Creation of a rigid host framework with optimum crystal structure and interface for zero-strain K-ion storage

Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional h...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 15; no. 4; pp. 1529 - 1535
Main Authors Zhu, Yun-Hai, Wang, Jia-Zhi, Zhang, Qi, Cui, Yang-Feng, Huang, Gang, Yan, Jun-Min, Zhang, Xin-Bo
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional host frameworks inevitably causes sluggish diffusion kinetics or even structural failure during repeated K-ion insertion/extraction. Herein, to counter the mismatched relationship between the large K ions and compact host structures, we propose a new host design strategy that combines crystal engineering with interface engineering. Taking layered KTiNbO 5 (KTNO) as an example, favorable and stable K-ion diffusion channels are constructed in the rigid host through topologically converting layered KTNO into tunnel-structured Ti 2 Nb 2 O 9 (TNO) that stores K ions in a zero-strain way. Additionally, to overcome the limitation of K-ion storage sites inside a crystal, TNO is then exfoliated into nanosheets and further in situ coated with a highly graphitized carbon layer (CTNO). The resultant heterogeneous interfaces compensate for the unsaturated coordination environment of the TNO external surface and consequently provide abundant K-ion storage sites. Benefiting from the tailored crystal structures and heterogeneous interfaces, CTNO exhibits high reversible capacity (∼205 mA h g −1 ), excellent rate capability (∼72% capacity retention at 8 A g −1 ), and remarkable lifespan (∼100% capacity retention across nearly 10 000 cycles). These findings demonstrate the great potential of CTNO as a KIB material and provide insights into host design for achieving fast K-ion storage toward practical applications. Crystal engineering coupled with in situ interface engineering built a robust host for large K-ion storage, enabling a long cycle life of nearly 10 000 cycles without obvious capacity degradation.
AbstractList Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional host frameworks inevitably causes sluggish diffusion kinetics or even structural failure during repeated K-ion insertion/extraction. Herein, to counter the mismatched relationship between the large K ions and compact host structures, we propose a new host design strategy that combines crystal engineering with interface engineering. Taking layered KTiNbO 5 (KTNO) as an example, favorable and stable K-ion diffusion channels are constructed in the rigid host through topologically converting layered KTNO into tunnel-structured Ti 2 Nb 2 O 9 (TNO) that stores K ions in a zero-strain way. Additionally, to overcome the limitation of K-ion storage sites inside a crystal, TNO is then exfoliated into nanosheets and further in situ coated with a highly graphitized carbon layer (CTNO). The resultant heterogeneous interfaces compensate for the unsaturated coordination environment of the TNO external surface and consequently provide abundant K-ion storage sites. Benefiting from the tailored crystal structures and heterogeneous interfaces, CTNO exhibits high reversible capacity (∼205 mA h g −1 ), excellent rate capability (∼72% capacity retention at 8 A g −1 ), and remarkable lifespan (∼100% capacity retention across nearly 10 000 cycles). These findings demonstrate the great potential of CTNO as a KIB material and provide insights into host design for achieving fast K-ion storage toward practical applications. Crystal engineering coupled with in situ interface engineering built a robust host for large K-ion storage, enabling a long cycle life of nearly 10 000 cycles without obvious capacity degradation.
Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional host frameworks inevitably causes sluggish diffusion kinetics or even structural failure during repeated K-ion insertion/extraction. Herein, to counter the mismatched relationship between the large K ions and compact host structures, we propose a new host design strategy that combines crystal engineering with interface engineering. Taking layered KTiNbO 5 (KTNO) as an example, favorable and stable K-ion diffusion channels are constructed in the rigid host through topologically converting layered KTNO into tunnel-structured Ti 2 Nb 2 O 9 (TNO) that stores K ions in a zero-strain way. Additionally, to overcome the limitation of K-ion storage sites inside a crystal, TNO is then exfoliated into nanosheets and further in situ coated with a highly graphitized carbon layer (CTNO). The resultant heterogeneous interfaces compensate for the unsaturated coordination environment of the TNO external surface and consequently provide abundant K-ion storage sites. Benefiting from the tailored crystal structures and heterogeneous interfaces, CTNO exhibits high reversible capacity (∼205 mA h g −1 ), excellent rate capability (∼72% capacity retention at 8 A g −1 ), and remarkable lifespan (∼100% capacity retention across nearly 10 000 cycles). These findings demonstrate the great potential of CTNO as a KIB material and provide insights into host design for achieving fast K-ion storage toward practical applications.
Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional host frameworks inevitably causes sluggish diffusion kinetics or even structural failure during repeated K-ion insertion/extraction. Herein, to counter the mismatched relationship between the large K ions and compact host structures, we propose a new host design strategy that combines crystal engineering with interface engineering. Taking layered KTiNbO5 (KTNO) as an example, favorable and stable K-ion diffusion channels are constructed in the rigid host through topologically converting layered KTNO into tunnel-structured Ti2Nb2O9 (TNO) that stores K ions in a zero-strain way. Additionally, to overcome the limitation of K-ion storage sites inside a crystal, TNO is then exfoliated into nanosheets and further in situ coated with a highly graphitized carbon layer (CTNO). The resultant heterogeneous interfaces compensate for the unsaturated coordination environment of the TNO external surface and consequently provide abundant K-ion storage sites. Benefiting from the tailored crystal structures and heterogeneous interfaces, CTNO exhibits high reversible capacity (∼205 mA h g−1), excellent rate capability (∼72% capacity retention at 8 A g−1), and remarkable lifespan (∼100% capacity retention across nearly 10 000 cycles). These findings demonstrate the great potential of CTNO as a KIB material and provide insights into host design for achieving fast K-ion storage toward practical applications.
Author Zhu, Yun-Hai
Zhang, Qi
Yan, Jun-Min
Zhang, Xin-Bo
Cui, Yang-Feng
Huang, Gang
Wang, Jia-Zhi
AuthorAffiliation Ministry of Education, Department of Materials Science and Engineering
University of Science and Technology of China
Jilin University
Changchun Institute of Applied Chemistry
Chinese Academy of Sciences
School of Materials Science and Engineering
State Key Laboratory of Rare Earth Resource Utilization
Key Laboratory of Automobile Materials (Jilin University)
Changchun University of Science and Technology
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Changchun University of Science and Technology
– name: Jilin University
– name: Ministry of Education, Department of Materials Science and Engineering
– name: Changchun Institute of Applied Chemistry
– name: Chinese Academy of Sciences
– name: School of Materials Science and Engineering
– name: State Key Laboratory of Rare Earth Resource Utilization
– name: Key Laboratory of Automobile Materials (Jilin University)
Author_xml – sequence: 1
  givenname: Yun-Hai
  surname: Zhu
  fullname: Zhu, Yun-Hai
– sequence: 2
  givenname: Jia-Zhi
  surname: Wang
  fullname: Wang, Jia-Zhi
– sequence: 3
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 4
  givenname: Yang-Feng
  surname: Cui
  fullname: Cui, Yang-Feng
– sequence: 5
  givenname: Gang
  surname: Huang
  fullname: Huang, Gang
– sequence: 6
  givenname: Jun-Min
  surname: Yan
  fullname: Yan, Jun-Min
– sequence: 7
  givenname: Xin-Bo
  surname: Zhang
  fullname: Zhang, Xin-Bo
BookMark eNptkc1LAzEQxYMo2FYv3oWAN2E1ySa7zVHq-oEFL3pe0mzSpnY3dZKl1L_e3dYPEE9vYH7zhnkzRIeNbwxCZ5RcUZLK64oa0ynj5gANaC54InKSHX7XmWTHaBjCkpCMkVwOUD0Bo6LzDfYWKwxu7iq88CFiC6o2Gw9veOPiAvt1dHVbYw3bENUKhwitji0YrJoKuyYasEobbD3gDwM-6QDlGvyU9OYhelBzc4KOrFoFc_qlI_R6V7xMHpLp8_3j5GaaaDamMVGG5IJwVVU5p7N0rJS1fJZTIZlNU8FZarVUknBJZ7KqhGBiLDLe9bPMkpykI3Sx912Df29NiOXSt9B0K0uWcclzyVhPXe4pDT4EMLZcg6sVbEtKyj7O8pYWxS7OooPJH1i7uEuuv3P1_8j5fgSC_rH-_VD6CbRNg4I
CitedBy_id crossref_primary_10_1002_anie_202414119
crossref_primary_10_1016_j_jallcom_2023_168911
crossref_primary_10_1002_eem2_12564
crossref_primary_10_1039_D3NA00142C
crossref_primary_10_1002_adfm_202300125
crossref_primary_10_1002_ange_202401253
crossref_primary_10_1016_j_apsusc_2024_159290
crossref_primary_10_1002_anie_202401253
crossref_primary_10_1002_aenm_202202851
crossref_primary_10_1039_D2TA09502E
crossref_primary_10_1002_adma_202204370
crossref_primary_10_1002_ange_202414119
crossref_primary_10_1002_adfm_202305329
crossref_primary_10_1039_D2EE02888C
crossref_primary_10_1002_smll_202308628
crossref_primary_10_1016_j_jpowsour_2023_233603
crossref_primary_10_1016_j_carbon_2025_120007
Cites_doi 10.1016/j.jelechem.2019.04.020
10.1039/D0EE01638A
10.1007/s12274-020-2689-9
10.1038/ncomms1563
10.1016/S0009-2614(03)01202-8
10.1002/aenm.201702384
10.1002/ange.202106857
10.1016/j.ssi.2010.09.006
10.1063/1.1329672
10.1002/aenm.201901146
10.1126/sciadv.1700509
10.1016/j.polymer.2007.11.050
10.1016/j.electacta.2011.02.119
10.1002/adma.201702268
10.1002/adma.202003741
10.1021/nl504336h
10.1038/nenergy.2017.110
10.1016/j.elecom.2006.03.012
10.1126/sciadv.aav7412
10.1039/C8SC04350G
10.1021/cm702978g
10.1021/cm981065s
10.1016/j.jpowsour.2017.12.077
10.1002/adfm.201802938
10.1002/anie.201913174
10.1107/S0365110X64001530
10.1039/D0EE02917C
10.1016/j.ensm.2020.09.010
10.1021/acsami.7b15407
10.1002/aenm.201602911
10.1021/ja034085q
10.1557/mrc.2017.107
10.1016/j.jpowsour.2008.09.045
10.1016/j.ensm.2019.07.043
10.1002/adfm.201909486
10.1021/acs.jpclett.1c00286
10.1002/aenm.201802175
10.1002/adma.201804378
10.1021/acs.chemrev.8b00252
10.1002/adfm.201602248
10.1021/acs.nanolett.5b01969
10.1126/science.1212741
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d1ee03924e
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1535
ExternalDocumentID 10_1039_D1EE03924E
d1ee03924e
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAXPP
ABASK
ABDVN
ABGFH
ABRYZ
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AFRAH
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CAG
CS3
EBS
ECGLT
EE0
EF-
GNO
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRZK
AGEGJ
AHGCF
AKBGW
AKMSF
APEMP
CITATION
GGIMP
H13
RAOCF
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c281t-ae07504add741b38aaff4b71592f335423fc9a90491b9dd5525856415966f0703
ISSN 1754-5692
IngestDate Mon Jun 30 12:02:26 EDT 2025
Tue Jul 01 01:45:51 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
Fri Oct 28 07:21:32 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-ae07504add741b38aaff4b71592f335423fc9a90491b9dd5525856415966f0703
Notes 10.1039/d1ee03924e
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8511-3810
0000-0002-2333-2740
0000-0002-5806-159X
PQID 2649479220
PQPubID 2047494
PageCount 7
ParticipantIDs proquest_journals_2649479220
crossref_primary_10_1039_D1EE03924E
rsc_primary_d1ee03924e
crossref_citationtrail_10_1039_D1EE03924E
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-13
PublicationDateYYYYMMDD 2022-04-13
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-13
  day: 13
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhang (D1EE03924E/cit10/1) 2019; 5
Schmidt (D1EE03924E/cit3/1) 2017; 2
Kim (D1EE03924E/cit41/1) 2018; 8
Shen (D1EE03924E/cit22/1) 2018; 30
Liu (D1EE03924E/cit12/1) 2020; 59
Tang (D1EE03924E/cit32/1) 2011; 56
Hwang (D1EE03924E/cit42/1) 2018; 28
Shao (D1EE03924E/cit38/1) 2018; 118
Lei (D1EE03924E/cit27/1) 2020; 24
Dees (D1EE03924E/cit30/1) 2009; 189
Xie (D1EE03924E/cit28/1) 2017; 29
Tian (D1EE03924E/cit14/1) 2018; 10
Wang (D1EE03924E/cit4/1) 2020; 13
Zhou (D1EE03924E/cit5/1) 2020; 33
Bommier (D1EE03924E/cit35/1) 2015; 15
Wessells (D1EE03924E/cit2/1) 2011; 2
Xu (D1EE03924E/cit37/1) 2020; 13
Koch (D1EE03924E/cit25/1) 2017; 7
Xu (D1EE03924E/cit34/1) 2018; 8
Cao (D1EE03924E/cit36/1) 2019; 841
Fang (D1EE03924E/cit23/1) 1999; 11
Li (D1EE03924E/cit24/1) 2015; 15
Henkelman (D1EE03924E/cit26/1) 2000; 113
Pramudita (D1EE03924E/cit40/1) 2017; 7
Dunn (D1EE03924E/cit1/1) 2011; 334
Wu (D1EE03924E/cit29/1) 2018; 378
Chausson (D1EE03924E/cit18/1) 2008; 49
Larsson (D1EE03924E/cit43/1) 2006; 8
Wadsley (D1EE03924E/cit16/1) 1964; 17
Zhao (D1EE03924E/cit33/1) 2016; 26
Dou (D1EE03924E/cit39/1) 2021; 133
Rajagopalan (D1EE03924E/cit7/1) 2020; 30
Min (D1EE03924E/cit8/1) 2021; 14
Park (D1EE03924E/cit20/1) 2017; 3
Chen (D1EE03924E/cit44/1) 2019; 9
Zhang (D1EE03924E/cit11/1) 2019; 10
Huang (D1EE03924E/cit15/1) 2021; 12
Liu (D1EE03924E/cit13/1) 2021; 34
Hwang (D1EE03924E/cit9/1) 2018; 28
Du (D1EE03924E/cit17/1) 2003; 377
Takagaki (D1EE03924E/cit19/1) 2003; 125
Xie (D1EE03924E/cit31/1) 2010; 181
Zhang (D1EE03924E/cit6/1) 2019; 5
Colin (D1EE03924E/cit21/1) 2008; 20
References_xml – volume: 841
  start-page: 51
  year: 2019
  ident: D1EE03924E/cit36/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2019.04.020
– volume: 13
  start-page: 4583
  year: 2020
  ident: D1EE03924E/cit4/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01638A
– volume: 13
  start-page: 752
  year: 2020
  ident: D1EE03924E/cit37/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2689-9
– volume: 2
  start-page: 550
  year: 2011
  ident: D1EE03924E/cit2/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1563
– volume: 377
  start-page: 445
  year: 2003
  ident: D1EE03924E/cit17/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)01202-8
– volume: 8
  start-page: 1702384
  year: 2018
  ident: D1EE03924E/cit41/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702384
– volume: 133
  start-page: 18978
  year: 2021
  ident: D1EE03924E/cit39/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202106857
– volume: 181
  start-page: 1611
  year: 2010
  ident: D1EE03924E/cit31/1
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2010.09.006
– volume: 113
  start-page: 9901
  year: 2000
  ident: D1EE03924E/cit26/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 9
  start-page: 1901146
  year: 2019
  ident: D1EE03924E/cit44/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901146
– volume: 3
  start-page: e1700509
  year: 2017
  ident: D1EE03924E/cit20/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700509
– volume: 49
  start-page: 488
  year: 2008
  ident: D1EE03924E/cit18/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2007.11.050
– volume: 56
  start-page: 4869
  year: 2011
  ident: D1EE03924E/cit32/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.02.119
– volume: 29
  start-page: 1702268
  year: 2017
  ident: D1EE03924E/cit28/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702268
– volume: 33
  start-page: 2003741
  year: 2020
  ident: D1EE03924E/cit5/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003741
– volume: 15
  start-page: 1691
  year: 2015
  ident: D1EE03924E/cit24/1
  publication-title: Nano Lett.
  doi: 10.1021/nl504336h
– volume: 2
  start-page: 17110
  year: 2017
  ident: D1EE03924E/cit3/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.110
– volume: 8
  start-page: 797
  year: 2006
  ident: D1EE03924E/cit43/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.03.012
– volume: 5
  start-page: 7412
  year: 2019
  ident: D1EE03924E/cit6/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7412
– volume: 10
  start-page: 2604
  year: 2019
  ident: D1EE03924E/cit11/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04350G
– volume: 20
  start-page: 1534
  year: 2008
  ident: D1EE03924E/cit21/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm702978g
– volume: 11
  start-page: 1519
  year: 1999
  ident: D1EE03924E/cit23/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm981065s
– volume: 5
  start-page: eaav7412
  year: 2019
  ident: D1EE03924E/cit10/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav7412
– volume: 378
  start-page: 460
  year: 2018
  ident: D1EE03924E/cit29/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.12.077
– volume: 28
  start-page: 1802938
  year: 2018
  ident: D1EE03924E/cit42/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802938
– volume: 59
  start-page: 3638
  year: 2020
  ident: D1EE03924E/cit12/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913174
– volume: 17
  start-page: 623
  year: 1964
  ident: D1EE03924E/cit16/1
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X64001530
– volume: 14
  start-page: 2186
  year: 2021
  ident: D1EE03924E/cit8/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02917C
– volume: 28
  start-page: 1802938
  year: 2018
  ident: D1EE03924E/cit9/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802938
– volume: 34
  start-page: 211
  year: 2021
  ident: D1EE03924E/cit13/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.09.010
– volume: 10
  start-page: 642
  year: 2018
  ident: D1EE03924E/cit14/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15407
– volume: 7
  start-page: 1602911
  year: 2017
  ident: D1EE03924E/cit40/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602911
– volume: 125
  start-page: 5479
  year: 2003
  ident: D1EE03924E/cit19/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja034085q
– volume: 7
  start-page: 819
  year: 2017
  ident: D1EE03924E/cit25/1
  publication-title: MRS Commun.
  doi: 10.1557/mrc.2017.107
– volume: 189
  start-page: 263
  year: 2009
  ident: D1EE03924E/cit30/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.09.045
– volume: 24
  start-page: 319
  year: 2020
  ident: D1EE03924E/cit27/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.07.043
– volume: 30
  start-page: 1909486
  year: 2020
  ident: D1EE03924E/cit7/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909486
– volume: 12
  start-page: 2721
  year: 2021
  ident: D1EE03924E/cit15/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00286
– volume: 8
  start-page: 1802175
  year: 2018
  ident: D1EE03924E/cit34/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802175
– volume: 30
  start-page: 1804378
  year: 2018
  ident: D1EE03924E/cit22/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804378
– volume: 118
  start-page: 9233
  year: 2018
  ident: D1EE03924E/cit38/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00252
– volume: 26
  start-page: 8103
  year: 2016
  ident: D1EE03924E/cit33/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602248
– volume: 15
  start-page: 5888
  year: 2015
  ident: D1EE03924E/cit35/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01969
– volume: 334
  start-page: 928
  year: 2011
  ident: D1EE03924E/cit1/1
  publication-title: Science
  doi: 10.1126/science.1212741
SSID ssj0062079
Score 2.4697034
Snippet Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1529
SubjectTerms Crystal structure
Diffusion
Diffusion layers
Energy storage
Flux density
Graphitization
Interfaces
Ion diffusion
Ion storage
Ions
Life span
Rechargeable batteries
Retention
Storage batteries
Structural failure
Title Creation of a rigid host framework with optimum crystal structure and interface for zero-strain K-ion storage
URI https://www.proquest.com/docview/2649479220
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUe0PiYKBvIErygyKOx87E8jpFRsTGE1GplL5Ht2FCJtqhtHtgfwt_L2YkTV6oQ8BJFVmxFd7_47py73yH0igkZcxFKIsJUkkjQknAwDCRMS8ZYqkViebY_XiejSfRhGk97vV9e1lK1ESfybmddyf9oFcZAr6ZK9h802y4KA3AP-oUraBiuf6Xjc8_j44FpcVUGpmoj0C7lqj5nXcK-MK_mgVz9XG_qApHK-3VgZKu5rOm_79RqSda2c0RwScziJn-Sb6cM5XXFoIGNVynn6is7sHypFmTEZ8Htt6pN1Zlxcms7CQc3vDGb_sH151k7GUYIyPtrTf058w8oILY1TIishVR9DOJyUG2OSdPJztt20zgicVJ3xTtR3lg6TLb26tjDZORtvOCGZJ4Rh3083mkghszwq5ahUnBHI9WZQffr__pTcTG5uirG-XS8h_YphB-0j_bPLt--v3E2PqFDy-LYvrcjvmXZm27tbVeni1_2Vq65jHVixgfoQRN94LMaSg9RTy0eofseJ-VjNHegwkuNObagwgZUuAUVNqDCDahwAyrcggoDqHALKgygwh6osAUVbkD1BE0u8vH5iDQ9OYikp-GGcGV8zAisIriigp1yrnUkUnCKqWYsBudcy4xnEHeGIivLOKYQjybgJUJYrY15OUT9xXKhniIcac1pKWEtAWF6kghFJaNlHIHJg8BDDtBrJ75CNoT15kW_FzZxgmXFuzDPrajzAXrZPvujpmnZ-dSx00LRfMbrAiKCLEozSocDdAiaaed3inz253lH6F6H-2PUB3Gr5-CqbsSLBje_ASIfmH4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creation+of+a+rigid+host+framework+with+optimum+crystal+structure+and+interface+for+zero-strain+K-ion+storage&rft.jtitle=Energy+%26+environmental+science&rft.au=Yun-Hai+Zhu&rft.au=Jia-Zhi%2C+Wang&rft.au=Zhang%2C+Qi&rft.au=Yang-Feng%2C+Cui&rft.date=2022-04-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=4&rft.spage=1529&rft.epage=1535&rft_id=info:doi/10.1039%2Fd1ee03924e&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon