Creation of a rigid host framework with optimum crystal structure and interface for zero-strain K-ion storage
Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional h...
Saved in:
Published in | Energy & environmental science Vol. 15; no. 4; pp. 1529 - 1535 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional host frameworks inevitably causes sluggish diffusion kinetics or even structural failure during repeated K-ion insertion/extraction. Herein, to counter the mismatched relationship between the large K ions and compact host structures, we propose a new host design strategy that combines crystal engineering with interface engineering. Taking layered KTiNbO
5
(KTNO) as an example, favorable and stable K-ion diffusion channels are constructed in the rigid host through topologically converting layered KTNO into tunnel-structured Ti
2
Nb
2
O
9
(TNO) that stores K ions in a zero-strain way. Additionally, to overcome the limitation of K-ion storage sites inside a crystal, TNO is then exfoliated into nanosheets and further
in situ
coated with a highly graphitized carbon layer (CTNO). The resultant heterogeneous interfaces compensate for the unsaturated coordination environment of the TNO external surface and consequently provide abundant K-ion storage sites. Benefiting from the tailored crystal structures and heterogeneous interfaces, CTNO exhibits high reversible capacity (∼205 mA h g
−1
), excellent rate capability (∼72% capacity retention at 8 A g
−1
), and remarkable lifespan (∼100% capacity retention across nearly 10 000 cycles). These findings demonstrate the great potential of CTNO as a KIB material and provide insights into host design for achieving fast K-ion storage toward practical applications.
Crystal engineering coupled with
in situ
interface engineering built a robust host for large K-ion storage, enabling a long cycle life of nearly 10 000 cycles without obvious capacity degradation. |
---|---|
AbstractList | Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional host frameworks inevitably causes sluggish diffusion kinetics or even structural failure during repeated K-ion insertion/extraction. Herein, to counter the mismatched relationship between the large K ions and compact host structures, we propose a new host design strategy that combines crystal engineering with interface engineering. Taking layered KTiNbO
5
(KTNO) as an example, favorable and stable K-ion diffusion channels are constructed in the rigid host through topologically converting layered KTNO into tunnel-structured Ti
2
Nb
2
O
9
(TNO) that stores K ions in a zero-strain way. Additionally, to overcome the limitation of K-ion storage sites inside a crystal, TNO is then exfoliated into nanosheets and further
in situ
coated with a highly graphitized carbon layer (CTNO). The resultant heterogeneous interfaces compensate for the unsaturated coordination environment of the TNO external surface and consequently provide abundant K-ion storage sites. Benefiting from the tailored crystal structures and heterogeneous interfaces, CTNO exhibits high reversible capacity (∼205 mA h g
−1
), excellent rate capability (∼72% capacity retention at 8 A g
−1
), and remarkable lifespan (∼100% capacity retention across nearly 10 000 cycles). These findings demonstrate the great potential of CTNO as a KIB material and provide insights into host design for achieving fast K-ion storage toward practical applications.
Crystal engineering coupled with
in situ
interface engineering built a robust host for large K-ion storage, enabling a long cycle life of nearly 10 000 cycles without obvious capacity degradation. Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional host frameworks inevitably causes sluggish diffusion kinetics or even structural failure during repeated K-ion insertion/extraction. Herein, to counter the mismatched relationship between the large K ions and compact host structures, we propose a new host design strategy that combines crystal engineering with interface engineering. Taking layered KTiNbO 5 (KTNO) as an example, favorable and stable K-ion diffusion channels are constructed in the rigid host through topologically converting layered KTNO into tunnel-structured Ti 2 Nb 2 O 9 (TNO) that stores K ions in a zero-strain way. Additionally, to overcome the limitation of K-ion storage sites inside a crystal, TNO is then exfoliated into nanosheets and further in situ coated with a highly graphitized carbon layer (CTNO). The resultant heterogeneous interfaces compensate for the unsaturated coordination environment of the TNO external surface and consequently provide abundant K-ion storage sites. Benefiting from the tailored crystal structures and heterogeneous interfaces, CTNO exhibits high reversible capacity (∼205 mA h g −1 ), excellent rate capability (∼72% capacity retention at 8 A g −1 ), and remarkable lifespan (∼100% capacity retention across nearly 10 000 cycles). These findings demonstrate the great potential of CTNO as a KIB material and provide insights into host design for achieving fast K-ion storage toward practical applications. Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high energy density. However, owing to the significant strain caused by the accommodation of K ions, the diffusion of large K ions into conventional host frameworks inevitably causes sluggish diffusion kinetics or even structural failure during repeated K-ion insertion/extraction. Herein, to counter the mismatched relationship between the large K ions and compact host structures, we propose a new host design strategy that combines crystal engineering with interface engineering. Taking layered KTiNbO5 (KTNO) as an example, favorable and stable K-ion diffusion channels are constructed in the rigid host through topologically converting layered KTNO into tunnel-structured Ti2Nb2O9 (TNO) that stores K ions in a zero-strain way. Additionally, to overcome the limitation of K-ion storage sites inside a crystal, TNO is then exfoliated into nanosheets and further in situ coated with a highly graphitized carbon layer (CTNO). The resultant heterogeneous interfaces compensate for the unsaturated coordination environment of the TNO external surface and consequently provide abundant K-ion storage sites. Benefiting from the tailored crystal structures and heterogeneous interfaces, CTNO exhibits high reversible capacity (∼205 mA h g−1), excellent rate capability (∼72% capacity retention at 8 A g−1), and remarkable lifespan (∼100% capacity retention across nearly 10 000 cycles). These findings demonstrate the great potential of CTNO as a KIB material and provide insights into host design for achieving fast K-ion storage toward practical applications. |
Author | Zhu, Yun-Hai Zhang, Qi Yan, Jun-Min Zhang, Xin-Bo Cui, Yang-Feng Huang, Gang Wang, Jia-Zhi |
AuthorAffiliation | Ministry of Education, Department of Materials Science and Engineering University of Science and Technology of China Jilin University Changchun Institute of Applied Chemistry Chinese Academy of Sciences School of Materials Science and Engineering State Key Laboratory of Rare Earth Resource Utilization Key Laboratory of Automobile Materials (Jilin University) Changchun University of Science and Technology |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Changchun University of Science and Technology – name: Jilin University – name: Ministry of Education, Department of Materials Science and Engineering – name: Changchun Institute of Applied Chemistry – name: Chinese Academy of Sciences – name: School of Materials Science and Engineering – name: State Key Laboratory of Rare Earth Resource Utilization – name: Key Laboratory of Automobile Materials (Jilin University) |
Author_xml | – sequence: 1 givenname: Yun-Hai surname: Zhu fullname: Zhu, Yun-Hai – sequence: 2 givenname: Jia-Zhi surname: Wang fullname: Wang, Jia-Zhi – sequence: 3 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 4 givenname: Yang-Feng surname: Cui fullname: Cui, Yang-Feng – sequence: 5 givenname: Gang surname: Huang fullname: Huang, Gang – sequence: 6 givenname: Jun-Min surname: Yan fullname: Yan, Jun-Min – sequence: 7 givenname: Xin-Bo surname: Zhang fullname: Zhang, Xin-Bo |
BookMark | eNptkc1LAzEQxYMo2FYv3oWAN2E1ySa7zVHq-oEFL3pe0mzSpnY3dZKl1L_e3dYPEE9vYH7zhnkzRIeNbwxCZ5RcUZLK64oa0ynj5gANaC54InKSHX7XmWTHaBjCkpCMkVwOUD0Bo6LzDfYWKwxu7iq88CFiC6o2Gw9veOPiAvt1dHVbYw3bENUKhwitji0YrJoKuyYasEobbD3gDwM-6QDlGvyU9OYhelBzc4KOrFoFc_qlI_R6V7xMHpLp8_3j5GaaaDamMVGG5IJwVVU5p7N0rJS1fJZTIZlNU8FZarVUknBJZ7KqhGBiLDLe9bPMkpykI3Sx912Df29NiOXSt9B0K0uWcclzyVhPXe4pDT4EMLZcg6sVbEtKyj7O8pYWxS7OooPJH1i7uEuuv3P1_8j5fgSC_rH-_VD6CbRNg4I |
CitedBy_id | crossref_primary_10_1002_anie_202414119 crossref_primary_10_1016_j_jallcom_2023_168911 crossref_primary_10_1002_eem2_12564 crossref_primary_10_1039_D3NA00142C crossref_primary_10_1002_adfm_202300125 crossref_primary_10_1002_ange_202401253 crossref_primary_10_1016_j_apsusc_2024_159290 crossref_primary_10_1002_anie_202401253 crossref_primary_10_1002_aenm_202202851 crossref_primary_10_1039_D2TA09502E crossref_primary_10_1002_adma_202204370 crossref_primary_10_1002_ange_202414119 crossref_primary_10_1002_adfm_202305329 crossref_primary_10_1039_D2EE02888C crossref_primary_10_1002_smll_202308628 crossref_primary_10_1016_j_jpowsour_2023_233603 crossref_primary_10_1016_j_carbon_2025_120007 |
Cites_doi | 10.1016/j.jelechem.2019.04.020 10.1039/D0EE01638A 10.1007/s12274-020-2689-9 10.1038/ncomms1563 10.1016/S0009-2614(03)01202-8 10.1002/aenm.201702384 10.1002/ange.202106857 10.1016/j.ssi.2010.09.006 10.1063/1.1329672 10.1002/aenm.201901146 10.1126/sciadv.1700509 10.1016/j.polymer.2007.11.050 10.1016/j.electacta.2011.02.119 10.1002/adma.201702268 10.1002/adma.202003741 10.1021/nl504336h 10.1038/nenergy.2017.110 10.1016/j.elecom.2006.03.012 10.1126/sciadv.aav7412 10.1039/C8SC04350G 10.1021/cm702978g 10.1021/cm981065s 10.1016/j.jpowsour.2017.12.077 10.1002/adfm.201802938 10.1002/anie.201913174 10.1107/S0365110X64001530 10.1039/D0EE02917C 10.1016/j.ensm.2020.09.010 10.1021/acsami.7b15407 10.1002/aenm.201602911 10.1021/ja034085q 10.1557/mrc.2017.107 10.1016/j.jpowsour.2008.09.045 10.1016/j.ensm.2019.07.043 10.1002/adfm.201909486 10.1021/acs.jpclett.1c00286 10.1002/aenm.201802175 10.1002/adma.201804378 10.1021/acs.chemrev.8b00252 10.1002/adfm.201602248 10.1021/acs.nanolett.5b01969 10.1126/science.1212741 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d1ee03924e |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1535 |
ExternalDocumentID | 10_1039_D1EE03924E d1ee03924e |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAGNR AAIWI AANOJ AAXPP ABASK ABDVN ABGFH ABRYZ ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AFRAH AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CAG CS3 EBS ECGLT EE0 EF- GNO HZ~ H~N J3I M4U N9A O-G O9- P2P RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRZK AGEGJ AHGCF AKBGW AKMSF APEMP CITATION GGIMP H13 RAOCF 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c281t-ae07504add741b38aaff4b71592f335423fc9a90491b9dd5525856415966f0703 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 12:02:26 EDT 2025 Tue Jul 01 01:45:51 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 Fri Oct 28 07:21:32 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-ae07504add741b38aaff4b71592f335423fc9a90491b9dd5525856415966f0703 |
Notes | 10.1039/d1ee03924e Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8511-3810 0000-0002-2333-2740 0000-0002-5806-159X |
PQID | 2649479220 |
PQPubID | 2047494 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2649479220 crossref_primary_10_1039_D1EE03924E rsc_primary_d1ee03924e crossref_citationtrail_10_1039_D1EE03924E |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-13 |
PublicationDateYYYYMMDD | 2022-04-13 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhang (D1EE03924E/cit10/1) 2019; 5 Schmidt (D1EE03924E/cit3/1) 2017; 2 Kim (D1EE03924E/cit41/1) 2018; 8 Shen (D1EE03924E/cit22/1) 2018; 30 Liu (D1EE03924E/cit12/1) 2020; 59 Tang (D1EE03924E/cit32/1) 2011; 56 Hwang (D1EE03924E/cit42/1) 2018; 28 Shao (D1EE03924E/cit38/1) 2018; 118 Lei (D1EE03924E/cit27/1) 2020; 24 Dees (D1EE03924E/cit30/1) 2009; 189 Xie (D1EE03924E/cit28/1) 2017; 29 Tian (D1EE03924E/cit14/1) 2018; 10 Wang (D1EE03924E/cit4/1) 2020; 13 Zhou (D1EE03924E/cit5/1) 2020; 33 Bommier (D1EE03924E/cit35/1) 2015; 15 Wessells (D1EE03924E/cit2/1) 2011; 2 Xu (D1EE03924E/cit37/1) 2020; 13 Koch (D1EE03924E/cit25/1) 2017; 7 Xu (D1EE03924E/cit34/1) 2018; 8 Cao (D1EE03924E/cit36/1) 2019; 841 Fang (D1EE03924E/cit23/1) 1999; 11 Li (D1EE03924E/cit24/1) 2015; 15 Henkelman (D1EE03924E/cit26/1) 2000; 113 Pramudita (D1EE03924E/cit40/1) 2017; 7 Dunn (D1EE03924E/cit1/1) 2011; 334 Wu (D1EE03924E/cit29/1) 2018; 378 Chausson (D1EE03924E/cit18/1) 2008; 49 Larsson (D1EE03924E/cit43/1) 2006; 8 Wadsley (D1EE03924E/cit16/1) 1964; 17 Zhao (D1EE03924E/cit33/1) 2016; 26 Dou (D1EE03924E/cit39/1) 2021; 133 Rajagopalan (D1EE03924E/cit7/1) 2020; 30 Min (D1EE03924E/cit8/1) 2021; 14 Park (D1EE03924E/cit20/1) 2017; 3 Chen (D1EE03924E/cit44/1) 2019; 9 Zhang (D1EE03924E/cit11/1) 2019; 10 Huang (D1EE03924E/cit15/1) 2021; 12 Liu (D1EE03924E/cit13/1) 2021; 34 Hwang (D1EE03924E/cit9/1) 2018; 28 Du (D1EE03924E/cit17/1) 2003; 377 Takagaki (D1EE03924E/cit19/1) 2003; 125 Xie (D1EE03924E/cit31/1) 2010; 181 Zhang (D1EE03924E/cit6/1) 2019; 5 Colin (D1EE03924E/cit21/1) 2008; 20 |
References_xml | – volume: 841 start-page: 51 year: 2019 ident: D1EE03924E/cit36/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.04.020 – volume: 13 start-page: 4583 year: 2020 ident: D1EE03924E/cit4/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01638A – volume: 13 start-page: 752 year: 2020 ident: D1EE03924E/cit37/1 publication-title: Nano Res. doi: 10.1007/s12274-020-2689-9 – volume: 2 start-page: 550 year: 2011 ident: D1EE03924E/cit2/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1563 – volume: 377 start-page: 445 year: 2003 ident: D1EE03924E/cit17/1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(03)01202-8 – volume: 8 start-page: 1702384 year: 2018 ident: D1EE03924E/cit41/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702384 – volume: 133 start-page: 18978 year: 2021 ident: D1EE03924E/cit39/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202106857 – volume: 181 start-page: 1611 year: 2010 ident: D1EE03924E/cit31/1 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2010.09.006 – volume: 113 start-page: 9901 year: 2000 ident: D1EE03924E/cit26/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 9 start-page: 1901146 year: 2019 ident: D1EE03924E/cit44/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901146 – volume: 3 start-page: e1700509 year: 2017 ident: D1EE03924E/cit20/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700509 – volume: 49 start-page: 488 year: 2008 ident: D1EE03924E/cit18/1 publication-title: Polymer doi: 10.1016/j.polymer.2007.11.050 – volume: 56 start-page: 4869 year: 2011 ident: D1EE03924E/cit32/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.02.119 – volume: 29 start-page: 1702268 year: 2017 ident: D1EE03924E/cit28/1 publication-title: Adv. Mater. doi: 10.1002/adma.201702268 – volume: 33 start-page: 2003741 year: 2020 ident: D1EE03924E/cit5/1 publication-title: Adv. Mater. doi: 10.1002/adma.202003741 – volume: 15 start-page: 1691 year: 2015 ident: D1EE03924E/cit24/1 publication-title: Nano Lett. doi: 10.1021/nl504336h – volume: 2 start-page: 17110 year: 2017 ident: D1EE03924E/cit3/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.110 – volume: 8 start-page: 797 year: 2006 ident: D1EE03924E/cit43/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.03.012 – volume: 5 start-page: 7412 year: 2019 ident: D1EE03924E/cit6/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7412 – volume: 10 start-page: 2604 year: 2019 ident: D1EE03924E/cit11/1 publication-title: Chem. Sci. doi: 10.1039/C8SC04350G – volume: 20 start-page: 1534 year: 2008 ident: D1EE03924E/cit21/1 publication-title: Chem. Mater. doi: 10.1021/cm702978g – volume: 11 start-page: 1519 year: 1999 ident: D1EE03924E/cit23/1 publication-title: Chem. Mater. doi: 10.1021/cm981065s – volume: 5 start-page: eaav7412 year: 2019 ident: D1EE03924E/cit10/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aav7412 – volume: 378 start-page: 460 year: 2018 ident: D1EE03924E/cit29/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.12.077 – volume: 28 start-page: 1802938 year: 2018 ident: D1EE03924E/cit42/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802938 – volume: 59 start-page: 3638 year: 2020 ident: D1EE03924E/cit12/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201913174 – volume: 17 start-page: 623 year: 1964 ident: D1EE03924E/cit16/1 publication-title: Acta Crystallogr. doi: 10.1107/S0365110X64001530 – volume: 14 start-page: 2186 year: 2021 ident: D1EE03924E/cit8/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02917C – volume: 28 start-page: 1802938 year: 2018 ident: D1EE03924E/cit9/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802938 – volume: 34 start-page: 211 year: 2021 ident: D1EE03924E/cit13/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.09.010 – volume: 10 start-page: 642 year: 2018 ident: D1EE03924E/cit14/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15407 – volume: 7 start-page: 1602911 year: 2017 ident: D1EE03924E/cit40/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602911 – volume: 125 start-page: 5479 year: 2003 ident: D1EE03924E/cit19/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja034085q – volume: 7 start-page: 819 year: 2017 ident: D1EE03924E/cit25/1 publication-title: MRS Commun. doi: 10.1557/mrc.2017.107 – volume: 189 start-page: 263 year: 2009 ident: D1EE03924E/cit30/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.09.045 – volume: 24 start-page: 319 year: 2020 ident: D1EE03924E/cit27/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.07.043 – volume: 30 start-page: 1909486 year: 2020 ident: D1EE03924E/cit7/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909486 – volume: 12 start-page: 2721 year: 2021 ident: D1EE03924E/cit15/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c00286 – volume: 8 start-page: 1802175 year: 2018 ident: D1EE03924E/cit34/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802175 – volume: 30 start-page: 1804378 year: 2018 ident: D1EE03924E/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.201804378 – volume: 118 start-page: 9233 year: 2018 ident: D1EE03924E/cit38/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00252 – volume: 26 start-page: 8103 year: 2016 ident: D1EE03924E/cit33/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602248 – volume: 15 start-page: 5888 year: 2015 ident: D1EE03924E/cit35/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01969 – volume: 334 start-page: 928 year: 2011 ident: D1EE03924E/cit1/1 publication-title: Science doi: 10.1126/science.1212741 |
SSID | ssj0062079 |
Score | 2.4697034 |
Snippet | Potassium-ion batteries (KIBs) have gained considerable attention for stationary energy storage devices due to their low cost, natural abundance, and high... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1529 |
SubjectTerms | Crystal structure Diffusion Diffusion layers Energy storage Flux density Graphitization Interfaces Ion diffusion Ion storage Ions Life span Rechargeable batteries Retention Storage batteries Structural failure |
Title | Creation of a rigid host framework with optimum crystal structure and interface for zero-strain K-ion storage |
URI | https://www.proquest.com/docview/2649479220 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUe0PiYKBvIErygyKOx87E8jpFRsTGE1GplL5Ht2FCJtqhtHtgfwt_L2YkTV6oQ8BJFVmxFd7_47py73yH0igkZcxFKIsJUkkjQknAwDCRMS8ZYqkViebY_XiejSfRhGk97vV9e1lK1ESfybmddyf9oFcZAr6ZK9h802y4KA3AP-oUraBiuf6Xjc8_j44FpcVUGpmoj0C7lqj5nXcK-MK_mgVz9XG_qApHK-3VgZKu5rOm_79RqSda2c0RwScziJn-Sb6cM5XXFoIGNVynn6is7sHypFmTEZ8Htt6pN1Zlxcms7CQc3vDGb_sH151k7GUYIyPtrTf058w8oILY1TIishVR9DOJyUG2OSdPJztt20zgicVJ3xTtR3lg6TLb26tjDZORtvOCGZJ4Rh3083mkghszwq5ahUnBHI9WZQffr__pTcTG5uirG-XS8h_YphB-0j_bPLt--v3E2PqFDy-LYvrcjvmXZm27tbVeni1_2Vq65jHVixgfoQRN94LMaSg9RTy0eofseJ-VjNHegwkuNObagwgZUuAUVNqDCDahwAyrcggoDqHALKgygwh6osAUVbkD1BE0u8vH5iDQ9OYikp-GGcGV8zAisIriigp1yrnUkUnCKqWYsBudcy4xnEHeGIivLOKYQjybgJUJYrY15OUT9xXKhniIcac1pKWEtAWF6kghFJaNlHIHJg8BDDtBrJ75CNoT15kW_FzZxgmXFuzDPrajzAXrZPvujpmnZ-dSx00LRfMbrAiKCLEozSocDdAiaaed3inz253lH6F6H-2PUB3Gr5-CqbsSLBje_ASIfmH4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creation+of+a+rigid+host+framework+with+optimum+crystal+structure+and+interface+for+zero-strain+K-ion+storage&rft.jtitle=Energy+%26+environmental+science&rft.au=Yun-Hai+Zhu&rft.au=Jia-Zhi%2C+Wang&rft.au=Zhang%2C+Qi&rft.au=Yang-Feng%2C+Cui&rft.date=2022-04-13&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=15&rft.issue=4&rft.spage=1529&rft.epage=1535&rft_id=info:doi/10.1039%2Fd1ee03924e&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |