Neural ordinary differential equations for predicting the temporal dynamics of a ZnO solid electrolyte FET
Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 13; no. 6; pp. 284 - 2813 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
06.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20-240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits.
A neural ordinary differential equation continuous time model of a ZnO/Ta
2
O
5
synaptic Solid Electrolyte FET, with a unique negative differential resistance in its gate current characteristics. |
---|---|
AbstractList | Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20-240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits.
A neural ordinary differential equation continuous time model of a ZnO/Ta
2
O
5
synaptic Solid Electrolyte FET, with a unique negative differential resistance in its gate current characteristics. Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20–240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits. |
Author | Manhas, Sanjeev Kumar De Souza, Maria Merlyne Gaurav, Ankit Song, Xiaoyao |
AuthorAffiliation | Indian Institute of Technology Roorkee University of Sheffield Department of Electronic and Communication Department of Electronic and Electrical Engineering |
AuthorAffiliation_xml | – name: Indian Institute of Technology Roorkee – name: Department of Electronic and Communication – name: Department of Electronic and Electrical Engineering – name: University of Sheffield |
Author_xml | – sequence: 1 givenname: Ankit surname: Gaurav fullname: Gaurav, Ankit – sequence: 2 givenname: Xiaoyao surname: Song fullname: Song, Xiaoyao – sequence: 3 givenname: Sanjeev Kumar surname: Manhas fullname: Manhas, Sanjeev Kumar – sequence: 4 givenname: Maria Merlyne surname: De Souza fullname: De Souza, Maria Merlyne |
BookMark | eNptUU1LAzEQDaJgrb14FwLehNVks5vdPUrrFxR7qRcvSzaZaMo22SbZQ_-921YqiHOZ4fHeG-bNBTq1zgJCV5TcUcKqe5VFSRivuDpBo5TkJClylp0e55Sfo0kIKzJUSXnJqxFavUHvRYudV8YKv8XKaA0ebDQDCpteRONswNp53HlQRkZjP3H8Ahxh3bmdVm2tWBsZsNNY4A-7wMG1RmFoQUbv2m0E_PS4vERnWrQBJj99jN4HdPqSzBfPr9OHeSLTksZEKF4BZLkqdFMVOleyVLLRvJJSNkUqaJ4TPoBQKkF0VWYVZLuzKeWFaMqMjdHNwbfzbtNDiPXK9d4OK2tGOStYSnMysG4PLOldCB503XmzHhKoKal3cdazbDndxzkbyOQPWZq4TyZ6Ydr_JdcHiQ_yaP37IfYNgWaE_w |
CitedBy_id | crossref_primary_10_1021_acsami_5c00092 |
Cites_doi | 10.48550/arXiv.2002.08071 10.1021/acsami.7b14768 10.1063/1.3041475 10.1063/1.2832660 10.1021/nl904092h 10.1016/j.jcp.2018.10.045 10.1149/1.2946430 10.1002/aisy.202000055 10.1109/ACCESS.2020.3047491 10.1063/1.1709421 10.1109/ACCESS.2022.3218333 10.48550/arXiv.2312.01657 10.1038/nmat2160 10.1109/JEDS.2017.2780275 10.1021/acs.iecr.3c01471 10.1109/LED.2022.3184316 10.1109/TED.2022.3152978 10.1021/acsami.8b08986 10.1109/TCSII.2018.2821268 10.3389/felec.2022.869013 10.1162/neco.1997.9.8.1735 10.1109/TED.2021.3068716 10.1021/nl500049g 10.1039/D1TC04201G 10.1038/s41928-018-0092-2 10.1021/acsami.6b13746 10.1109/TCAD.2022.3188961 10.1038/s41598-023-36799-6 10.1021/acsami.8b05093 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d4tc03696d |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 2813 |
ExternalDocumentID | 10_1039_D4TC03696D d4tc03696d |
GroupedDBID | 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS RPMJG RRC RSCEA SKA SKF SLH AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c281t-ad69ee45d7fb97f5dc8dcbf69cccb72a15506dc8e8da0f9849e4c0361167ab843 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 13:00:05 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Jul 01 04:30:23 EDT 2025 Tue May 27 12:02:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-ad69ee45d7fb97f5dc8dcbf69cccb72a15506dc8e8da0f9849e4c0361167ab843 |
Notes | https://doi.org/10.1039/d4tc03696d Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7804-7154 |
PQID | 3163732150 |
PQPubID | 2047521 |
PageCount | 1 |
ParticipantIDs | rsc_primary_d4tc03696d crossref_primary_10_1039_D4TC03696D crossref_citationtrail_10_1039_D4TC03696D proquest_journals_3163732150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-06 |
PublicationDateYYYYMMDD | 2025-02-06 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lin (D4TC03696D/cit16/1) 2022; 69 Sorourifar (D4TC03696D/cit24/1) 2023; 62 Zhou (D4TC03696D/cit8/1) 2022; 8 Chen (D4TC03696D/cit21/1) 2022; 13 Akhtar (D4TC03696D/cit22/1) Ielmini (D4TC03696D/cit6/1) 2018; 1 Chen (D4TC03696D/cit19/1) 2018 Pillai (D4TC03696D/cit7/1) 2017; 9 Gaurav (D4TC03696D/cit27/1) 2022; 3 Perkins (D4TC03696D/cit31/1) 2018; 10 Mott (D4TC03696D/cit32/1) 1940 Kim (D4TC03696D/cit12/1) 2008; 104 Wang (D4TC03696D/cit9/1) 2020; 2 Zhang (D4TC03696D/cit17/1) 2023; 42 Gaurav (D4TC03696D/cit28/1) 2023 Dupont (D4TC03696D/cit20/1) 2019; 32 Li (D4TC03696D/cit3/1) 2022; 43 Hutchins (D4TC03696D/cit15/1) 2022; 10 Jo (D4TC03696D/cit1/1) 2010; 10 Lederer (D4TC03696D/cit2/1) 2021; 68 Hochreiter (D4TC03696D/cit35/1) 1997; 9 Kim (D4TC03696D/cit33/1) 2013; 3 Frank (D4TC03696D/cit29/1) 1967; 38 Moon (D4TC03696D/cit11/1) 2018; 6 D4TC03696D/cit37/1 Lin (D4TC03696D/cit18/1) 2021; 9 Balakrishna Pillai (D4TC03696D/cit26/1) 2018; 10 Gao (D4TC03696D/cit5/1) 2021; 9 Kumar (D4TC03696D/cit25/1) 2018; 10 Liu (D4TC03696D/cit4/1) 2018; 65 Celano (D4TC03696D/cit10/1) 2014; 14 Sholokhov (D4TC03696D/cit23/1) 2023; 13 Liu (D4TC03696D/cit30/1) 2008; 7 Liu (D4TC03696D/cit14/1) 2008; 92 Massaroli (D4TC03696D/cit34/1) 2020 Lin (D4TC03696D/cit13/1) 2008; 155 Raissi (D4TC03696D/cit36/1) 2019; 378 |
References_xml | – doi: Akhtar – issn: 1940 publication-title: Electronic Processes in Ionic Crystals doi: Mott Gurney – year: 2020 ident: D4TC03696D/cit34/1 publication-title: Adv. Neural Inf. Process. Syst. doi: 10.48550/arXiv.2002.08071 – volume: 10 start-page: 9782 year: 2018 ident: D4TC03696D/cit26/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14768 – volume-title: Electronic Processes in Ionic Crystals year: 1940 ident: D4TC03696D/cit32/1 – volume: 104 start-page: 114115 year: 2008 ident: D4TC03696D/cit12/1 publication-title: J. Appl. Phys. doi: 10.1063/1.3041475 – volume: 92 start-page: 012117 year: 2008 ident: D4TC03696D/cit14/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2832660 – volume: 10 start-page: 1297 year: 2010 ident: D4TC03696D/cit1/1 publication-title: Nano Lett. doi: 10.1021/nl904092h – start-page: 6571 year: 2018 ident: D4TC03696D/cit19/1 publication-title: Adv. Neural Inf. Process. Syst. – volume: 378 start-page: 686 year: 2019 ident: D4TC03696D/cit36/1 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 155 start-page: H615 year: 2008 ident: D4TC03696D/cit13/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2946430 – volume: 2 start-page: 2000055 year: 2020 ident: D4TC03696D/cit9/1 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202000055 – volume: 9 start-page: 3126 year: 2021 ident: D4TC03696D/cit18/1 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3047491 – volume: 38 start-page: 832 year: 1967 ident: D4TC03696D/cit29/1 publication-title: J. Appl. Phys. doi: 10.1063/1.1709421 – volume: 10 start-page: 115513 year: 2022 ident: D4TC03696D/cit15/1 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3218333 – ident: D4TC03696D/cit22/1 doi: 10.48550/arXiv.2312.01657 – volume: 7 start-page: 505 year: 2008 ident: D4TC03696D/cit30/1 publication-title: Nat. Mater. doi: 10.1038/nmat2160 – volume: 6 start-page: 146 year: 2018 ident: D4TC03696D/cit11/1 publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2017.2780275 – volume: 62 start-page: 15563 year: 2023 ident: D4TC03696D/cit24/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c01471 – volume: 32 start-page: 1 year: 2019 ident: D4TC03696D/cit20/1 publication-title: Adv. Neural Inf. Process. Syst. – volume: 43 start-page: 1227 year: 2022 ident: D4TC03696D/cit3/1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2022.3184316 – ident: D4TC03696D/cit37/1 – start-page: 9 year: 2023 ident: D4TC03696D/cit28/1 publication-title: 7th IEEE Electron Devices Technol. Manuf. – volume: 3 start-page: 1 year: 2013 ident: D4TC03696D/cit33/1 publication-title: Sci. Rep. – volume: 69 start-page: 1835 year: 2022 ident: D4TC03696D/cit16/1 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2022.3152978 – volume: 10 start-page: 36082 year: 2018 ident: D4TC03696D/cit31/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b08986 – volume: 65 start-page: 617 year: 2018 ident: D4TC03696D/cit4/1 publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/TCSII.2018.2821268 – volume: 3 start-page: 1 year: 2022 ident: D4TC03696D/cit27/1 publication-title: Front. Electron. doi: 10.3389/felec.2022.869013 – volume: 9 start-page: 1735 year: 1997 ident: D4TC03696D/cit35/1 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 68 start-page: 2295 year: 2021 ident: D4TC03696D/cit2/1 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2021.3068716 – volume: 13 start-page: 1 year: 2022 ident: D4TC03696D/cit21/1 publication-title: Nat. Commun. – volume: 14 start-page: 2401 year: 2014 ident: D4TC03696D/cit10/1 publication-title: Nano Lett. doi: 10.1021/nl500049g – volume: 9 start-page: 16859 year: 2021 ident: D4TC03696D/cit5/1 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC04201G – volume: 8 start-page: 1 year: 2022 ident: D4TC03696D/cit8/1 publication-title: Adv. Electron. Mater. – volume: 1 start-page: 333 year: 2018 ident: D4TC03696D/cit6/1 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0092-2 – volume: 9 start-page: 1609 year: 2017 ident: D4TC03696D/cit7/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13746 – volume: 42 start-page: 834 year: 2023 ident: D4TC03696D/cit17/1 publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2022.3188961 – volume: 13 start-page: 1 year: 2023 ident: D4TC03696D/cit23/1 publication-title: Sci. Rep. doi: 10.1038/s41598-023-36799-6 – volume: 10 start-page: 19812 year: 2018 ident: D4TC03696D/cit25/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05093 |
SSID | ssj0000816869 |
Score | 2.2959387 |
Snippet | Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 284 |
SubjectTerms | Co-design Complex systems Continuous time systems Data processing Differential equations Electrolytes Errors Machine learning Material properties Ordinary differential equations Pulse duration Real time Software Solid electrolytes Steady state models Zinc oxide |
Title | Neural ordinary differential equations for predicting the temporal dynamics of a ZnO solid electrolyte FET |
URI | https://www.proquest.com/docview/3163732150 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6TkjwgGAwMRjIErygKMPLtx-nbmggBg_tpIqXyvGH1FElpU0nbb-Un8O1YzsZG9LgJapcO6l9T-1r59x7EHpH4ljnvpVhIXRSbUnykB2yNCQqLpTMMkGFjh0--5qdniefp-l0MPjVYy1tmvKAX98ZV_I_VoUysKuOkv0Hy_qbQgF8BvvCFSwM13vZWGfW0M4kGNlE1Tq1k0Yfg8ufG0tz00zC5Uq_kWlccJTNSLUIRKtIv27jJL9X3wL4yXMRWHmcxVUjg48nk7_4sODutv0MuBOOOwhGbQyQ-0Y_vV42PitBT3hHSDNPeQ4Qg-5ctjTLH3PPxxlb1vB0zuorVndn6JWNRhuz6kLKy8DQxb1nLoNxvblmNiBpzoIzzV21LAJ7zhGZuHGSddNhRFIS5mlkE2f3y-xxqJvP4x5ub0zORat0bBf6qGhr3lpESKxzsB4nkxHRaofH3VLp6AF_rKCe12je6Md01rXdQtsRbGCiIdo-Opl8-uLP_4zgiVFc9B1z2XNj-qG7wU1_qdsEba2cQo3xhCZP0GNrfnzU4vEpGshqBz3qJbbcQQ8MsZivn6GLFqPYYRT3MYo9RjGgBHcYxYBR7DCKHUZxrTDDgFFsMIp7GMWA0efoHK6j09Dqe4Qcxr4JmciolEkqclXSXKWCF4KXKqOc8zKPmN49Z1AoC8GIokVCZcJhVPSrQ1YWSbyLhlVdyRcIq1TSMmEkU5HUAmw0KiW4sodSwXwhFdlD790ozrhNfq81WBaz2ybbQ2993WWb8uXOWvvOGDM7JaxnMexu8hi8aHjgLhjItxdJw0078fJed3-FHnb_gX00bFYb-Rq836Z8Y4H0G96Os_8 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+ordinary+differential+equations+for+predicting+the+temporal+dynamics+of+a+ZnO+solid+electrolyte+FET&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Gaurav%2C+Ankit&rft.au=Song%2C+Xiaoyao&rft.au=Manhas%2C+Sanjeev+Kumar&rft.au=De+Souza%2C+Maria+Merlyne&rft.date=2025-02-06&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=13&rft.issue=6&rft.spage=2804&rft.epage=2813&rft_id=info:doi/10.1039%2FD4TC03696D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4TC03696D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |