Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications
Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like protein or enzyme within their nanostructured matrices, yielding high activity, stability, and recyclability. Recently, much effort has been...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 40; no. 2; pp. 302 - 310 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2023
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-022-1292-z |
Cover
Abstract | Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like protein or enzyme within their nanostructured matrices, yielding high activity, stability, and recyclability. Recently, much effort has been devoted to developing advanced HNFs composed of diversified components, such as multiple proteins, nanoparticles, polymers, and nucleic acids, to achieve different functionalities enabling extended applications. Compared to the conventional HNFs primarily serving as immobilization supports for enzyme, diversified component incorporated HNFs can have unique multiple functionalities, essentially for developing novel biosensing and biomedical strategies. Herein, an overview for the recent advances on diversified components incorporated HNFs is presented with an emphasis on the potential biotechnological applications. Synthetic strategies, structural characteristics, and unique properties of diverse HNFs are discussed with representative studies, demonstrating the versatility of the HNFs. Current challenges and future opportunities of the HNFs are also discussed. |
---|---|
AbstractList | Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like protein or enzyme within their nanostructured matrices, yielding high activity, stability, and recyclability. Recently, much effort has been devoted to developing advanced HNFs composed of diversified components, such as multiple proteins, nanoparticles, polymers, and nucleic acids, to achieve different functionalities enabling extended applications. Compared to the conventional HNFs primarily serving as immobilization supports for enzyme, diversified component incorporated HNFs can have unique multiple functionalities, essentially for developing novel biosensing and biomedical strategies. Herein, an overview for the recent advances on diversified components incorporated HNFs is presented with an emphasis on the potential biotechnological applications. Synthetic strategies, structural characteristics, and unique properties of diverse HNFs are discussed with representative studies, demonstrating the versatility of the HNFs. Current challenges and future opportunities of the HNFs are also discussed. Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like protein or enzyme within their nanostructured matrices, yielding high activity, stability, and recyclability. Recently, much effort has been devoted to developing advanced HNFs composed of diversified components, such as multiple proteins, nanoparticles, polymers, and nucleic acids, to achieve different functionalities enabling extended applications. Compared to the conventional HNFs primarily serving as immobilization supports for enzyme, diversified component incorporated HNFs can have unique multiple functionalities, essentially for developing novel biosensing and biomedical strategies. Herein, an overview for the recent advances on diversified components incorporated HNFs is presented with an emphasis on the potential biotechnological applications. Synthetic strategies, structural characteristics, and unique properties of diverse HNFs are discussed with representative studies, demonstrating the versatility of the HNFs. Current challenges and future opportunities of the HNFs are also discussed. KCI Citation Count: 1 |
Author | Kim, Moon Il Dang, Thinh Viet |
Author_xml | – sequence: 1 givenname: Thinh Viet surname: Dang fullname: Dang, Thinh Viet organization: Department of BioNano Technology, Gachon University – sequence: 2 givenname: Moon Il surname: Kim fullname: Kim, Moon Il email: moonil@gachon.ac.kr organization: Department of BioNano Technology, Gachon University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002927761$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kVtr3DAQhUXZQjdpf0DfBH0LuNXIlmXnbdmk6UIgULbPQtZlq8QrOZKTsPvrI8eFQiB5Gl3Od2aYc4IWPniD0Fcg34EQ_iMBNFAVhNICaEuL4we0hJazglNKFmhJKKsLAGCf0ElKt4QwVlOyRI8X7tHE5KwzGquwH7KtH7HzKsQhRDnm57-HLjqNvfTB9uEpy8_xCk-YHF1v8D6ropM9tiHizoVkfHJ-h6XX03VvtFP5Vw5Dnw-jCz59Rh-t7JP58q-eoj8_L7frX8X1zdVmvbouFG1gLKQyquZGdx2UmitdNZWsoa6gqdtSWk0p06TRtWKMG9M0rCTE1pybTnWlsmV5is5mXx-tuFNOBOle6i6IuyhWv7cbASTvpeFtFn-bxUMM9w8mjeI2PESf5xOUc2jbqionS5hVKoaUorFiiG4v4yEbiSkLMWchchZiykIcM8NfMcqNL5sYo3T9uySdyZS7-J2J_2d6G3oG7Nai2w |
CitedBy_id | crossref_primary_10_1007_s11814_023_1577_x crossref_primary_10_1007_s11814_024_00234_x crossref_primary_10_1016_j_cej_2024_150557 crossref_primary_10_1016_j_inoche_2025_114311 crossref_primary_10_3390_chemistry5030129 crossref_primary_10_3390_s24020579 crossref_primary_10_1007_s00604_023_06070_w crossref_primary_10_1007_s12257_024_00148_9 crossref_primary_10_1016_j_ijbiomac_2024_133089 |
Cites_doi | 10.3390/molecules24203648 10.1016/j.colsurfb.2019.110354 10.1166/jnn.2015.11227 10.1016/j.snb.2022.132246 10.1016/j.jhazmat.2017.05.014 10.1016/j.carbon.2018.11.026 10.1016/j.cej.2021.131808 10.1021/acsami.5b11834 10.1021/acs.jpclett.1c02748 10.1007/s00604-021-04937-4 10.1016/j.ccr.2019.02.031 10.1002/adhm.201801507 10.1166/jnn.2018.15697 10.1021/acsomega.0c01864 10.1002/ange.201400323 10.1002/smll.201600273 10.1002/adma.201403709 10.1038/nnano.2012.80 10.1016/j.bios.2018.08.058 10.1038/nmat3253 10.1021/ja406115e 10.1002/adma.201701086 10.1038/s41467-016-0009-6 10.1039/C6RA24192A 10.1016/j.msec.2019.110273 10.1039/D0RE00158A 10.1021/acsbiomaterials.0c00841 10.1039/C8NJ06429F 10.1039/C9NR05446D 10.1016/j.colsurfb.2021.112149 10.1021/cr400407a 10.1016/j.ccr.2017.09.008 10.1039/C7NR00958E 10.1016/j.procbio.2018.08.029 10.1186/s12951-014-0062-4 10.1002/jctb.5769 10.1016/j.cej.2021.129075 10.1038/s41598-020-59699-5 10.1016/j.chemosphere.2021.132584 10.1016/j.talanta.2020.120794 10.1016/j.snb.2017.11.155 10.1016/j.bios.2017.02.004 10.1016/j.msec.2016.08.073 10.1039/C3NR04425D 10.1039/C7TB00610A 10.1007/s42235-021-0005-3 10.1166/jbn.2019.2752 10.1016/j.ijbiomac.2019.11.129 10.1038/s41598-016-0001-8 10.1007/s13204-020-01577-7 10.1016/j.jinorgbio.2020.111212 10.1007/s13206-018-2409-7 10.1021/nn202451x 10.1021/acsami.9b21511 10.3389/fbioe.2020.00465 10.1039/C6TB03047E 10.1039/D1DT02301B 10.1039/C4CC05478D 10.1039/C6NR06870G 10.1007/978-1-4899-7485-3 10.1021/acs.analchem.6b03346 10.1007/s12274-015-0841-8 10.1088/2057-1976/1/4/045101 10.1016/j.bios.2019.111473 10.1021/acsnano.9b01589 10.1016/j.jbiosc.2020.01.008 10.1016/j.foodchem.2019.125911 10.1016/j.bios.2021.113187 |
ContentType | Journal Article |
Copyright | Korean Institute of Chemical Engineering (KIChE) 2023 Korean Institute of Chemical Engineering (KIChE) 2023. |
Copyright_xml | – notice: Korean Institute of Chemical Engineering (KIChE) 2023 – notice: Korean Institute of Chemical Engineering (KIChE) 2023. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-022-1292-z |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 310 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10111879 10_1007_s11814_022_1292_z |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ AABYN AAEOY AAFGU AAGCJ AAUCO ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c281t-acec67edbb13d7cd484a616418693afd225d08d6c557ee885300f677ebcb3cf33 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Fri May 31 03:51:26 EDT 2024 Sat Sep 13 16:31:35 EDT 2025 Thu Apr 24 23:00:33 EDT 2025 Tue Jul 01 03:29:44 EDT 2025 Fri Feb 21 02:44:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nanoparticle Polymer Multiple Proteins Nucleic Acid Biosensing Biomedical Application Hybrid Nanoflowers |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c281t-acec67edbb13d7cd484a616418693afd225d08d6c557ee885300f677ebcb3cf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2771994433 |
PQPubID | 2044390 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10111879 proquest_journals_2771994433 crossref_primary_10_1007_s11814_022_1292_z crossref_citationtrail_10_1007_s11814_022_1292_z springer_journals_10_1007_s11814_022_1292_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | LiuYJiXHeZNanoscale201911171791:CAS:528:DC%2BC1MXhs1Cnt7vP ZhuXHuangJLiuJZhangHJiangJYuRNanoscale2017956581:CAS:528:DC%2BC2sXlslemtbg%3D ChenXXuLWangALiHWangCPeiXZhangPWuS GJ. Chem. Technol. Biotechnol.2019942361:CAS:528:DC%2BC1cXhsVKrtLjJ KimH KNguyenP TKimM IKimB CChemosphere20222881325841:CAS:528:DC%2BB3MXit1ygtrbN ZhangCZhaoMZouHZhangXShengRZhangYZhangBLiCQiYJ. Inorg. Biochem.20202121112121:CAS:528:DC%2BB3cXhvVeqs7nL LiPZhengJXuJZhangMDalton Trans.202150147531:CAS:528:DC%2BB3MXitFCgtbjK HanJLuoPWangLWuJLiCWangYACS Appl. Mater. Interfaces202012150231:CAS:528:DC%2BB3cXkslWmsbs%3D RaiS KKaurHKauldharB SYadavS KACS Biomater. Sci. Eng.2020666611:CAS:528:DC%2BB3cXhsVCmtr%2FI P. Thakur, S. S. Sonawane, S. H. Sonawane and B. A. Bhanvase, Encapsulation of active molecules and their delivery system, Elsevier (2020). DadiSCelikCMandalA KOcsoyIAppl. Nanosci.2021111171:CAS:528:DC%2BB3cXitFSmt7nK CheonH JAdhikariM DChungMTranT DKimJKimM IAdv. Healthcare Mater.201981801507 HaoYLiHCaoYChenYLeiMZhangTXiaoYChuBQianZJ. Biomed. Nanotechnol.2019159511:CAS:528:DC%2BC1MXhsVSgtbvE ZhuGMeiLVishwasraoH DJacobsonOWangZLiuYYungB CFuXJinANiuGNat. Commun.201781 LiuSZengT HHofmannMBurcombeEWeiJJiangRKongJChenYACS Nano2011569711:CAS:528:DC%2BC3MXhtVyls73L ChengPTangMChenZLiuWJiangXPeiXSuWReact. Chem. Eng.2020519731:CAS:528:DC%2BB3cXhsF2ntrjE BaekS HRohJParkC YKimM WShiRKailasaS KParkT JMater. Sci. Eng. C-Biomimetic Supramol. Syst.20201071102731:CAS:528:DC%2BC1MXhvF2rur7M TranT DNguyenP TLeT NKimM IBiosens. Bioelectron.20211821131871:CAS:528:DC%2BB3MXnvFertrw%3D AydemirDGeciliFÖzdemirNUlusuN NJ. Biosci. Bioeng.20201296791:CAS:528:DC%2BB3cXivFyntrc%3D WangJWangHWangHHeSLiRDengZLiuXWangFACS Nano20191358521:CAS:528:DC%2BC1MXosF2ms7Y%3D LeeICheonH JAdhikariM DTranT DYeonK-MKimM IKimJInt. J. Biol. Macromol.202015515201:CAS:528:DC%2BC1MXit1KrtLrO LiZZhangYSuYOuyangPGeJLiuZChem. Commun.201450124651:CAS:528:DC%2BC2cXhsVersrfO RautiRMustoMBosiSPratoMBalleriniLCarbon20191434301:CAS:528:DC%2BC1cXitlWnt77F LeeS WCheonS AKimM IParkT JJ. Nanobiotechnol.2015131 LiuYAiKLuLChem. Rev.201411450571:CAS:528:DC%2BC2cXisVWgtro%3D GuoYLiSWangYZhangSAnal. Chem.20178922671:CAS:528:DC%2BC2sXhsFGht7k%3D ZhangMZhangYYangCMaCTangJChem. Eng. J.20214151290751:CAS:528:DC%2BB3MXltlynur0%3D DuanLWangHLiuJZhangYBiomed. Phys. Eng. Express20151045101 ParkK SBatuleB SChungMKangK SParkT JKimM IParkH GJ. Mat. Chem. B2017522311:CAS:528:DC%2BC2sXitlGnt70%3D KimM IChoDParkH GJ. Nanosci. Nanotechnol.20151579551:CAS:528:DC%2BC28XktVKmurg%3D SunJGeJLiuWLanMZhangHWangPWangYNiuZNanoscale201462551:CAS:528:DC%2BC3sXhvV2hs7vP DangT VHeoN SChoH-JLeeS MSongM YKimH JKimM IMicrochim. Acta20211881 WuJMaXLiCZhouXHanJWangLDongHWangYChem. Eng. J.20224271318081:CAS:528:DC%2BB3MXhvVajtbvL ZhangMPeltierRZhangMLuHBianHLiYXuZShenYSunHWangZJ. Mater. Chem. B2017553111:CAS:528:DC%2BC2sXos1Sqs7s%3D ZhuGHuRZhaoZChenZZhangXTanWJ. Am. Chem. Soc.2013135164381:CAS:528:DC%2BC3sXhsVynsrrN LiYXieGQiuJZhouDGouDTaoYLiYChenHSens. Actuator B-Chem.20182588031:CAS:528:DC%2BC2sXhvFagsb%2FK ChungMJangY JKimM IJ. Nanosci. Nanotechnol.20181865551:CAS:528:DC%2BC1MXhtFOrt7w%3D WuZShiLYuXZhangSChenGMolecules20192436481:CAS:528:DC%2BC1MXit12qsr7L ZhangXYuYShenJQiWWangHTalanta20202121207941:CAS:528:DC%2BB3cXisV2gsbw%3D DuXLiLLiJYangCFrenkelNWelleAHeisslerSNefedovAGrunzeMLevkinP AAdv. Mater.20142680291:CAS:528:DC%2BC2cXhvVyksbbN CelikCIldizNOcsoyISci. Rep.2020101 WeiTDuDZhuM-JLinYDaiZACS Appl. Mater. Interfaces2016863291:CAS:528:DC%2BC28XivVeltrc%3D LiuYLiuZHuangDChengMZengGLaiCZhangCZhouCWangWJiangDCoord. Chem. Rev.2019388631:CAS:528:DC%2BC1MXktlKht7c%3D FengNZhangHLiYLiuYXuLWangYFeiXTianJFood Chem.20203111259111:CAS:528:DC%2BC1MXisVGisbzO YeRZhuCSongYLuQGeXYangXZhuM JDuDLiHLinYSmall20161230941:CAS:528:DC%2BC28XmvVSmsbg%3D LeeJ BHongJBonnerD KPoonZHammondP TNat. Mater.2012113161:CAS:528:DC%2BC38XivVeqsbg%3D SunNJiaYWangCXiaJDaiLLiJJ. Phys. Chem. Lett.202112102351:CAS:528:DC%2BB3MXit1amurvN ZhuJWenMWenWDuDZhangXWangSLinYBiosens. Bioelectron.20181201751:CAS:528:DC%2BC1cXhs1CgsL7P ZhangLMaYWangCWangZChenXLiMZhaoRWangLProcess Biochem.2018741031:CAS:528:DC%2BC1cXhs1Gkur%2FI LakkakulaJ RMatshayaTKrauseR W MMater. Sci. Eng. C-Biomimetic Supramol. Syst.2017701691:CAS:528:DC%2BC28XhsVOqt73E TranT DKimM IBioChip J.2018122681:CAS:528:DC%2BC1cXisVyksr7L RenWLiYWangJLiLXuLWuYWangYFeiXTianJNew J. Chem.201943110821:CAS:528:DC%2BC1MXhtFalurnN ZhangMXuWLiMLiJWangPWangZJ. Bionic Eng.20211830 MeiLZhuGQiuLWuCChenHLiangHCansizSLvYZhangXTanWNano Res.2015834471:CAS:528:DC%2BC2MXhsFeju7zM LiHHouJDuanLJiCZhangYChenVJ. Hazard. Mater.2017338931:CAS:528:DC%2BC2sXotVyhtr4%3D HuRZhangXZhaoZZhuGChenTFuTTanWAngew. Chem. Int. Ed.20141265931 GeJLeiJZareR NNat. Nanotechnol.201274281:CAS:528:DC%2BC38XnvVyktrY%3D ZhaoZZhangJWangMWangZWangLMaLHuangXLiZRSC Adv.201661042651:CAS:528:DC%2BC28XhslGiurjP LiuYChenJDuMWangXJiXHeZBiosens. Bioelectron.201792681:CAS:528:DC%2BC2sXisVCgs7g%3D ParkBDangT VYooJTranT DGhoreishianS MLeeG HKimM IHuhYSSens. Actuator B-Chem.20223691322461:CAS:528:DC%2BB38XhslKqu7%2FF CuiJJiaSCoord. Chem. Rev.20173522491:CAS:528:DC%2BC2sXhsFKms73N JinRKongDZhaoXLiHYanXLiuFSunPDuDLinYLuGBiosens. Bioelectron.20191411114731:CAS:528:DC%2BC1MXht12jt7vI MohammedHKumarABekyarovaEAl-HadeethiYZhangXChenMAnsariM SCochisARimondiniLFront. Bioeng. Biotechnol.20208465 WuZ-FWangZZhangYMaY-LHeC-YLiHChenLHuoQ-SWangLLiZ-QSci. Rep.201661 YeRZhuCSongYSongJFuSLuQYangXZhuM-JDuDLiHNanoscale20168189801:CAS:528:DC%2BC28Xhs12ks73J BrinsonH FBrinsonL CPolymer engineering science and viscoelasticity: An introduction2015BostonSpringer KimEZwi-DantsisLReznikovNHanselC SAgarwalSStevensM MAdv. Mater.2017291701086 MohammadMAhmadpoorFShojaosadatiS AACS Omega20205187661:CAS:528:DC%2BB3cXhsVSiu7vK ShcharbinDHalets-BuiIAbashkinVDzmitrukVLoznikovaSOdabaşıMAcetÖnalBÖzdemirNShcharbinaNColloid Surf. B-Biointerfaces20191821103541:CAS:528:DC%2BC1MXhtl2gtbfI MohammadMAhmadpoorFShojaosadatiS AVasheghani-FarahaniEColloid Surf. B-Biointerfaces20222091121491:CAS:528:DC%2BB3MXit1ekt7bJ Z Li (1292_CR14) 2014; 50 D Shcharbin (1292_CR4) 2019; 182 D Aydemir (1292_CR34) 2020; 129 H F Brinson (1292_CR52) 2015 C Celik (1292_CR9) 2020; 10 J Wu (1292_CR51) 2022; 427 Y Liu (1292_CR35) 2017; 92 S W Lee (1292_CR11) 2015; 13 T D Tran (1292_CR21) 2018; 12 L Zhang (1292_CR31) 2018; 74 M Zhang (1292_CR19) 2021; 415 T V Dang (1292_CR8) 2021; 188 R Ye (1292_CR37) 2016; 8 S Dadi (1292_CR54) 2021; 11 M Mohammad (1292_CR66) 2022; 209 J Ge (1292_CR3) 2012; 7 J Han (1292_CR28) 2020; 12 Y Liu (1292_CR56) 2014; 114 L Duan (1292_CR47) 2015; 1 T Wei (1292_CR15) 2016; 8 R Jin (1292_CR27) 2019; 141 M Mohammad (1292_CR65) 2020; 5 T D Tran (1292_CR61) 2021; 182 R Ye (1292_CR36) 2016; 12 P Li (1292_CR43) 2021; 50 K S Park (1292_CR60) 2017; 5 P Cheng (1292_CR30) 2020; 5 Y Liu (1292_CR20) 2019; 11 H Mohammed (1292_CR48) 2020; 8 J R Lakkakula (1292_CR53) 2017; 70 L Mei (1292_CR7) 2015; 8 Y Guo (1292_CR69) 2017; 89 J Cui (1292_CR1) 2017; 352 J Zhu (1292_CR2) 2018; 120 Z-F Wu (1292_CR6) 2016; 6 H J Cheon (1292_CR16) 2019; 8 Y Li (1292_CR26) 2018; 258 Z Wu (1292_CR33) 2019; 24 C Zhang (1292_CR57) 2020; 212 J Sun (1292_CR22) 2014; 6 M Zhang (1292_CR67) 2021; 18 S Liu (1292_CR49) 2011; 5 M Zhang (1292_CR41) 2017; 5 X Zhu (1292_CR25) 2017; 9 X Zhang (1292_CR64) 2020; 212 Y Liu (1292_CR38) 2019; 388 1292_CR40 X Du (1292_CR55) 2014; 26 N Sun (1292_CR10) 2021; 12 B Park (1292_CR17) 2022; 369 W Ren (1292_CR44) 2019; 43 J B Lee (1292_CR12) 2012; 11 G Zhu (1292_CR68) 2017; 8 R Hu (1292_CR58) 2014; 126 M Chung (1292_CR23) 2018; 18 H Li (1292_CR50) 2017; 338 M I Kim (1292_CR63) 2015; 15 J Wang (1292_CR62) 2019; 13 E Kim (1292_CR59) 2017; 29 G Zhu (1292_CR13) 2013; 135 R Rauti (1292_CR46) 2019; 143 Y Hao (1292_CR24) 2019; 15 X Chen (1292_CR29) 2019; 94 S K Rai (1292_CR32) 2020; 6 I Lee (1292_CR39) 2020; 155 S H Baek (1292_CR42) 2020; 107 Z Zhao (1292_CR5) 2016; 6 H K Kim (1292_CR18) 2022; 288 N Feng (1292_CR45) 2020; 311 |
References_xml | – reference: HaoYLiHCaoYChenYLeiMZhangTXiaoYChuBQianZJ. Biomed. Nanotechnol.2019159511:CAS:528:DC%2BC1MXhsVSgtbvE – reference: ZhangMZhangYYangCMaCTangJChem. Eng. J.20214151290751:CAS:528:DC%2BB3MXltlynur0%3D – reference: ZhuXHuangJLiuJZhangHJiangJYuRNanoscale2017956581:CAS:528:DC%2BC2sXlslemtbg%3D – reference: CelikCIldizNOcsoyISci. Rep.2020101 – reference: SunNJiaYWangCXiaJDaiLLiJJ. Phys. Chem. Lett.202112102351:CAS:528:DC%2BB3MXit1amurvN – reference: ParkBDangT VYooJTranT DGhoreishianS MLeeG HKimM IHuhYSSens. Actuator B-Chem.20223691322461:CAS:528:DC%2BB38XhslKqu7%2FF – reference: ZhangMPeltierRZhangMLuHBianHLiYXuZShenYSunHWangZJ. Mater. Chem. B2017553111:CAS:528:DC%2BC2sXos1Sqs7s%3D – reference: ZhuGMeiLVishwasraoH DJacobsonOWangZLiuYYungB CFuXJinANiuGNat. Commun.201781 – reference: WuZShiLYuXZhangSChenGMolecules20192436481:CAS:528:DC%2BC1MXit12qsr7L – reference: LeeS WCheonS AKimM IParkT JJ. Nanobiotechnol.2015131 – reference: CheonH JAdhikariM DChungMTranT DKimJKimM IAdv. Healthcare Mater.201981801507 – reference: CuiJJiaSCoord. Chem. Rev.20173522491:CAS:528:DC%2BC2sXhsFKms73N – reference: TranT DNguyenP TLeT NKimM IBiosens. Bioelectron.20211821131871:CAS:528:DC%2BB3MXnvFertrw%3D – reference: ZhaoZZhangJWangMWangZWangLMaLHuangXLiZRSC Adv.201661042651:CAS:528:DC%2BC28XhslGiurjP – reference: YeRZhuCSongYSongJFuSLuQYangXZhuM-JDuDLiHNanoscale20168189801:CAS:528:DC%2BC28Xhs12ks73J – reference: JinRKongDZhaoXLiHYanXLiuFSunPDuDLinYLuGBiosens. Bioelectron.20191411114731:CAS:528:DC%2BC1MXht12jt7vI – reference: ChenXXuLWangALiHWangCPeiXZhangPWuS GJ. Chem. Technol. Biotechnol.2019942361:CAS:528:DC%2BC1cXhsVKrtLjJ – reference: WuJMaXLiCZhouXHanJWangLDongHWangYChem. Eng. J.20224271318081:CAS:528:DC%2BB3MXhvVajtbvL – reference: ChungMJangY JKimM IJ. Nanosci. Nanotechnol.20181865551:CAS:528:DC%2BC1MXhtFOrt7w%3D – reference: LeeJ BHongJBonnerD KPoonZHammondP TNat. Mater.2012113161:CAS:528:DC%2BC38XivVeqsbg%3D – reference: WeiTDuDZhuM-JLinYDaiZACS Appl. Mater. Interfaces2016863291:CAS:528:DC%2BC28XivVeltrc%3D – reference: MohammadMAhmadpoorFShojaosadatiS AACS Omega20205187661:CAS:528:DC%2BB3cXhsVSiu7vK – reference: ZhuJWenMWenWDuDZhangXWangSLinYBiosens. Bioelectron.20181201751:CAS:528:DC%2BC1cXhs1CgsL7P – reference: MohammedHKumarABekyarovaEAl-HadeethiYZhangXChenMAnsariM SCochisARimondiniLFront. Bioeng. Biotechnol.20208465 – reference: ZhangLMaYWangCWangZChenXLiMZhaoRWangLProcess Biochem.2018741031:CAS:528:DC%2BC1cXhs1Gkur%2FI – reference: RautiRMustoMBosiSPratoMBalleriniLCarbon20191434301:CAS:528:DC%2BC1cXitlWnt77F – reference: LiYXieGQiuJZhouDGouDTaoYLiYChenHSens. Actuator B-Chem.20182588031:CAS:528:DC%2BC2sXhvFagsb%2FK – reference: DuanLWangHLiuJZhangYBiomed. Phys. Eng. Express20151045101 – reference: LiHHouJDuanLJiCZhangYChenVJ. Hazard. Mater.2017338931:CAS:528:DC%2BC2sXotVyhtr4%3D – reference: HuRZhangXZhaoZZhuGChenTFuTTanWAngew. Chem. Int. Ed.20141265931 – reference: ParkK SBatuleB SChungMKangK SParkT JKimM IParkH GJ. Mat. Chem. B2017522311:CAS:528:DC%2BC2sXitlGnt70%3D – reference: ShcharbinDHalets-BuiIAbashkinVDzmitrukVLoznikovaSOdabaşıMAcetÖnalBÖzdemirNShcharbinaNColloid Surf. B-Biointerfaces20191821103541:CAS:528:DC%2BC1MXhtl2gtbfI – reference: DuXLiLLiJYangCFrenkelNWelleAHeisslerSNefedovAGrunzeMLevkinP AAdv. Mater.20142680291:CAS:528:DC%2BC2cXhvVyksbbN – reference: LeeICheonH JAdhikariM DTranT DYeonK-MKimM IKimJInt. J. Biol. Macromol.202015515201:CAS:528:DC%2BC1MXit1KrtLrO – reference: WuZ-FWangZZhangYMaY-LHeC-YLiHChenLHuoQ-SWangLLiZ-QSci. Rep.201661 – reference: RenWLiYWangJLiLXuLWuYWangYFeiXTianJNew J. Chem.201943110821:CAS:528:DC%2BC1MXhtFalurnN – reference: HanJLuoPWangLWuJLiCWangYACS Appl. Mater. Interfaces202012150231:CAS:528:DC%2BB3cXkslWmsbs%3D – reference: YeRZhuCSongYLuQGeXYangXZhuM JDuDLiHLinYSmall20161230941:CAS:528:DC%2BC28XmvVSmsbg%3D – reference: KimM IChoDParkH GJ. Nanosci. Nanotechnol.20151579551:CAS:528:DC%2BC28XktVKmurg%3D – reference: LakkakulaJ RMatshayaTKrauseR W MMater. Sci. Eng. C-Biomimetic Supramol. Syst.2017701691:CAS:528:DC%2BC28XhsVOqt73E – reference: LiZZhangYSuYOuyangPGeJLiuZChem. Commun.201450124651:CAS:528:DC%2BC2cXhsVersrfO – reference: LiuSZengT HHofmannMBurcombeEWeiJJiangRKongJChenYACS Nano2011569711:CAS:528:DC%2BC3MXhtVyls73L – reference: DangT VHeoN SChoH-JLeeS MSongM YKimH JKimM IMicrochim. Acta20211881 – reference: GeJLeiJZareR NNat. Nanotechnol.201274281:CAS:528:DC%2BC38XnvVyktrY%3D – reference: SunJGeJLiuWLanMZhangHWangPWangYNiuZNanoscale201462551:CAS:528:DC%2BC3sXhvV2hs7vP – reference: ZhuGHuRZhaoZChenZZhangXTanWJ. Am. Chem. Soc.2013135164381:CAS:528:DC%2BC3sXhsVynsrrN – reference: AydemirDGeciliFÖzdemirNUlusuN NJ. Biosci. Bioeng.20201296791:CAS:528:DC%2BB3cXivFyntrc%3D – reference: ZhangCZhaoMZouHZhangXShengRZhangYZhangBLiCQiYJ. Inorg. Biochem.20202121112121:CAS:528:DC%2BB3cXhvVeqs7nL – reference: BaekS HRohJParkC YKimM WShiRKailasaS KParkT JMater. Sci. Eng. C-Biomimetic Supramol. Syst.20201071102731:CAS:528:DC%2BC1MXhvF2rur7M – reference: WangJWangHWangHHeSLiRDengZLiuXWangFACS Nano20191358521:CAS:528:DC%2BC1MXosF2ms7Y%3D – reference: DadiSCelikCMandalA KOcsoyIAppl. Nanosci.2021111171:CAS:528:DC%2BB3cXitFSmt7nK – reference: ZhangMXuWLiMLiJWangPWangZJ. Bionic Eng.20211830 – reference: LiuYLiuZHuangDChengMZengGLaiCZhangCZhouCWangWJiangDCoord. Chem. Rev.2019388631:CAS:528:DC%2BC1MXktlKht7c%3D – reference: LiuYChenJDuMWangXJiXHeZBiosens. Bioelectron.201792681:CAS:528:DC%2BC2sXisVCgs7g%3D – reference: KimEZwi-DantsisLReznikovNHanselC SAgarwalSStevensM MAdv. Mater.2017291701086 – reference: ChengPTangMChenZLiuWJiangXPeiXSuWReact. Chem. Eng.2020519731:CAS:528:DC%2BB3cXhsF2ntrjE – reference: TranT DKimM IBioChip J.2018122681:CAS:528:DC%2BC1cXisVyksr7L – reference: BrinsonH FBrinsonL CPolymer engineering science and viscoelasticity: An introduction2015BostonSpringer – reference: GuoYLiSWangYZhangSAnal. Chem.20178922671:CAS:528:DC%2BC2sXhsFGht7k%3D – reference: MeiLZhuGQiuLWuCChenHLiangHCansizSLvYZhangXTanWNano Res.2015834471:CAS:528:DC%2BC2MXhsFeju7zM – reference: RaiS KKaurHKauldharB SYadavS KACS Biomater. Sci. Eng.2020666611:CAS:528:DC%2BB3cXhsVCmtr%2FI – reference: LiuYAiKLuLChem. Rev.201411450571:CAS:528:DC%2BC2cXisVWgtro%3D – reference: P. Thakur, S. S. Sonawane, S. H. Sonawane and B. A. Bhanvase, Encapsulation of active molecules and their delivery system, Elsevier (2020). – reference: ZhangXYuYShenJQiWWangHTalanta20202121207941:CAS:528:DC%2BB3cXisV2gsbw%3D – reference: LiuYJiXHeZNanoscale201911171791:CAS:528:DC%2BC1MXhs1Cnt7vP – reference: MohammadMAhmadpoorFShojaosadatiS AVasheghani-FarahaniEColloid Surf. B-Biointerfaces20222091121491:CAS:528:DC%2BB3MXit1ekt7bJ – reference: KimH KNguyenP TKimM IKimB CChemosphere20222881325841:CAS:528:DC%2BB3MXit1ygtrbN – reference: FengNZhangHLiYLiuYXuLWangYFeiXTianJFood Chem.20203111259111:CAS:528:DC%2BC1MXisVGisbzO – reference: LiPZhengJXuJZhangMDalton Trans.202150147531:CAS:528:DC%2BB3MXitFCgtbjK – volume: 24 start-page: 3648 year: 2019 ident: 1292_CR33 publication-title: Molecules doi: 10.3390/molecules24203648 – volume: 182 start-page: 110354 year: 2019 ident: 1292_CR4 publication-title: Colloid Surf. B-Biointerfaces doi: 10.1016/j.colsurfb.2019.110354 – volume: 15 start-page: 7955 year: 2015 ident: 1292_CR63 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2015.11227 – volume: 369 start-page: 132246 year: 2022 ident: 1292_CR17 publication-title: Sens. Actuator B-Chem. doi: 10.1016/j.snb.2022.132246 – volume: 338 start-page: 93 year: 2017 ident: 1292_CR50 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.05.014 – volume: 143 start-page: 430 year: 2019 ident: 1292_CR46 publication-title: Carbon doi: 10.1016/j.carbon.2018.11.026 – volume: 427 start-page: 131808 year: 2022 ident: 1292_CR51 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131808 – volume: 8 start-page: 6329 year: 2016 ident: 1292_CR15 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11834 – volume: 12 start-page: 10235 year: 2021 ident: 1292_CR10 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02748 – volume: 188 start-page: 1 year: 2021 ident: 1292_CR8 publication-title: Microchim. Acta doi: 10.1007/s00604-021-04937-4 – volume: 388 start-page: 63 year: 2019 ident: 1292_CR38 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.02.031 – volume: 8 start-page: 1801507 year: 2019 ident: 1292_CR16 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201801507 – volume: 18 start-page: 6555 year: 2018 ident: 1292_CR23 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2018.15697 – volume: 5 start-page: 18766 year: 2020 ident: 1292_CR65 publication-title: ACS Omega doi: 10.1021/acsomega.0c01864 – volume: 126 start-page: 5931 year: 2014 ident: 1292_CR58 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201400323 – volume: 12 start-page: 3094 year: 2016 ident: 1292_CR36 publication-title: Small doi: 10.1002/smll.201600273 – volume: 26 start-page: 8029 year: 2014 ident: 1292_CR55 publication-title: Adv. Mater. doi: 10.1002/adma.201403709 – volume: 7 start-page: 428 year: 2012 ident: 1292_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.80 – volume: 120 start-page: 175 year: 2018 ident: 1292_CR2 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.058 – volume: 11 start-page: 316 year: 2012 ident: 1292_CR12 publication-title: Nat. Mater. doi: 10.1038/nmat3253 – volume: 135 start-page: 16438 year: 2013 ident: 1292_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406115e – volume: 29 start-page: 1701086 year: 2017 ident: 1292_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.201701086 – volume: 8 start-page: 1 year: 2017 ident: 1292_CR68 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 – volume: 6 start-page: 104265 year: 2016 ident: 1292_CR5 publication-title: RSC Adv. doi: 10.1039/C6RA24192A – volume: 107 start-page: 110273 year: 2020 ident: 1292_CR42 publication-title: Mater. Sci. Eng. C-Biomimetic Supramol. Syst. doi: 10.1016/j.msec.2019.110273 – volume: 5 start-page: 1973 year: 2020 ident: 1292_CR30 publication-title: React. Chem. Eng. doi: 10.1039/D0RE00158A – volume: 6 start-page: 6661 year: 2020 ident: 1292_CR32 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.0c00841 – volume: 43 start-page: 11082 year: 2019 ident: 1292_CR44 publication-title: New J. Chem. doi: 10.1039/C8NJ06429F – volume: 11 start-page: 17179 year: 2019 ident: 1292_CR20 publication-title: Nanoscale doi: 10.1039/C9NR05446D – volume: 209 start-page: 112149 year: 2022 ident: 1292_CR66 publication-title: Colloid Surf. B-Biointerfaces doi: 10.1016/j.colsurfb.2021.112149 – volume: 114 start-page: 5057 year: 2014 ident: 1292_CR56 publication-title: Chem. Rev. doi: 10.1021/cr400407a – volume: 352 start-page: 249 year: 2017 ident: 1292_CR1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.008 – volume: 9 start-page: 5658 year: 2017 ident: 1292_CR25 publication-title: Nanoscale doi: 10.1039/C7NR00958E – volume: 74 start-page: 103 year: 2018 ident: 1292_CR31 publication-title: Process Biochem. doi: 10.1016/j.procbio.2018.08.029 – volume: 13 start-page: 1 year: 2015 ident: 1292_CR11 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-014-0062-4 – volume: 94 start-page: 236 year: 2019 ident: 1292_CR29 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5769 – volume: 415 start-page: 129075 year: 2021 ident: 1292_CR19 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129075 – ident: 1292_CR40 – volume: 10 start-page: 1 year: 2020 ident: 1292_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-020-59699-5 – volume: 288 start-page: 132584 year: 2022 ident: 1292_CR18 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132584 – volume: 212 start-page: 120794 year: 2020 ident: 1292_CR64 publication-title: Talanta doi: 10.1016/j.talanta.2020.120794 – volume: 258 start-page: 803 year: 2018 ident: 1292_CR26 publication-title: Sens. Actuator B-Chem. doi: 10.1016/j.snb.2017.11.155 – volume: 92 start-page: 68 year: 2017 ident: 1292_CR35 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.02.004 – volume: 70 start-page: 169 year: 2017 ident: 1292_CR53 publication-title: Mater. Sci. Eng. C-Biomimetic Supramol. Syst. doi: 10.1016/j.msec.2016.08.073 – volume: 6 start-page: 255 year: 2014 ident: 1292_CR22 publication-title: Nanoscale doi: 10.1039/C3NR04425D – volume: 5 start-page: 5311 year: 2017 ident: 1292_CR41 publication-title: J. Mater. Chem. B doi: 10.1039/C7TB00610A – volume: 18 start-page: 30 year: 2021 ident: 1292_CR67 publication-title: J. Bionic Eng. doi: 10.1007/s42235-021-0005-3 – volume: 15 start-page: 951 year: 2019 ident: 1292_CR24 publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2019.2752 – volume: 155 start-page: 1520 year: 2020 ident: 1292_CR39 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.11.129 – volume: 6 start-page: 1 year: 2016 ident: 1292_CR6 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0001-8 – volume: 11 start-page: 117 year: 2021 ident: 1292_CR54 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01577-7 – volume: 212 start-page: 111212 year: 2020 ident: 1292_CR57 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2020.111212 – volume: 12 start-page: 268 year: 2018 ident: 1292_CR21 publication-title: BioChip J. doi: 10.1007/s13206-018-2409-7 – volume: 5 start-page: 6971 year: 2011 ident: 1292_CR49 publication-title: ACS Nano doi: 10.1021/nn202451x – volume: 12 start-page: 15023 year: 2020 ident: 1292_CR28 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21511 – volume: 8 start-page: 465 year: 2020 ident: 1292_CR48 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00465 – volume: 5 start-page: 2231 year: 2017 ident: 1292_CR60 publication-title: J. Mat. Chem. B doi: 10.1039/C6TB03047E – volume: 50 start-page: 14753 year: 2021 ident: 1292_CR43 publication-title: Dalton Trans. doi: 10.1039/D1DT02301B – volume: 50 start-page: 12465 year: 2014 ident: 1292_CR14 publication-title: Chem. Commun. doi: 10.1039/C4CC05478D – volume: 8 start-page: 18980 year: 2016 ident: 1292_CR37 publication-title: Nanoscale doi: 10.1039/C6NR06870G – volume-title: Polymer engineering science and viscoelasticity: An introduction year: 2015 ident: 1292_CR52 doi: 10.1007/978-1-4899-7485-3 – volume: 89 start-page: 2267 year: 2017 ident: 1292_CR69 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03346 – volume: 8 start-page: 3447 year: 2015 ident: 1292_CR7 publication-title: Nano Res. doi: 10.1007/s12274-015-0841-8 – volume: 1 start-page: 045101 year: 2015 ident: 1292_CR47 publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/1/4/045101 – volume: 141 start-page: 111473 year: 2019 ident: 1292_CR27 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111473 – volume: 13 start-page: 5852 year: 2019 ident: 1292_CR62 publication-title: ACS Nano doi: 10.1021/acsnano.9b01589 – volume: 129 start-page: 679 year: 2020 ident: 1292_CR34 publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2020.01.008 – volume: 311 start-page: 125911 year: 2020 ident: 1292_CR45 publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.125911 – volume: 182 start-page: 113187 year: 2021 ident: 1292_CR61 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113187 |
SSID | ssj0055620 |
Score | 2.3713882 |
SecondaryResourceType | review_article |
Snippet | Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 302 |
SubjectTerms | Biomedical materials Biotechnology Catalysis Chemistry Chemistry and Materials Science Industrial Chemistry/Chemical Engineering Materials Science Nanoparticles Nucleic acids Proteins Recyclability Review Paper 화학공학 |
Title | Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications |
URI | https://link.springer.com/article/10.1007/s11814-022-1292-z https://www.proquest.com/docview/2771994433 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002927761 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2023, 40(2), 275, pp.302-310 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB414dByoC0tIgUiS-2p1aJ9e8MtAVKgKici0ZO1fgFKtKnyqNT8embW6wZQW4nTSrv27tqe8Xz2jL8B-GRiLmNubGCNoq0bjSoV9kygbMZNz0axI9L-fpmfjdKL6-y6Occ999Hu3iVZz9Trw25ojNKAos_RRsXBqgUbWVT0ijZs9L_--HbqJ-AMTbrbWiGKPUQ83pn5t5c8MketamYfIc0nztHa5gxfw5X_WxdqMj5cLuShWj0hcnxmc97AVoNBWd8JzVt4YapteHnsU79tw-YDlsJ38OvExW5YRKuMQtCnFVoqRrQOjgUZb9_-ppNfrCqrqZ3UideOWJ9RNRz5iWGIi2tRZ4iRmbybziluvrphZaWZYwAgYWEP3envYTQ8vTo-C5p0DYGKi2gRlMqonBstZZRornRapGWOqzFKepWUVuPMocNC5ypDMTAF4oQwtDnnRiqZKJskO9CusAW7wKyWZRiVkcrpJWnRk8bg1EyrVx7FedaB0I-aUA2XOaXUmIg1CzN1r8DuFdS9YtWBz3-q_HREHv8r_BFFQYzVnSD6bbreTMV4JnCRcU5RcXWS9g7se1ERjebPRcw50S2nSdKBL37k14__-ckPzyq9B68o770LH9-H9mK2NAeIjhayi9owHAwuu41WdKE1ivv39-UKfg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6VcKAcSkuLSBtaS-2p1aJ9e9NbFKChPE5Boidr_Qoo0aZKQiXy65lZrwmgthKnlXbt3bU99nzjGX8D8MXEXMbc2MAaRVs3GqdU2DWBshk3XRvFjkj77DwfXKQ_L7PL5hz33Ee7e5dkvVKvDruhMkoDij5HHRUHyzVYT9EED1uw3vvx6-TQL8AZqnS3tUIUe4h4vDPzby95pI7Wqpl9hDSfOEdrnXO0BUP_ty7UZLx_s5D7avmEyPGZzXkNrxoMynpOaN7AC1Ntw0bfp37bhs0HLIVv4c-Bi92wiFYZhaBPK9RUjGgdHAsy3r66pZNfrCqrqZ3Uide-sx6jajjyE8MQF9eizhAjM3k9nVPcfDViZaWZYwAgYWEP3env4OLocNgfBE26hkDFRbQISmVUzo2WMko0Vzot0jJHa4ySXiWl1bhy6LDQucpQDEyBOCEMbc65kUomyibJDrQqbMEuMKtlGUZlpHJ6SVp0pTG4NJP1yqM4z9oQ-lETquEyp5QaE7FiYabuFdi9grpXLNvw9b7Kb0fk8b_Cn1EUxFhdC6LfputoKsYzgUbGMUXF1Una29DxoiKamT8XMedEt5wmSRu--ZFfPf7nJ98_q_Qn2BgMz07F6fH5yQd4GSPycqHkHWgtZjdmD5HSQn5sZsYdzzAK9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4VKvE4VBSoGghgqT0Vrdi3N71F0IhHi3ogEjdr_QqIyEFJQCK_npn1LgFEK3FaadfelfezPWPP-PsAvpuYy5gbG1ijaOtG45AKOyZQNuOmY6PYE2n_Oc-P--npZXZZ65xOmmz3JiTpzzQQS5ObHtxqezA_-IaGKQ0oEx3tVRzMFuAjzsYRdfR-3G2m4gyNu99kIbI99H2asOZbr3hhmBbc2L7wOV-FSSvr01uDT7XbyLoe58_wwbh1WD5s1NrWYfUZseAG3B_5dAuLDiajrPGRw8YxYmLwxMV4--qBDmsxV7qRHVZaaT9Zl1E1BGtoGLqyVe9k6NYyeT2aUKq7G7DSaeYP7RO-7HkEfBP6vV8Xh8dBrbAQqLiIpkGpjMq50VJGieZKp0Va5riAIp2qpLQaB7sOC52rDJEzBZr2MLQ550YqmSibJF9g0WELvgKzWpZhVEYqp5ekRUcag7MpLTh5FOdZC8Lm9wpV04-TCsZQzImTCRGBiAhCRMxa8OOpyq3n3vhf4W-ImbhR14IYs-k6GImbscB1wQklslW66i1oN5iKerBORMw5MSSnSdKC_Qbn-eN_fnLrXaX3YOnvUU_8Pjk_24YVUq33yd9tWJyO78wO-jZTuVv130f3uvIh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversified+component+incorporated+hybrid+nanoflowers%3A+A+versatile+material+for+biosensing+and+biomedical+applications&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Dang%2C+Thinh+Viet&rft.au=Kim%2C+Moon+Il&rft.date=2023-02-01&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=40&rft.issue=2&rft.spage=302&rft.epage=310&rft_id=info:doi/10.1007%2Fs11814-022-1292-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11814_022_1292_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |