Tribocatalysis mechanisms: electron transfer and transition
Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 9; pp. 4458 - 4472 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
27.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism is best employed for proper implementation in a tribocatalysis reaction. In this review, research that compares the two mechanisms through their electronic structures as criteria for selection is discussed. The factors influencing the tribocatalysis performance as well as criteria for tribocatalysis mechanism selection are the surface state, energy band structure, and force. Finally, the proposed standard method to analyze the electronic state, relation between the catalyst and H
2
O (O
2
), energy band bending theory, and charge preservation for tribocatalysis must be explored for tribocatalysis mechanism development. This review seeks to elicit meaningful discussion for distinguishing the unique characteristics of the two existing mechanisms and understanding the details of tribocatalysis mechanisms.
The differences between the two mechanisms of tribocatalysis are compared, and the selection criteria for a specific reaction are given. |
---|---|
AbstractList | Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism is best employed for proper implementation in a tribocatalysis reaction. In this review, research that compares the two mechanisms through their electronic structures as criteria for selection is discussed. The factors influencing the tribocatalysis performance as well as criteria for tribocatalysis mechanism selection are the surface state, energy band structure, and force. Finally, the proposed standard method to analyze the electronic state, relation between the catalyst and H2O (O2), energy band bending theory, and charge preservation for tribocatalysis must be explored for tribocatalysis mechanism development. This review seeks to elicit meaningful discussion for distinguishing the unique characteristics of the two existing mechanisms and understanding the details of tribocatalysis mechanisms. Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism is best employed for proper implementation in a tribocatalysis reaction. In this review, research that compares the two mechanisms through their electronic structures as criteria for selection is discussed. The factors influencing the tribocatalysis performance as well as criteria for tribocatalysis mechanism selection are the surface state, energy band structure, and force. Finally, the proposed standard method to analyze the electronic state, relation between the catalyst and H 2 O (O 2 ), energy band bending theory, and charge preservation for tribocatalysis must be explored for tribocatalysis mechanism development. This review seeks to elicit meaningful discussion for distinguishing the unique characteristics of the two existing mechanisms and understanding the details of tribocatalysis mechanisms. Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism is best employed for proper implementation in a tribocatalysis reaction. In this review, research that compares the two mechanisms through their electronic structures as criteria for selection is discussed. The factors influencing the tribocatalysis performance as well as criteria for tribocatalysis mechanism selection are the surface state, energy band structure, and force. Finally, the proposed standard method to analyze the electronic state, relation between the catalyst and H 2 O (O 2 ), energy band bending theory, and charge preservation for tribocatalysis must be explored for tribocatalysis mechanism development. This review seeks to elicit meaningful discussion for distinguishing the unique characteristics of the two existing mechanisms and understanding the details of tribocatalysis mechanisms. The differences between the two mechanisms of tribocatalysis are compared, and the selection criteria for a specific reaction are given. |
Author | Li, Xinnan Shi, Jing Tong, Wangshu An, Qi Chen, Yunfan Zhang, Yihe |
AuthorAffiliation | School of Materials Science and Technology China University of Geosciences (Beijing) |
AuthorAffiliation_xml | – sequence: 0 name: School of Materials Science and Technology – sequence: 0 name: China University of Geosciences (Beijing) |
Author_xml | – sequence: 1 givenname: Xinnan surname: Li fullname: Li, Xinnan – sequence: 2 givenname: Wangshu surname: Tong fullname: Tong, Wangshu – sequence: 3 givenname: Jing surname: Shi fullname: Shi, Jing – sequence: 4 givenname: Yunfan surname: Chen fullname: Chen, Yunfan – sequence: 5 givenname: Yihe surname: Zhang fullname: Zhang, Yihe – sequence: 6 givenname: Qi surname: An fullname: An, Qi |
BookMark | eNptkMtLAzEQxoNUsNZevAsL3oTVyWN3Ez2V-oSCl3pesnlgyjZbk_TQ_75bVyqIc5kZ-H0zfN85GvnOG4QuMdxioOJOkySBYyjkCRoTKCCvmChHx5nzMzSNcQV9cYBSiDF6WAbXdEom2e6ii9naqE_pXVzH-8y0RqXQ-SwF6aM1IZNeD4tLrvMX6NTKNprpT5-gj-en5fw1X7y_vM1ni1wRjlPeVJYVBjBhjGjQ2lJBMWeFAjACdFPaqlKSKGoF1g0DTBUviOQMKrBEazpB18PdTei-tiametVtg-9f1qSqhBCs4GVP3QyUCl2Mwdh6E9xahl2NoT7kUz-S5ew7n1kPwx9YuSQPpnp7rv1fcjVIQlTH07-R0z1Db3K- |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2024_01_327 crossref_primary_10_3390_nano15050386 crossref_primary_10_1016_j_checat_2024_100901 crossref_primary_10_3390_ma16165710 crossref_primary_10_1016_j_apsusc_2023_157960 crossref_primary_10_1016_j_pmatsci_2023_101161 crossref_primary_10_1021_acsanm_4c05043 crossref_primary_10_3390_lubricants12020045 crossref_primary_10_1016_j_nanoen_2025_110892 crossref_primary_10_1021_acs_jpcc_4c02798 crossref_primary_10_1016_j_ceramint_2024_05_217 crossref_primary_10_1016_j_jhazmat_2023_132147 crossref_primary_10_3390_coatings13101804 crossref_primary_10_1039_D4TA07831D crossref_primary_10_1111_ijac_15015 crossref_primary_10_3390_molecules29163913 crossref_primary_10_1016_j_coche_2024_101043 crossref_primary_10_1016_j_nanoen_2024_109574 crossref_primary_10_1016_j_surfin_2024_105557 crossref_primary_10_1016_j_mseb_2025_118207 crossref_primary_10_1016_j_ceramint_2024_10_419 crossref_primary_10_1016_j_surfin_2025_106106 crossref_primary_10_1016_j_surfin_2024_104308 crossref_primary_10_1038_s41598_024_68588_0 crossref_primary_10_1016_j_apsusc_2024_161018 crossref_primary_10_1039_D4NR00868E crossref_primary_10_1016_j_cej_2024_152272 crossref_primary_10_1016_j_jwpe_2024_105455 crossref_primary_10_1016_j_mssp_2025_109496 crossref_primary_10_1021_acs_iecr_3c04304 crossref_primary_10_1002_jccs_202400157 crossref_primary_10_1016_j_apsusc_2024_160172 crossref_primary_10_1016_j_ceramint_2023_12_171 crossref_primary_10_1016_j_progsolidstchem_2024_100497 crossref_primary_10_1039_D3TA04758J crossref_primary_10_1016_j_jallcom_2024_175413 crossref_primary_10_1111_jace_19565 crossref_primary_10_3390_coatings14060773 crossref_primary_10_3390_lubricants11120514 crossref_primary_10_26599_JAC_2024_9220925 crossref_primary_10_1016_j_cej_2025_161443 crossref_primary_10_1016_j_nanoen_2024_109910 crossref_primary_10_3390_inorganics13020046 crossref_primary_10_1016_j_ceramint_2023_11_218 crossref_primary_10_1016_j_mseb_2023_116814 crossref_primary_10_1016_j_compositesb_2024_112060 crossref_primary_10_1016_j_nanoen_2023_109059 |
Cites_doi | 10.1002/adma.201706790 10.1016/j.vacuum.2021.110646 10.1039/C8RA00234G 10.1038/s41467-019-09461-x 10.1016/j.seppur.2022.120814 10.1016/j.apcatb.2020.118660 10.1007/s11249-020-1278-0 10.1039/D1TA03895H 10.1016/j.jcis.2022.04.132 10.1080/05698190490278967 10.1126/sciadv.abj0349 10.1038/s41467-022-33086-2 10.1016/j.nanoen.2022.107346 10.1002/adfm.202209365 10.1016/j.tim.2019.07.004 10.1016/j.jenvman.2021.113595 10.1007/s11426-021-1089-6 10.1103/PhysRevB.97.235447 10.1016/j.jhazmat.2015.11.047 10.1002/anie.201706549 10.1016/j.ceramint.2021.12.164 10.1016/j.mattod.2019.05.016 10.1002/adma.201102752 10.1016/j.jenvman.2006.11.002 10.1039/C5CS00838G 10.1016/j.jhazmat.2019.121509 10.1016/j.jclepro.2020.121725 10.1016/j.mtphys.2021.100408 10.1016/j.chemosphere.2021.130170 10.1016/j.seppur.2022.122846 10.1016/j.jcis.2021.09.161 10.1038/s41467-020-15926-1 10.1016/j.susc.2006.06.032 10.1016/j.apcatb.2022.122196 10.1016/j.ceramint.2020.06.322 10.1016/j.nanoen.2022.107343 10.1016/j.nanoen.2022.106930 10.1016/j.jclepro.2022.131060 10.1039/D2NR05207E 10.1016/j.nanoen.2022.107983 10.1039/C6NR00972G 10.1002/adma.202102886 10.1038/s41467-021-27789-1 10.1021/acs.jpcc.8b03753 10.1016/j.chemosphere.2021.132797 10.1039/a804549f 10.1021/acs.langmuir.2c02093 10.1039/D0RA10807C 10.1021/acsami.1c23282 10.1002/adma.202001307 10.1016/j.nanoen.2020.105290 10.1016/j.jcis.2020.11.049 10.1243/13506501JET514 10.1016/j.apcatb.2022.121793 10.1063/1.4873522 10.1039/D0TC03519J 10.1002/aenm.202000137 10.1016/j.nanoen.2019.06.028 10.1002/adma.201803968 10.1016/j.jclepro.2017.12.279 10.1016/j.apcatb.2022.122007 10.7498/aps.70.20210210 10.1002/adma.201804368 10.1016/j.apcatb.2020.119340 10.1016/j.ceramint.2020.10.081 10.3390/nano12121981 10.1021/acsnano.1c07158 10.1016/j.nanoen.2015.01.035 10.1016/j.nanoen.2022.107519 10.1007/s40544-021-0505-5 10.1016/j.cej.2021.128986 10.1088/1361-6633/ac0a50 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d2ta08105a |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 4472 |
ExternalDocumentID | 10_1039_D2TA08105A d2ta08105a |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-b7f45e012442d0ddf3931845c00e90db6f77ca2c3f91db4013c852a84070f2dd3 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:02:42 EDT 2025 Tue Jul 01 01:13:37 EDT 2025 Thu Apr 24 23:02:08 EDT 2025 Tue Dec 17 20:58:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-b7f45e012442d0ddf3931845c00e90db6f77ca2c3f91db4013c852a84070f2dd3 |
Notes | Prof. Qi An is currently a professor at the School of Materials Sciences and Technology in China University of Geosciences (Beijing). She received her PhD degree from the Chemistry Department of Tsinghua University, China, in 2010 under the supervision of Prof. Dr Guangtao Li. After a two-year postdoctoral work under the joint supervision of Prof. Dr Jurriaan Huskens and Prof. Dr Pascal Jonkheijm at the MESA+ Institute for Nanotechnology, University of Twente, the Netherlands. She joined China University of Geosciences (Beijing) and later became Professor in the year 2019. Her current research interests include chemistry, nanotechnology, and functional materials. Yihe Zhang is a professor at the School of Materials Sciences and Technology, China University of Geosciences (Beijing) and leads the Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences (Beijing). Zhang received his PhD from the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences in 2005, and he was previously a visiting scholar, a postdoctoral fellow, and a research fellow in the City University of Hong Kong and The Hong Kong Polytechnic University from 2003 to 2009. His current research focuses on nanomaterials and composites. Xinnan Li is currently a master's student at the School of Materials Sciences and Technology in China University of Geosciences (Beijing). His research focuses on tribocatalysis. Dr Wangshu Tong is currently an associate professor at the School of Materials Sciences and Technology in China University of Geosciences (Beijing). She received her PhD degree in 2016 from Materials Science and Technology, China University of Geosciences (Beijing). Her current research interests include piezocatalysis, tribocatalysis, flexible functional materials, and self-powered materials. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1407-4129 0000-0003-3050-2979 0000-0001-9298-5465 |
PQID | 2779994586 |
PQPubID | 2047523 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1039_D2TA08105A rsc_primary_d2ta08105a proquest_journals_2779994586 crossref_citationtrail_10_1039_D2TA08105A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-27 |
PublicationDateYYYYMMDD | 2023-02-27 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D2TA08105A/cit54/1) 2020; 279 Huang (D2TA08105A/cit1/1) 2017; 56 Tao (D2TA08105A/cit44/1) 2006; 600 Zou (D2TA08105A/cit47/1) 2019; 10 Luna (D2TA08105A/cit55/1) 2020; 267 Tang (D2TA08105A/cit21/1) 2021; 33 Li (D2TA08105A/cit49/1) 2016; 45 Jain (D2TA08105A/cit63/1) 2007; 85 He (D2TA08105A/cit14/1) 2021; 19 Wang (D2TA08105A/cit31/1) 2022; 291 Hochheim (D2TA08105A/cit43/1) 2018; 97 Kang (D2TA08105A/cit53/1) 2022; 14 Tang (D2TA08105A/cit77/1) 2022; 100 Li (D2TA08105A/cit68/1) 2021; 70 Wang (D2TA08105A/cit30/1) 2022; 13 Alabbad (D2TA08105A/cit19/1) 2021; 400–401 Wang (D2TA08105A/cit46/1) 2021; 84 Wu (D2TA08105A/cit60/1) 2016; 8 Yang (D2TA08105A/cit35/1) 2021; 416 Xu (D2TA08105A/cit16/1) 2022; 38 Ikeda (D2TA08105A/cit66/1) 1998 Hu (D2TA08105A/cit26/1) 2022; 607 Tong (D2TA08105A/cit32/1) 2012; 24 Lei (D2TA08105A/cit27/1) 2020; 78 Fan (D2TA08105A/cit6/1) 2021; 64 Zou (D2TA08105A/cit48/1) 2020; 11 Li (D2TA08105A/cit33/1) 2019; 63 Zhao (D2TA08105A/cit13/1) 2020; 46 Wu (D2TA08105A/cit28/1) 2021; 587 Sun (D2TA08105A/cit50/1) 2018; 122 Li (D2TA08105A/cit20/1) 2020; 32 Wang (D2TA08105A/cit3/1) 2022; 104 Yang (D2TA08105A/cit34/1) 2020; 8 Li (D2TA08105A/cit41/1) 2021; 7 Lin (D2TA08105A/cit59/1) 2014; 104 Wu (D2TA08105A/cit7/1) 2022; 622 Wang (D2TA08105A/cit52/1) 2021; 9 Fu (D2TA08105A/cit76/1) 2022; 195 Deshpande (D2TA08105A/cit74/1) 2018; 8 Zhang (D2TA08105A/cit17/1) 2023; 307 Wu (D2TA08105A/cit69/1) 2022; 12 Cui (D2TA08105A/cit18/1) 2022; 289 Fu (D2TA08105A/cit8/1) 2023; 323 Wang (D2TA08105A/cit23/1) 2021; 15 Hiratsuka (D2TA08105A/cit71/1) 2004; 47 Baskar (D2TA08105A/cit73/1) 2015; 37 Cheng (D2TA08105A/cit9/1) 2022; 317 Dong (D2TA08105A/cit12/1) 2022; 99 Wang (D2TA08105A/cit40/1) 2020; 10 Shan (D2TA08105A/cit65/1) 2016; 305 Zhang (D2TA08105A/cit58/1) 2023; 307 Xu (D2TA08105A/cit38/1) 2018; 30 Wan (D2TA08105A/cit4/1) 2022; 94 He (D2TA08105A/cit42/1) 2022; 98 Starr (D2TA08105A/cit5/1) 2015; 14 Sánchez (D2TA08105A/cit70/1) 2018; 178 Sun (D2TA08105A/cit37/1) 2021; 11 Xu (D2TA08105A/cit39/1) 2018; 30 Hu (D2TA08105A/cit25/1) 2021; 276 Sun (D2TA08105A/cit56/1) 2018; 30 Wang (D2TA08105A/cit45/1) 2019; 30 Ruan (D2TA08105A/cit24/1) 2022; 345 Wang (D2TA08105A/cit51/1) 2020; 385 Xu (D2TA08105A/cit15/1) 2018; 30 Chen (D2TA08105A/cit61/1) 2020; 268 Kajdas (D2TA08105A/cit72/1) 2009; 223 Deshpande (D2TA08105A/cit75/1) 2020; 68 Wu (D2TA08105A/cit11/1) 2022; 622 Fulaz (D2TA08105A/cit62/1) 2019; 27 Lu (D2TA08105A/cit22/1) 2022; 13 Li (D2TA08105A/cit67/1) 2021; 10 Yu (D2TA08105A/cit10/1) 2022; 32 Ren (D2TA08105A/cit2/1) 2023; 320 Cao (D2TA08105A/cit29/1) 2022; 48 Sun (D2TA08105A/cit36/1) 2021; 47 Lin (D2TA08105A/cit57/1) 2022; 14 Yi (D2TA08105A/cit64/1) 2021; 299 |
References_xml | – issn: 2015 issue: 37 end-page: 449 doi: Baskar Sriram Arumugam – volume: 30 start-page: e1706790 year: 2018 ident: D2TA08105A/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.201706790 – volume: 195 start-page: 110646 year: 2022 ident: D2TA08105A/cit76/1 publication-title: Vacuum doi: 10.1016/j.vacuum.2021.110646 – volume: 8 start-page: 15056 year: 2018 ident: D2TA08105A/cit74/1 publication-title: RSC Adv. doi: 10.1039/C8RA00234G – volume: 10 start-page: 1427 year: 2019 ident: D2TA08105A/cit47/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 37 start-page: 449 year: 2015 ident: D2TA08105A/cit73/1 – volume: 289 start-page: 120814 year: 2022 ident: D2TA08105A/cit18/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120814 – volume: 267 start-page: 118660 year: 2020 ident: D2TA08105A/cit55/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118660 – volume: 68 start-page: 39 year: 2020 ident: D2TA08105A/cit75/1 publication-title: Tribol. Lett. doi: 10.1007/s11249-020-1278-0 – volume: 9 start-page: 17143 year: 2021 ident: D2TA08105A/cit52/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA03895H – volume: 622 start-page: 602 year: 2022 ident: D2TA08105A/cit7/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.04.132 – volume: 47 start-page: 86 year: 2004 ident: D2TA08105A/cit71/1 publication-title: Tribol. Trans. doi: 10.1080/05698190490278967 – volume: 7 start-page: eabj0349 issue: 39 year: 2021 ident: D2TA08105A/cit41/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abj0349 – volume: 13 start-page: 5316 year: 2022 ident: D2TA08105A/cit22/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33086-2 – volume: 99 start-page: 107346 year: 2022 ident: D2TA08105A/cit12/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107346 – volume: 32 start-page: 2209365 year: 2022 ident: D2TA08105A/cit10/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209365 – volume: 27 start-page: 915 year: 2019 ident: D2TA08105A/cit62/1 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2019.07.004 – volume: 299 start-page: 113595 year: 2021 ident: D2TA08105A/cit64/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.113595 – volume: 64 start-page: 1609 issue: 10 year: 2021 ident: D2TA08105A/cit6/1 publication-title: Sci. China: Chem. doi: 10.1007/s11426-021-1089-6 – volume: 97 start-page: 235447 year: 2018 ident: D2TA08105A/cit43/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.235447 – volume: 305 start-page: 156 year: 2016 ident: D2TA08105A/cit65/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.11.047 – volume: 56 start-page: 11860 year: 2017 ident: D2TA08105A/cit1/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706549 – volume: 48 start-page: 9651 year: 2022 ident: D2TA08105A/cit29/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.12.164 – volume: 30 start-page: 34 year: 2019 ident: D2TA08105A/cit45/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.05.016 – volume: 24 start-page: 229 year: 2012 ident: D2TA08105A/cit32/1 publication-title: Adv. Mater. doi: 10.1002/adma.201102752 – volume: 85 start-page: 956 year: 2007 ident: D2TA08105A/cit63/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2006.11.002 – volume: 45 start-page: 2603 year: 2016 ident: D2TA08105A/cit49/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00838G – volume: 385 start-page: 121509 year: 2020 ident: D2TA08105A/cit51/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121509 – volume: 268 start-page: 121725 year: 2020 ident: D2TA08105A/cit61/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.121725 – volume: 19 start-page: 100408 year: 2021 ident: D2TA08105A/cit14/1 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2021.100408 – volume: 276 start-page: 130170 year: 2021 ident: D2TA08105A/cit25/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130170 – volume: 307 start-page: 122846 year: 2023 ident: D2TA08105A/cit58/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122846 – volume: 607 start-page: 1908 year: 2022 ident: D2TA08105A/cit26/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.09.161 – volume: 11 start-page: 2093 year: 2020 ident: D2TA08105A/cit48/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15926-1 – volume: 600 start-page: 3419 year: 2006 ident: D2TA08105A/cit44/1 publication-title: Surf. Sci. doi: 10.1016/j.susc.2006.06.032 – volume: 323 start-page: 122196 year: 2023 ident: D2TA08105A/cit8/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122196 – volume: 46 start-page: 25293 year: 2020 ident: D2TA08105A/cit13/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.06.322 – volume: 98 start-page: 107343 year: 2022 ident: D2TA08105A/cit42/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107343 – volume: 94 start-page: 106930 year: 2022 ident: D2TA08105A/cit4/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106930 – volume: 345 start-page: 131060 year: 2022 ident: D2TA08105A/cit24/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2022.131060 – volume: 14 start-page: 16952 year: 2022 ident: D2TA08105A/cit57/1 publication-title: Nanoscale doi: 10.1039/D2NR05207E – volume: 104 start-page: 107983 year: 2022 ident: D2TA08105A/cit3/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107983 – volume: 30 start-page: e1706790 year: 2018 ident: D2TA08105A/cit38/1 publication-title: Adv. Mater. doi: 10.1002/adma.201706790 – volume: 8 start-page: 7343 year: 2016 ident: D2TA08105A/cit60/1 publication-title: Nanoscale doi: 10.1039/C6NR00972G – volume: 33 start-page: e2102886 year: 2021 ident: D2TA08105A/cit21/1 publication-title: Adv. Mater. doi: 10.1002/adma.202102886 – volume: 13 start-page: 130 year: 2022 ident: D2TA08105A/cit30/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27789-1 – volume: 122 start-page: 15409 year: 2018 ident: D2TA08105A/cit50/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03753 – volume: 291 start-page: 132797 year: 2022 ident: D2TA08105A/cit31/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132797 – start-page: 2185 year: 1998 ident: D2TA08105A/cit66/1 publication-title: Chem. Commun. doi: 10.1039/a804549f – volume: 38 start-page: 14153 year: 2022 ident: D2TA08105A/cit16/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.2c02093 – volume: 11 start-page: 13386 year: 2021 ident: D2TA08105A/cit37/1 publication-title: RSC Adv. doi: 10.1039/D0RA10807C – volume: 14 start-page: 11375 year: 2022 ident: D2TA08105A/cit53/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23282 – volume: 32 start-page: e2001307 year: 2020 ident: D2TA08105A/cit20/1 publication-title: Adv. Mater. doi: 10.1002/adma.202001307 – volume: 78 start-page: 105290 year: 2020 ident: D2TA08105A/cit27/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105290 – volume: 587 start-page: 883 year: 2021 ident: D2TA08105A/cit28/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.11.049 – volume: 223 start-page: 827 year: 2009 ident: D2TA08105A/cit72/1 publication-title: Proc. Inst. Mech. Eng., Part J doi: 10.1243/13506501JET514 – volume: 317 start-page: 121793 year: 2022 ident: D2TA08105A/cit9/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121793 – volume: 104 start-page: 162907 year: 2014 ident: D2TA08105A/cit59/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4873522 – volume: 8 start-page: 14845 year: 2020 ident: D2TA08105A/cit34/1 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC03519J – volume: 10 start-page: 2000137 year: 2020 ident: D2TA08105A/cit40/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000137 – volume: 63 start-page: 103832 year: 2019 ident: D2TA08105A/cit33/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.028 – volume: 30 start-page: e1803968 year: 2018 ident: D2TA08105A/cit39/1 publication-title: Adv. Mater. doi: 10.1002/adma.201803968 – volume: 178 start-page: 325 year: 2018 ident: D2TA08105A/cit70/1 publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.12.279 – volume: 320 start-page: 122007 year: 2023 ident: D2TA08105A/cit2/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122007 – volume: 622 start-page: 602 year: 2022 ident: D2TA08105A/cit11/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.04.132 – volume: 70 start-page: 214601 year: 2021 ident: D2TA08105A/cit68/1 publication-title: Acta Phys. Sin. doi: 10.7498/aps.70.20210210 – volume: 30 start-page: e1804368 year: 2018 ident: D2TA08105A/cit56/1 publication-title: Adv. Mater. doi: 10.1002/adma.201804368 – volume: 279 start-page: 119340 year: 2020 ident: D2TA08105A/cit54/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119340 – volume: 47 start-page: 5038 year: 2021 ident: D2TA08105A/cit36/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.10.081 – volume: 12 start-page: 1981 year: 2022 ident: D2TA08105A/cit69/1 publication-title: Nanomater. doi: 10.3390/nano12121981 – volume: 307 start-page: 122846 year: 2023 ident: D2TA08105A/cit17/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122846 – volume: 15 start-page: 18206 year: 2021 ident: D2TA08105A/cit23/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c07158 – volume: 400–401 start-page: 132 year: 2021 ident: D2TA08105A/cit19/1 publication-title: Catal. Today – volume: 14 start-page: 296 year: 2015 ident: D2TA08105A/cit5/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.035 – volume: 100 start-page: 107519 year: 2022 ident: D2TA08105A/cit77/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107519 – volume: 10 start-page: 1127 year: 2021 ident: D2TA08105A/cit67/1 publication-title: Friction doi: 10.1007/s40544-021-0505-5 – volume: 416 start-page: 128986 year: 2021 ident: D2TA08105A/cit35/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128986 – volume: 84 start-page: 096502 year: 2021 ident: D2TA08105A/cit46/1 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ac0a50 |
SSID | ssj0000800699 |
Score | 2.596626 |
SecondaryResourceType | review_article |
Snippet | Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4458 |
SubjectTerms | Bending theory Catalysts Chemical energy Criteria Electron states Electron transfer Energy bands New technology |
Title | Tribocatalysis mechanisms: electron transfer and transition |
URI | https://www.proquest.com/docview/2779994586 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QIHxNdE2UCR4IKqDMcfiQOnCobGNDhlopyiOHZGJZZNbXrhb-CP5tmxnYzuMLhErRtbrd-vz--9vPd7CL1mVBnec0OGJ2XMiE7jvEkT8FKEZlmtieSmGvnL1_TknJ0u-GIy-T3KWtp08qj-dWtdyf9IFcZArqZK9h8kGxaFAXgN8oUrSBiud5PxaimvbADG8opcalPGu1xf2jQ33-DGdIEA21S7ZEnzZhmksW2WggXbf_VZ7XvBHc3mfVmP_8TShPdFgzbu7ouwTJ5tCNGf2TyBxbJtBwAWLgH4W9VerH9sQnjHdhaenfpj1KYb9Prw-6Zt3HwXmyDU1npngwojmGPDVtprWD0e6_vYBh2cjLCWjxQqY1yMDmfG-kY_W4ofU8Ob-pEUc7BxMA_UqQO79l-nXshFtE_haV4Oc3fQHgGnA7Tm3vy4-HwWYnbGuk5tS9LwwzzjLc3fDgvctHEGx2Vn5bvKWOuleIgeOPlG8x5Dj9BEt4_R_REZ5RP0_iaaogFN7yKPpchjKQK5RwOWnqLzT8fFh5PYtdaIayKSLpZZw7jGxrgjCivV0ByUO-M1xjrHpjQzy-qK1LTJEyWND14LTioB7j9uiFJ0H-22V61-hiJD6E8FSZQyT_E52LcySxupBRdC6IRO0Ru_GWXteOdN-5Of5fbOT9GrcO91z7Zy612Hfk9L929clyAx8HUALekU7cM-h_mKdJWdVz2_0-oH6N4A5UO02602-gUYnp186fDwBxmrgSk |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tribocatalysis+mechanisms%3A+electron+transfer+and+transition&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Xinnan&rft.au=Tong%2C+Wangshu&rft.au=Shi%2C+Jing&rft.au=Chen%2C+Yunfan&rft.date=2023-02-27&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=9&rft.spage=4458&rft.epage=4472&rft_id=info:doi/10.1039%2FD2TA08105A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2TA08105A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |