Engineering an iron atom-cluster nanostructure towards efficient and durable electrocatalysis
Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe si...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 11; no. 15; pp. 822 - 8212 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
11.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe single atoms (SAs) and closely surrounding Fe atomic clusters (ACs) towards efficient ORR. The Fe
SA
/Fe
AC
-NC 900 delivers excellent ORR activity with half-wave potential (
E
1/2
) in both acidic (0.80 V) and alkaline (0.90 V) media, as well as superior stability. Theoretical calculations further reveal that the synergistic effects of Fe-based SAs and ACs along with porous structures can decrease the overall energy barrier in the ORR process. Besides, the Fe
SA
/Fe
AC
-NC 900-based zinc-air battery manifests a high peak power density (214.3 mW cm
−2
) and a high-specific capacity (773.6 mA h g
−1
). This work provides a new perspective to highly optimize the synergistic interaction of SAs and ACs for boosting activity and energy storage.
The synergistic effect of Fe-based single-atoms and clusters in porous structures has significantly boosted the oxygen reduction reaction (ORR) activity, selectivity, and stability, as well as the application in energy storage. |
---|---|
AbstractList | Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe single atoms (SAs) and closely surrounding Fe atomic clusters (ACs) towards efficient ORR. The FeSA/FeAC-NC 900 delivers excellent ORR activity with half-wave potential (E1/2) in both acidic (0.80 V) and alkaline (0.90 V) media, as well as superior stability. Theoretical calculations further reveal that the synergistic effects of Fe-based SAs and ACs along with porous structures can decrease the overall energy barrier in the ORR process. Besides, the FeSA/FeAC-NC 900-based zinc–air battery manifests a high peak power density (214.3 mW cm−2) and a high-specific capacity (773.6 mA h g−1). This work provides a new perspective to highly optimize the synergistic interaction of SAs and ACs for boosting activity and energy storage. Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe single atoms (SAs) and closely surrounding Fe atomic clusters (ACs) towards efficient ORR. The Fe SA /Fe AC -NC 900 delivers excellent ORR activity with half-wave potential ( E 1/2 ) in both acidic (0.80 V) and alkaline (0.90 V) media, as well as superior stability. Theoretical calculations further reveal that the synergistic effects of Fe-based SAs and ACs along with porous structures can decrease the overall energy barrier in the ORR process. Besides, the Fe SA /Fe AC -NC 900-based zinc-air battery manifests a high peak power density (214.3 mW cm −2 ) and a high-specific capacity (773.6 mA h g −1 ). This work provides a new perspective to highly optimize the synergistic interaction of SAs and ACs for boosting activity and energy storage. The synergistic effect of Fe-based single-atoms and clusters in porous structures has significantly boosted the oxygen reduction reaction (ORR) activity, selectivity, and stability, as well as the application in energy storage. Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms and clusters, but challenging for further improvement. Herein, a strategy is developed to optimize the catalyst with nitrogen-coordinated Fe single atoms (SAs) and closely surrounding Fe atomic clusters (ACs) towards efficient ORR. The Fe SA /Fe AC -NC 900 delivers excellent ORR activity with half-wave potential ( E 1/2 ) in both acidic (0.80 V) and alkaline (0.90 V) media, as well as superior stability. Theoretical calculations further reveal that the synergistic effects of Fe-based SAs and ACs along with porous structures can decrease the overall energy barrier in the ORR process. Besides, the Fe SA /Fe AC -NC 900-based zinc–air battery manifests a high peak power density (214.3 mW cm −2 ) and a high-specific capacity (773.6 mA h g −1 ). This work provides a new perspective to highly optimize the synergistic interaction of SAs and ACs for boosting activity and energy storage. |
Author | Wang, Jike Li, Ruisong Ai, Fei Xi, Shibo Zheng, Feng-Yi |
AuthorAffiliation | Hainan University Institute of Chemical and Engineering Sciences The Institute for Advanced Studies Wuhan University ASTAR (Agency for Science, Technology and Research) Singapore State Key Laboratory of Marine Resource Utilization in South China Sea School of Chemical Engineering and Technology Hainan Provincial Key Lab of Fine Chemistry |
AuthorAffiliation_xml | – sequence: 0 name: School of Chemical Engineering and Technology – sequence: 0 name: ASTAR (Agency for Science, Technology and Research) Singapore – sequence: 0 name: Institute of Chemical and Engineering Sciences – sequence: 0 name: Wuhan University – sequence: 0 name: Hainan Provincial Key Lab of Fine Chemistry – sequence: 0 name: The Institute for Advanced Studies – sequence: 0 name: State Key Laboratory of Marine Resource Utilization in South China Sea – sequence: 0 name: Hainan University |
Author_xml | – sequence: 1 givenname: Feng-Yi surname: Zheng fullname: Zheng, Feng-Yi – sequence: 2 givenname: Ruisong surname: Li fullname: Li, Ruisong – sequence: 3 givenname: Shibo surname: Xi fullname: Xi, Shibo – sequence: 4 givenname: Fei surname: Ai fullname: Ai, Fei – sequence: 5 givenname: Jike surname: Wang fullname: Wang, Jike |
BookMark | eNptkUtLAzEUhYNUsGo37oWAO2E0mWSSybLW-oCCm7qUIa8pKdOkJhmk_97RSgXxbu5dfOdcOOcUjHzwFoALjG4wIuLWkCwRKkmpjsC4RBUqOBVsdLjr-gRMUlqjYWqEmBBj8Db3K-etjc6voPTQxeChzGFT6K5P2UbopQ8px17nPlqYw4eMJkHbtk476_MgMtD0UarOQttZnWPQMstul1w6B8et7JKd_Owz8PowX86eisXL4_Nsuih0WeNcKGwJRVgzVlaVRG3NiTFKtJoKTjlmklcam5pb1jLBlZGMIqUkUQxRrGxFzsDV3ncbw3tvU27WoY9-eNmUXNRCUE7RQF3vKR1DStG2zTa6jYy7BqPmK8Hmniyn3wneDTD6A2uXZXbB5yhd97_kci-JSR-sf0shn-5OgAk |
CitedBy_id | crossref_primary_10_1002_ange_202314414 crossref_primary_10_1002_ange_202415691 crossref_primary_10_1016_j_jcis_2024_11_131 crossref_primary_10_1016_j_jcis_2024_02_044 crossref_primary_10_1039_D4CC02697G crossref_primary_10_1016_j_electacta_2024_143857 crossref_primary_10_1002_anie_202314414 crossref_primary_10_1002_aenm_202500617 crossref_primary_10_1002_smll_202405157 crossref_primary_10_1016_j_electacta_2024_145467 crossref_primary_10_1016_j_est_2024_112672 crossref_primary_10_1002_adma_202400523 crossref_primary_10_3390_molecules29040771 crossref_primary_10_1039_D3QM01172K crossref_primary_10_1007_s40843_023_2776_5 crossref_primary_10_1021_acs_nanolett_3c04416 crossref_primary_10_1002_anie_202415691 crossref_primary_10_1016_j_chempr_2024_06_006 crossref_primary_10_1021_acscatal_4c06206 crossref_primary_10_1016_j_jcis_2024_03_097 crossref_primary_10_1016_j_nanoen_2023_109236 |
Cites_doi | 10.1002/adfm.202103857 10.1126/science.1258307 10.1002/advs.202104237 10.1126/science.aam5852 10.1002/adma.202004900 10.1016/j.apcatb.2021.120785 10.1103/PhysRev.140.A1133 10.1038/s41578-021-00360-6 10.1016/0927-0256(96)00008-0 10.1038/s41560-022-01062-1 10.1038/s41929-020-00546-1 10.1103/PhysRevB.45.13244 10.1103/PhysRevB.59.1758 10.1038/s41563-021-01030-2 10.1039/D0TA09706C 10.1002/adma.202104718 10.1002/anie.202110243 10.1002/adma.202008151 10.1021/jacs.9b11852 10.1039/D0TA06987F 10.1016/j.apcatb.2019.118042 10.1039/C8EE03276A 10.1002/anie.202109215 10.1002/adma.202107103 10.1002/aenm.202101670 10.1002/adma.202202544 10.1103/PhysRevLett.77.3865 10.1021/jacs.7b01686 10.1039/D2EE00542E 10.1002/adma.201804504 10.1016/j.joule.2019.12.014 10.1126/science.abb9554 10.1016/j.apcatb.2022.121607 10.1002/ange.202116068 10.1002/aenm.202100219 10.1126/science.aad4998 10.1002/admi.201801623 10.1126/science.aau0630 10.1038/s41929-021-00650-w 10.1002/ange.202110243 10.1016/j.apcatb.2021.120790 10.1016/j.apcatb.2021.120281 10.1038/s41467-020-15853-1 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
DOI | 10.1039/d3ta00232b |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 8212 |
ExternalDocumentID | 10_1039_D3TA00232B d3ta00232b |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI |
ID | FETCH-LOGICAL-c281t-b1e3401c66255a0f873ddb9fc4974716a75c1d87e6f697bda640bba3b6041be53 |
ISSN | 2050-7488 |
IngestDate | Mon Jun 30 12:01:27 EDT 2025 Thu Apr 24 23:12:47 EDT 2025 Tue Jul 01 01:13:38 EDT 2025 Tue Dec 17 20:59:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-b1e3401c66255a0f873ddb9fc4974716a75c1d87e6f697bda640bba3b6041be53 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d3ta00232b ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8521-3237 0000-0001-6711-4465 |
PQID | 2798994740 |
PQPubID | 2047523 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1039_D3TA00232B crossref_citationtrail_10_1039_D3TA00232B rsc_primary_d3ta00232b proquest_journals_2798994740 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-11 |
PublicationDateYYYYMMDD | 2023-04-11 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Kresse (D3TA00232B/cit24/1) 1996; 6 Xia (D3TA00232B/cit36/1) 2022 Shao (D3TA00232B/cit16/1) 2022; 316 Yang (D3TA00232B/cit35/1) 2022; 301 Qiao (D3TA00232B/cit17/1) 2018; 30 Liu (D3TA00232B/cit19/1) 2022 Chen (D3TA00232B/cit14/1) 2021; 133 Peng (D3TA00232B/cit13/1) 2022; 34 Maiti (D3TA00232B/cit32/1) 2021; 11 Lin (D3TA00232B/cit40/1) 2021; 33 Mitchell (D3TA00232B/cit45/1) 2021; 6 Deng (D3TA00232B/cit4/1) 2020; 11 Yuan (D3TA00232B/cit15/1) 2020; 142 Xiao (D3TA00232B/cit26/1) 2020; 32 Zhang (D3TA00232B/cit20/1) 2022 Perdew (D3TA00232B/cit25/1) 1996; 77 Sun (D3TA00232B/cit34/1) 2017; 356 Wang (D3TA00232B/cit41/1) 2017; 139 Xu (D3TA00232B/cit29/1) 2019; 259 Zhao (D3TA00232B/cit47/1) 2022; 301 Kresse (D3TA00232B/cit22/1) 1999; 59 Han (D3TA00232B/cit37/1) 2022; 9 Jiao (D3TA00232B/cit8/1) 2021; 20 Chong (D3TA00232B/cit9/1) 2018; 362 Wang (D3TA00232B/cit28/1) 2021; 11 Wang (D3TA00232B/cit39/1) 2021; 33 Jin (D3TA00232B/cit6/1) 2021; 4 Kohn (D3TA00232B/cit21/1) 1965; 140 Perdew (D3TA00232B/cit23/1) 1992; 45 Jiang (D3TA00232B/cit33/1) 2019; 12 Jeong (D3TA00232B/cit30/1) 2021; 60 Wei (D3TA00232B/cit18/1) 2022; 9 Huang (D3TA00232B/cit46/1) 2022; 134 Matsagar (D3TA00232B/cit42/1) 2021; 9 Zhou (D3TA00232B/cit3/1) 2021; 295 Li (D3TA00232B/cit38/1) 2021; 31 Tian (D3TA00232B/cit7/1) 2020; 4 Li (D3TA00232B/cit43/1) 2019; 6 Xie (D3TA00232B/cit10/1) 2020; 3 Sun (D3TA00232B/cit5/1) 2021; 371 Liu (D3TA00232B/cit11/1) 2022; 7 Luo (D3TA00232B/cit2/1) 2014; 345 Seh (D3TA00232B/cit1/1) 2017; 355 Chen (D3TA00232B/cit12/1) 2022; 15 Al-Shahat Eissa (D3TA00232B/cit27/1) 2020; 8 Wang (D3TA00232B/cit31/1) 2021; 33 Chen (D3TA00232B/cit44/1) 2021; 60 |
References_xml | – volume: 31 start-page: 2103857 year: 2021 ident: D3TA00232B/cit38/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103857 – volume: 345 start-page: 1593 year: 2014 ident: D3TA00232B/cit2/1 publication-title: Science doi: 10.1126/science.1258307 – volume: 9 start-page: 2104237 year: 2022 ident: D3TA00232B/cit37/1 publication-title: Adv. Sci. doi: 10.1002/advs.202104237 – volume: 356 start-page: 599 year: 2017 ident: D3TA00232B/cit34/1 publication-title: Science doi: 10.1126/science.aam5852 – volume: 32 start-page: 2004900 year: 2020 ident: D3TA00232B/cit26/1 publication-title: Adv. Mater. doi: 10.1002/adma.202004900 – volume: 301 start-page: 120785 year: 2022 ident: D3TA00232B/cit47/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120785 – volume: 140 start-page: A1133 year: 1965 ident: D3TA00232B/cit21/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 6 start-page: 969 year: 2021 ident: D3TA00232B/cit45/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00360-6 – volume: 6 start-page: 15 year: 1996 ident: D3TA00232B/cit24/1 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 7 start-page: 652 year: 2022 ident: D3TA00232B/cit11/1 publication-title: Nat. Energy doi: 10.1038/s41560-022-01062-1 – volume: 3 start-page: 1044 year: 2020 ident: D3TA00232B/cit10/1 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00546-1 – volume: 45 start-page: 13244 year: 1992 ident: D3TA00232B/cit23/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.45.13244 – volume: 9 start-page: 1 year: 2022 ident: D3TA00232B/cit18/1 publication-title: Chem – volume: 59 start-page: 1758 year: 1999 ident: D3TA00232B/cit22/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 20 start-page: 1385 year: 2021 ident: D3TA00232B/cit8/1 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01030-2 – volume: 9 start-page: 3703 year: 2021 ident: D3TA00232B/cit42/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA09706C – volume: 33 start-page: 2104718 year: 2021 ident: D3TA00232B/cit39/1 publication-title: Adv. Mater. doi: 10.1002/adma.202104718 – volume: 60 start-page: 25404 year: 2021 ident: D3TA00232B/cit44/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202110243 – volume: 33 start-page: 2008151 year: 2021 ident: D3TA00232B/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008151 – volume: 142 start-page: 2404 year: 2020 ident: D3TA00232B/cit15/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11852 – volume: 8 start-page: 23436 year: 2020 ident: D3TA00232B/cit27/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06987F – volume: 259 start-page: 118042 year: 2019 ident: D3TA00232B/cit29/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118042 – volume: 12 start-page: 322 year: 2019 ident: D3TA00232B/cit33/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03276A – volume: 60 start-page: 22478 year: 2021 ident: D3TA00232B/cit30/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202109215 – volume: 33 start-page: 2107103 year: 2021 ident: D3TA00232B/cit40/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107103 – volume: 11 start-page: 2101670 year: 2021 ident: D3TA00232B/cit32/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101670 – volume: 34 start-page: 2202544 year: 2022 ident: D3TA00232B/cit13/1 publication-title: Adv. Mater. doi: 10.1002/adma.202202544 – volume: 77 start-page: 3865 year: 1996 ident: D3TA00232B/cit25/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 139 start-page: 9419 year: 2017 ident: D3TA00232B/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01686 – start-page: e202214988 year: 2022 ident: D3TA00232B/cit19/1 publication-title: Angew. Chem., Int. Ed. – volume: 15 start-page: 2619 year: 2022 ident: D3TA00232B/cit12/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00542E – volume: 30 start-page: 1804504 year: 2018 ident: D3TA00232B/cit17/1 publication-title: Adv. Mater. doi: 10.1002/adma.201804504 – start-page: 2209726 year: 2022 ident: D3TA00232B/cit20/1 publication-title: Adv. Funct. Mater. – volume: 4 start-page: 45 year: 2020 ident: D3TA00232B/cit7/1 publication-title: Joule doi: 10.1016/j.joule.2019.12.014 – volume: 371 start-page: 46 year: 2021 ident: D3TA00232B/cit5/1 publication-title: Science doi: 10.1126/science.abb9554 – volume: 316 start-page: 121607 year: 2022 ident: D3TA00232B/cit16/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121607 – volume: 134 start-page: e202116068 year: 2022 ident: D3TA00232B/cit46/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202116068 – volume: 11 start-page: 2100219 year: 2021 ident: D3TA00232B/cit28/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100219 – volume: 355 start-page: eaad4998 year: 2017 ident: D3TA00232B/cit1/1 publication-title: Science doi: 10.1126/science.aad4998 – volume: 6 start-page: 1801623 year: 2019 ident: D3TA00232B/cit43/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201801623 – volume: 362 start-page: 1276 year: 2018 ident: D3TA00232B/cit9/1 publication-title: Science doi: 10.1126/science.aau0630 – volume: 4 start-page: 615 year: 2021 ident: D3TA00232B/cit6/1 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00650-w – volume: 133 start-page: 25608 year: 2021 ident: D3TA00232B/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202110243 – volume: 301 start-page: 120790 year: 2022 ident: D3TA00232B/cit35/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120790 – volume: 295 start-page: 120281 year: 2021 ident: D3TA00232B/cit3/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120281 – volume: 11 start-page: 1952 year: 2020 ident: D3TA00232B/cit4/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15853-1 – start-page: 2204474 year: 2022 ident: D3TA00232B/cit36/1 publication-title: Adv. Mater. |
SSID | ssj0000800699 |
Score | 2.496222 |
Snippet | Iron-based catalysts have demonstrated fascinating activities in the oxygen reduction reaction (ORR), especially due to the synergistic effect between atoms... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 822 |
SubjectTerms | Atomic clusters Catalysts Chemical reduction Energy storage Iron Metal air batteries Oxygen reduction reactions Specific capacity Synergistic effect Zinc-oxygen batteries |
Title | Engineering an iron atom-cluster nanostructure towards efficient and durable electrocatalysis |
URI | https://www.proquest.com/docview/2798994740 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdFaUGW4IIiF3t3ves9BkhUUCgSOFJAQpbXu6aRilO1zoU_xV9k9uFHoSDgYiUTv7LzeXdmPPMNQk9VhauUqiiklJYh5TgNC3DCwlhIarhBhLIUG29P2PGSvlklq9Ho-yBradvIo_LbtXUl_6NVkIFeTZXsP2i2OykI4DPoF7agYdj-lY4HZIITeE5NxdoEnOivYXm2NQQIk7qoN44h1rwnaGyK7KXJ4VjbOkj75kBtL2z5lG-IY-M5hqbkN2YrWLjur03Ktlfc0WTqyn7aXyyNuCsqtHH5tkjL5OF2IXwYyS_hR5tM8OlU-wXUpAZZ0futSXPqhCsr_HC6lpsOolY01-th4AIT8w4m7gMXLjzS5qba3BN_1_0UiKMkMmynbobWQ5nrg9vN4fEQq8lgRgYLBw9Xd-yytn9ZOSJiiFcVaQpjxmDZr49tTsDJu3y-XCzybLbKdtAuBr8Ej9HudJa9XnRhPWOAM9u1tLv3lhSXiOf96a-aQb1vs3PRNp6xBk52G93yKg6mDmZ30EjXd9HNAcTuoc-Db0FRBwZwwRBwwRXABR5wQQc4OEgFHnDBz4C7j5bzWfbyOPT9OcISp3ETylgTcM9LBj50UkRVyolSUlQlNU5qzAqelLFKuWYVE1yqgtFIyoJIFtFY6oTsoXG9qfUDFLC4EDwtKs4lplISmWJSYiaUjLjQUbSPnrXDlZeevN70UDnLbRIFEfkrkk3t0L7YR0-6fc8dZcu1ex22o577R_oyx1ykQlBO4YJ7oInu-F5xD_983AG60WP9EI1hxPUjMFsb-dhD5QcsN53x |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+an+iron+atom-cluster+nanostructure+towards+efficient+and+durable+electrocatalysis&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Feng-Yi%2C+Zheng&rft.au=Li%2C+Ruisong&rft.au=Xi%2C+Shibo&rft.au=Ai%2C+Fei&rft.date=2023-04-11&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=11&rft.issue=15&rft.spage=8202&rft.epage=8212&rft_id=info:doi/10.1039%2Fd3ta00232b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |