Thermo-/photo-catalysts for aerobic oxidative cyanation of diverse oxygen-containing feedstocks

Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative cyanation of diverse oxygen-containing feedstocks, including alcohols, aldehydes, and ketones, stands out as a green and highly promising avenue...

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 26; no. 4; pp. 1831 - 1845
Main Authors He, Jie, Zhou, Peng, Zhang, Shiying, Lam, Jason Chun-Ho, Liao, Yuhe, Zhang, Zehui
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 19.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative cyanation of diverse oxygen-containing feedstocks, including alcohols, aldehydes, and ketones, stands out as a green and highly promising avenue for nitrile synthesis over both thermocatalysts and photocatalysts. In this review, we initially elucidate the reaction mechanisms involved in the oxidative cyanation of oxygen-containing compounds. Following this, we present a summary and commentary on the predominantly achieved progress in the oxidative cyanation of various oxygen-containing feedstocks over the last decade. The categorization is based on types of catalysts, including non-noble metal catalysts, single-metal-atom catalysts, metal-free catalysts, and photocatalysts. Additionally, we assess the current catalytic systems from the standpoint of green chemistry. Finally, we conclude by highlighting the current challenges and delineating our prospects for future research endeavors. Aerobic oxidative cyanation of diverse oxygen-containing compounds over thermo- and photocatalysts is highlighted as a green and promising avenue for nitrile synthesis.
AbstractList Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative cyanation of diverse oxygen-containing feedstocks, including alcohols, aldehydes, and ketones, stands out as a green and highly promising avenue for nitrile synthesis over both thermocatalysts and photocatalysts. In this review, we initially elucidate the reaction mechanisms involved in the oxidative cyanation of oxygen-containing compounds. Following this, we present a summary and commentary on the predominantly achieved progress in the oxidative cyanation of various oxygen-containing feedstocks over the last decade. The categorization is based on types of catalysts, including non-noble metal catalysts, single-metal-atom catalysts, metal-free catalysts, and photocatalysts. Additionally, we assess the current catalytic systems from the standpoint of green chemistry. Finally, we conclude by highlighting the current challenges and delineating our prospects for future research endeavors.
Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative cyanation of diverse oxygen-containing feedstocks, including alcohols, aldehydes, and ketones, stands out as a green and highly promising avenue for nitrile synthesis over both thermocatalysts and photocatalysts. In this review, we initially elucidate the reaction mechanisms involved in the oxidative cyanation of oxygen-containing compounds. Following this, we present a summary and commentary on the predominantly achieved progress in the oxidative cyanation of various oxygen-containing feedstocks over the last decade. The categorization is based on types of catalysts, including non-noble metal catalysts, single-metal-atom catalysts, metal-free catalysts, and photocatalysts. Additionally, we assess the current catalytic systems from the standpoint of green chemistry. Finally, we conclude by highlighting the current challenges and delineating our prospects for future research endeavors. Aerobic oxidative cyanation of diverse oxygen-containing compounds over thermo- and photocatalysts is highlighted as a green and promising avenue for nitrile synthesis.
Author He, Jie
Lam, Jason Chun-Ho
Zhang, Zehui
Zhou, Peng
Zhang, Shiying
Liao, Yuhe
AuthorAffiliation Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
Chinese Academy of Sciences
City University of Hong Kong
South-Central Minzu University
School of Energy and Environment and State Key Laboratory of Marine Pollution
Guangzhou Institute of Energy Conversion
AuthorAffiliation_xml – sequence: 0
  name: City University of Hong Kong
– sequence: 0
  name: Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
– sequence: 0
  name: South-Central Minzu University
– sequence: 0
  name: School of Energy and Environment and State Key Laboratory of Marine Pollution
– sequence: 0
  name: Guangzhou Institute of Energy Conversion
– sequence: 0
  name: Chinese Academy of Sciences
Author_xml – sequence: 1
  givenname: Jie
  surname: He
  fullname: He, Jie
– sequence: 2
  givenname: Peng
  surname: Zhou
  fullname: Zhou, Peng
– sequence: 3
  givenname: Shiying
  surname: Zhang
  fullname: Zhang, Shiying
– sequence: 4
  givenname: Jason Chun-Ho
  surname: Lam
  fullname: Lam, Jason Chun-Ho
– sequence: 5
  givenname: Yuhe
  surname: Liao
  fullname: Liao, Yuhe
– sequence: 6
  givenname: Zehui
  surname: Zhang
  fullname: Zhang, Zehui
BookMark eNptkUFLAzEQhYNUsK1evAsL3oS1ySbNbo5StSoFL_W8zM5m29Q2qUkq7r93bUVBPM0w8715zMyA9KyzmpBzRq8Z5WpU8wVSMRbF6oj0mZA8VVlOez-5zE7IIIQVpYzlUvRJOV9qv3HpaLt00aUIEdZtiCFpnE9Ae1cZTNyHqSGad51gC7bLnE1ck9RdxQfdtduFtik6G8FYYxdJo3UdosPXcEqOG1gHffYdh-Tl_m4-eUhnz9PHyc0sxaxgMQVkxTjPs6rIJEBWSMFRaUlRogKpizETuVJCMVAMGaKGPONVBWxMOZWC8SG5PMzdeve20yGWK7fztrMsM9VZiEIq2lH0QKF3IXjdlGjifp_owaxLRsuvM5a3fDrZn_Gpk1z9kWy92YBv_4cvDrAP-MP9_oR_AmLqf0U
CitedBy_id crossref_primary_10_1021_acscatal_4c04460
crossref_primary_10_1039_D5GC00572H
crossref_primary_10_1016_j_jcat_2024_115897
crossref_primary_10_1016_j_nanoms_2024_10_010
crossref_primary_10_1016_j_molstruc_2025_141747
Cites_doi 10.1021/jacs.1c10714
10.2174/1385272824999200401124820
10.1073/pnas.1919862117
10.1016/S1872-2067(21)63803-2
10.1016/j.chempr.2022.02.021
10.1038/s41467-022-29074-1
10.1002/solr.202000594
10.1007/s10562-021-03779-2
10.1021/acscatal.1c05486
10.1021/acsomega.8b00911
10.1039/C9OB01918A
10.1016/j.apcata.2012.03.006
10.1002/anie.201804958
10.1360/SSI-2019-0121
10.1021/acsanm.3c02877
10.1039/D3CC03820C
10.1038/s42004-019-0116-5
10.1002/anie.200900418
10.1016/j.apcatb.2023.122999
10.1007/s11244-010-9475-y
10.1002/anie.202107996
10.1021/acscatal.9b03744
10.1093/oso/9780198506980.001.0001
10.1002/aoc.4253
10.1016/j.catcom.2014.05.010
10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6
10.1021/jacs.2c07061
10.1021/acs.accounts.0c00842
10.1038/s41467-017-02088-w
10.1002/ajoc.201900317
10.1002/chem.202001332
10.1039/D3GC00968H
10.1039/C9GC01893J
10.1039/D1QO00275A
10.1002/smll.202106122
10.1016/j.jhazmat.2018.05.026
10.1002/anie.201901109
10.1038/ncomms15240
10.1021/acs.chemrev.7b00161
10.1039/C6CC09151B
10.1039/C6RA27073E
10.1016/j.chempr.2021.12.001
10.1016/j.mcat.2020.111293
10.1002/anie.202301483
10.1016/j.jcis.2019.12.133
10.1016/j.catcom.2018.10.031
10.1039/C6CY00195E
10.1002/adsu.202200263
10.1002/aoc.4835
10.1021/acscatal.2c02847
10.1002/anie.202112835
10.1038/s41570-022-00359-9
10.1021/acs.joc.0c00670
10.1038/s41467-023-37066-y
10.1002/asia.202200792
10.1039/C8CY01799A
10.1038/ncomms5123
10.1039/D2CY01476A
10.1002/anie.202313325
10.3390/molecules28124746
10.1126/sciadv.add1267
10.1038/s41570-022-00411-8
10.1021/acssuschemeng.2c05205
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
DOI 10.1039/d3gc04548j
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Sustainability Science Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Sustainability Science Abstracts
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 1845
ExternalDocumentID 10_1039_D3GC04548J
d3gc04548j
GroupedDBID -JG
0-7
0R~
29I
4.4
5GY
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AALRI
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
ADVLN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
FDB
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
ID FETCH-LOGICAL-c281t-ac185772b826aa28643c9e60c6c9a6e8514799491a91c1ccea723bba150306413
ISSN 1463-9262
IngestDate Mon Jun 30 11:56:54 EDT 2025
Tue Jul 01 02:24:53 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Tue Dec 17 20:58:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-ac185772b826aa28643c9e60c6c9a6e8514799491a91c1ccea723bba150306413
Notes designing electrocatalysts and reaction conditions to control the yield, selectivity, and reaction mechanisms. Prof. Lam graduated from Michigan State University with a PhD in Chemistry and then completed his postdoc at Yale University. He then worked as a visiting assistant professor at Wesleyan University before his tenure-track appointment at City University of Hong Kong in 2019. Besides research activities, Prof. Lam also enjoys developing pedagogical exercises for the undergraduate curriculum.
2
Shiying Zhang has been an undergraduate student at the School of Chemistry and Materials Science, South-Central Minzu University, P. R. China since 2021. As a team leader, he is engaged in the "Synthesis of Nitrile Chemicals by Heterogeneous Photocatalysis" project under the Innovation and Entrepreneurship Program (2023) at South-Central Minzu University.
capture and utilization. The research of his group focuses on heterogeneous catalysis, biomass and CO
Prof. Lam's group focuses on developing green electrocatalytic reactions to convert biomass-derived chemicals and waste stocks to high-value products
Dr Zehui Zhang is a professor at the Key Laboratory of Catalysis and Energy Materials Chemistry, South-Central Minzu University, P. R. China. He obtained his PhD from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences and then started his work at South-Central Minzu University. From 2014 to 2015, he conducted postdoctoral research at the University of Wisconsin-Madison in the United States. The research endeavors of his group focus on biomass energy chemistry, emphasizing catalytic transformations of biomass to synthesize monomers for bio-based polymers and nitrogen-containing fine chemicals.
conversion, and organic waste valorisation.
Dr Peng Zhou obtained his Ph.D. at Monash University and joined Prof. Zhang's group at South-Central Minzu University in 2023. Currently, he mainly focuses on developing efficient thermocatalytic or electrocatalytic routes for converting biomass to high-value products such as amines.
Yuhe Liao currently is a professor at Guangzhou Institute of Energy Conversion (GIEC), Chinese Academy of Sciences. He received his PhD in Bioscience Engineering at KU Leuven in 2018 under the guidance of Prof. Bert F. Sels and Dr Danny Verboekend in the field of heterogeneous catalysis for biomass conversion. Afterwards, he did post-doctoral work (2018-2020) at the same university on the topic of CO
Dr Jie He is a faculty of the Key Laboratory of Catalysis and Energy Materials Chemistry, South-Central Minzu University, China. He earned his PhD in Chemical Engineering and Technology from Hunan University, China, in 2018. Following his doctoral studies, he worked as a Postdoctoral Researcher at the University of Szeged, Hungary, from 2018 to 2020. Dr He's research focuses on the development of heterogeneous thermo- and photo-catalytic systems for applications in organic synthesis, hydrogen production, and biomass transformation.
via
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1711-2191
0000-0003-3085-1634
0000-0001-5481-6986
PQID 2928148690
PQPubID 2047490
PageCount 15
ParticipantIDs proquest_journals_2928148690
crossref_citationtrail_10_1039_D3GC04548J
crossref_primary_10_1039_D3GC04548J
rsc_primary_d3gc04548j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-19
PublicationDateYYYYMMDD 2024-02-19
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-19
  day: 19
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (D3GC04548J/cit1/1) 2021; 54
Hashemi (D3GC04548J/cit25/1) 2019; 33
Ziaee (D3GC04548J/cit38/1) 2018; 32
Preger (D3GC04548J/cit24/1) 2018; 3
Jagadeesh (D3GC04548J/cit26/1) 2014; 5
Sun (D3GC04548J/cit28/1) 2019; 21
Han (D3GC04548J/cit43/1) 2019; 58
Liu (D3GC04548J/cit16/1) 2021; 5
Oishi (D3GC04548J/cit19/1) 2010; 53
Yamaguchi (D3GC04548J/cit23/1) 2002; 41
Wang (D3GC04548J/cit2/1) 2020; 10
Nosaka (D3GC04548J/cit15/1) 2017; 117
Shang (D3GC04548J/cit46/1) 2017; 53
Wang (D3GC04548J/cit14/1) 2019; 9
Fang (D3GC04548J/cit64/1) 2023; 337
Yasukawa (D3GC04548J/cit39/1) 2020; 85
Hua (D3GC04548J/cit48/1) 2021; 60
Rakshit (D3GC04548J/cit8/1) 2022; 17
Liu (D3GC04548J/cit10/1) 2022; 12
Senthamarai (D3GC04548J/cit29/1) 2022; 8
Luo (D3GC04548J/cit33/1) 2019; 2
Meng (D3GC04548J/cit51/1) 2023; 25
Zhou (D3GC04548J/cit22/1) 2023; 59
Qi (D3GC04548J/cit5/1) 2021; 8
Oishi (D3GC04548J/cit18/1) 2009; 48
Zhang (D3GC04548J/cit7/1) 2020; 50
Ishida (D3GC04548J/cit30/1) 2012; 425–426
Zhao (D3GC04548J/cit36/1) 2020; 565
He (D3GC04548J/cit11/1) 2022; 8
Jia (D3GC04548J/cit32/1) 2018; 9
Verma (D3GC04548J/cit50/1) 2019; 119
Ma (D3GC04548J/cit6/1) 2020; 117
Lee (D3GC04548J/cit9/1) 2022; 6
Gómez Fernández (D3GC04548J/cit49/1) 2023; 28
Hong (D3GC04548J/cit44/1) 2022; 18
Fan (D3GC04548J/cit42/1) 2023; 14
Wang (D3GC04548J/cit37/1) 2021; 499
Qin (D3GC04548J/cit12/1) 2022; 8
Zhang (D3GC04548J/cit41/1) 2018; 57
Wang (D3GC04548J/cit34/1) 2017; 8
Ambika (D3GC04548J/cit47/1) 2021; 25
Reddy (D3GC04548J/cit3/1) 2019; 8
Sun (D3GC04548J/cit21/1) 2022; 13
Huang (D3GC04548J/cit63/1) 2022; 6
Xian (D3GC04548J/cit52/1) 2022; 144
Hu (D3GC04548J/cit13/1) 2014; 54
Wang (D3GC04548J/cit17/1) 2023; 62
Sarvi (D3GC04548J/cit35/1) 2022; 152
Wang (D3GC04548J/cit31/1) 2021; 42
Nandi (D3GC04548J/cit53/1) 2019; 17
Ribao (D3GC04548J/cit55/1) 2019; 372
Mao (D3GC04548J/cit27/1) 2017; 7
Shee (D3GC04548J/cit54/1) 2020; 26
Kamata (D3GC04548J/cit20/1) 2022; 12
Xia (D3GC04548J/cit56/1) 2021; 35
Tao (D3GC04548J/cit4/1) 2021; 143
Wang (D3GC04548J/cit58/1) 2023; 6
Anastas (D3GC04548J/cit61/1) 2000
Senthamarai (D3GC04548J/cit57/1) 2022; 6
He (D3GC04548J/cit62/1) 2022; 61
Shang (D3GC04548J/cit45/1) 2016; 6
Han (D3GC04548J/cit60/1) 2023; 62
Wang (D3GC04548J/cit40/1) 2022; 10
Han (D3GC04548J/cit59/1) 2022; 12
References_xml – issn: 2000
  publication-title: Green Chemistry: Theory and Practice
  doi: Anastas Warner
– volume: 143
  start-page: 19630
  year: 2021
  ident: D3GC04548J/cit4/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10714
– volume: 25
  start-page: 332
  year: 2021
  ident: D3GC04548J/cit47/1
  publication-title: Curr. Org. Chem.
  doi: 10.2174/1385272824999200401124820
– volume: 117
  start-page: 7719
  year: 2020
  ident: D3GC04548J/cit6/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1919862117
– volume: 42
  start-page: 2164
  year: 2021
  ident: D3GC04548J/cit31/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63803-2
– volume: 8
  start-page: 1906
  year: 2022
  ident: D3GC04548J/cit11/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.02.021
– volume: 13
  start-page: 1848
  year: 2022
  ident: D3GC04548J/cit21/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29074-1
– volume: 5
  start-page: 2000594
  year: 2021
  ident: D3GC04548J/cit16/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000594
– volume: 152
  start-page: 1895
  year: 2022
  ident: D3GC04548J/cit35/1
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-021-03779-2
– volume: 12
  start-page: 2280
  year: 2022
  ident: D3GC04548J/cit59/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05486
– volume: 3
  start-page: 6091
  year: 2018
  ident: D3GC04548J/cit24/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00911
– volume: 17
  start-page: 9182
  year: 2019
  ident: D3GC04548J/cit53/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB01918A
– volume: 425–426
  start-page: 85
  year: 2012
  ident: D3GC04548J/cit30/1
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2012.03.006
– volume: 57
  start-page: 9038
  year: 2018
  ident: D3GC04548J/cit41/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804958
– volume: 50
  start-page: 766
  year: 2020
  ident: D3GC04548J/cit7/1
  publication-title: Sci. Sin.: Chim.
  doi: 10.1360/SSI-2019-0121
– volume: 6
  start-page: 15193
  year: 2023
  ident: D3GC04548J/cit58/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c02877
– volume: 59
  start-page: 11923
  year: 2023
  ident: D3GC04548J/cit22/1
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC03820C
– volume: 2
  start-page: 17
  year: 2019
  ident: D3GC04548J/cit33/1
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0116-5
– volume: 48
  start-page: 6286
  year: 2009
  ident: D3GC04548J/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200900418
– volume: 337
  start-page: 122999
  year: 2023
  ident: D3GC04548J/cit64/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.122999
– volume: 53
  start-page: 479
  year: 2010
  ident: D3GC04548J/cit19/1
  publication-title: Top. Catal.
  doi: 10.1007/s11244-010-9475-y
– volume: 60
  start-page: 21479
  year: 2021
  ident: D3GC04548J/cit48/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202107996
– volume: 10
  start-page: 311
  year: 2020
  ident: D3GC04548J/cit2/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03744
– volume-title: Green Chemistry: Theory and Practice
  year: 2000
  ident: D3GC04548J/cit61/1
  doi: 10.1093/oso/9780198506980.001.0001
– volume: 32
  start-page: e4253
  year: 2018
  ident: D3GC04548J/cit38/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.4253
– volume: 54
  start-page: 45
  year: 2014
  ident: D3GC04548J/cit13/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2014.05.010
– volume: 41
  start-page: 4538
  year: 2002
  ident: D3GC04548J/cit23/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6
– volume: 144
  start-page: 23321
  year: 2022
  ident: D3GC04548J/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07061
– volume: 54
  start-page: 1711
  year: 2021
  ident: D3GC04548J/cit1/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00842
– volume: 9
  start-page: 1
  year: 2018
  ident: D3GC04548J/cit32/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02088-w
– volume: 8
  start-page: 1227
  year: 2019
  ident: D3GC04548J/cit3/1
  publication-title: Asian J. Org. Chem.
  doi: 10.1002/ajoc.201900317
– volume: 26
  start-page: 14070
  year: 2020
  ident: D3GC04548J/cit54/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202001332
– volume: 25
  start-page: 4453
  year: 2023
  ident: D3GC04548J/cit51/1
  publication-title: Green Chem.
  doi: 10.1039/D3GC00968H
– volume: 21
  start-page: 4334
  year: 2019
  ident: D3GC04548J/cit28/1
  publication-title: Green Chem.
  doi: 10.1039/C9GC01893J
– volume: 35
  start-page: 48
  year: 2021
  ident: D3GC04548J/cit56/1
  publication-title: J. Mol. Catal.
– volume: 8
  start-page: 3137
  year: 2021
  ident: D3GC04548J/cit5/1
  publication-title: Org. Chem. Front.
  doi: 10.1039/D1QO00275A
– volume: 18
  start-page: 2106122
  year: 2022
  ident: D3GC04548J/cit44/1
  publication-title: Small
  doi: 10.1002/smll.202106122
– volume: 372
  start-page: 45
  year: 2019
  ident: D3GC04548J/cit55/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.05.026
– volume: 58
  start-page: 5359
  year: 2019
  ident: D3GC04548J/cit43/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901109
– volume: 8
  start-page: 15240
  year: 2017
  ident: D3GC04548J/cit34/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15240
– volume: 117
  start-page: 11302
  year: 2017
  ident: D3GC04548J/cit15/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00161
– volume: 53
  start-page: 1048
  year: 2017
  ident: D3GC04548J/cit46/1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09151B
– volume: 7
  start-page: 1498
  year: 2017
  ident: D3GC04548J/cit27/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA27073E
– volume: 8
  start-page: 508
  year: 2022
  ident: D3GC04548J/cit29/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2021.12.001
– volume: 499
  start-page: 111293
  year: 2021
  ident: D3GC04548J/cit37/1
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2020.111293
– volume: 62
  start-page: e202301483
  year: 2023
  ident: D3GC04548J/cit17/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202301483
– volume: 565
  start-page: 177
  year: 2020
  ident: D3GC04548J/cit36/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.12.133
– volume: 119
  start-page: 76
  year: 2019
  ident: D3GC04548J/cit50/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2018.10.031
– volume: 6
  start-page: 5746
  year: 2016
  ident: D3GC04548J/cit45/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C6CY00195E
– volume: 6
  start-page: 2200263
  year: 2022
  ident: D3GC04548J/cit57/1
  publication-title: Adv. Sustainable Syst.
  doi: 10.1002/adsu.202200263
– volume: 33
  start-page: e4835
  year: 2019
  ident: D3GC04548J/cit25/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.4835
– volume: 12
  start-page: 13300
  year: 2022
  ident: D3GC04548J/cit10/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02847
– volume: 61
  start-page: e202112835
  year: 2022
  ident: D3GC04548J/cit62/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202112835
– volume: 6
  start-page: 197
  year: 2022
  ident: D3GC04548J/cit63/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-022-00359-9
– volume: 85
  start-page: 7543
  year: 2020
  ident: D3GC04548J/cit39/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c00670
– volume: 14
  start-page: 1426
  year: 2023
  ident: D3GC04548J/cit42/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37066-y
– volume: 17
  start-page: e202200792
  year: 2022
  ident: D3GC04548J/cit8/1
  publication-title: Chem. – Asian J.
  doi: 10.1002/asia.202200792
– volume: 9
  start-page: 86
  year: 2019
  ident: D3GC04548J/cit14/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C8CY01799A
– volume: 5
  start-page: 4123
  year: 2014
  ident: D3GC04548J/cit26/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5123
– volume: 12
  start-page: 6219
  year: 2022
  ident: D3GC04548J/cit20/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D2CY01476A
– volume: 62
  start-page: e202313325
  year: 2023
  ident: D3GC04548J/cit60/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202313325
– volume: 28
  start-page: 4746
  year: 2023
  ident: D3GC04548J/cit49/1
  publication-title: Molecules
  doi: 10.3390/molecules28124746
– volume: 8
  start-page: eadd1267
  year: 2022
  ident: D3GC04548J/cit12/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add1267
– volume: 6
  start-page: 635
  year: 2022
  ident: D3GC04548J/cit9/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-022-00411-8
– volume: 10
  start-page: 14636
  year: 2022
  ident: D3GC04548J/cit40/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c05205
SSID ssj0011764
Score 2.460987
SecondaryResourceType review_article
Snippet Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1831
SubjectTerms Alcohols
Aldehydes
Catalysts
Fine chemicals
Green chemistry
Ketones
Nitriles
Noble metals
Oxygen
Photocatalysts
Raw materials
Reaction mechanisms
Title Thermo-/photo-catalysts for aerobic oxidative cyanation of diverse oxygen-containing feedstocks
URI https://www.proquest.com/docview/2928148690
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QA7IChUKwxkCS6oMlsSJ42PUxmrNuCANjFxiWzHXQsjQU0qUf4U_lqeP-Jko0jAJarsuGnzfnlfef49hF6kaSx4HKQQlgSSUF3mKkQsSD5mKg1FGgnTkuXd-2R6QU8v48te72enamlVi1fyx8Z9Jf8jVRgDuepdsv8gWf-lMACfQb5wBAnD8W9lvPxaEt1Ad17WJTG5mHVVV7Y2UmmOJTkqvy9yS-8t17zwLmJuKjIUTK_hAkTXrNtuEaMZWDTwCeWXquu6mgqdkWwaxJlcAi8M30SbUmyIKHQ6_urWgqV7U2BWnvjs7NRm8RceYZ_m5cqWDjureiOvPV-sF-34W7fLm-tGipP5qiDTspvICKmufXbq0upemkRE0xda09Qds71FGoVtt9g7YNKO9gX1FHQsOQSv8UYrcRhpktU8upKagDD93NpCX6HYTm6hnRBCENChO0dnHz6e-XdUwdiQk_mf3ZDfRuygXX3T3WljmK1l02DGODLn99E9F4HgIwunB6inij66M2nE1Ee7HY7KPhoct1shYZmzBdVDlDn0HdzCHgbsYYc97LGHPfZwOcMOe_g37OEWe4_QxZvj88mUuHYdRIZpUBMuNa_YGB7wMOE8TMHXlUwlhzKRjCcKXHs6ZoyygLNABlIqDndVCA4hiQ6Dg2iAtouyUHsI56mSM3A0Wa7fQjOpKY4E5TRhCadcxUP0srmrmXRc9rqlynVmaioilr2OTiZGAqdD9Nyf-80yuGw8a78RTuYelSoLGfwxqnu2DdEABObXt_J9_KeJJ-huC_J9tF0vV-op-K-1eOaA9AtG259n
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermo-%2Fphoto-catalysts+for+aerobic+oxidative+cyanation+of+diverse+oxygen-containing+feedstocks&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=He%2C+Jie&rft.au=Zhou%2C+Peng&rft.au=Zhang%2C+Shiying&rft.au=Lam%2C+Jason+Chun-Ho&rft.date=2024-02-19&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=26&rft.issue=4&rft.spage=1831&rft.epage=1845&rft_id=info:doi/10.1039%2Fd3gc04548j&rft.externalDocID=d3gc04548j
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon