Green materials with promising applications: cyclodextrin-based deep eutectic supramolecular polymers
Supramolecular polymers (SPs) based on macrocyclic host molecules as copolymer monomers are considered a promising class of advanced materials due to their satisfactory tunable properties and host-guest characteristics. Deep eutectic solvents (DESs) have been developed as green solvents to supersede...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 25; no. 11; pp. 418 - 4195 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
06.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Supramolecular polymers (SPs) based on macrocyclic host molecules as copolymer monomers are considered a promising class of advanced materials due to their satisfactory tunable properties and host-guest characteristics. Deep eutectic solvents (DESs) have been developed as green solvents to supersede conventional organic solvents and ionic liquids (ILs). By referring to the formation mechanism and macroscopic properties of DESs, the green strategy to develop solvent-free SPs by incorporating the concept of DESs is considered feasible, which enhances the performance of SPs and requires no solvents. Investigating the combination of DESs and macrocyclic host molecules (represented by cyclodextrins, CDs) to develop deep eutectic supramolecular polymers (DESPs) has been a novel subject in recent years. Researchers have prepared DESPs including supramolecular deep eutectic solvents (SUPRADESs) based on CDs/CD derivatives, supramolecular deep eutectic adhesives/gels, and supramolecular composite materials based on inorganic carrier-modified CDs formed with polymeric DESs (PDESs) and have conducted a preliminary exploration of their properties and applications. Based on the urgent need for further research on the combination of CDs as macrocyclic copolymer monomers and DESs, this review aims to summarize relevant definitions, properties, characterization, and applications of CD-based DESPs that have emerged from recent studies. It is hoped that it would promote the cross-development of green chemistry and supramolecular polymers.
Binary DESPs and ternary DESPs are used for the separation of target compounds and as efficient adhesive materials. |
---|---|
AbstractList | Supramolecular polymers (SPs) based on macrocyclic host molecules as copolymer monomers are considered a promising class of advanced materials due to their satisfactory tunable properties and host-guest characteristics. Deep eutectic solvents (DESs) have been developed as green solvents to supersede conventional organic solvents and ionic liquids (ILs). By referring to the formation mechanism and macroscopic properties of DESs, the green strategy to develop solvent-free SPs by incorporating the concept of DESs is considered feasible, which enhances the performance of SPs and requires no solvents. Investigating the combination of DESs and macrocyclic host molecules (represented by cyclodextrins, CDs) to develop deep eutectic supramolecular polymers (DESPs) has been a novel subject in recent years. Researchers have prepared DESPs including supramolecular deep eutectic solvents (SUPRADESs) based on CDs/CD derivatives, supramolecular deep eutectic adhesives/gels, and supramolecular composite materials based on inorganic carrier-modified CDs formed with polymeric DESs (PDESs) and have conducted a preliminary exploration of their properties and applications. Based on the urgent need for further research on the combination of CDs as macrocyclic copolymer monomers and DESs, this review aims to summarize relevant definitions, properties, characterization, and applications of CD-based DESPs that have emerged from recent studies. It is hoped that it would promote the cross-development of green chemistry and supramolecular polymers.
Binary DESPs and ternary DESPs are used for the separation of target compounds and as efficient adhesive materials. Supramolecular polymers (SPs) based on macrocyclic host molecules as copolymer monomers are considered a promising class of advanced materials due to their satisfactory tunable properties and host–guest characteristics. Deep eutectic solvents (DESs) have been developed as green solvents to supersede conventional organic solvents and ionic liquids (ILs). By referring to the formation mechanism and macroscopic properties of DESs, the green strategy to develop solvent-free SPs by incorporating the concept of DESs is considered feasible, which enhances the performance of SPs and requires no solvents. Investigating the combination of DESs and macrocyclic host molecules (represented by cyclodextrins, CDs) to develop deep eutectic supramolecular polymers (DESPs) has been a novel subject in recent years. Researchers have prepared DESPs including supramolecular deep eutectic solvents (SUPRADESs) based on CDs/CD derivatives, supramolecular deep eutectic adhesives/gels, and supramolecular composite materials based on inorganic carrier-modified CDs formed with polymeric DESs (PDESs) and have conducted a preliminary exploration of their properties and applications. Based on the urgent need for further research on the combination of CDs as macrocyclic copolymer monomers and DESs, this review aims to summarize relevant definitions, properties, characterization, and applications of CD-based DESPs that have emerged from recent studies. It is hoped that it would promote the cross-development of green chemistry and supramolecular polymers. |
Author | Wu, Yongsong Zhang, Jingyu Yao, Liping Li, Shiqi Li, Zuguang Qiu, Hongdeng Li, Shang |
AuthorAffiliation | College of Chemical Engineering Lanzhou Institute of Chemical Physics Chinese Academy of Sciences College of Materials Science and Engineering CAS Key laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province Zhejiang University of Technology |
AuthorAffiliation_xml | – sequence: 0 name: Lanzhou Institute of Chemical Physics – sequence: 0 name: CAS Key laboratory of Chemistry of Northwestern Plant Resources/Key Laboratory for Natural Medicine of Gansu Province – sequence: 0 name: College of Materials Science and Engineering – sequence: 0 name: College of Chemical Engineering – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Zhejiang University of Technology |
Author_xml | – sequence: 1 givenname: Jingyu surname: Zhang fullname: Zhang, Jingyu – sequence: 2 givenname: Liping surname: Yao fullname: Yao, Liping – sequence: 3 givenname: Shang surname: Li fullname: Li, Shang – sequence: 4 givenname: Shiqi surname: Li fullname: Li, Shiqi – sequence: 5 givenname: Yongsong surname: Wu fullname: Wu, Yongsong – sequence: 6 givenname: Zuguang surname: Li fullname: Li, Zuguang – sequence: 7 givenname: Hongdeng surname: Qiu fullname: Qiu, Hongdeng |
BookMark | eNptkc1LxDAQxYOs4O7qxbsQ8CZU89GP1NtSdRUWvOi5pOl0zdI2NUnR_e-Nu7KCeJqZ8HtvyJsZmvSmB4TOKbmmhOc3NV8rQmKRyyM0pXHKo5xlZHLoU3aCZs5tCKE0S-MpgqUF6HEnPVgtW4c_tH_DgzWddrpfYzkMrVbSa9O7W6y2qjU1fHqr-6iSDmpcAwwYRg_Ka4XdOFjZmRbU2EqLB9NuO7DuFB03wRzOfuocvT7cvxSP0ep5-VQsVpFigvpIArA8VUDqSiVcCBLnWZKkeUXCa0qapBYso1JUYap5BjImVcaBp7zhAjLK5-hy7xs-8D6C8-XGjLYPK0smWNBSRkSgrvaUssY5C005WN1Juy0pKb9jLO_4stjFuAgw-QMr7Xd5eCt1-7_kYi-xTh2sfy_DvwDAT4JR |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_3c01858 crossref_primary_10_1007_s10311_024_01795_3 crossref_primary_10_1016_j_ijbiomac_2024_131512 crossref_primary_10_1016_j_ccr_2024_215889 crossref_primary_10_1039_D4GC00532E crossref_primary_10_1016_j_jclepro_2025_145085 crossref_primary_10_1016_j_molliq_2024_125880 crossref_primary_10_1016_j_microc_2025_113313 crossref_primary_10_1016_j_mtnano_2023_100440 crossref_primary_10_1016_j_molstruc_2023_136596 crossref_primary_10_1002_rcm_9738 crossref_primary_10_1016_j_seppur_2024_129932 crossref_primary_10_1039_D4QO00447G crossref_primary_10_3390_pharmaceutics16081054 crossref_primary_10_1016_j_molliq_2024_124517 crossref_primary_10_1016_j_aca_2024_342714 crossref_primary_10_3390_ijms25147799 crossref_primary_10_1093_bulcsj_uoae117 crossref_primary_10_1002_slct_202400836 crossref_primary_10_1016_j_talanta_2024_127099 crossref_primary_10_1016_j_jpowsour_2024_234324 crossref_primary_10_1016_j_ijbiomac_2025_141108 crossref_primary_10_1016_j_microc_2024_110332 crossref_primary_10_1016_j_cclet_2025_110845 crossref_primary_10_1039_D4AY01885K crossref_primary_10_3390_molecules28248150 crossref_primary_10_34133_research_0466 crossref_primary_10_1039_D3GC04289H |
Cites_doi | 10.1016/j.chroma.2021.462588 10.1016/j.envpol.2019.04.079 10.1038/s41563-021-01122-z 10.1007/s10847-022-01161-2 10.1002/cphc.200500489 10.1039/D0GC01494J 10.1007/s10948-022-06213-9 10.1021/cr300162p 10.1016/j.foodchem.2023.135486 10.1016/j.cej.2022.136022 10.3390/molecules26133995 10.1039/b210714g 10.1039/D2GC02844A 10.1016/j.cclet.2022.06.029 10.1016/j.cogsc.2022.100630 10.1002/cssc.201701053 10.1021/acs.chemmater.2c00074 10.1021/acs.jpcb.0c00876 10.3390/ma13204486 10.1021/jacs.9b02677 10.1016/j.microc.2020.105914 10.1039/D0CC06657E 10.1021/sc500096j 10.1016/j.foodchem.2022.134816 10.1016/j.memsci.2022.120387 10.1039/D0GC02247K 10.1016/j.foodchem.2022.135338 10.1021/acssuschemeng.9b00315 10.1002/chem.202201082 10.1002/smll.202201737 10.1021/ma300966m 10.1021/acssuschemeng.9b00044 10.1038/s41467-022-29804-5 10.1007/s11356-021-16279-y 10.1016/j.carbpol.2020.116277 10.1021/acs.cgd.2c00919 10.1002/anie.201810600 10.1007/s10311-020-01156-w 10.1039/D1GC03662A 10.1021/ac400432p 10.1016/j.molliq.2020.113279 10.1016/j.scitotenv.2022.157256 10.1016/j.biopha.2022.113369 10.1016/j.progpolymsci.2020.101310 10.1039/D2GC00906D 10.1021/acs.analchem.0c00402 10.3390/agronomy7030054 10.1080/05704927608081704 10.1016/j.cej.2023.141333 10.1039/D1CC06978K 10.1007/s00604-021-04887-x 10.1016/j.cclet.2019.02.025 10.1021/acsomega.0c02760 10.1002/cnma.202200077 10.1016/j.seppur.2019.115720 10.1016/j.ultsonch.2022.106283 10.1016/j.catcom.2014.11.001 10.1021/acssuschemeng.7b04235 10.1039/D2GC03198A 10.1016/j.cej.2021.131239 10.1039/D0CC00672F 10.1016/j.molliq.2022.119285 10.1039/d0pp00103a 10.1021/ar500193z 10.1021/ar500109h 10.1016/j.jhazmat.2021.127987 10.1016/j.jddst.2022.103650 10.1039/C8CC03266A 10.1021/acs.jnatprod.7b00945 10.1002/cjoc.202200352 10.1039/C9GC00387H 10.3390/polym14183801 10.1016/j.seppur.2021.118422 10.1002/marc.201100728 10.1039/D2GC03558H 10.1021/acs.chemrev.0c00385 10.1016/j.cej.2021.131595 10.1126/sciadv.aao0900 10.1039/D2GC01292H 10.1002/anie.202004104 10.1039/C4GC00591K 10.1002/anie.202013474 10.1039/D0GC03077E 10.1021/ja048266j 10.1080/10610278.2017.1332731 10.1007/s13399-019-00521-2 10.1016/j.molliq.2019.04.001 10.1016/j.apsusc.2018.10.054 10.1016/j.foodchem.2022.132088 10.1002/anie.201806575 10.1039/c2cs35178a 10.1039/C5CC05625J 10.1039/C6GC90039A 10.1016/j.ijpharm.2020.119443 10.1016/j.saa.2014.03.106 10.1039/c3ra40629f 10.1016/j.electacta.2022.141674 10.1039/D1CE01350E 10.1039/D0CC00460J 10.1021/acssuschemeng.9b04526 10.1016/j.jhazmat.2022.128758 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 |
DOI | 10.1039/d3gc00489a |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 4195 |
ExternalDocumentID | 10_1039_D3GC00489A d3gc00489a |
GroupedDBID | -JG 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AALRI AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN ADVLN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P FDB GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7ST 7U6 8BQ 8FD C1K JG9 |
ID | FETCH-LOGICAL-c281t-aee296ce0dbc538804975569b096c60f5d8271a8b6c6d37ea40b73e363f38e713 |
ISSN | 1463-9262 |
IngestDate | Mon Jun 30 12:03:46 EDT 2025 Tue Jul 01 02:24:46 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Tue Dec 17 20:58:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-aee296ce0dbc538804975569b096c60f5d8271a8b6c6d37ea40b73e363f38e713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7158-8946 0000-0002-2702-9415 0000-0002-8006-9440 |
PQID | 2822711208 |
PQPubID | 2047490 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2822711208 crossref_primary_10_1039_D3GC00489A rsc_primary_d3gc00489a crossref_citationtrail_10_1039_D3GC00489A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-06 |
PublicationDateYYYYMMDD | 2023-06-06 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (D3GC00489A/cit26/1) 2023; 411 Dai (D3GC00489A/cit24/1) 2013; 85 Crini (D3GC00489A/cit43/1) 2021; 19 Moufawad (D3GC00489A/cit54/1) 2019; 7 Jovanović (D3GC00489A/cit84/1) 2023; 405 Yu (D3GC00489A/cit102/1) 2022; 18 Hosseini (D3GC00489A/cit48/1) 2022; 153 Karageorgou (D3GC00489A/cit59/1) 2018; 9 Abbott (D3GC00489A/cit16/1) 2006; 7 Sandilya (D3GC00489A/cit45/1) 2020; 5 Sumpter (D3GC00489A/cit3/1) 2022; 845 Lee (D3GC00489A/cit97/1) 2019; 467–468 Smith (D3GC00489A/cit20/1) 2014; 114 Ferreira (D3GC00489A/cit38/1) 2015; 63 Wang (D3GC00489A/cit47/1) 2022; 378 Nakhle (D3GC00489A/cit82/1) 2022; 102 Yang (D3GC00489A/cit32/1) 2021; 426 Janicka (D3GC00489A/cit36/1) 2022; 24 Florindo (D3GC00489A/cit67/1) 2018; 54 Florindo (D3GC00489A/cit15/1) 2018; 6 Panda (D3GC00489A/cit63/1) 2022; 29 Cai (D3GC00489A/cit93/1) 2023; 457 Wang (D3GC00489A/cit96/1) 2019; 227 Gibb (D3GC00489A/cit28/1) 2017; 29 Cecone (D3GC00489A/cit61/1) 2020; 22 Schlüter (D3GC00489A/cit46/1) 2020; 56 Jain (D3GC00489A/cit66/1) 2022; 8 Haraźna (D3GC00489A/cit88/1) 2019; 21 Zhang (D3GC00489A/cit41/1) 2019; 141 Farooq (D3GC00489A/cit57/1) 2021; 1658 Lemaoui (D3GC00489A/cit78/1) 2020; 22 Sereshti (D3GC00489A/cit55/1) 2021; 163 Jérôme (D3GC00489A/cit9/1) 2014; 6 Aboudzadeh (D3GC00489A/cit68/1) 2012; 33 He (D3GC00489A/cit5/1) 2021; 188 Liu (D3GC00489A/cit81/1) 2022; 22 Abbott (D3GC00489A/cit13/1) 2003 Aboudzadeh (D3GC00489A/cit70/1) 2013; 3 Liu (D3GC00489A/cit99/1) 2022; 432 Paiva (D3GC00489A/cit21/1) 2014; 2 Hessel (D3GC00489A/cit1/1) 2022; 24 Wu (D3GC00489A/cit40/1) 2020; 59 Qi (D3GC00489A/cit77/1) 2014; 47 Olles (D3GC00489A/cit90/1) 2019; 58 Shi (D3GC00489A/cit34/1) 2022; 58 Triolo (D3GC00489A/cit49/1) 2020; 124 Wu (D3GC00489A/cit64/1) 2020; 2 Aboudzadeh (D3GC00489A/cit69/1) 2012; 45 Dong (D3GC00489A/cit65/1) 2017; 3 Wu (D3GC00489A/cit6/1) 2022; 14 Georgantzi (D3GC00489A/cit58/1) 2017; 7 Shi (D3GC00489A/cit94/1) 2023; 92 Ghosh (D3GC00489A/cit53/1) 2022; 28 Zhang (D3GC00489A/cit14/1) 2012; 41 Jessop (D3GC00489A/cit27/1) 2016; 18 Alcántar (D3GC00489A/cit31/1) 2021; 60 Dugoni (D3GC00489A/cit56/1) 2019; 7 Li (D3GC00489A/cit44/1) 2023; 34 Liu (D3GC00489A/cit7/1) 2022; 425 Hooshmand (D3GC00489A/cit18/1) 2020; 22 Pazos (D3GC00489A/cit103/1) 2019; 58 Clemons (D3GC00489A/cit30/1) 2020; 111 Chakroun (D3GC00489A/cit60/1) 2021; 11 Ye (D3GC00489A/cit101/1) 2022; 40 Gulbalkan (D3GC00489A/cit4/1) 2022; 428 Achkar (D3GC00489A/cit10/1) 2020; 56 Kfoury (D3GC00489A/cit8/1) 2022; 36 Müller (D3GC00489A/cit87/1) 2020; 13 Afonso (D3GC00489A/cit73/1) 2023; 25 Kuchurov (D3GC00489A/cit2/1) 2017; 10 Zhang (D3GC00489A/cit50/1) 2022; 34 Abbott (D3GC00489A/cit11/1) 2004; 126 Alam (D3GC00489A/cit95/1) 2020; 92 Ślusarczyk (D3GC00489A/cit72/1) 2023; 25 Abri (D3GC00489A/cit89/1) 2019; 285 Chakraborty (D3GC00489A/cit79/1) 2020; 19 Khan (D3GC00489A/cit33/1) 2021; 26 Jiang (D3GC00489A/cit12/1) 2022; 24 Perry (D3GC00489A/cit25/1) 2023; 439 Qian (D3GC00489A/cit39/1) 2021; 264 Harada (D3GC00489A/cit75/1) 2014; 47 Liu (D3GC00489A/cit98/1) 2019; 250 Guan (D3GC00489A/cit62/1) 2022; 441 Sinawang (D3GC00489A/cit51/1) 2020; 56 Braga (D3GC00489A/cit80/1) 2022; 75 Russo (D3GC00489A/cit23/1) 2022; 649 Ferreira (D3GC00489A/cit71/1) 2022; 359 Ushakov (D3GC00489A/cit92/1) 2022; 24 Hua (D3GC00489A/cit22/1) 2022; 24 Srinivasan (D3GC00489A/cit86/1) 2014; 130 Holland-moritz (D3GC00489A/cit85/1) 1976; 11 Achkar (D3GC00489A/cit35/1) 2020; 584 Wang (D3GC00489A/cit76/1) 2015; 51 Liu (D3GC00489A/cit17/1) 2018; 81 Ali (D3GC00489A/cit37/1) 2019; 30 Pietro (D3GC00489A/cit42/1) 2019; 7 Hai (D3GC00489A/cit100/1) 2023; 410 Seidia (D3GC00489A/cit74/1) 2020; 242 Jain (D3GC00489A/cit91/1) 2022; 35 Hansen (D3GC00489A/cit19/1) 2021; 121 Pietro (D3GC00489A/cit83/1) 2020; 311 Chen (D3GC00489A/cit52/1) 2022; 21 Crippa (D3GC00489A/cit29/1) 2022; 13 |
References_xml | – volume: 1658 start-page: 462588 year: 2021 ident: D3GC00489A/cit57/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2021.462588 – volume: 250 start-page: 639 year: 2019 ident: D3GC00489A/cit98/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.04.079 – volume: 21 start-page: 253 year: 2022 ident: D3GC00489A/cit52/1 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01122-z – volume: 102 start-page: 831 year: 2022 ident: D3GC00489A/cit82/1 publication-title: J. Inclusion Phenom. Macrocyclic Chem. doi: 10.1007/s10847-022-01161-2 – volume: 7 start-page: 803 year: 2006 ident: D3GC00489A/cit16/1 publication-title: ChemPhysChem doi: 10.1002/cphc.200500489 – volume: 22 start-page: 3668 year: 2020 ident: D3GC00489A/cit18/1 publication-title: Green Chem. doi: 10.1039/D0GC01494J – volume: 35 start-page: 1033 year: 2022 ident: D3GC00489A/cit91/1 publication-title: J. Supercond. Novel Magn. doi: 10.1007/s10948-022-06213-9 – volume: 114 start-page: 11060 year: 2014 ident: D3GC00489A/cit20/1 publication-title: Chem. Rev. doi: 10.1021/cr300162p – volume: 411 start-page: 135486 year: 2023 ident: D3GC00489A/cit26/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2023.135486 – volume: 441 start-page: 136022 year: 2022 ident: D3GC00489A/cit62/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136022 – volume: 26 start-page: 3995 year: 2021 ident: D3GC00489A/cit33/1 publication-title: Molecules doi: 10.3390/molecules26133995 – start-page: 70 year: 2003 ident: D3GC00489A/cit13/1 publication-title: Chem. Commun. doi: 10.1039/b210714g – volume: 24 start-page: 8131 year: 2022 ident: D3GC00489A/cit22/1 publication-title: Green Chem. doi: 10.1039/D2GC02844A – volume: 9 start-page: 62 year: 2018 ident: D3GC00489A/cit59/1 publication-title: J. Appl. Res. Med. Aromat. Plants – volume: 34 start-page: 107606 year: 2023 ident: D3GC00489A/cit44/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.06.029 – volume: 36 start-page: 100630 year: 2022 ident: D3GC00489A/cit8/1 publication-title: Curr. Opin. Green Sustainable Chem. doi: 10.1016/j.cogsc.2022.100630 – volume: 10 start-page: 3914 year: 2017 ident: D3GC00489A/cit2/1 publication-title: ChemSusChem doi: 10.1002/cssc.201701053 – volume: 34 start-page: 3736 year: 2022 ident: D3GC00489A/cit50/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c00074 – volume: 124 start-page: 2652 year: 2020 ident: D3GC00489A/cit49/1 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c00876 – volume: 13 start-page: 4486 year: 2020 ident: D3GC00489A/cit87/1 publication-title: Materials doi: 10.3390/ma13204486 – volume: 141 start-page: 8058 year: 2019 ident: D3GC00489A/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02677 – volume: 163 start-page: 105914 year: 2021 ident: D3GC00489A/cit55/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105914 – volume: 56 start-page: 15434 year: 2020 ident: D3GC00489A/cit46/1 publication-title: Chem. Commun. doi: 10.1039/D0CC06657E – volume: 2 start-page: 1063 year: 2014 ident: D3GC00489A/cit21/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500096j – volume: 405 start-page: 134816 year: 2023 ident: D3GC00489A/cit84/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.134816 – volume: 649 start-page: 120387 year: 2022 ident: D3GC00489A/cit23/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.120387 – volume: 22 start-page: 5806 year: 2020 ident: D3GC00489A/cit61/1 publication-title: Green Chem. doi: 10.1039/D0GC02247K – volume: 410 start-page: 135338 year: 2023 ident: D3GC00489A/cit100/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.135338 – volume: 7 start-page: 7277 year: 2019 ident: D3GC00489A/cit56/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b00315 – volume: 28 start-page: e202201082 issue: 39 year: 2022 ident: D3GC00489A/cit53/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202201082 – volume: 18 start-page: 2201737 year: 2022 ident: D3GC00489A/cit102/1 publication-title: Small doi: 10.1002/smll.202201737 – volume: 45 start-page: 7599 year: 2012 ident: D3GC00489A/cit69/1 publication-title: Macromolecules doi: 10.1021/ma300966m – volume: 7 start-page: 6345 year: 2019 ident: D3GC00489A/cit54/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b00044 – volume: 13 start-page: 2162 year: 2022 ident: D3GC00489A/cit29/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29804-5 – volume: 29 start-page: 264 year: 2022 ident: D3GC00489A/cit63/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-16279-y – volume: 242 start-page: 116277 year: 2020 ident: D3GC00489A/cit74/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116277 – volume: 22 start-page: 7285 issue: 12 year: 2022 ident: D3GC00489A/cit81/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.2c00919 – volume: 58 start-page: 4173 year: 2019 ident: D3GC00489A/cit90/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201810600 – volume: 19 start-page: 2581 year: 2021 ident: D3GC00489A/cit43/1 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01156-w – volume: 24 start-page: 410 year: 2022 ident: D3GC00489A/cit1/1 publication-title: Green Chem. doi: 10.1039/D1GC03662A – volume: 85 start-page: 6272 year: 2013 ident: D3GC00489A/cit24/1 publication-title: Anal. Chem. doi: 10.1021/ac400432p – volume: 311 start-page: 113297 year: 2020 ident: D3GC00489A/cit83/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113279 – volume: 845 start-page: 157256 year: 2022 ident: D3GC00489A/cit3/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.157256 – volume: 153 start-page: 113369 year: 2022 ident: D3GC00489A/cit48/1 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2022.113369 – volume: 111 start-page: 101310 year: 2020 ident: D3GC00489A/cit30/1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2020.101310 – volume: 24 start-page: 5035 year: 2022 ident: D3GC00489A/cit36/1 publication-title: Green Chem. doi: 10.1039/D2GC00906D – volume: 92 start-page: 5532 year: 2020 ident: D3GC00489A/cit95/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00402 – volume: 7 start-page: 54 year: 2017 ident: D3GC00489A/cit58/1 publication-title: Agronomy doi: 10.3390/agronomy7030054 – volume: 11 start-page: 1 year: 1976 ident: D3GC00489A/cit85/1 publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704927608081704 – volume: 457 start-page: 141333 year: 2023 ident: D3GC00489A/cit93/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141333 – volume: 58 start-page: 3362 year: 2022 ident: D3GC00489A/cit34/1 publication-title: Chem. Commun. doi: 10.1039/D1CC06978K – volume: 188 start-page: 232 year: 2021 ident: D3GC00489A/cit5/1 publication-title: Microchim. Acta doi: 10.1007/s00604-021-04887-x – volume: 30 start-page: 871 year: 2019 ident: D3GC00489A/cit37/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.02.025 – volume: 5 start-page: 25655 year: 2020 ident: D3GC00489A/cit45/1 publication-title: ACS Omega doi: 10.1021/acsomega.0c02760 – volume: 8 start-page: e202200077 issue: 5 year: 2022 ident: D3GC00489A/cit66/1 publication-title: ChemNanoMat doi: 10.1002/cnma.202200077 – volume: 227 start-page: 115720 year: 2019 ident: D3GC00489A/cit96/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115720 – volume: 92 start-page: 106283 year: 2023 ident: D3GC00489A/cit94/1 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2022.106283 – volume: 63 start-page: 62 year: 2015 ident: D3GC00489A/cit38/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2014.11.001 – volume: 6 start-page: 3888 year: 2018 ident: D3GC00489A/cit15/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b04235 – volume: 25 start-page: 59 year: 2023 ident: D3GC00489A/cit73/1 publication-title: Green Chem. doi: 10.1039/D2GC03198A – volume: 428 start-page: 131239 year: 2022 ident: D3GC00489A/cit4/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131239 – volume: 56 start-page: 4381 year: 2020 ident: D3GC00489A/cit51/1 publication-title: Chem. Commun. doi: 10.1039/D0CC00672F – volume: 359 start-page: 119285 year: 2022 ident: D3GC00489A/cit71/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2022.119285 – volume: 19 start-page: 956 year: 2020 ident: D3GC00489A/cit79/1 publication-title: Photochem. Photobiol. Sci. doi: 10.1039/d0pp00103a – volume: 47 start-page: 2222 year: 2014 ident: D3GC00489A/cit77/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500193z – volume: 47 start-page: 2128 year: 2014 ident: D3GC00489A/cit75/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500109h – volume: 425 start-page: 127987 year: 2022 ident: D3GC00489A/cit7/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127987 – volume: 75 start-page: 103650 year: 2022 ident: D3GC00489A/cit80/1 publication-title: J. Drug Delivery Sci. Technol. doi: 10.1016/j.jddst.2022.103650 – volume: 54 start-page: 7527 year: 2018 ident: D3GC00489A/cit67/1 publication-title: Chem. Commun. doi: 10.1039/C8CC03266A – volume: 81 start-page: 679 year: 2018 ident: D3GC00489A/cit17/1 publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.7b00945 – volume: 40 start-page: 2568 year: 2022 ident: D3GC00489A/cit101/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202200352 – volume: 21 start-page: 3116 year: 2019 ident: D3GC00489A/cit88/1 publication-title: Green Chem. doi: 10.1039/C9GC00387H – volume: 14 start-page: 3801 year: 2022 ident: D3GC00489A/cit6/1 publication-title: Polymer doi: 10.3390/polym14183801 – volume: 264 start-page: 118422 year: 2021 ident: D3GC00489A/cit39/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118422 – volume: 33 start-page: 314 year: 2012 ident: D3GC00489A/cit68/1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201100728 – volume: 25 start-page: 522 year: 2023 ident: D3GC00489A/cit72/1 publication-title: Green Chem. doi: 10.1039/D2GC03558H – volume: 121 start-page: 1232 year: 2021 ident: D3GC00489A/cit19/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00385 – volume: 426 start-page: 131595 year: 2021 ident: D3GC00489A/cit32/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131595 – volume: 3 start-page: eaao0900 issue: 11 year: 2017 ident: D3GC00489A/cit65/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao0900 – volume: 24 start-page: 5904 year: 2022 ident: D3GC00489A/cit12/1 publication-title: Green Chem. doi: 10.1039/D2GC01292H – volume: 59 start-page: 11871 year: 2020 ident: D3GC00489A/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202004104 – volume: 6 start-page: 3876 year: 2014 ident: D3GC00489A/cit9/1 publication-title: Green Chem. doi: 10.1039/C4GC00591K – volume: 60 start-page: 5407 year: 2021 ident: D3GC00489A/cit31/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202013474 – volume: 22 start-page: 8511 year: 2020 ident: D3GC00489A/cit78/1 publication-title: Green Chem. doi: 10.1039/D0GC03077E – volume: 126 start-page: 9142 year: 2004 ident: D3GC00489A/cit11/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja048266j – volume: 29 start-page: 633 year: 2017 ident: D3GC00489A/cit28/1 publication-title: Supramol. Chem. doi: 10.1080/10610278.2017.1332731 – volume: 11 start-page: 1125 year: 2021 ident: D3GC00489A/cit60/1 publication-title: Biomass Convers. Biorefin. doi: 10.1007/s13399-019-00521-2 – volume: 285 start-page: 477 year: 2019 ident: D3GC00489A/cit89/1 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.04.001 – volume: 467–468 start-page: 178 year: 2019 ident: D3GC00489A/cit97/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.054 – volume: 378 start-page: 132088 year: 2022 ident: D3GC00489A/cit47/1 publication-title: Food Chem. doi: 10.1016/j.foodchem.2022.132088 – volume: 58 start-page: 403 year: 2019 ident: D3GC00489A/cit103/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201806575 – volume: 41 start-page: 7108 year: 2012 ident: D3GC00489A/cit14/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35178a – volume: 51 start-page: 16813 year: 2015 ident: D3GC00489A/cit76/1 publication-title: Chem. Commun. doi: 10.1039/C5CC05625J – volume: 18 start-page: 2577 year: 2016 ident: D3GC00489A/cit27/1 publication-title: Green Chem. doi: 10.1039/C6GC90039A – volume: 584 start-page: 119443 year: 2020 ident: D3GC00489A/cit35/1 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.119443 – volume: 130 start-page: 105 year: 2014 ident: D3GC00489A/cit86/1 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2014.03.106 – volume: 2 start-page: 1690 year: 2020 ident: D3GC00489A/cit64/1 publication-title: CCS Chem. – volume: 3 start-page: 8677 year: 2013 ident: D3GC00489A/cit70/1 publication-title: RSC Adv. doi: 10.1039/c3ra40629f – volume: 439 start-page: 141674 year: 2023 ident: D3GC00489A/cit25/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141674 – volume: 24 start-page: 639 year: 2022 ident: D3GC00489A/cit92/1 publication-title: CrystEngComm doi: 10.1039/D1CE01350E – volume: 56 start-page: 3385 year: 2020 ident: D3GC00489A/cit10/1 publication-title: Chem. Commun. doi: 10.1039/D0CC00460J – volume: 7 start-page: 17397 year: 2019 ident: D3GC00489A/cit42/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b04526 – volume: 432 start-page: 128758 year: 2022 ident: D3GC00489A/cit99/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128758 |
SSID | ssj0011764 |
Score | 2.5482967 |
SecondaryResourceType | review_article |
Snippet | Supramolecular polymers (SPs) based on macrocyclic host molecules as copolymer monomers are considered a promising class of advanced materials due to their... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 418 |
SubjectTerms | Composite materials Copolymers Cyclodextrin Cyclodextrins Eutectics Gels Green chemistry Ionic liquids Monomers Organic solvents Polymers Solvents Supramolecular polymers Sustainable materials |
Title | Green materials with promising applications: cyclodextrin-based deep eutectic supramolecular polymers |
URI | https://www.proquest.com/docview/2822711208 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QE4IAhEhBa0ElxQZLA9fnKrQmnVCg7Qit4i73pdRWrd4NiH9J_x75jd9a7dpIfCxUpWHtvJfJ7XzoOQ9yILMoZiDqVfKpwgc8FJgIHjC8gLLxR5qKrev32Pjs-Dk4vwYjD408taamr2kd_eW1fyP1zFNeSrrJL9B87ai-ICfkb-4hE5jMcH8VglzUzR5tQ300FVFInIO1V72Nuclp4_X_MrWcFeV4vSkeorn-ZCLKeikTsJCz5dNcsquzYDc-UAh_V1myFvDFh9S27GxKmIQlaqrhNdYNG0o5BB-csNgqrdL1CURzZGawPXJ_jk68YKo-xGRw6WRsXK5CGVgfBTUmwuLX4v-nEMH1S-VdQTvUEEjuxeqDVTf02PFjHyWhdKG1x6PekbeHoqVKvJA0_P79zSEi7IJqtf4GgmBVhq-6x2rbg3VKRNXFRb9pDOO9odsuujh-IPye7B6Y9fp3YLy4tV7zL7s0xvXEg_ddR3raHOxdmpzPwZZeecPSNPWweFHmi0PScDUY7Io5nh34g86bWwHJHxYVcpiWStqli9IEIhhVpwUglOasFJ--D8TLehSSU0qYEmvQtNaqD5kpx_PTybHTvtTA-H-4lXO5kQfhpx4eaMh7IRUZDGYRilDF1pHrlFmCd-7GUJw285xChKXBaDgAgKSETswZgMy5tSvCJUQIHmcwyh64sgYcjsAlVmkqZIxcLEn5AP5r-d87bhvZy7cjXf5uKEvLPnLnWbl3vP2jcsmrdv0mou87Bj9FrcZELGyDZLn8MlV3TZ6wddfY887t6LfTKsq0a8QYu3Zm9bbP0FxLquwg |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+materials+with+promising+applications%3A+cyclodextrin-based+deep+eutectic+supramolecular+polymers&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=Zhang%2C+Jingyu&rft.au=Yao%2C+Liping&rft.au=Li%2C+Shang&rft.au=Li%2C+Shiqi&rft.date=2023-06-06&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=25&rft.issue=11&rft.spage=4180&rft.epage=4195&rft_id=info:doi/10.1039%2FD3GC00489A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3GC00489A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |