Neural ordinary differential equations for predicting the temporal dynamics of a ZnO solid electrolyte FET

Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 13; no. 6; pp. 284 - 2813
Main Authors Gaurav, Ankit, Song, Xiaoyao, Manhas, Sanjeev Kumar, De Souza, Maria Merlyne
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 06.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20-240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits. A neural ordinary differential equation continuous time model of a ZnO/Ta 2 O 5 synaptic Solid Electrolyte FET, with a unique negative differential resistance in its gate current characteristics.
AbstractList Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20-240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits. A neural ordinary differential equation continuous time model of a ZnO/Ta 2 O 5 synaptic Solid Electrolyte FET, with a unique negative differential resistance in its gate current characteristics.
Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of real-time data. Physical reservoir computing provides effective solutions to this problem, making them ideal for edge systems. These devices typically necessitate compact models for device-circuit co-design. Alternatively, machine learning (ML) can quickly predict the behaviour of novel materials/devices without explicitly defining any material properties and device physics. However, previously reported ML device models are limited by their fixed hidden layer depth, which restricts their adaptability to predict varying temporal dynamics of a complex system. Here, we propose a novel approach that utilizes a continuous-time model based on neural ordinary differential equations to predict the temporal dynamic behaviour of a charge-based device, a solid electrolyte FET, whose gate current characteristics show a unique negative differential resistance that leads to steep switching beyond the Boltzmann limit. Our model, trained on a minimal experimental dataset successfully captures device transient and steady state behaviour for previously unseen examples of excitatory postsynaptic current when subject to an input of variable pulse width lasting 20–240 milliseconds with a high accuracy of 0.06 (root mean squared error). Additionally, our model predicts device dynamics in ∼5 seconds, with 60% reduced error over a conventional physics-based model, which takes nearly an hour on an equivalent computer. Moreover, the model can predict the variability of device characteristics from device to device by a simple change in frequency of applied signal, making it a useful tool in the design of neuromorphic systems such as reservoir computing. Using the model, we demonstrate a reservoir computing system which achieves the lowest error rate of 0.2% in the task of classification of spoken digits.
Author Manhas, Sanjeev Kumar
De Souza, Maria Merlyne
Gaurav, Ankit
Song, Xiaoyao
AuthorAffiliation Indian Institute of Technology Roorkee
University of Sheffield
Department of Electronic and Communication
Department of Electronic and Electrical Engineering
AuthorAffiliation_xml – name: Indian Institute of Technology Roorkee
– name: Department of Electronic and Communication
– name: Department of Electronic and Electrical Engineering
– name: University of Sheffield
Author_xml – sequence: 1
  givenname: Ankit
  surname: Gaurav
  fullname: Gaurav, Ankit
– sequence: 2
  givenname: Xiaoyao
  surname: Song
  fullname: Song, Xiaoyao
– sequence: 3
  givenname: Sanjeev Kumar
  surname: Manhas
  fullname: Manhas, Sanjeev Kumar
– sequence: 4
  givenname: Maria Merlyne
  surname: De Souza
  fullname: De Souza, Maria Merlyne
BookMark eNptUU1LAzEQDaJgrb14FwLehNVks5vdPUrrFxR7qRcvSzaZaMo22SbZQ_-921YqiHOZ4fHeG-bNBTq1zgJCV5TcUcKqe5VFSRivuDpBo5TkJClylp0e55Sfo0kIKzJUSXnJqxFavUHvRYudV8YKv8XKaA0ebDQDCpteRONswNp53HlQRkZjP3H8Ahxh3bmdVm2tWBsZsNNY4A-7wMG1RmFoQUbv2m0E_PS4vERnWrQBJj99jN4HdPqSzBfPr9OHeSLTksZEKF4BZLkqdFMVOleyVLLRvJJSNkUqaJ4TPoBQKkF0VWYVZLuzKeWFaMqMjdHNwbfzbtNDiPXK9d4OK2tGOStYSnMysG4PLOldCB503XmzHhKoKal3cdazbDndxzkbyOQPWZq4TyZ6Ydr_JdcHiQ_yaP37IfYNgWaE_w
CitedBy_id crossref_primary_10_1021_acsami_5c00092
Cites_doi 10.48550/arXiv.2002.08071
10.1021/acsami.7b14768
10.1063/1.3041475
10.1063/1.2832660
10.1021/nl904092h
10.1016/j.jcp.2018.10.045
10.1149/1.2946430
10.1002/aisy.202000055
10.1109/ACCESS.2020.3047491
10.1063/1.1709421
10.1109/ACCESS.2022.3218333
10.48550/arXiv.2312.01657
10.1038/nmat2160
10.1109/JEDS.2017.2780275
10.1021/acs.iecr.3c01471
10.1109/LED.2022.3184316
10.1109/TED.2022.3152978
10.1021/acsami.8b08986
10.1109/TCSII.2018.2821268
10.3389/felec.2022.869013
10.1162/neco.1997.9.8.1735
10.1109/TED.2021.3068716
10.1021/nl500049g
10.1039/D1TC04201G
10.1038/s41928-018-0092-2
10.1021/acsami.6b13746
10.1109/TCAD.2022.3188961
10.1038/s41598-023-36799-6
10.1021/acsami.8b05093
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d4tc03696d
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
CrossRef
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 2813
ExternalDocumentID 10_1039_D4TC03696D
d4tc03696d
GroupedDBID 0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c281t-ad69ee45d7fb97f5dc8dcbf69cccb72a15506dc8e8da0f9849e4c0361167ab843
ISSN 2050-7526
IngestDate Mon Jun 30 13:00:05 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Jul 01 04:30:23 EDT 2025
Tue May 27 12:02:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-ad69ee45d7fb97f5dc8dcbf69cccb72a15506dc8e8da0f9849e4c0361167ab843
Notes https://doi.org/10.1039/d4tc03696d
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7804-7154
PQID 3163732150
PQPubID 2047521
PageCount 1
ParticipantIDs rsc_primary_d4tc03696d
crossref_primary_10_1039_D4TC03696D
crossref_citationtrail_10_1039_D4TC03696D
proquest_journals_3163732150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-06
PublicationDateYYYYMMDD 2025-02-06
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-06
  day: 06
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lin (D4TC03696D/cit16/1) 2022; 69
Sorourifar (D4TC03696D/cit24/1) 2023; 62
Zhou (D4TC03696D/cit8/1) 2022; 8
Chen (D4TC03696D/cit21/1) 2022; 13
Akhtar (D4TC03696D/cit22/1)
Ielmini (D4TC03696D/cit6/1) 2018; 1
Chen (D4TC03696D/cit19/1) 2018
Pillai (D4TC03696D/cit7/1) 2017; 9
Gaurav (D4TC03696D/cit27/1) 2022; 3
Perkins (D4TC03696D/cit31/1) 2018; 10
Mott (D4TC03696D/cit32/1) 1940
Kim (D4TC03696D/cit12/1) 2008; 104
Wang (D4TC03696D/cit9/1) 2020; 2
Zhang (D4TC03696D/cit17/1) 2023; 42
Gaurav (D4TC03696D/cit28/1) 2023
Dupont (D4TC03696D/cit20/1) 2019; 32
Li (D4TC03696D/cit3/1) 2022; 43
Hutchins (D4TC03696D/cit15/1) 2022; 10
Jo (D4TC03696D/cit1/1) 2010; 10
Lederer (D4TC03696D/cit2/1) 2021; 68
Hochreiter (D4TC03696D/cit35/1) 1997; 9
Kim (D4TC03696D/cit33/1) 2013; 3
Frank (D4TC03696D/cit29/1) 1967; 38
Moon (D4TC03696D/cit11/1) 2018; 6
D4TC03696D/cit37/1
Lin (D4TC03696D/cit18/1) 2021; 9
Balakrishna Pillai (D4TC03696D/cit26/1) 2018; 10
Gao (D4TC03696D/cit5/1) 2021; 9
Kumar (D4TC03696D/cit25/1) 2018; 10
Liu (D4TC03696D/cit4/1) 2018; 65
Celano (D4TC03696D/cit10/1) 2014; 14
Sholokhov (D4TC03696D/cit23/1) 2023; 13
Liu (D4TC03696D/cit30/1) 2008; 7
Liu (D4TC03696D/cit14/1) 2008; 92
Massaroli (D4TC03696D/cit34/1) 2020
Lin (D4TC03696D/cit13/1) 2008; 155
Raissi (D4TC03696D/cit36/1) 2019; 378
References_xml – doi: Akhtar
– issn: 1940
  publication-title: Electronic Processes in Ionic Crystals
  doi: Mott Gurney
– year: 2020
  ident: D4TC03696D/cit34/1
  publication-title: Adv. Neural Inf. Process. Syst.
  doi: 10.48550/arXiv.2002.08071
– volume: 10
  start-page: 9782
  year: 2018
  ident: D4TC03696D/cit26/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14768
– volume-title: Electronic Processes in Ionic Crystals
  year: 1940
  ident: D4TC03696D/cit32/1
– volume: 104
  start-page: 114115
  year: 2008
  ident: D4TC03696D/cit12/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3041475
– volume: 92
  start-page: 012117
  year: 2008
  ident: D4TC03696D/cit14/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2832660
– volume: 10
  start-page: 1297
  year: 2010
  ident: D4TC03696D/cit1/1
  publication-title: Nano Lett.
  doi: 10.1021/nl904092h
– start-page: 6571
  year: 2018
  ident: D4TC03696D/cit19/1
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 378
  start-page: 686
  year: 2019
  ident: D4TC03696D/cit36/1
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 155
  start-page: H615
  year: 2008
  ident: D4TC03696D/cit13/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2946430
– volume: 2
  start-page: 2000055
  year: 2020
  ident: D4TC03696D/cit9/1
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202000055
– volume: 9
  start-page: 3126
  year: 2021
  ident: D4TC03696D/cit18/1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047491
– volume: 38
  start-page: 832
  year: 1967
  ident: D4TC03696D/cit29/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1709421
– volume: 10
  start-page: 115513
  year: 2022
  ident: D4TC03696D/cit15/1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3218333
– ident: D4TC03696D/cit22/1
  doi: 10.48550/arXiv.2312.01657
– volume: 7
  start-page: 505
  year: 2008
  ident: D4TC03696D/cit30/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2160
– volume: 6
  start-page: 146
  year: 2018
  ident: D4TC03696D/cit11/1
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2017.2780275
– volume: 62
  start-page: 15563
  year: 2023
  ident: D4TC03696D/cit24/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c01471
– volume: 32
  start-page: 1
  year: 2019
  ident: D4TC03696D/cit20/1
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 1227
  year: 2022
  ident: D4TC03696D/cit3/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2022.3184316
– ident: D4TC03696D/cit37/1
– start-page: 9
  year: 2023
  ident: D4TC03696D/cit28/1
  publication-title: 7th IEEE Electron Devices Technol. Manuf.
– volume: 3
  start-page: 1
  year: 2013
  ident: D4TC03696D/cit33/1
  publication-title: Sci. Rep.
– volume: 69
  start-page: 1835
  year: 2022
  ident: D4TC03696D/cit16/1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2022.3152978
– volume: 10
  start-page: 36082
  year: 2018
  ident: D4TC03696D/cit31/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b08986
– volume: 65
  start-page: 617
  year: 2018
  ident: D4TC03696D/cit4/1
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCSII.2018.2821268
– volume: 3
  start-page: 1
  year: 2022
  ident: D4TC03696D/cit27/1
  publication-title: Front. Electron.
  doi: 10.3389/felec.2022.869013
– volume: 9
  start-page: 1735
  year: 1997
  ident: D4TC03696D/cit35/1
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 68
  start-page: 2295
  year: 2021
  ident: D4TC03696D/cit2/1
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2021.3068716
– volume: 13
  start-page: 1
  year: 2022
  ident: D4TC03696D/cit21/1
  publication-title: Nat. Commun.
– volume: 14
  start-page: 2401
  year: 2014
  ident: D4TC03696D/cit10/1
  publication-title: Nano Lett.
  doi: 10.1021/nl500049g
– volume: 9
  start-page: 16859
  year: 2021
  ident: D4TC03696D/cit5/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC04201G
– volume: 8
  start-page: 1
  year: 2022
  ident: D4TC03696D/cit8/1
  publication-title: Adv. Electron. Mater.
– volume: 1
  start-page: 333
  year: 2018
  ident: D4TC03696D/cit6/1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0092-2
– volume: 9
  start-page: 1609
  year: 2017
  ident: D4TC03696D/cit7/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13746
– volume: 42
  start-page: 834
  year: 2023
  ident: D4TC03696D/cit17/1
  publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2022.3188961
– volume: 13
  start-page: 1
  year: 2023
  ident: D4TC03696D/cit23/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36799-6
– volume: 10
  start-page: 19812
  year: 2018
  ident: D4TC03696D/cit25/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05093
SSID ssj0000816869
Score 2.2959387
Snippet Efficient storage and processing are essential for temporal data processing applications to make informed decisions, especially when handling large volumes of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 284
SubjectTerms Co-design
Complex systems
Continuous time systems
Data processing
Differential equations
Electrolytes
Errors
Machine learning
Material properties
Ordinary differential equations
Pulse duration
Real time
Software
Solid electrolytes
Steady state models
Zinc oxide
Title Neural ordinary differential equations for predicting the temporal dynamics of a ZnO solid electrolyte FET
URI https://www.proquest.com/docview/3163732150
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW6TkjwgGAwMRjIErygKMPLtx-nbmggBg_tpIqXyvGH1FElpU0nbb-Un8O1YzsZG9LgJapcO6l9T-1r59x7EHpH4ljnvpVhIXRSbUnykB2yNCQqLpTMMkGFjh0--5qdniefp-l0MPjVYy1tmvKAX98ZV_I_VoUysKuOkv0Hy_qbQgF8BvvCFSwM13vZWGfW0M4kGNlE1Tq1k0Yfg8ufG0tz00zC5Uq_kWlccJTNSLUIRKtIv27jJL9X3wL4yXMRWHmcxVUjg48nk7_4sODutv0MuBOOOwhGbQyQ-0Y_vV42PitBT3hHSDNPeQ4Qg-5ctjTLH3PPxxlb1vB0zuorVndn6JWNRhuz6kLKy8DQxb1nLoNxvblmNiBpzoIzzV21LAJ7zhGZuHGSddNhRFIS5mlkE2f3y-xxqJvP4x5ub0zORat0bBf6qGhr3lpESKxzsB4nkxHRaofH3VLp6AF_rKCe12je6Md01rXdQtsRbGCiIdo-Opl8-uLP_4zgiVFc9B1z2XNj-qG7wU1_qdsEba2cQo3xhCZP0GNrfnzU4vEpGshqBz3qJbbcQQ8MsZivn6GLFqPYYRT3MYo9RjGgBHcYxYBR7DCKHUZxrTDDgFFsMIp7GMWA0efoHK6j09Dqe4Qcxr4JmciolEkqclXSXKWCF4KXKqOc8zKPmN49Z1AoC8GIokVCZcJhVPSrQ1YWSbyLhlVdyRcIq1TSMmEkU5HUAmw0KiW4sodSwXwhFdlD790ozrhNfq81WBaz2ybbQ2993WWb8uXOWvvOGDM7JaxnMexu8hi8aHjgLhjItxdJw0078fJed3-FHnb_gX00bFYb-Rq836Z8Y4H0G96Os_8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+ordinary+differential+equations+for+predicting+the+temporal+dynamics+of+a+ZnO+solid+electrolyte+FET&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Gaurav%2C+Ankit&rft.au=Song%2C+Xiaoyao&rft.au=Manhas%2C+Sanjeev+Kumar&rft.au=De+Souza%2C+Maria+Merlyne&rft.date=2025-02-06&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=13&rft.issue=6&rft.spage=2804&rft.epage=2813&rft_id=info:doi/10.1039%2FD4TC03696D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4TC03696D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon