Tribocatalysis mechanisms: electron transfer and transition

Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 9; pp. 4458 - 4472
Main Authors Li, Xinnan, Tong, Wangshu, Shi, Jing, Chen, Yunfan, Zhang, Yihe, An, Qi
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 27.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism is best employed for proper implementation in a tribocatalysis reaction. In this review, research that compares the two mechanisms through their electronic structures as criteria for selection is discussed. The factors influencing the tribocatalysis performance as well as criteria for tribocatalysis mechanism selection are the surface state, energy band structure, and force. Finally, the proposed standard method to analyze the electronic state, relation between the catalyst and H 2 O (O 2 ), energy band bending theory, and charge preservation for tribocatalysis must be explored for tribocatalysis mechanism development. This review seeks to elicit meaningful discussion for distinguishing the unique characteristics of the two existing mechanisms and understanding the details of tribocatalysis mechanisms. The differences between the two mechanisms of tribocatalysis are compared, and the selection criteria for a specific reaction are given.
AbstractList Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism is best employed for proper implementation in a tribocatalysis reaction. In this review, research that compares the two mechanisms through their electronic structures as criteria for selection is discussed. The factors influencing the tribocatalysis performance as well as criteria for tribocatalysis mechanism selection are the surface state, energy band structure, and force. Finally, the proposed standard method to analyze the electronic state, relation between the catalyst and H2O (O2), energy band bending theory, and charge preservation for tribocatalysis must be explored for tribocatalysis mechanism development. This review seeks to elicit meaningful discussion for distinguishing the unique characteristics of the two existing mechanisms and understanding the details of tribocatalysis mechanisms.
Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism is best employed for proper implementation in a tribocatalysis reaction. In this review, research that compares the two mechanisms through their electronic structures as criteria for selection is discussed. The factors influencing the tribocatalysis performance as well as criteria for tribocatalysis mechanism selection are the surface state, energy band structure, and force. Finally, the proposed standard method to analyze the electronic state, relation between the catalyst and H 2 O (O 2 ), energy band bending theory, and charge preservation for tribocatalysis must be explored for tribocatalysis mechanism development. This review seeks to elicit meaningful discussion for distinguishing the unique characteristics of the two existing mechanisms and understanding the details of tribocatalysis mechanisms.
Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used tribocatalysis mechanisms are the electron transfer and transition mechanisms. Currently, there is no definitive criterion to determine which mechanism is best employed for proper implementation in a tribocatalysis reaction. In this review, research that compares the two mechanisms through their electronic structures as criteria for selection is discussed. The factors influencing the tribocatalysis performance as well as criteria for tribocatalysis mechanism selection are the surface state, energy band structure, and force. Finally, the proposed standard method to analyze the electronic state, relation between the catalyst and H 2 O (O 2 ), energy band bending theory, and charge preservation for tribocatalysis must be explored for tribocatalysis mechanism development. This review seeks to elicit meaningful discussion for distinguishing the unique characteristics of the two existing mechanisms and understanding the details of tribocatalysis mechanisms. The differences between the two mechanisms of tribocatalysis are compared, and the selection criteria for a specific reaction are given.
Author Li, Xinnan
Shi, Jing
Tong, Wangshu
An, Qi
Chen, Yunfan
Zhang, Yihe
AuthorAffiliation School of Materials Science and Technology
China University of Geosciences (Beijing)
AuthorAffiliation_xml – sequence: 0
  name: School of Materials Science and Technology
– sequence: 0
  name: China University of Geosciences (Beijing)
Author_xml – sequence: 1
  givenname: Xinnan
  surname: Li
  fullname: Li, Xinnan
– sequence: 2
  givenname: Wangshu
  surname: Tong
  fullname: Tong, Wangshu
– sequence: 3
  givenname: Jing
  surname: Shi
  fullname: Shi, Jing
– sequence: 4
  givenname: Yunfan
  surname: Chen
  fullname: Chen, Yunfan
– sequence: 5
  givenname: Yihe
  surname: Zhang
  fullname: Zhang, Yihe
– sequence: 6
  givenname: Qi
  surname: An
  fullname: An, Qi
BookMark eNptkMtLAzEQxoNUsNZevAsL3oTVyWN3Ez2V-oSCl3pesnlgyjZbk_TQ_75bVyqIc5kZ-H0zfN85GvnOG4QuMdxioOJOkySBYyjkCRoTKCCvmChHx5nzMzSNcQV9cYBSiDF6WAbXdEom2e6ii9naqE_pXVzH-8y0RqXQ-SwF6aM1IZNeD4tLrvMX6NTKNprpT5-gj-en5fw1X7y_vM1ni1wRjlPeVJYVBjBhjGjQ2lJBMWeFAjACdFPaqlKSKGoF1g0DTBUviOQMKrBEazpB18PdTei-tiametVtg-9f1qSqhBCs4GVP3QyUCl2Mwdh6E9xahl2NoT7kUz-S5ew7n1kPwx9YuSQPpnp7rv1fcjVIQlTH07-R0z1Db3K-
CitedBy_id crossref_primary_10_1016_j_ceramint_2024_01_327
crossref_primary_10_3390_nano15050386
crossref_primary_10_1016_j_checat_2024_100901
crossref_primary_10_3390_ma16165710
crossref_primary_10_1016_j_apsusc_2023_157960
crossref_primary_10_1016_j_pmatsci_2023_101161
crossref_primary_10_1021_acsanm_4c05043
crossref_primary_10_3390_lubricants12020045
crossref_primary_10_1016_j_nanoen_2025_110892
crossref_primary_10_1021_acs_jpcc_4c02798
crossref_primary_10_1016_j_ceramint_2024_05_217
crossref_primary_10_1016_j_jhazmat_2023_132147
crossref_primary_10_3390_coatings13101804
crossref_primary_10_1039_D4TA07831D
crossref_primary_10_1111_ijac_15015
crossref_primary_10_3390_molecules29163913
crossref_primary_10_1016_j_coche_2024_101043
crossref_primary_10_1016_j_nanoen_2024_109574
crossref_primary_10_1016_j_surfin_2024_105557
crossref_primary_10_1016_j_mseb_2025_118207
crossref_primary_10_1016_j_ceramint_2024_10_419
crossref_primary_10_1016_j_surfin_2025_106106
crossref_primary_10_1016_j_surfin_2024_104308
crossref_primary_10_1038_s41598_024_68588_0
crossref_primary_10_1016_j_apsusc_2024_161018
crossref_primary_10_1039_D4NR00868E
crossref_primary_10_1016_j_cej_2024_152272
crossref_primary_10_1016_j_jwpe_2024_105455
crossref_primary_10_1016_j_mssp_2025_109496
crossref_primary_10_1021_acs_iecr_3c04304
crossref_primary_10_1002_jccs_202400157
crossref_primary_10_1016_j_apsusc_2024_160172
crossref_primary_10_1016_j_ceramint_2023_12_171
crossref_primary_10_1016_j_progsolidstchem_2024_100497
crossref_primary_10_1039_D3TA04758J
crossref_primary_10_1016_j_jallcom_2024_175413
crossref_primary_10_1111_jace_19565
crossref_primary_10_3390_coatings14060773
crossref_primary_10_3390_lubricants11120514
crossref_primary_10_26599_JAC_2024_9220925
crossref_primary_10_1016_j_cej_2025_161443
crossref_primary_10_1016_j_nanoen_2024_109910
crossref_primary_10_3390_inorganics13020046
crossref_primary_10_1016_j_ceramint_2023_11_218
crossref_primary_10_1016_j_mseb_2023_116814
crossref_primary_10_1016_j_compositesb_2024_112060
crossref_primary_10_1016_j_nanoen_2023_109059
Cites_doi 10.1002/adma.201706790
10.1016/j.vacuum.2021.110646
10.1039/C8RA00234G
10.1038/s41467-019-09461-x
10.1016/j.seppur.2022.120814
10.1016/j.apcatb.2020.118660
10.1007/s11249-020-1278-0
10.1039/D1TA03895H
10.1016/j.jcis.2022.04.132
10.1080/05698190490278967
10.1126/sciadv.abj0349
10.1038/s41467-022-33086-2
10.1016/j.nanoen.2022.107346
10.1002/adfm.202209365
10.1016/j.tim.2019.07.004
10.1016/j.jenvman.2021.113595
10.1007/s11426-021-1089-6
10.1103/PhysRevB.97.235447
10.1016/j.jhazmat.2015.11.047
10.1002/anie.201706549
10.1016/j.ceramint.2021.12.164
10.1016/j.mattod.2019.05.016
10.1002/adma.201102752
10.1016/j.jenvman.2006.11.002
10.1039/C5CS00838G
10.1016/j.jhazmat.2019.121509
10.1016/j.jclepro.2020.121725
10.1016/j.mtphys.2021.100408
10.1016/j.chemosphere.2021.130170
10.1016/j.seppur.2022.122846
10.1016/j.jcis.2021.09.161
10.1038/s41467-020-15926-1
10.1016/j.susc.2006.06.032
10.1016/j.apcatb.2022.122196
10.1016/j.ceramint.2020.06.322
10.1016/j.nanoen.2022.107343
10.1016/j.nanoen.2022.106930
10.1016/j.jclepro.2022.131060
10.1039/D2NR05207E
10.1016/j.nanoen.2022.107983
10.1039/C6NR00972G
10.1002/adma.202102886
10.1038/s41467-021-27789-1
10.1021/acs.jpcc.8b03753
10.1016/j.chemosphere.2021.132797
10.1039/a804549f
10.1021/acs.langmuir.2c02093
10.1039/D0RA10807C
10.1021/acsami.1c23282
10.1002/adma.202001307
10.1016/j.nanoen.2020.105290
10.1016/j.jcis.2020.11.049
10.1243/13506501JET514
10.1016/j.apcatb.2022.121793
10.1063/1.4873522
10.1039/D0TC03519J
10.1002/aenm.202000137
10.1016/j.nanoen.2019.06.028
10.1002/adma.201803968
10.1016/j.jclepro.2017.12.279
10.1016/j.apcatb.2022.122007
10.7498/aps.70.20210210
10.1002/adma.201804368
10.1016/j.apcatb.2020.119340
10.1016/j.ceramint.2020.10.081
10.3390/nano12121981
10.1021/acsnano.1c07158
10.1016/j.nanoen.2015.01.035
10.1016/j.nanoen.2022.107519
10.1007/s40544-021-0505-5
10.1016/j.cej.2021.128986
10.1088/1361-6633/ac0a50
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d2ta08105a
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 4472
ExternalDocumentID 10_1039_D2TA08105A
d2ta08105a
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-b7f45e012442d0ddf3931845c00e90db6f77ca2c3f91db4013c852a84070f2dd3
ISSN 2050-7488
IngestDate Mon Jun 30 12:02:42 EDT 2025
Tue Jul 01 01:13:37 EDT 2025
Thu Apr 24 23:02:08 EDT 2025
Tue Dec 17 20:58:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-b7f45e012442d0ddf3931845c00e90db6f77ca2c3f91db4013c852a84070f2dd3
Notes Prof. Qi An is currently a professor at the School of Materials Sciences and Technology in China University of Geosciences (Beijing). She received her PhD degree from the Chemistry Department of Tsinghua University, China, in 2010 under the supervision of Prof. Dr Guangtao Li. After a two-year postdoctoral work under the joint supervision of Prof. Dr Jurriaan Huskens and Prof. Dr Pascal Jonkheijm at the MESA+ Institute for Nanotechnology, University of Twente, the Netherlands. She joined China University of Geosciences (Beijing) and later became Professor in the year 2019. Her current research interests include chemistry, nanotechnology, and functional materials.
Yihe Zhang is a professor at the School of Materials Sciences and Technology, China University of Geosciences (Beijing) and leads the Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, School of Materials Science and Technology, China University of Geosciences (Beijing). Zhang received his PhD from the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences in 2005, and he was previously a visiting scholar, a postdoctoral fellow, and a research fellow in the City University of Hong Kong and The Hong Kong Polytechnic University from 2003 to 2009. His current research focuses on nanomaterials and composites.
Xinnan Li is currently a master's student at the School of Materials Sciences and Technology in China University of Geosciences (Beijing). His research focuses on tribocatalysis.
Dr Wangshu Tong is currently an associate professor at the School of Materials Sciences and Technology in China University of Geosciences (Beijing). She received her PhD degree in 2016 from Materials Science and Technology, China University of Geosciences (Beijing). Her current research interests include piezocatalysis, tribocatalysis, flexible functional materials, and self-powered materials.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1407-4129
0000-0003-3050-2979
0000-0001-9298-5465
PQID 2779994586
PQPubID 2047523
PageCount 15
ParticipantIDs crossref_primary_10_1039_D2TA08105A
rsc_primary_d2ta08105a
proquest_journals_2779994586
crossref_citationtrail_10_1039_D2TA08105A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-27
PublicationDateYYYYMMDD 2023-02-27
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-27
  day: 27
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D2TA08105A/cit54/1) 2020; 279
Huang (D2TA08105A/cit1/1) 2017; 56
Tao (D2TA08105A/cit44/1) 2006; 600
Zou (D2TA08105A/cit47/1) 2019; 10
Luna (D2TA08105A/cit55/1) 2020; 267
Tang (D2TA08105A/cit21/1) 2021; 33
Li (D2TA08105A/cit49/1) 2016; 45
Jain (D2TA08105A/cit63/1) 2007; 85
He (D2TA08105A/cit14/1) 2021; 19
Wang (D2TA08105A/cit31/1) 2022; 291
Hochheim (D2TA08105A/cit43/1) 2018; 97
Kang (D2TA08105A/cit53/1) 2022; 14
Tang (D2TA08105A/cit77/1) 2022; 100
Li (D2TA08105A/cit68/1) 2021; 70
Wang (D2TA08105A/cit30/1) 2022; 13
Alabbad (D2TA08105A/cit19/1) 2021; 400–401
Wang (D2TA08105A/cit46/1) 2021; 84
Wu (D2TA08105A/cit60/1) 2016; 8
Yang (D2TA08105A/cit35/1) 2021; 416
Xu (D2TA08105A/cit16/1) 2022; 38
Ikeda (D2TA08105A/cit66/1) 1998
Hu (D2TA08105A/cit26/1) 2022; 607
Tong (D2TA08105A/cit32/1) 2012; 24
Lei (D2TA08105A/cit27/1) 2020; 78
Fan (D2TA08105A/cit6/1) 2021; 64
Zou (D2TA08105A/cit48/1) 2020; 11
Li (D2TA08105A/cit33/1) 2019; 63
Zhao (D2TA08105A/cit13/1) 2020; 46
Wu (D2TA08105A/cit28/1) 2021; 587
Sun (D2TA08105A/cit50/1) 2018; 122
Li (D2TA08105A/cit20/1) 2020; 32
Wang (D2TA08105A/cit3/1) 2022; 104
Yang (D2TA08105A/cit34/1) 2020; 8
Li (D2TA08105A/cit41/1) 2021; 7
Lin (D2TA08105A/cit59/1) 2014; 104
Wu (D2TA08105A/cit7/1) 2022; 622
Wang (D2TA08105A/cit52/1) 2021; 9
Fu (D2TA08105A/cit76/1) 2022; 195
Deshpande (D2TA08105A/cit74/1) 2018; 8
Zhang (D2TA08105A/cit17/1) 2023; 307
Wu (D2TA08105A/cit69/1) 2022; 12
Cui (D2TA08105A/cit18/1) 2022; 289
Fu (D2TA08105A/cit8/1) 2023; 323
Wang (D2TA08105A/cit23/1) 2021; 15
Hiratsuka (D2TA08105A/cit71/1) 2004; 47
Baskar (D2TA08105A/cit73/1) 2015; 37
Cheng (D2TA08105A/cit9/1) 2022; 317
Dong (D2TA08105A/cit12/1) 2022; 99
Wang (D2TA08105A/cit40/1) 2020; 10
Shan (D2TA08105A/cit65/1) 2016; 305
Zhang (D2TA08105A/cit58/1) 2023; 307
Xu (D2TA08105A/cit38/1) 2018; 30
Wan (D2TA08105A/cit4/1) 2022; 94
He (D2TA08105A/cit42/1) 2022; 98
Starr (D2TA08105A/cit5/1) 2015; 14
Sánchez (D2TA08105A/cit70/1) 2018; 178
Sun (D2TA08105A/cit37/1) 2021; 11
Xu (D2TA08105A/cit39/1) 2018; 30
Hu (D2TA08105A/cit25/1) 2021; 276
Sun (D2TA08105A/cit56/1) 2018; 30
Wang (D2TA08105A/cit45/1) 2019; 30
Ruan (D2TA08105A/cit24/1) 2022; 345
Wang (D2TA08105A/cit51/1) 2020; 385
Xu (D2TA08105A/cit15/1) 2018; 30
Chen (D2TA08105A/cit61/1) 2020; 268
Kajdas (D2TA08105A/cit72/1) 2009; 223
Deshpande (D2TA08105A/cit75/1) 2020; 68
Wu (D2TA08105A/cit11/1) 2022; 622
Fulaz (D2TA08105A/cit62/1) 2019; 27
Lu (D2TA08105A/cit22/1) 2022; 13
Li (D2TA08105A/cit67/1) 2021; 10
Yu (D2TA08105A/cit10/1) 2022; 32
Ren (D2TA08105A/cit2/1) 2023; 320
Cao (D2TA08105A/cit29/1) 2022; 48
Sun (D2TA08105A/cit36/1) 2021; 47
Lin (D2TA08105A/cit57/1) 2022; 14
Yi (D2TA08105A/cit64/1) 2021; 299
References_xml – issn: 2015
  issue: 37
  end-page: 449
  doi: Baskar Sriram Arumugam
– volume: 30
  start-page: e1706790
  year: 2018
  ident: D2TA08105A/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706790
– volume: 195
  start-page: 110646
  year: 2022
  ident: D2TA08105A/cit76/1
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2021.110646
– volume: 8
  start-page: 15056
  year: 2018
  ident: D2TA08105A/cit74/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA00234G
– volume: 10
  start-page: 1427
  year: 2019
  ident: D2TA08105A/cit47/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 37
  start-page: 449
  year: 2015
  ident: D2TA08105A/cit73/1
– volume: 289
  start-page: 120814
  year: 2022
  ident: D2TA08105A/cit18/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120814
– volume: 267
  start-page: 118660
  year: 2020
  ident: D2TA08105A/cit55/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.118660
– volume: 68
  start-page: 39
  year: 2020
  ident: D2TA08105A/cit75/1
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-020-1278-0
– volume: 9
  start-page: 17143
  year: 2021
  ident: D2TA08105A/cit52/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA03895H
– volume: 622
  start-page: 602
  year: 2022
  ident: D2TA08105A/cit7/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.04.132
– volume: 47
  start-page: 86
  year: 2004
  ident: D2TA08105A/cit71/1
  publication-title: Tribol. Trans.
  doi: 10.1080/05698190490278967
– volume: 7
  start-page: eabj0349
  issue: 39
  year: 2021
  ident: D2TA08105A/cit41/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abj0349
– volume: 13
  start-page: 5316
  year: 2022
  ident: D2TA08105A/cit22/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33086-2
– volume: 99
  start-page: 107346
  year: 2022
  ident: D2TA08105A/cit12/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107346
– volume: 32
  start-page: 2209365
  year: 2022
  ident: D2TA08105A/cit10/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209365
– volume: 27
  start-page: 915
  year: 2019
  ident: D2TA08105A/cit62/1
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2019.07.004
– volume: 299
  start-page: 113595
  year: 2021
  ident: D2TA08105A/cit64/1
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.113595
– volume: 64
  start-page: 1609
  issue: 10
  year: 2021
  ident: D2TA08105A/cit6/1
  publication-title: Sci. China: Chem.
  doi: 10.1007/s11426-021-1089-6
– volume: 97
  start-page: 235447
  year: 2018
  ident: D2TA08105A/cit43/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.235447
– volume: 305
  start-page: 156
  year: 2016
  ident: D2TA08105A/cit65/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.11.047
– volume: 56
  start-page: 11860
  year: 2017
  ident: D2TA08105A/cit1/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706549
– volume: 48
  start-page: 9651
  year: 2022
  ident: D2TA08105A/cit29/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.12.164
– volume: 30
  start-page: 34
  year: 2019
  ident: D2TA08105A/cit45/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.05.016
– volume: 24
  start-page: 229
  year: 2012
  ident: D2TA08105A/cit32/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102752
– volume: 85
  start-page: 956
  year: 2007
  ident: D2TA08105A/cit63/1
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2006.11.002
– volume: 45
  start-page: 2603
  year: 2016
  ident: D2TA08105A/cit49/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00838G
– volume: 385
  start-page: 121509
  year: 2020
  ident: D2TA08105A/cit51/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121509
– volume: 268
  start-page: 121725
  year: 2020
  ident: D2TA08105A/cit61/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.121725
– volume: 19
  start-page: 100408
  year: 2021
  ident: D2TA08105A/cit14/1
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2021.100408
– volume: 276
  start-page: 130170
  year: 2021
  ident: D2TA08105A/cit25/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130170
– volume: 307
  start-page: 122846
  year: 2023
  ident: D2TA08105A/cit58/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122846
– volume: 607
  start-page: 1908
  year: 2022
  ident: D2TA08105A/cit26/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.09.161
– volume: 11
  start-page: 2093
  year: 2020
  ident: D2TA08105A/cit48/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15926-1
– volume: 600
  start-page: 3419
  year: 2006
  ident: D2TA08105A/cit44/1
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2006.06.032
– volume: 323
  start-page: 122196
  year: 2023
  ident: D2TA08105A/cit8/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122196
– volume: 46
  start-page: 25293
  year: 2020
  ident: D2TA08105A/cit13/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.06.322
– volume: 98
  start-page: 107343
  year: 2022
  ident: D2TA08105A/cit42/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107343
– volume: 94
  start-page: 106930
  year: 2022
  ident: D2TA08105A/cit4/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106930
– volume: 345
  start-page: 131060
  year: 2022
  ident: D2TA08105A/cit24/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2022.131060
– volume: 14
  start-page: 16952
  year: 2022
  ident: D2TA08105A/cit57/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR05207E
– volume: 104
  start-page: 107983
  year: 2022
  ident: D2TA08105A/cit3/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107983
– volume: 30
  start-page: e1706790
  year: 2018
  ident: D2TA08105A/cit38/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706790
– volume: 8
  start-page: 7343
  year: 2016
  ident: D2TA08105A/cit60/1
  publication-title: Nanoscale
  doi: 10.1039/C6NR00972G
– volume: 33
  start-page: e2102886
  year: 2021
  ident: D2TA08105A/cit21/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102886
– volume: 13
  start-page: 130
  year: 2022
  ident: D2TA08105A/cit30/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27789-1
– volume: 122
  start-page: 15409
  year: 2018
  ident: D2TA08105A/cit50/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03753
– volume: 291
  start-page: 132797
  year: 2022
  ident: D2TA08105A/cit31/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132797
– start-page: 2185
  year: 1998
  ident: D2TA08105A/cit66/1
  publication-title: Chem. Commun.
  doi: 10.1039/a804549f
– volume: 38
  start-page: 14153
  year: 2022
  ident: D2TA08105A/cit16/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c02093
– volume: 11
  start-page: 13386
  year: 2021
  ident: D2TA08105A/cit37/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA10807C
– volume: 14
  start-page: 11375
  year: 2022
  ident: D2TA08105A/cit53/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23282
– volume: 32
  start-page: e2001307
  year: 2020
  ident: D2TA08105A/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001307
– volume: 78
  start-page: 105290
  year: 2020
  ident: D2TA08105A/cit27/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105290
– volume: 587
  start-page: 883
  year: 2021
  ident: D2TA08105A/cit28/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.11.049
– volume: 223
  start-page: 827
  year: 2009
  ident: D2TA08105A/cit72/1
  publication-title: Proc. Inst. Mech. Eng., Part J
  doi: 10.1243/13506501JET514
– volume: 317
  start-page: 121793
  year: 2022
  ident: D2TA08105A/cit9/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121793
– volume: 104
  start-page: 162907
  year: 2014
  ident: D2TA08105A/cit59/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4873522
– volume: 8
  start-page: 14845
  year: 2020
  ident: D2TA08105A/cit34/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC03519J
– volume: 10
  start-page: 2000137
  year: 2020
  ident: D2TA08105A/cit40/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000137
– volume: 63
  start-page: 103832
  year: 2019
  ident: D2TA08105A/cit33/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.028
– volume: 30
  start-page: e1803968
  year: 2018
  ident: D2TA08105A/cit39/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803968
– volume: 178
  start-page: 325
  year: 2018
  ident: D2TA08105A/cit70/1
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2017.12.279
– volume: 320
  start-page: 122007
  year: 2023
  ident: D2TA08105A/cit2/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122007
– volume: 622
  start-page: 602
  year: 2022
  ident: D2TA08105A/cit11/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.04.132
– volume: 70
  start-page: 214601
  year: 2021
  ident: D2TA08105A/cit68/1
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.70.20210210
– volume: 30
  start-page: e1804368
  year: 2018
  ident: D2TA08105A/cit56/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804368
– volume: 279
  start-page: 119340
  year: 2020
  ident: D2TA08105A/cit54/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119340
– volume: 47
  start-page: 5038
  year: 2021
  ident: D2TA08105A/cit36/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.10.081
– volume: 12
  start-page: 1981
  year: 2022
  ident: D2TA08105A/cit69/1
  publication-title: Nanomater.
  doi: 10.3390/nano12121981
– volume: 307
  start-page: 122846
  year: 2023
  ident: D2TA08105A/cit17/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122846
– volume: 15
  start-page: 18206
  year: 2021
  ident: D2TA08105A/cit23/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c07158
– volume: 400–401
  start-page: 132
  year: 2021
  ident: D2TA08105A/cit19/1
  publication-title: Catal. Today
– volume: 14
  start-page: 296
  year: 2015
  ident: D2TA08105A/cit5/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.035
– volume: 100
  start-page: 107519
  year: 2022
  ident: D2TA08105A/cit77/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107519
– volume: 10
  start-page: 1127
  year: 2021
  ident: D2TA08105A/cit67/1
  publication-title: Friction
  doi: 10.1007/s40544-021-0505-5
– volume: 416
  start-page: 128986
  year: 2021
  ident: D2TA08105A/cit35/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128986
– volume: 84
  start-page: 096502
  year: 2021
  ident: D2TA08105A/cit46/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ac0a50
SSID ssj0000800699
Score 2.596626
SecondaryResourceType review_article
Snippet Tribocatalysis is an emerging technology that can convert mechanical energy into chemical energy to degrade organic pollutants. The two widely used...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4458
SubjectTerms Bending theory
Catalysts
Chemical energy
Criteria
Electron states
Electron transfer
Energy bands
New technology
Title Tribocatalysis mechanisms: electron transfer and transition
URI https://www.proquest.com/docview/2779994586
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QIHxNdE2UCR4IKqDMcfiQOnCobGNDhlopyiOHZGJZZNbXrhb-CP5tmxnYzuMLhErRtbrd-vz--9vPd7CL1mVBnec0OGJ2XMiE7jvEkT8FKEZlmtieSmGvnL1_TknJ0u-GIy-T3KWtp08qj-dWtdyf9IFcZArqZK9h8kGxaFAXgN8oUrSBiud5PxaimvbADG8opcalPGu1xf2jQ33-DGdIEA21S7ZEnzZhmksW2WggXbf_VZ7XvBHc3mfVmP_8TShPdFgzbu7ouwTJ5tCNGf2TyBxbJtBwAWLgH4W9VerH9sQnjHdhaenfpj1KYb9Prw-6Zt3HwXmyDU1npngwojmGPDVtprWD0e6_vYBh2cjLCWjxQqY1yMDmfG-kY_W4ofU8Ob-pEUc7BxMA_UqQO79l-nXshFtE_haV4Oc3fQHgGnA7Tm3vy4-HwWYnbGuk5tS9LwwzzjLc3fDgvctHEGx2Vn5bvKWOuleIgeOPlG8x5Dj9BEt4_R_REZ5RP0_iaaogFN7yKPpchjKQK5RwOWnqLzT8fFh5PYtdaIayKSLpZZw7jGxrgjCivV0ByUO-M1xjrHpjQzy-qK1LTJEyWND14LTioB7j9uiFJ0H-22V61-hiJD6E8FSZQyT_E52LcySxupBRdC6IRO0Ru_GWXteOdN-5Of5fbOT9GrcO91z7Zy612Hfk9L929clyAx8HUALekU7cM-h_mKdJWdVz2_0-oH6N4A5UO02602-gUYnp186fDwBxmrgSk
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tribocatalysis+mechanisms%3A+electron+transfer+and+transition&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Li%2C+Xinnan&rft.au=Tong%2C+Wangshu&rft.au=Shi%2C+Jing&rft.au=Chen%2C+Yunfan&rft.date=2023-02-27&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=9&rft.spage=4458&rft.epage=4472&rft_id=info:doi/10.1039%2FD2TA08105A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2TA08105A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon