates are an attractive research subject in the field of degradable materials. However, their relatively poor thermal properties limit their... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1812 |
SubjectTerms | Aliphatic compounds Biodegradability Crystallization Glass transition temperature Lamellar structure Mechanical properties Melt temperature Modulus of elasticity Oligomers Plastics industry Polycarbonate resins Polymer chemistry Polymers Small angle X ray scattering Terephthalate Thermal degradation Thermal stability Thermodynamic properties Tissue engineering Weight loss |
Title | Sustainable and rapidly degradable poly(butylene carbonate--cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties |
URI | https://www.proquest.com/docview/2202816635 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67QFeELeJwkCW4IGpBJpbG_O2TSsTjDFBJ7qnKLZjrVLWVCGRCH-J38H_4hwnjsM0oYFURZVzqZXvq8_F50LIiygFGc0Fd8AWAAMFRLTDvShxkilzeRIKMUnQof_xZHJ0FrxfhIvB4Fcvaqkq-Wvx49q8kv9BFcYAV8yS_Qdku4fCAHwHfOEICMPxRhh_6WU_6TjxZL2UWT2SWAFC6uF1jq2kI16VNcgXDPIqODrMU0fkjqhFll9ghoveroEz3-sMS1l4DD0FS9PAxMSetwFeuMGA-w2iqOH3s6xN5US0LlPMJO4qEPCk0B3x1ujyL0oTsNgqw6cwt0s4K0zTOcsxLREtcTu39ucqr6tOkFSj_eVqdG6kr6402WR7p8u-O8PVOzOudWc2ThMTsaojUvpTaBbpacgcrGPXyLD-2JWVfdxncNBbp1Gv6cl8MLK8a-XJ2MdyrIKta62sKis1TaTAyad4dnZ8HM8PF_MNsuWBtQLL7dbeh_13XztnH_YI8HS7ym7uplSuz97Yx_-pHFmLZ6Mw7Wi02jO_S-609grda8h3jwzS1X1yq3tdD8jPHgkpYE5bElJLQookfGkoSG9Ewd23tKMfzRXt0Y_CB-hHr9DvFbXk0xNpyUct-R6S-exwfnDktB1AHOFFbulwGY5VKLlMA6UmIkgAN6EiJgNfTdk0kqAdw2jKBEoSBVdFivtJIhjooUHkb5PNVb5KHxEaTJSQoA3zFG5Gv0wopIgEWitCuFINya5587Foq-Njk5Ys1lEaPosP2Om5Rmk2JM-7a9dNTZhrr9oxAMbtmvEt9jyYsYta_pBsA6jd_ZYDj_9-3xNy2_5tdshmWVTpU9CLS_6sZd1vwjjGKw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+and+rapidly+degradable+poly%28butylene+carbonate-co-cyclohexanedicarboxylate%29%3A+influence+of+composition+on+its+crystallization%2C+mechanical+and+barrier+properties&rft.jtitle=Polymer+chemistry&rft.au=Hu%2C+Han&rft.au=Zhang%2C+Ruoyu&rft.au=Wu+Bin+Ying&rft.au=Shi%2C+Lei&rft.date=2019-04-14&rft.pub=Royal+Society+of+Chemistry&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=10&rft.issue=14&rft.spage=1812&rft.epage=1822&rft_id=info:doi/10.1039%2Fc9py00083f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon |