Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications

Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like protein or enzyme within their nanostructured matrices, yielding high activity, stability, and recyclability. Recently, much effort has been...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 40; no. 2; pp. 302 - 310
Main Authors Dang, Thinh Viet, Kim, Moon Il
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2023
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-022-1292-z

Cover

Abstract Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like protein or enzyme within their nanostructured matrices, yielding high activity, stability, and recyclability. Recently, much effort has been devoted to developing advanced HNFs composed of diversified components, such as multiple proteins, nanoparticles, polymers, and nucleic acids, to achieve different functionalities enabling extended applications. Compared to the conventional HNFs primarily serving as immobilization supports for enzyme, diversified component incorporated HNFs can have unique multiple functionalities, essentially for developing novel biosensing and biomedical strategies. Herein, an overview for the recent advances on diversified components incorporated HNFs is presented with an emphasis on the potential biotechnological applications. Synthetic strategies, structural characteristics, and unique properties of diverse HNFs are discussed with representative studies, demonstrating the versatility of the HNFs. Current challenges and future opportunities of the HNFs are also discussed.
AbstractList Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like protein or enzyme within their nanostructured matrices, yielding high activity, stability, and recyclability. Recently, much effort has been devoted to developing advanced HNFs composed of diversified components, such as multiple proteins, nanoparticles, polymers, and nucleic acids, to achieve different functionalities enabling extended applications. Compared to the conventional HNFs primarily serving as immobilization supports for enzyme, diversified component incorporated HNFs can have unique multiple functionalities, essentially for developing novel biosensing and biomedical strategies. Herein, an overview for the recent advances on diversified components incorporated HNFs is presented with an emphasis on the potential biotechnological applications. Synthetic strategies, structural characteristics, and unique properties of diverse HNFs are discussed with representative studies, demonstrating the versatility of the HNFs. Current challenges and future opportunities of the HNFs are also discussed.
Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like protein or enzyme within their nanostructured matrices, yielding high activity, stability, and recyclability. Recently, much effort has been devoted to developing advanced HNFs composed of diversified components, such as multiple proteins, nanoparticles, polymers, and nucleic acids, to achieve different functionalities enabling extended applications. Compared to the conventional HNFs primarily serving as immobilization supports for enzyme, diversified component incorporated HNFs can have unique multiple functionalities, essentially for developing novel biosensing and biomedical strategies. Herein, an overview for the recent advances on diversified components incorporated HNFs is presented with an emphasis on the potential biotechnological applications. Synthetic strategies, structural characteristics, and unique properties of diverse HNFs are discussed with representative studies, demonstrating the versatility of the HNFs. Current challenges and future opportunities of the HNFs are also discussed. KCI Citation Count: 1
Author Kim, Moon Il
Dang, Thinh Viet
Author_xml – sequence: 1
  givenname: Thinh Viet
  surname: Dang
  fullname: Dang, Thinh Viet
  organization: Department of BioNano Technology, Gachon University
– sequence: 2
  givenname: Moon Il
  surname: Kim
  fullname: Kim, Moon Il
  email: moonil@gachon.ac.kr
  organization: Department of BioNano Technology, Gachon University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002927761$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kVtr3DAQhUXZQjdpf0DfBH0LuNXIlmXnbdmk6UIgULbPQtZlq8QrOZKTsPvrI8eFQiB5Gl3Od2aYc4IWPniD0Fcg34EQ_iMBNFAVhNICaEuL4we0hJazglNKFmhJKKsLAGCf0ElKt4QwVlOyRI8X7tHE5KwzGquwH7KtH7HzKsQhRDnm57-HLjqNvfTB9uEpy8_xCk-YHF1v8D6ropM9tiHizoVkfHJ-h6XX03VvtFP5Vw5Dnw-jCz59Rh-t7JP58q-eoj8_L7frX8X1zdVmvbouFG1gLKQyquZGdx2UmitdNZWsoa6gqdtSWk0p06TRtWKMG9M0rCTE1pybTnWlsmV5is5mXx-tuFNOBOle6i6IuyhWv7cbASTvpeFtFn-bxUMM9w8mjeI2PESf5xOUc2jbqionS5hVKoaUorFiiG4v4yEbiSkLMWchchZiykIcM8NfMcqNL5sYo3T9uySdyZS7-J2J_2d6G3oG7Nai2w
CitedBy_id crossref_primary_10_1007_s11814_023_1577_x
crossref_primary_10_1007_s11814_024_00234_x
crossref_primary_10_1016_j_cej_2024_150557
crossref_primary_10_1016_j_inoche_2025_114311
crossref_primary_10_3390_chemistry5030129
crossref_primary_10_3390_s24020579
crossref_primary_10_1007_s00604_023_06070_w
crossref_primary_10_1007_s12257_024_00148_9
crossref_primary_10_1016_j_ijbiomac_2024_133089
Cites_doi 10.3390/molecules24203648
10.1016/j.colsurfb.2019.110354
10.1166/jnn.2015.11227
10.1016/j.snb.2022.132246
10.1016/j.jhazmat.2017.05.014
10.1016/j.carbon.2018.11.026
10.1016/j.cej.2021.131808
10.1021/acsami.5b11834
10.1021/acs.jpclett.1c02748
10.1007/s00604-021-04937-4
10.1016/j.ccr.2019.02.031
10.1002/adhm.201801507
10.1166/jnn.2018.15697
10.1021/acsomega.0c01864
10.1002/ange.201400323
10.1002/smll.201600273
10.1002/adma.201403709
10.1038/nnano.2012.80
10.1016/j.bios.2018.08.058
10.1038/nmat3253
10.1021/ja406115e
10.1002/adma.201701086
10.1038/s41467-016-0009-6
10.1039/C6RA24192A
10.1016/j.msec.2019.110273
10.1039/D0RE00158A
10.1021/acsbiomaterials.0c00841
10.1039/C8NJ06429F
10.1039/C9NR05446D
10.1016/j.colsurfb.2021.112149
10.1021/cr400407a
10.1016/j.ccr.2017.09.008
10.1039/C7NR00958E
10.1016/j.procbio.2018.08.029
10.1186/s12951-014-0062-4
10.1002/jctb.5769
10.1016/j.cej.2021.129075
10.1038/s41598-020-59699-5
10.1016/j.chemosphere.2021.132584
10.1016/j.talanta.2020.120794
10.1016/j.snb.2017.11.155
10.1016/j.bios.2017.02.004
10.1016/j.msec.2016.08.073
10.1039/C3NR04425D
10.1039/C7TB00610A
10.1007/s42235-021-0005-3
10.1166/jbn.2019.2752
10.1016/j.ijbiomac.2019.11.129
10.1038/s41598-016-0001-8
10.1007/s13204-020-01577-7
10.1016/j.jinorgbio.2020.111212
10.1007/s13206-018-2409-7
10.1021/nn202451x
10.1021/acsami.9b21511
10.3389/fbioe.2020.00465
10.1039/C6TB03047E
10.1039/D1DT02301B
10.1039/C4CC05478D
10.1039/C6NR06870G
10.1007/978-1-4899-7485-3
10.1021/acs.analchem.6b03346
10.1007/s12274-015-0841-8
10.1088/2057-1976/1/4/045101
10.1016/j.bios.2019.111473
10.1021/acsnano.9b01589
10.1016/j.jbiosc.2020.01.008
10.1016/j.foodchem.2019.125911
10.1016/j.bios.2021.113187
ContentType Journal Article
Copyright Korean Institute of Chemical Engineering (KIChE) 2023
Korean Institute of Chemical Engineering (KIChE) 2023.
Copyright_xml – notice: Korean Institute of Chemical Engineering (KIChE) 2023
– notice: Korean Institute of Chemical Engineering (KIChE) 2023.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-022-1292-z
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 310
ExternalDocumentID oai_kci_go_kr_ARTI_10111879
10_1007_s11814_022_1292_z
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
AABYN
AAEOY
AAFGU
AAGCJ
AAUCO
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c281t-acec67edbb13d7cd484a616418693afd225d08d6c557ee885300f677ebcb3cf33
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Fri May 31 03:51:26 EDT 2024
Sat Sep 13 16:31:35 EDT 2025
Thu Apr 24 23:00:33 EDT 2025
Tue Jul 01 03:29:44 EDT 2025
Fri Feb 21 02:44:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nanoparticle
Polymer
Multiple Proteins
Nucleic Acid
Biosensing
Biomedical Application
Hybrid Nanoflowers
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-acec67edbb13d7cd484a616418693afd225d08d6c557ee885300f677ebcb3cf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2771994433
PQPubID 2044390
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10111879
proquest_journals_2771994433
crossref_primary_10_1007_s11814_022_1292_z
crossref_citationtrail_10_1007_s11814_022_1292_z
springer_journals_10_1007_s11814_022_1292_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References LiuYJiXHeZNanoscale201911171791:CAS:528:DC%2BC1MXhs1Cnt7vP
ZhuXHuangJLiuJZhangHJiangJYuRNanoscale2017956581:CAS:528:DC%2BC2sXlslemtbg%3D
ChenXXuLWangALiHWangCPeiXZhangPWuS GJ. Chem. Technol. Biotechnol.2019942361:CAS:528:DC%2BC1cXhsVKrtLjJ
KimH KNguyenP TKimM IKimB CChemosphere20222881325841:CAS:528:DC%2BB3MXit1ygtrbN
ZhangCZhaoMZouHZhangXShengRZhangYZhangBLiCQiYJ. Inorg. Biochem.20202121112121:CAS:528:DC%2BB3cXhvVeqs7nL
LiPZhengJXuJZhangMDalton Trans.202150147531:CAS:528:DC%2BB3MXitFCgtbjK
HanJLuoPWangLWuJLiCWangYACS Appl. Mater. Interfaces202012150231:CAS:528:DC%2BB3cXkslWmsbs%3D
RaiS KKaurHKauldharB SYadavS KACS Biomater. Sci. Eng.2020666611:CAS:528:DC%2BB3cXhsVCmtr%2FI
P. Thakur, S. S. Sonawane, S. H. Sonawane and B. A. Bhanvase, Encapsulation of active molecules and their delivery system, Elsevier (2020).
DadiSCelikCMandalA KOcsoyIAppl. Nanosci.2021111171:CAS:528:DC%2BB3cXitFSmt7nK
CheonH JAdhikariM DChungMTranT DKimJKimM IAdv. Healthcare Mater.201981801507
HaoYLiHCaoYChenYLeiMZhangTXiaoYChuBQianZJ. Biomed. Nanotechnol.2019159511:CAS:528:DC%2BC1MXhsVSgtbvE
ZhuGMeiLVishwasraoH DJacobsonOWangZLiuYYungB CFuXJinANiuGNat. Commun.201781
LiuSZengT HHofmannMBurcombeEWeiJJiangRKongJChenYACS Nano2011569711:CAS:528:DC%2BC3MXhtVyls73L
ChengPTangMChenZLiuWJiangXPeiXSuWReact. Chem. Eng.2020519731:CAS:528:DC%2BB3cXhsF2ntrjE
BaekS HRohJParkC YKimM WShiRKailasaS KParkT JMater. Sci. Eng. C-Biomimetic Supramol. Syst.20201071102731:CAS:528:DC%2BC1MXhvF2rur7M
TranT DNguyenP TLeT NKimM IBiosens. Bioelectron.20211821131871:CAS:528:DC%2BB3MXnvFertrw%3D
AydemirDGeciliFÖzdemirNUlusuN NJ. Biosci. Bioeng.20201296791:CAS:528:DC%2BB3cXivFyntrc%3D
WangJWangHWangHHeSLiRDengZLiuXWangFACS Nano20191358521:CAS:528:DC%2BC1MXosF2ms7Y%3D
LeeICheonH JAdhikariM DTranT DYeonK-MKimM IKimJInt. J. Biol. Macromol.202015515201:CAS:528:DC%2BC1MXit1KrtLrO
LiZZhangYSuYOuyangPGeJLiuZChem. Commun.201450124651:CAS:528:DC%2BC2cXhsVersrfO
RautiRMustoMBosiSPratoMBalleriniLCarbon20191434301:CAS:528:DC%2BC1cXitlWnt77F
LeeS WCheonS AKimM IParkT JJ. Nanobiotechnol.2015131
LiuYAiKLuLChem. Rev.201411450571:CAS:528:DC%2BC2cXisVWgtro%3D
GuoYLiSWangYZhangSAnal. Chem.20178922671:CAS:528:DC%2BC2sXhsFGht7k%3D
ZhangMZhangYYangCMaCTangJChem. Eng. J.20214151290751:CAS:528:DC%2BB3MXltlynur0%3D
DuanLWangHLiuJZhangYBiomed. Phys. Eng. Express20151045101
ParkK SBatuleB SChungMKangK SParkT JKimM IParkH GJ. Mat. Chem. B2017522311:CAS:528:DC%2BC2sXitlGnt70%3D
KimM IChoDParkH GJ. Nanosci. Nanotechnol.20151579551:CAS:528:DC%2BC28XktVKmurg%3D
SunJGeJLiuWLanMZhangHWangPWangYNiuZNanoscale201462551:CAS:528:DC%2BC3sXhvV2hs7vP
DangT VHeoN SChoH-JLeeS MSongM YKimH JKimM IMicrochim. Acta20211881
WuJMaXLiCZhouXHanJWangLDongHWangYChem. Eng. J.20224271318081:CAS:528:DC%2BB3MXhvVajtbvL
ZhangMPeltierRZhangMLuHBianHLiYXuZShenYSunHWangZJ. Mater. Chem. B2017553111:CAS:528:DC%2BC2sXos1Sqs7s%3D
ZhuGHuRZhaoZChenZZhangXTanWJ. Am. Chem. Soc.2013135164381:CAS:528:DC%2BC3sXhsVynsrrN
LiYXieGQiuJZhouDGouDTaoYLiYChenHSens. Actuator B-Chem.20182588031:CAS:528:DC%2BC2sXhvFagsb%2FK
ChungMJangY JKimM IJ. Nanosci. Nanotechnol.20181865551:CAS:528:DC%2BC1MXhtFOrt7w%3D
WuZShiLYuXZhangSChenGMolecules20192436481:CAS:528:DC%2BC1MXit12qsr7L
ZhangXYuYShenJQiWWangHTalanta20202121207941:CAS:528:DC%2BB3cXisV2gsbw%3D
DuXLiLLiJYangCFrenkelNWelleAHeisslerSNefedovAGrunzeMLevkinP AAdv. Mater.20142680291:CAS:528:DC%2BC2cXhvVyksbbN
CelikCIldizNOcsoyISci. Rep.2020101
WeiTDuDZhuM-JLinYDaiZACS Appl. Mater. Interfaces2016863291:CAS:528:DC%2BC28XivVeltrc%3D
LiuYLiuZHuangDChengMZengGLaiCZhangCZhouCWangWJiangDCoord. Chem. Rev.2019388631:CAS:528:DC%2BC1MXktlKht7c%3D
FengNZhangHLiYLiuYXuLWangYFeiXTianJFood Chem.20203111259111:CAS:528:DC%2BC1MXisVGisbzO
YeRZhuCSongYLuQGeXYangXZhuM JDuDLiHLinYSmall20161230941:CAS:528:DC%2BC28XmvVSmsbg%3D
LeeJ BHongJBonnerD KPoonZHammondP TNat. Mater.2012113161:CAS:528:DC%2BC38XivVeqsbg%3D
SunNJiaYWangCXiaJDaiLLiJJ. Phys. Chem. Lett.202112102351:CAS:528:DC%2BB3MXit1amurvN
ZhuJWenMWenWDuDZhangXWangSLinYBiosens. Bioelectron.20181201751:CAS:528:DC%2BC1cXhs1CgsL7P
ZhangLMaYWangCWangZChenXLiMZhaoRWangLProcess Biochem.2018741031:CAS:528:DC%2BC1cXhs1Gkur%2FI
LakkakulaJ RMatshayaTKrauseR W MMater. Sci. Eng. C-Biomimetic Supramol. Syst.2017701691:CAS:528:DC%2BC28XhsVOqt73E
TranT DKimM IBioChip J.2018122681:CAS:528:DC%2BC1cXisVyksr7L
RenWLiYWangJLiLXuLWuYWangYFeiXTianJNew J. Chem.201943110821:CAS:528:DC%2BC1MXhtFalurnN
ZhangMXuWLiMLiJWangPWangZJ. Bionic Eng.20211830
MeiLZhuGQiuLWuCChenHLiangHCansizSLvYZhangXTanWNano Res.2015834471:CAS:528:DC%2BC2MXhsFeju7zM
LiHHouJDuanLJiCZhangYChenVJ. Hazard. Mater.2017338931:CAS:528:DC%2BC2sXotVyhtr4%3D
HuRZhangXZhaoZZhuGChenTFuTTanWAngew. Chem. Int. Ed.20141265931
GeJLeiJZareR NNat. Nanotechnol.201274281:CAS:528:DC%2BC38XnvVyktrY%3D
ZhaoZZhangJWangMWangZWangLMaLHuangXLiZRSC Adv.201661042651:CAS:528:DC%2BC28XhslGiurjP
LiuYChenJDuMWangXJiXHeZBiosens. Bioelectron.201792681:CAS:528:DC%2BC2sXisVCgs7g%3D
ParkBDangT VYooJTranT DGhoreishianS MLeeG HKimM IHuhYSSens. Actuator B-Chem.20223691322461:CAS:528:DC%2BB38XhslKqu7%2FF
CuiJJiaSCoord. Chem. Rev.20173522491:CAS:528:DC%2BC2sXhsFKms73N
JinRKongDZhaoXLiHYanXLiuFSunPDuDLinYLuGBiosens. Bioelectron.20191411114731:CAS:528:DC%2BC1MXht12jt7vI
MohammedHKumarABekyarovaEAl-HadeethiYZhangXChenMAnsariM SCochisARimondiniLFront. Bioeng. Biotechnol.20208465
WuZ-FWangZZhangYMaY-LHeC-YLiHChenLHuoQ-SWangLLiZ-QSci. Rep.201661
YeRZhuCSongYSongJFuSLuQYangXZhuM-JDuDLiHNanoscale20168189801:CAS:528:DC%2BC28Xhs12ks73J
BrinsonH FBrinsonL CPolymer engineering science and viscoelasticity: An introduction2015BostonSpringer
KimEZwi-DantsisLReznikovNHanselC SAgarwalSStevensM MAdv. Mater.2017291701086
MohammadMAhmadpoorFShojaosadatiS AACS Omega20205187661:CAS:528:DC%2BB3cXhsVSiu7vK
ShcharbinDHalets-BuiIAbashkinVDzmitrukVLoznikovaSOdabaşıMAcetÖnalBÖzdemirNShcharbinaNColloid Surf. B-Biointerfaces20191821103541:CAS:528:DC%2BC1MXhtl2gtbfI
MohammadMAhmadpoorFShojaosadatiS AVasheghani-FarahaniEColloid Surf. B-Biointerfaces20222091121491:CAS:528:DC%2BB3MXit1ekt7bJ
Z Li (1292_CR14) 2014; 50
D Shcharbin (1292_CR4) 2019; 182
D Aydemir (1292_CR34) 2020; 129
H F Brinson (1292_CR52) 2015
C Celik (1292_CR9) 2020; 10
J Wu (1292_CR51) 2022; 427
Y Liu (1292_CR35) 2017; 92
S W Lee (1292_CR11) 2015; 13
T D Tran (1292_CR21) 2018; 12
L Zhang (1292_CR31) 2018; 74
M Zhang (1292_CR19) 2021; 415
T V Dang (1292_CR8) 2021; 188
R Ye (1292_CR37) 2016; 8
S Dadi (1292_CR54) 2021; 11
M Mohammad (1292_CR66) 2022; 209
J Ge (1292_CR3) 2012; 7
J Han (1292_CR28) 2020; 12
Y Liu (1292_CR56) 2014; 114
L Duan (1292_CR47) 2015; 1
T Wei (1292_CR15) 2016; 8
R Jin (1292_CR27) 2019; 141
M Mohammad (1292_CR65) 2020; 5
T D Tran (1292_CR61) 2021; 182
R Ye (1292_CR36) 2016; 12
P Li (1292_CR43) 2021; 50
K S Park (1292_CR60) 2017; 5
P Cheng (1292_CR30) 2020; 5
Y Liu (1292_CR20) 2019; 11
H Mohammed (1292_CR48) 2020; 8
J R Lakkakula (1292_CR53) 2017; 70
L Mei (1292_CR7) 2015; 8
Y Guo (1292_CR69) 2017; 89
J Cui (1292_CR1) 2017; 352
J Zhu (1292_CR2) 2018; 120
Z-F Wu (1292_CR6) 2016; 6
H J Cheon (1292_CR16) 2019; 8
Y Li (1292_CR26) 2018; 258
Z Wu (1292_CR33) 2019; 24
C Zhang (1292_CR57) 2020; 212
J Sun (1292_CR22) 2014; 6
M Zhang (1292_CR67) 2021; 18
S Liu (1292_CR49) 2011; 5
M Zhang (1292_CR41) 2017; 5
X Zhu (1292_CR25) 2017; 9
X Zhang (1292_CR64) 2020; 212
Y Liu (1292_CR38) 2019; 388
1292_CR40
X Du (1292_CR55) 2014; 26
N Sun (1292_CR10) 2021; 12
B Park (1292_CR17) 2022; 369
W Ren (1292_CR44) 2019; 43
J B Lee (1292_CR12) 2012; 11
G Zhu (1292_CR68) 2017; 8
R Hu (1292_CR58) 2014; 126
M Chung (1292_CR23) 2018; 18
H Li (1292_CR50) 2017; 338
M I Kim (1292_CR63) 2015; 15
J Wang (1292_CR62) 2019; 13
E Kim (1292_CR59) 2017; 29
G Zhu (1292_CR13) 2013; 135
R Rauti (1292_CR46) 2019; 143
Y Hao (1292_CR24) 2019; 15
X Chen (1292_CR29) 2019; 94
S K Rai (1292_CR32) 2020; 6
I Lee (1292_CR39) 2020; 155
S H Baek (1292_CR42) 2020; 107
Z Zhao (1292_CR5) 2016; 6
H K Kim (1292_CR18) 2022; 288
N Feng (1292_CR45) 2020; 311
References_xml – reference: HaoYLiHCaoYChenYLeiMZhangTXiaoYChuBQianZJ. Biomed. Nanotechnol.2019159511:CAS:528:DC%2BC1MXhsVSgtbvE
– reference: ZhangMZhangYYangCMaCTangJChem. Eng. J.20214151290751:CAS:528:DC%2BB3MXltlynur0%3D
– reference: ZhuXHuangJLiuJZhangHJiangJYuRNanoscale2017956581:CAS:528:DC%2BC2sXlslemtbg%3D
– reference: CelikCIldizNOcsoyISci. Rep.2020101
– reference: SunNJiaYWangCXiaJDaiLLiJJ. Phys. Chem. Lett.202112102351:CAS:528:DC%2BB3MXit1amurvN
– reference: ParkBDangT VYooJTranT DGhoreishianS MLeeG HKimM IHuhYSSens. Actuator B-Chem.20223691322461:CAS:528:DC%2BB38XhslKqu7%2FF
– reference: ZhangMPeltierRZhangMLuHBianHLiYXuZShenYSunHWangZJ. Mater. Chem. B2017553111:CAS:528:DC%2BC2sXos1Sqs7s%3D
– reference: ZhuGMeiLVishwasraoH DJacobsonOWangZLiuYYungB CFuXJinANiuGNat. Commun.201781
– reference: WuZShiLYuXZhangSChenGMolecules20192436481:CAS:528:DC%2BC1MXit12qsr7L
– reference: LeeS WCheonS AKimM IParkT JJ. Nanobiotechnol.2015131
– reference: CheonH JAdhikariM DChungMTranT DKimJKimM IAdv. Healthcare Mater.201981801507
– reference: CuiJJiaSCoord. Chem. Rev.20173522491:CAS:528:DC%2BC2sXhsFKms73N
– reference: TranT DNguyenP TLeT NKimM IBiosens. Bioelectron.20211821131871:CAS:528:DC%2BB3MXnvFertrw%3D
– reference: ZhaoZZhangJWangMWangZWangLMaLHuangXLiZRSC Adv.201661042651:CAS:528:DC%2BC28XhslGiurjP
– reference: YeRZhuCSongYSongJFuSLuQYangXZhuM-JDuDLiHNanoscale20168189801:CAS:528:DC%2BC28Xhs12ks73J
– reference: JinRKongDZhaoXLiHYanXLiuFSunPDuDLinYLuGBiosens. Bioelectron.20191411114731:CAS:528:DC%2BC1MXht12jt7vI
– reference: ChenXXuLWangALiHWangCPeiXZhangPWuS GJ. Chem. Technol. Biotechnol.2019942361:CAS:528:DC%2BC1cXhsVKrtLjJ
– reference: WuJMaXLiCZhouXHanJWangLDongHWangYChem. Eng. J.20224271318081:CAS:528:DC%2BB3MXhvVajtbvL
– reference: ChungMJangY JKimM IJ. Nanosci. Nanotechnol.20181865551:CAS:528:DC%2BC1MXhtFOrt7w%3D
– reference: LeeJ BHongJBonnerD KPoonZHammondP TNat. Mater.2012113161:CAS:528:DC%2BC38XivVeqsbg%3D
– reference: WeiTDuDZhuM-JLinYDaiZACS Appl. Mater. Interfaces2016863291:CAS:528:DC%2BC28XivVeltrc%3D
– reference: MohammadMAhmadpoorFShojaosadatiS AACS Omega20205187661:CAS:528:DC%2BB3cXhsVSiu7vK
– reference: ZhuJWenMWenWDuDZhangXWangSLinYBiosens. Bioelectron.20181201751:CAS:528:DC%2BC1cXhs1CgsL7P
– reference: MohammedHKumarABekyarovaEAl-HadeethiYZhangXChenMAnsariM SCochisARimondiniLFront. Bioeng. Biotechnol.20208465
– reference: ZhangLMaYWangCWangZChenXLiMZhaoRWangLProcess Biochem.2018741031:CAS:528:DC%2BC1cXhs1Gkur%2FI
– reference: RautiRMustoMBosiSPratoMBalleriniLCarbon20191434301:CAS:528:DC%2BC1cXitlWnt77F
– reference: LiYXieGQiuJZhouDGouDTaoYLiYChenHSens. Actuator B-Chem.20182588031:CAS:528:DC%2BC2sXhvFagsb%2FK
– reference: DuanLWangHLiuJZhangYBiomed. Phys. Eng. Express20151045101
– reference: LiHHouJDuanLJiCZhangYChenVJ. Hazard. Mater.2017338931:CAS:528:DC%2BC2sXotVyhtr4%3D
– reference: HuRZhangXZhaoZZhuGChenTFuTTanWAngew. Chem. Int. Ed.20141265931
– reference: ParkK SBatuleB SChungMKangK SParkT JKimM IParkH GJ. Mat. Chem. B2017522311:CAS:528:DC%2BC2sXitlGnt70%3D
– reference: ShcharbinDHalets-BuiIAbashkinVDzmitrukVLoznikovaSOdabaşıMAcetÖnalBÖzdemirNShcharbinaNColloid Surf. B-Biointerfaces20191821103541:CAS:528:DC%2BC1MXhtl2gtbfI
– reference: DuXLiLLiJYangCFrenkelNWelleAHeisslerSNefedovAGrunzeMLevkinP AAdv. Mater.20142680291:CAS:528:DC%2BC2cXhvVyksbbN
– reference: LeeICheonH JAdhikariM DTranT DYeonK-MKimM IKimJInt. J. Biol. Macromol.202015515201:CAS:528:DC%2BC1MXit1KrtLrO
– reference: WuZ-FWangZZhangYMaY-LHeC-YLiHChenLHuoQ-SWangLLiZ-QSci. Rep.201661
– reference: RenWLiYWangJLiLXuLWuYWangYFeiXTianJNew J. Chem.201943110821:CAS:528:DC%2BC1MXhtFalurnN
– reference: HanJLuoPWangLWuJLiCWangYACS Appl. Mater. Interfaces202012150231:CAS:528:DC%2BB3cXkslWmsbs%3D
– reference: YeRZhuCSongYLuQGeXYangXZhuM JDuDLiHLinYSmall20161230941:CAS:528:DC%2BC28XmvVSmsbg%3D
– reference: KimM IChoDParkH GJ. Nanosci. Nanotechnol.20151579551:CAS:528:DC%2BC28XktVKmurg%3D
– reference: LakkakulaJ RMatshayaTKrauseR W MMater. Sci. Eng. C-Biomimetic Supramol. Syst.2017701691:CAS:528:DC%2BC28XhsVOqt73E
– reference: LiZZhangYSuYOuyangPGeJLiuZChem. Commun.201450124651:CAS:528:DC%2BC2cXhsVersrfO
– reference: LiuSZengT HHofmannMBurcombeEWeiJJiangRKongJChenYACS Nano2011569711:CAS:528:DC%2BC3MXhtVyls73L
– reference: DangT VHeoN SChoH-JLeeS MSongM YKimH JKimM IMicrochim. Acta20211881
– reference: GeJLeiJZareR NNat. Nanotechnol.201274281:CAS:528:DC%2BC38XnvVyktrY%3D
– reference: SunJGeJLiuWLanMZhangHWangPWangYNiuZNanoscale201462551:CAS:528:DC%2BC3sXhvV2hs7vP
– reference: ZhuGHuRZhaoZChenZZhangXTanWJ. Am. Chem. Soc.2013135164381:CAS:528:DC%2BC3sXhsVynsrrN
– reference: AydemirDGeciliFÖzdemirNUlusuN NJ. Biosci. Bioeng.20201296791:CAS:528:DC%2BB3cXivFyntrc%3D
– reference: ZhangCZhaoMZouHZhangXShengRZhangYZhangBLiCQiYJ. Inorg. Biochem.20202121112121:CAS:528:DC%2BB3cXhvVeqs7nL
– reference: BaekS HRohJParkC YKimM WShiRKailasaS KParkT JMater. Sci. Eng. C-Biomimetic Supramol. Syst.20201071102731:CAS:528:DC%2BC1MXhvF2rur7M
– reference: WangJWangHWangHHeSLiRDengZLiuXWangFACS Nano20191358521:CAS:528:DC%2BC1MXosF2ms7Y%3D
– reference: DadiSCelikCMandalA KOcsoyIAppl. Nanosci.2021111171:CAS:528:DC%2BB3cXitFSmt7nK
– reference: ZhangMXuWLiMLiJWangPWangZJ. Bionic Eng.20211830
– reference: LiuYLiuZHuangDChengMZengGLaiCZhangCZhouCWangWJiangDCoord. Chem. Rev.2019388631:CAS:528:DC%2BC1MXktlKht7c%3D
– reference: LiuYChenJDuMWangXJiXHeZBiosens. Bioelectron.201792681:CAS:528:DC%2BC2sXisVCgs7g%3D
– reference: KimEZwi-DantsisLReznikovNHanselC SAgarwalSStevensM MAdv. Mater.2017291701086
– reference: ChengPTangMChenZLiuWJiangXPeiXSuWReact. Chem. Eng.2020519731:CAS:528:DC%2BB3cXhsF2ntrjE
– reference: TranT DKimM IBioChip J.2018122681:CAS:528:DC%2BC1cXisVyksr7L
– reference: BrinsonH FBrinsonL CPolymer engineering science and viscoelasticity: An introduction2015BostonSpringer
– reference: GuoYLiSWangYZhangSAnal. Chem.20178922671:CAS:528:DC%2BC2sXhsFGht7k%3D
– reference: MeiLZhuGQiuLWuCChenHLiangHCansizSLvYZhangXTanWNano Res.2015834471:CAS:528:DC%2BC2MXhsFeju7zM
– reference: RaiS KKaurHKauldharB SYadavS KACS Biomater. Sci. Eng.2020666611:CAS:528:DC%2BB3cXhsVCmtr%2FI
– reference: LiuYAiKLuLChem. Rev.201411450571:CAS:528:DC%2BC2cXisVWgtro%3D
– reference: P. Thakur, S. S. Sonawane, S. H. Sonawane and B. A. Bhanvase, Encapsulation of active molecules and their delivery system, Elsevier (2020).
– reference: ZhangXYuYShenJQiWWangHTalanta20202121207941:CAS:528:DC%2BB3cXisV2gsbw%3D
– reference: LiuYJiXHeZNanoscale201911171791:CAS:528:DC%2BC1MXhs1Cnt7vP
– reference: MohammadMAhmadpoorFShojaosadatiS AVasheghani-FarahaniEColloid Surf. B-Biointerfaces20222091121491:CAS:528:DC%2BB3MXit1ekt7bJ
– reference: KimH KNguyenP TKimM IKimB CChemosphere20222881325841:CAS:528:DC%2BB3MXit1ygtrbN
– reference: FengNZhangHLiYLiuYXuLWangYFeiXTianJFood Chem.20203111259111:CAS:528:DC%2BC1MXisVGisbzO
– reference: LiPZhengJXuJZhangMDalton Trans.202150147531:CAS:528:DC%2BB3MXitFCgtbjK
– volume: 24
  start-page: 3648
  year: 2019
  ident: 1292_CR33
  publication-title: Molecules
  doi: 10.3390/molecules24203648
– volume: 182
  start-page: 110354
  year: 2019
  ident: 1292_CR4
  publication-title: Colloid Surf. B-Biointerfaces
  doi: 10.1016/j.colsurfb.2019.110354
– volume: 15
  start-page: 7955
  year: 2015
  ident: 1292_CR63
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2015.11227
– volume: 369
  start-page: 132246
  year: 2022
  ident: 1292_CR17
  publication-title: Sens. Actuator B-Chem.
  doi: 10.1016/j.snb.2022.132246
– volume: 338
  start-page: 93
  year: 2017
  ident: 1292_CR50
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.05.014
– volume: 143
  start-page: 430
  year: 2019
  ident: 1292_CR46
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.11.026
– volume: 427
  start-page: 131808
  year: 2022
  ident: 1292_CR51
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131808
– volume: 8
  start-page: 6329
  year: 2016
  ident: 1292_CR15
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11834
– volume: 12
  start-page: 10235
  year: 2021
  ident: 1292_CR10
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02748
– volume: 188
  start-page: 1
  year: 2021
  ident: 1292_CR8
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-021-04937-4
– volume: 388
  start-page: 63
  year: 2019
  ident: 1292_CR38
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.02.031
– volume: 8
  start-page: 1801507
  year: 2019
  ident: 1292_CR16
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201801507
– volume: 18
  start-page: 6555
  year: 2018
  ident: 1292_CR23
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2018.15697
– volume: 5
  start-page: 18766
  year: 2020
  ident: 1292_CR65
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c01864
– volume: 126
  start-page: 5931
  year: 2014
  ident: 1292_CR58
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201400323
– volume: 12
  start-page: 3094
  year: 2016
  ident: 1292_CR36
  publication-title: Small
  doi: 10.1002/smll.201600273
– volume: 26
  start-page: 8029
  year: 2014
  ident: 1292_CR55
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403709
– volume: 7
  start-page: 428
  year: 2012
  ident: 1292_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.80
– volume: 120
  start-page: 175
  year: 2018
  ident: 1292_CR2
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.08.058
– volume: 11
  start-page: 316
  year: 2012
  ident: 1292_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3253
– volume: 135
  start-page: 16438
  year: 2013
  ident: 1292_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406115e
– volume: 29
  start-page: 1701086
  year: 2017
  ident: 1292_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701086
– volume: 8
  start-page: 1
  year: 2017
  ident: 1292_CR68
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
– volume: 6
  start-page: 104265
  year: 2016
  ident: 1292_CR5
  publication-title: RSC Adv.
  doi: 10.1039/C6RA24192A
– volume: 107
  start-page: 110273
  year: 2020
  ident: 1292_CR42
  publication-title: Mater. Sci. Eng. C-Biomimetic Supramol. Syst.
  doi: 10.1016/j.msec.2019.110273
– volume: 5
  start-page: 1973
  year: 2020
  ident: 1292_CR30
  publication-title: React. Chem. Eng.
  doi: 10.1039/D0RE00158A
– volume: 6
  start-page: 6661
  year: 2020
  ident: 1292_CR32
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.0c00841
– volume: 43
  start-page: 11082
  year: 2019
  ident: 1292_CR44
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ06429F
– volume: 11
  start-page: 17179
  year: 2019
  ident: 1292_CR20
  publication-title: Nanoscale
  doi: 10.1039/C9NR05446D
– volume: 209
  start-page: 112149
  year: 2022
  ident: 1292_CR66
  publication-title: Colloid Surf. B-Biointerfaces
  doi: 10.1016/j.colsurfb.2021.112149
– volume: 114
  start-page: 5057
  year: 2014
  ident: 1292_CR56
  publication-title: Chem. Rev.
  doi: 10.1021/cr400407a
– volume: 352
  start-page: 249
  year: 2017
  ident: 1292_CR1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.008
– volume: 9
  start-page: 5658
  year: 2017
  ident: 1292_CR25
  publication-title: Nanoscale
  doi: 10.1039/C7NR00958E
– volume: 74
  start-page: 103
  year: 2018
  ident: 1292_CR31
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2018.08.029
– volume: 13
  start-page: 1
  year: 2015
  ident: 1292_CR11
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-014-0062-4
– volume: 94
  start-page: 236
  year: 2019
  ident: 1292_CR29
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5769
– volume: 415
  start-page: 129075
  year: 2021
  ident: 1292_CR19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129075
– ident: 1292_CR40
– volume: 10
  start-page: 1
  year: 2020
  ident: 1292_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59699-5
– volume: 288
  start-page: 132584
  year: 2022
  ident: 1292_CR18
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132584
– volume: 212
  start-page: 120794
  year: 2020
  ident: 1292_CR64
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.120794
– volume: 258
  start-page: 803
  year: 2018
  ident: 1292_CR26
  publication-title: Sens. Actuator B-Chem.
  doi: 10.1016/j.snb.2017.11.155
– volume: 92
  start-page: 68
  year: 2017
  ident: 1292_CR35
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.02.004
– volume: 70
  start-page: 169
  year: 2017
  ident: 1292_CR53
  publication-title: Mater. Sci. Eng. C-Biomimetic Supramol. Syst.
  doi: 10.1016/j.msec.2016.08.073
– volume: 6
  start-page: 255
  year: 2014
  ident: 1292_CR22
  publication-title: Nanoscale
  doi: 10.1039/C3NR04425D
– volume: 5
  start-page: 5311
  year: 2017
  ident: 1292_CR41
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00610A
– volume: 18
  start-page: 30
  year: 2021
  ident: 1292_CR67
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-021-0005-3
– volume: 15
  start-page: 951
  year: 2019
  ident: 1292_CR24
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2019.2752
– volume: 155
  start-page: 1520
  year: 2020
  ident: 1292_CR39
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.11.129
– volume: 6
  start-page: 1
  year: 2016
  ident: 1292_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0001-8
– volume: 11
  start-page: 117
  year: 2021
  ident: 1292_CR54
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01577-7
– volume: 212
  start-page: 111212
  year: 2020
  ident: 1292_CR57
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2020.111212
– volume: 12
  start-page: 268
  year: 2018
  ident: 1292_CR21
  publication-title: BioChip J.
  doi: 10.1007/s13206-018-2409-7
– volume: 5
  start-page: 6971
  year: 2011
  ident: 1292_CR49
  publication-title: ACS Nano
  doi: 10.1021/nn202451x
– volume: 12
  start-page: 15023
  year: 2020
  ident: 1292_CR28
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21511
– volume: 8
  start-page: 465
  year: 2020
  ident: 1292_CR48
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00465
– volume: 5
  start-page: 2231
  year: 2017
  ident: 1292_CR60
  publication-title: J. Mat. Chem. B
  doi: 10.1039/C6TB03047E
– volume: 50
  start-page: 14753
  year: 2021
  ident: 1292_CR43
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT02301B
– volume: 50
  start-page: 12465
  year: 2014
  ident: 1292_CR14
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC05478D
– volume: 8
  start-page: 18980
  year: 2016
  ident: 1292_CR37
  publication-title: Nanoscale
  doi: 10.1039/C6NR06870G
– volume-title: Polymer engineering science and viscoelasticity: An introduction
  year: 2015
  ident: 1292_CR52
  doi: 10.1007/978-1-4899-7485-3
– volume: 89
  start-page: 2267
  year: 2017
  ident: 1292_CR69
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03346
– volume: 8
  start-page: 3447
  year: 2015
  ident: 1292_CR7
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0841-8
– volume: 1
  start-page: 045101
  year: 2015
  ident: 1292_CR47
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/1/4/045101
– volume: 141
  start-page: 111473
  year: 2019
  ident: 1292_CR27
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111473
– volume: 13
  start-page: 5852
  year: 2019
  ident: 1292_CR62
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01589
– volume: 129
  start-page: 679
  year: 2020
  ident: 1292_CR34
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2020.01.008
– volume: 311
  start-page: 125911
  year: 2020
  ident: 1292_CR45
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.125911
– volume: 182
  start-page: 113187
  year: 2021
  ident: 1292_CR61
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113187
SSID ssj0055620
Score 2.3713882
SecondaryResourceType review_article
Snippet Organic-inorganic hybrid nanoflowers (HNFs) have generated widespread research interest owing to their properties to efficiently entrap organic components like...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 302
SubjectTerms Biomedical materials
Biotechnology
Catalysis
Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
Materials Science
Nanoparticles
Nucleic acids
Proteins
Recyclability
Review Paper
화학공학
Title Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications
URI https://link.springer.com/article/10.1007/s11814-022-1292-z
https://www.proquest.com/docview/2771994433
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002927761
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2023, 40(2), 275, pp.302-310
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB414dByoC0tIgUiS-2p1aJ9e8MtAVKgKici0ZO1fgFKtKnyqNT8embW6wZQW4nTSrv27tqe8Xz2jL8B-GRiLmNubGCNoq0bjSoV9kygbMZNz0axI9L-fpmfjdKL6-y6Occ999Hu3iVZz9Trw25ojNKAos_RRsXBqgUbWVT0ijZs9L_--HbqJ-AMTbrbWiGKPUQ83pn5t5c8MketamYfIc0nztHa5gxfw5X_WxdqMj5cLuShWj0hcnxmc97AVoNBWd8JzVt4YapteHnsU79tw-YDlsJ38OvExW5YRKuMQtCnFVoqRrQOjgUZb9_-ppNfrCqrqZ3UideOWJ9RNRz5iWGIi2tRZ4iRmbybziluvrphZaWZYwAgYWEP3envYTQ8vTo-C5p0DYGKi2gRlMqonBstZZRornRapGWOqzFKepWUVuPMocNC5ypDMTAF4oQwtDnnRiqZKJskO9CusAW7wKyWZRiVkcrpJWnRk8bg1EyrVx7FedaB0I-aUA2XOaXUmIg1CzN1r8DuFdS9YtWBz3-q_HREHv8r_BFFQYzVnSD6bbreTMV4JnCRcU5RcXWS9g7se1ERjebPRcw50S2nSdKBL37k14__-ckPzyq9B68o770LH9-H9mK2NAeIjhayi9owHAwuu41WdKE1ivv39-UKfg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6VcKAcSkuLSBtaS-2p1aJ9e9NbFKChPE5Boidr_Qoo0aZKQiXy65lZrwmgthKnlXbt3bU99nzjGX8D8MXEXMbc2MAaRVs3GqdU2DWBshk3XRvFjkj77DwfXKQ_L7PL5hz33Ee7e5dkvVKvDruhMkoDij5HHRUHyzVYT9EED1uw3vvx6-TQL8AZqnS3tUIUe4h4vDPzby95pI7Wqpl9hDSfOEdrnXO0BUP_ty7UZLx_s5D7avmEyPGZzXkNrxoMynpOaN7AC1Ntw0bfp37bhs0HLIVv4c-Bi92wiFYZhaBPK9RUjGgdHAsy3r66pZNfrCqrqZ3Uide-sx6jajjyE8MQF9eizhAjM3k9nVPcfDViZaWZYwAgYWEP3env4OLocNgfBE26hkDFRbQISmVUzo2WMko0Vzot0jJHa4ySXiWl1bhy6LDQucpQDEyBOCEMbc65kUomyibJDrQqbMEuMKtlGUZlpHJ6SVp0pTG4NJP1yqM4z9oQ-lETquEyp5QaE7FiYabuFdi9grpXLNvw9b7Kb0fk8b_Cn1EUxFhdC6LfputoKsYzgUbGMUXF1Una29DxoiKamT8XMedEt5wmSRu--ZFfPf7nJ98_q_Qn2BgMz07F6fH5yQd4GSPycqHkHWgtZjdmD5HSQn5sZsYdzzAK9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4VKvE4VBSoGghgqT0Vrdi3N71F0IhHi3ogEjdr_QqIyEFJQCK_npn1LgFEK3FaadfelfezPWPP-PsAvpuYy5gbG1ijaOtG45AKOyZQNuOmY6PYE2n_Oc-P--npZXZZ65xOmmz3JiTpzzQQS5ObHtxqezA_-IaGKQ0oEx3tVRzMFuAjzsYRdfR-3G2m4gyNu99kIbI99H2asOZbr3hhmBbc2L7wOV-FSSvr01uDT7XbyLoe58_wwbh1WD5s1NrWYfUZseAG3B_5dAuLDiajrPGRw8YxYmLwxMV4--qBDmsxV7qRHVZaaT9Zl1E1BGtoGLqyVe9k6NYyeT2aUKq7G7DSaeYP7RO-7HkEfBP6vV8Xh8dBrbAQqLiIpkGpjMq50VJGieZKp0Va5riAIp2qpLQaB7sOC52rDJEzBZr2MLQ550YqmSibJF9g0WELvgKzWpZhVEYqp5ekRUcag7MpLTh5FOdZC8Lm9wpV04-TCsZQzImTCRGBiAhCRMxa8OOpyq3n3vhf4W-ImbhR14IYs-k6GImbscB1wQklslW66i1oN5iKerBORMw5MSSnSdKC_Qbn-eN_fnLrXaX3YOnvUU_8Pjk_24YVUq33yd9tWJyO78wO-jZTuVv130f3uvIh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversified+component+incorporated+hybrid+nanoflowers%3A+A+versatile+material+for+biosensing+and+biomedical+applications&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Dang%2C+Thinh+Viet&rft.au=Kim%2C+Moon+Il&rft.date=2023-02-01&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=40&rft.issue=2&rft.spage=302&rft.epage=310&rft_id=info:doi/10.1007%2Fs11814-022-1292-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11814_022_1292_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon