Engineering an iron atom-cluster nanostructure towards efficient and durable electrocatalysis

Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe si...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 15; pp. 822 - 8212
Main Authors Zheng, Feng-Yi, Li, Ruisong, Xi, Shibo, Ai, Fei, Wang, Jike
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 11.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe single atoms (SAs) and closely surrounding Fe atomic clusters (ACs) towards efficient ORR. The Fe SA /Fe AC -NC 900 delivers excellent ORR activity with half-wave potential ( E 1/2 ) in both acidic (0.80 V) and alkaline (0.90 V) media, as well as superior stability. Theoretical calculations further reveal that the synergistic effects of Fe-based SAs and ACs along with porous structures can decrease the overall energy barrier in the ORR process. Besides, the Fe SA /Fe AC -NC 900-based zinc-air battery manifests a high peak power density (214.3 mW cm −2 ) and a high-specific capacity (773.6 mA h g −1 ). This work provides a new perspective to highly optimize the synergistic interaction of SAs and ACs for boosting activity and energy storage. The synergistic effect of Fe-based single-atoms and clusters in porous structures has significantly boosted the oxygen reduction reaction (ORR) activity, selectivity, and stability, as well as the application in energy storage.
AbstractList Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe single atoms (SAs) and closely surrounding Fe atomic clusters (ACs) towards efficient ORR. The FeSA/FeAC-NC 900 delivers excellent ORR activity with half-wave potential (E1/2) in both acidic (0.80 V) and alkaline (0.90 V) media, as well as superior stability. Theoretical calculations further reveal that the synergistic effects of Fe-based SAs and ACs along with porous structures can decrease the overall energy barrier in the ORR process. Besides, the FeSA/FeAC-NC 900-based zinc–air battery manifests a high peak power density (214.3 mW cm−2) and a high-specific capacity (773.6 mA h g−1). This work provides a new perspective to highly optimize the synergistic interaction of SAs and ACs for boosting activity and energy storage.
Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe single atoms (SAs) and closely surrounding Fe atomic clusters (ACs) towards efficient ORR. The Fe SA /Fe AC -NC 900 delivers excellent ORR activity with half-wave potential ( E 1/2 ) in both acidic (0.80 V) and alkaline (0.90 V) media, as well as superior stability. Theoretical calculations further reveal that the synergistic effects of Fe-based SAs and ACs along with porous structures can decrease the overall energy barrier in the ORR process. Besides, the Fe SA /Fe AC -NC 900-based zinc-air battery manifests a high peak power density (214.3 mW cm −2 ) and a high-specific capacity (773.6 mA h g −1 ). This work provides a new perspective to highly optimize the synergistic interaction of SAs and ACs for boosting activity and energy storage. The synergistic effect of Fe-based single-atoms and clusters in porous structures has significantly boosted the oxygen reduction reaction (ORR) activity, selectivity, and stability, as well as the application in energy storage.
Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe single atoms (SAs) and closely surrounding Fe atomic clusters (ACs) towards efficient ORR. The Fe SA /Fe AC -NC 900 delivers excellent ORR activity with half-wave potential ( E 1/2 ) in both acidic (0.80 V) and alkaline (0.90 V) media, as well as superior stability. Theoretical calculations further reveal that the synergistic effects of Fe-based SAs and ACs along with porous structures can decrease the overall energy barrier in the ORR process. Besides, the Fe SA /Fe AC -NC 900-based zinc–air battery manifests a high peak power density (214.3 mW cm −2 ) and a high-specific capacity (773.6 mA h g −1 ). This work provides a new perspective to highly optimize the synergistic interaction of SAs and ACs for boosting activity and energy storage.
Author Wang, Jike
Li, Ruisong
Ai, Fei
Xi, Shibo
Zheng, Feng-Yi
AuthorAffiliation Hainan University
Institute of Chemical and Engineering Sciences
The Institute for Advanced Studies
Wuhan University
ASTAR (Agency for Science, Technology and Research) Singapore
State Key Laboratory of Marine Resource Utilization in South China Sea
School of Chemical Engineering and Technology
Hainan Provincial Key Lab of Fine Chemistry
AuthorAffiliation_xml – sequence: 0
  name: School of Chemical Engineering and Technology
– sequence: 0
  name: ASTAR (Agency for Science, Technology and Research) Singapore
– sequence: 0
  name: Institute of Chemical and Engineering Sciences
– sequence: 0
  name: Wuhan University
– sequence: 0
  name: Hainan Provincial Key Lab of Fine Chemistry
– sequence: 0
  name: The Institute for Advanced Studies
– sequence: 0
  name: State Key Laboratory of Marine Resource Utilization in South China Sea
– sequence: 0
  name: Hainan University
Author_xml – sequence: 1
  givenname: Feng-Yi
  surname: Zheng
  fullname: Zheng, Feng-Yi
– sequence: 2
  givenname: Ruisong
  surname: Li
  fullname: Li, Ruisong
– sequence: 3
  givenname: Shibo
  surname: Xi
  fullname: Xi, Shibo
– sequence: 4
  givenname: Fei
  surname: Ai
  fullname: Ai, Fei
– sequence: 5
  givenname: Jike
  surname: Wang
  fullname: Wang, Jike
BookMark eNptkUtLAzEUhYNUsGo37oWAO2E0mWSSybLW-oCCm7qUIa8pKdOkJhmk_97RSgXxbu5dfOdcOOcUjHzwFoALjG4wIuLWkCwRKkmpjsC4RBUqOBVsdLjr-gRMUlqjYWqEmBBj8Db3K-etjc6voPTQxeChzGFT6K5P2UbopQ8px17nPlqYw4eMJkHbtk476_MgMtD0UarOQttZnWPQMstul1w6B8et7JKd_Owz8PowX86eisXL4_Nsuih0WeNcKGwJRVgzVlaVRG3NiTFKtJoKTjlmklcam5pb1jLBlZGMIqUkUQxRrGxFzsDV3ncbw3tvU27WoY9-eNmUXNRCUE7RQF3vKR1DStG2zTa6jYy7BqPmK8Hmniyn3wneDTD6A2uXZXbB5yhd97_kci-JSR-sf0shn-5OgAk
CitedBy_id crossref_primary_10_1002_ange_202314414
crossref_primary_10_1002_ange_202415691
crossref_primary_10_1016_j_jcis_2024_11_131
crossref_primary_10_1016_j_jcis_2024_02_044
crossref_primary_10_1039_D4CC02697G
crossref_primary_10_1016_j_electacta_2024_143857
crossref_primary_10_1002_anie_202314414
crossref_primary_10_1002_aenm_202500617
crossref_primary_10_1002_smll_202405157
crossref_primary_10_1016_j_electacta_2024_145467
crossref_primary_10_1016_j_est_2024_112672
crossref_primary_10_1002_adma_202400523
crossref_primary_10_3390_molecules29040771
crossref_primary_10_1039_D3QM01172K
crossref_primary_10_1007_s40843_023_2776_5
crossref_primary_10_1021_acs_nanolett_3c04416
crossref_primary_10_1002_anie_202415691
crossref_primary_10_1016_j_chempr_2024_06_006
crossref_primary_10_1021_acscatal_4c06206
crossref_primary_10_1016_j_jcis_2024_03_097
crossref_primary_10_1016_j_nanoen_2023_109236
Cites_doi 10.1002/adfm.202103857
10.1126/science.1258307
10.1002/advs.202104237
10.1126/science.aam5852
10.1002/adma.202004900
10.1016/j.apcatb.2021.120785
10.1103/PhysRev.140.A1133
10.1038/s41578-021-00360-6
10.1016/0927-0256(96)00008-0
10.1038/s41560-022-01062-1
10.1038/s41929-020-00546-1
10.1103/PhysRevB.45.13244
10.1103/PhysRevB.59.1758
10.1038/s41563-021-01030-2
10.1039/D0TA09706C
10.1002/adma.202104718
10.1002/anie.202110243
10.1002/adma.202008151
10.1021/jacs.9b11852
10.1039/D0TA06987F
10.1016/j.apcatb.2019.118042
10.1039/C8EE03276A
10.1002/anie.202109215
10.1002/adma.202107103
10.1002/aenm.202101670
10.1002/adma.202202544
10.1103/PhysRevLett.77.3865
10.1021/jacs.7b01686
10.1039/D2EE00542E
10.1002/adma.201804504
10.1016/j.joule.2019.12.014
10.1126/science.abb9554
10.1016/j.apcatb.2022.121607
10.1002/ange.202116068
10.1002/aenm.202100219
10.1126/science.aad4998
10.1002/admi.201801623
10.1126/science.aau0630
10.1038/s41929-021-00650-w
10.1002/ange.202110243
10.1016/j.apcatb.2021.120790
10.1016/j.apcatb.2021.120281
10.1038/s41467-020-15853-1
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d3ta00232b
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 8212
ExternalDocumentID 10_1039_D3TA00232B
d3ta00232b
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-b1e3401c66255a0f873ddb9fc4974716a75c1d87e6f697bda640bba3b6041be53
ISSN 2050-7488
IngestDate Mon Jun 30 12:01:27 EDT 2025
Thu Apr 24 23:12:47 EDT 2025
Tue Jul 01 01:13:38 EDT 2025
Tue Dec 17 20:59:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-b1e3401c66255a0f873ddb9fc4974716a75c1d87e6f697bda640bba3b6041be53
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3ta00232b
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8521-3237
0000-0001-6711-4465
PQID 2798994740
PQPubID 2047523
PageCount 11
ParticipantIDs crossref_primary_10_1039_D3TA00232B
crossref_citationtrail_10_1039_D3TA00232B
rsc_primary_d3ta00232b
proquest_journals_2798994740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-11
PublicationDateYYYYMMDD 2023-04-11
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-11
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kresse (D3TA00232B/cit24/1) 1996; 6
Xia (D3TA00232B/cit36/1) 2022
Shao (D3TA00232B/cit16/1) 2022; 316
Yang (D3TA00232B/cit35/1) 2022; 301
Qiao (D3TA00232B/cit17/1) 2018; 30
Liu (D3TA00232B/cit19/1) 2022
Chen (D3TA00232B/cit14/1) 2021; 133
Peng (D3TA00232B/cit13/1) 2022; 34
Maiti (D3TA00232B/cit32/1) 2021; 11
Lin (D3TA00232B/cit40/1) 2021; 33
Mitchell (D3TA00232B/cit45/1) 2021; 6
Deng (D3TA00232B/cit4/1) 2020; 11
Yuan (D3TA00232B/cit15/1) 2020; 142
Xiao (D3TA00232B/cit26/1) 2020; 32
Zhang (D3TA00232B/cit20/1) 2022
Perdew (D3TA00232B/cit25/1) 1996; 77
Sun (D3TA00232B/cit34/1) 2017; 356
Wang (D3TA00232B/cit41/1) 2017; 139
Xu (D3TA00232B/cit29/1) 2019; 259
Zhao (D3TA00232B/cit47/1) 2022; 301
Kresse (D3TA00232B/cit22/1) 1999; 59
Han (D3TA00232B/cit37/1) 2022; 9
Jiao (D3TA00232B/cit8/1) 2021; 20
Chong (D3TA00232B/cit9/1) 2018; 362
Wang (D3TA00232B/cit28/1) 2021; 11
Wang (D3TA00232B/cit39/1) 2021; 33
Jin (D3TA00232B/cit6/1) 2021; 4
Kohn (D3TA00232B/cit21/1) 1965; 140
Perdew (D3TA00232B/cit23/1) 1992; 45
Jiang (D3TA00232B/cit33/1) 2019; 12
Jeong (D3TA00232B/cit30/1) 2021; 60
Wei (D3TA00232B/cit18/1) 2022; 9
Huang (D3TA00232B/cit46/1) 2022; 134
Matsagar (D3TA00232B/cit42/1) 2021; 9
Zhou (D3TA00232B/cit3/1) 2021; 295
Li (D3TA00232B/cit38/1) 2021; 31
Tian (D3TA00232B/cit7/1) 2020; 4
Li (D3TA00232B/cit43/1) 2019; 6
Xie (D3TA00232B/cit10/1) 2020; 3
Sun (D3TA00232B/cit5/1) 2021; 371
Liu (D3TA00232B/cit11/1) 2022; 7
Luo (D3TA00232B/cit2/1) 2014; 345
Seh (D3TA00232B/cit1/1) 2017; 355
Chen (D3TA00232B/cit12/1) 2022; 15
Al-Shahat Eissa (D3TA00232B/cit27/1) 2020; 8
Wang (D3TA00232B/cit31/1) 2021; 33
Chen (D3TA00232B/cit44/1) 2021; 60
References_xml – volume: 31
  start-page: 2103857
  year: 2021
  ident: D3TA00232B/cit38/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103857
– volume: 345
  start-page: 1593
  year: 2014
  ident: D3TA00232B/cit2/1
  publication-title: Science
  doi: 10.1126/science.1258307
– volume: 9
  start-page: 2104237
  year: 2022
  ident: D3TA00232B/cit37/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202104237
– volume: 356
  start-page: 599
  year: 2017
  ident: D3TA00232B/cit34/1
  publication-title: Science
  doi: 10.1126/science.aam5852
– volume: 32
  start-page: 2004900
  year: 2020
  ident: D3TA00232B/cit26/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202004900
– volume: 301
  start-page: 120785
  year: 2022
  ident: D3TA00232B/cit47/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120785
– volume: 140
  start-page: A1133
  year: 1965
  ident: D3TA00232B/cit21/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 6
  start-page: 969
  year: 2021
  ident: D3TA00232B/cit45/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00360-6
– volume: 6
  start-page: 15
  year: 1996
  ident: D3TA00232B/cit24/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 7
  start-page: 652
  year: 2022
  ident: D3TA00232B/cit11/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01062-1
– volume: 3
  start-page: 1044
  year: 2020
  ident: D3TA00232B/cit10/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00546-1
– volume: 45
  start-page: 13244
  year: 1992
  ident: D3TA00232B/cit23/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.45.13244
– volume: 9
  start-page: 1
  year: 2022
  ident: D3TA00232B/cit18/1
  publication-title: Chem
– volume: 59
  start-page: 1758
  year: 1999
  ident: D3TA00232B/cit22/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 20
  start-page: 1385
  year: 2021
  ident: D3TA00232B/cit8/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01030-2
– volume: 9
  start-page: 3703
  year: 2021
  ident: D3TA00232B/cit42/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA09706C
– volume: 33
  start-page: 2104718
  year: 2021
  ident: D3TA00232B/cit39/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104718
– volume: 60
  start-page: 25404
  year: 2021
  ident: D3TA00232B/cit44/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202110243
– volume: 33
  start-page: 2008151
  year: 2021
  ident: D3TA00232B/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008151
– volume: 142
  start-page: 2404
  year: 2020
  ident: D3TA00232B/cit15/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11852
– volume: 8
  start-page: 23436
  year: 2020
  ident: D3TA00232B/cit27/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06987F
– volume: 259
  start-page: 118042
  year: 2019
  ident: D3TA00232B/cit29/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118042
– volume: 12
  start-page: 322
  year: 2019
  ident: D3TA00232B/cit33/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03276A
– volume: 60
  start-page: 22478
  year: 2021
  ident: D3TA00232B/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202109215
– volume: 33
  start-page: 2107103
  year: 2021
  ident: D3TA00232B/cit40/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107103
– volume: 11
  start-page: 2101670
  year: 2021
  ident: D3TA00232B/cit32/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101670
– volume: 34
  start-page: 2202544
  year: 2022
  ident: D3TA00232B/cit13/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202544
– volume: 77
  start-page: 3865
  year: 1996
  ident: D3TA00232B/cit25/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 139
  start-page: 9419
  year: 2017
  ident: D3TA00232B/cit41/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01686
– start-page: e202214988
  year: 2022
  ident: D3TA00232B/cit19/1
  publication-title: Angew. Chem., Int. Ed.
– volume: 15
  start-page: 2619
  year: 2022
  ident: D3TA00232B/cit12/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00542E
– volume: 30
  start-page: 1804504
  year: 2018
  ident: D3TA00232B/cit17/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804504
– start-page: 2209726
  year: 2022
  ident: D3TA00232B/cit20/1
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 45
  year: 2020
  ident: D3TA00232B/cit7/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.12.014
– volume: 371
  start-page: 46
  year: 2021
  ident: D3TA00232B/cit5/1
  publication-title: Science
  doi: 10.1126/science.abb9554
– volume: 316
  start-page: 121607
  year: 2022
  ident: D3TA00232B/cit16/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121607
– volume: 134
  start-page: e202116068
  year: 2022
  ident: D3TA00232B/cit46/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202116068
– volume: 11
  start-page: 2100219
  year: 2021
  ident: D3TA00232B/cit28/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100219
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: D3TA00232B/cit1/1
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 6
  start-page: 1801623
  year: 2019
  ident: D3TA00232B/cit43/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201801623
– volume: 362
  start-page: 1276
  year: 2018
  ident: D3TA00232B/cit9/1
  publication-title: Science
  doi: 10.1126/science.aau0630
– volume: 4
  start-page: 615
  year: 2021
  ident: D3TA00232B/cit6/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00650-w
– volume: 133
  start-page: 25608
  year: 2021
  ident: D3TA00232B/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202110243
– volume: 301
  start-page: 120790
  year: 2022
  ident: D3TA00232B/cit35/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120790
– volume: 295
  start-page: 120281
  year: 2021
  ident: D3TA00232B/cit3/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120281
– volume: 11
  start-page: 1952
  year: 2020
  ident: D3TA00232B/cit4/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15853-1
– start-page: 2204474
  year: 2022
  ident: D3TA00232B/cit36/1
  publication-title: Adv. Mater.
SSID ssj0000800699
Score 2.496222
Snippet Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 822
SubjectTerms Atomic clusters
Catalysts
Chemical reduction
Energy storage
Iron
Metal air batteries
Oxygen reduction reactions
Specific capacity
Synergistic effect
Zinc-oxygen batteries
Title Engineering an iron atom-cluster nanostructure towards efficient and durable electrocatalysis
URI https://www.proquest.com/docview/2798994740
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdFaUGW4IIiF3t3ves9BkhUUCgSOFJAQpbXu6aRilO1zoU_xV9k9uFHoSDgYiUTv7LzeXdmPPMNQk9VhauUqiiklJYh5TgNC3DCwlhIarhBhLIUG29P2PGSvlklq9Ho-yBradvIo_LbtXUl_6NVkIFeTZXsP2i2OykI4DPoF7agYdj-lY4HZIITeE5NxdoEnOivYXm2NQQIk7qoN44h1rwnaGyK7KXJ4VjbOkj75kBtL2z5lG-IY-M5hqbkN2YrWLjur03Ktlfc0WTqyn7aXyyNuCsqtHH5tkjL5OF2IXwYyS_hR5tM8OlU-wXUpAZZ0futSXPqhCsr_HC6lpsOolY01-th4AIT8w4m7gMXLjzS5qba3BN_1_0UiKMkMmynbobWQ5nrg9vN4fEQq8lgRgYLBw9Xd-yytn9ZOSJiiFcVaQpjxmDZr49tTsDJu3y-XCzybLbKdtAuBr8Ej9HudJa9XnRhPWOAM9u1tLv3lhSXiOf96a-aQb1vs3PRNp6xBk52G93yKg6mDmZ30EjXd9HNAcTuoc-Db0FRBwZwwRBwwRXABR5wQQc4OEgFHnDBz4C7j5bzWfbyOPT9OcISp3ETylgTcM9LBj50UkRVyolSUlQlNU5qzAqelLFKuWYVE1yqgtFIyoJIFtFY6oTsoXG9qfUDFLC4EDwtKs4lplISmWJSYiaUjLjQUbSPnrXDlZeevN70UDnLbRIFEfkrkk3t0L7YR0-6fc8dZcu1ex22o577R_oyx1ykQlBO4YJ7oInu-F5xD_983AG60WP9EI1hxPUjMFsb-dhD5QcsN53x
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+an+iron+atom-cluster+nanostructure+towards+efficient+and+durable+electrocatalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Feng-Yi%2C+Zheng&rft.au=Li%2C+Ruisong&rft.au=Xi%2C+Shibo&rft.au=Ai%2C+Fei&rft.date=2023-04-11&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=15&rft.spage=8202&rft.epage=8212&rft_id=info:doi/10.1039%2Fd3ta00232b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon