Thermo-/photo-catalysts for aerobic oxidative cyanation of diverse oxygen-containing feedstocks
Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative cyanation of diverse oxygen-containing feedstocks, including alcohols, aldehydes, and ketones, stands out as a green and highly promising avenue...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 26; no. 4; pp. 1831 - 1845 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
19.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative cyanation of diverse oxygen-containing feedstocks, including alcohols, aldehydes, and ketones, stands out as a green and highly promising avenue for nitrile synthesis over both thermocatalysts and photocatalysts. In this review, we initially elucidate the reaction mechanisms involved in the oxidative cyanation of oxygen-containing compounds. Following this, we present a summary and commentary on the predominantly achieved progress in the oxidative cyanation of various oxygen-containing feedstocks over the last decade. The categorization is based on types of catalysts, including non-noble metal catalysts, single-metal-atom catalysts, metal-free catalysts, and photocatalysts. Additionally, we assess the current catalytic systems from the standpoint of green chemistry. Finally, we conclude by highlighting the current challenges and delineating our prospects for future research endeavors.
Aerobic oxidative cyanation of diverse oxygen-containing compounds over thermo- and photocatalysts is highlighted as a green and promising avenue for nitrile synthesis. |
---|---|
AbstractList | Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative cyanation of diverse oxygen-containing feedstocks, including alcohols, aldehydes, and ketones, stands out as a green and highly promising avenue for nitrile synthesis over both thermocatalysts and photocatalysts. In this review, we initially elucidate the reaction mechanisms involved in the oxidative cyanation of oxygen-containing compounds. Following this, we present a summary and commentary on the predominantly achieved progress in the oxidative cyanation of various oxygen-containing feedstocks over the last decade. The categorization is based on types of catalysts, including non-noble metal catalysts, single-metal-atom catalysts, metal-free catalysts, and photocatalysts. Additionally, we assess the current catalytic systems from the standpoint of green chemistry. Finally, we conclude by highlighting the current challenges and delineating our prospects for future research endeavors. Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative cyanation of diverse oxygen-containing feedstocks, including alcohols, aldehydes, and ketones, stands out as a green and highly promising avenue for nitrile synthesis over both thermocatalysts and photocatalysts. In this review, we initially elucidate the reaction mechanisms involved in the oxidative cyanation of oxygen-containing compounds. Following this, we present a summary and commentary on the predominantly achieved progress in the oxidative cyanation of various oxygen-containing feedstocks over the last decade. The categorization is based on types of catalysts, including non-noble metal catalysts, single-metal-atom catalysts, metal-free catalysts, and photocatalysts. Additionally, we assess the current catalytic systems from the standpoint of green chemistry. Finally, we conclude by highlighting the current challenges and delineating our prospects for future research endeavors. Aerobic oxidative cyanation of diverse oxygen-containing compounds over thermo- and photocatalysts is highlighted as a green and promising avenue for nitrile synthesis. |
Author | He, Jie Lam, Jason Chun-Ho Zhang, Zehui Zhou, Peng Zhang, Shiying Liao, Yuhe |
AuthorAffiliation | Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science Chinese Academy of Sciences City University of Hong Kong South-Central Minzu University School of Energy and Environment and State Key Laboratory of Marine Pollution Guangzhou Institute of Energy Conversion |
AuthorAffiliation_xml | – sequence: 0 name: City University of Hong Kong – sequence: 0 name: Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science – sequence: 0 name: South-Central Minzu University – sequence: 0 name: School of Energy and Environment and State Key Laboratory of Marine Pollution – sequence: 0 name: Guangzhou Institute of Energy Conversion – sequence: 0 name: Chinese Academy of Sciences |
Author_xml | – sequence: 1 givenname: Jie surname: He fullname: He, Jie – sequence: 2 givenname: Peng surname: Zhou fullname: Zhou, Peng – sequence: 3 givenname: Shiying surname: Zhang fullname: Zhang, Shiying – sequence: 4 givenname: Jason Chun-Ho surname: Lam fullname: Lam, Jason Chun-Ho – sequence: 5 givenname: Yuhe surname: Liao fullname: Liao, Yuhe – sequence: 6 givenname: Zehui surname: Zhang fullname: Zhang, Zehui |
BookMark | eNptkUFLAzEQhYNUsK1evAsL3oS1ySbNbo5StSoFL_W8zM5m29Q2qUkq7r93bUVBPM0w8715zMyA9KyzmpBzRq8Z5WpU8wVSMRbF6oj0mZA8VVlOez-5zE7IIIQVpYzlUvRJOV9qv3HpaLt00aUIEdZtiCFpnE9Ae1cZTNyHqSGad51gC7bLnE1ck9RdxQfdtduFtik6G8FYYxdJo3UdosPXcEqOG1gHffYdh-Tl_m4-eUhnz9PHyc0sxaxgMQVkxTjPs6rIJEBWSMFRaUlRogKpizETuVJCMVAMGaKGPONVBWxMOZWC8SG5PMzdeve20yGWK7fztrMsM9VZiEIq2lH0QKF3IXjdlGjifp_owaxLRsuvM5a3fDrZn_Gpk1z9kWy92YBv_4cvDrAP-MP9_oR_AmLqf0U |
CitedBy_id | crossref_primary_10_1021_acscatal_4c04460 crossref_primary_10_1039_D5GC00572H crossref_primary_10_1016_j_jcat_2024_115897 crossref_primary_10_1016_j_nanoms_2024_10_010 crossref_primary_10_1016_j_molstruc_2025_141747 |
Cites_doi | 10.1021/jacs.1c10714 10.2174/1385272824999200401124820 10.1073/pnas.1919862117 10.1016/S1872-2067(21)63803-2 10.1016/j.chempr.2022.02.021 10.1038/s41467-022-29074-1 10.1002/solr.202000594 10.1007/s10562-021-03779-2 10.1021/acscatal.1c05486 10.1021/acsomega.8b00911 10.1039/C9OB01918A 10.1016/j.apcata.2012.03.006 10.1002/anie.201804958 10.1360/SSI-2019-0121 10.1021/acsanm.3c02877 10.1039/D3CC03820C 10.1038/s42004-019-0116-5 10.1002/anie.200900418 10.1016/j.apcatb.2023.122999 10.1007/s11244-010-9475-y 10.1002/anie.202107996 10.1021/acscatal.9b03744 10.1093/oso/9780198506980.001.0001 10.1002/aoc.4253 10.1016/j.catcom.2014.05.010 10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6 10.1021/jacs.2c07061 10.1021/acs.accounts.0c00842 10.1038/s41467-017-02088-w 10.1002/ajoc.201900317 10.1002/chem.202001332 10.1039/D3GC00968H 10.1039/C9GC01893J 10.1039/D1QO00275A 10.1002/smll.202106122 10.1016/j.jhazmat.2018.05.026 10.1002/anie.201901109 10.1038/ncomms15240 10.1021/acs.chemrev.7b00161 10.1039/C6CC09151B 10.1039/C6RA27073E 10.1016/j.chempr.2021.12.001 10.1016/j.mcat.2020.111293 10.1002/anie.202301483 10.1016/j.jcis.2019.12.133 10.1016/j.catcom.2018.10.031 10.1039/C6CY00195E 10.1002/adsu.202200263 10.1002/aoc.4835 10.1021/acscatal.2c02847 10.1002/anie.202112835 10.1038/s41570-022-00359-9 10.1021/acs.joc.0c00670 10.1038/s41467-023-37066-y 10.1002/asia.202200792 10.1039/C8CY01799A 10.1038/ncomms5123 10.1039/D2CY01476A 10.1002/anie.202313325 10.3390/molecules28124746 10.1126/sciadv.add1267 10.1038/s41570-022-00411-8 10.1021/acssuschemeng.2c05205 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 |
DOI | 10.1039/d3gc04548j |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 1845 |
ExternalDocumentID | 10_1039_D3GC04548J d3gc04548j |
GroupedDBID | -JG 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AALRI AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN ADVLN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- F5P FDB GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7ST 7U6 8BQ 8FD C1K JG9 |
ID | FETCH-LOGICAL-c281t-ac185772b826aa28643c9e60c6c9a6e8514799491a91c1ccea723bba150306413 |
ISSN | 1463-9262 |
IngestDate | Mon Jun 30 11:56:54 EDT 2025 Tue Jul 01 02:24:53 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Tue Dec 17 20:58:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-ac185772b826aa28643c9e60c6c9a6e8514799491a91c1ccea723bba150306413 |
Notes | designing electrocatalysts and reaction conditions to control the yield, selectivity, and reaction mechanisms. Prof. Lam graduated from Michigan State University with a PhD in Chemistry and then completed his postdoc at Yale University. He then worked as a visiting assistant professor at Wesleyan University before his tenure-track appointment at City University of Hong Kong in 2019. Besides research activities, Prof. Lam also enjoys developing pedagogical exercises for the undergraduate curriculum. 2 Shiying Zhang has been an undergraduate student at the School of Chemistry and Materials Science, South-Central Minzu University, P. R. China since 2021. As a team leader, he is engaged in the "Synthesis of Nitrile Chemicals by Heterogeneous Photocatalysis" project under the Innovation and Entrepreneurship Program (2023) at South-Central Minzu University. capture and utilization. The research of his group focuses on heterogeneous catalysis, biomass and CO Prof. Lam's group focuses on developing green electrocatalytic reactions to convert biomass-derived chemicals and waste stocks to high-value products Dr Zehui Zhang is a professor at the Key Laboratory of Catalysis and Energy Materials Chemistry, South-Central Minzu University, P. R. China. He obtained his PhD from the Dalian Institute of Chemical Physics, Chinese Academy of Sciences and then started his work at South-Central Minzu University. From 2014 to 2015, he conducted postdoctoral research at the University of Wisconsin-Madison in the United States. The research endeavors of his group focus on biomass energy chemistry, emphasizing catalytic transformations of biomass to synthesize monomers for bio-based polymers and nitrogen-containing fine chemicals. conversion, and organic waste valorisation. Dr Peng Zhou obtained his Ph.D. at Monash University and joined Prof. Zhang's group at South-Central Minzu University in 2023. Currently, he mainly focuses on developing efficient thermocatalytic or electrocatalytic routes for converting biomass to high-value products such as amines. Yuhe Liao currently is a professor at Guangzhou Institute of Energy Conversion (GIEC), Chinese Academy of Sciences. He received his PhD in Bioscience Engineering at KU Leuven in 2018 under the guidance of Prof. Bert F. Sels and Dr Danny Verboekend in the field of heterogeneous catalysis for biomass conversion. Afterwards, he did post-doctoral work (2018-2020) at the same university on the topic of CO Dr Jie He is a faculty of the Key Laboratory of Catalysis and Energy Materials Chemistry, South-Central Minzu University, China. He earned his PhD in Chemical Engineering and Technology from Hunan University, China, in 2018. Following his doctoral studies, he worked as a Postdoctoral Researcher at the University of Szeged, Hungary, from 2018 to 2020. Dr He's research focuses on the development of heterogeneous thermo- and photo-catalytic systems for applications in organic synthesis, hydrogen production, and biomass transformation. via ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1711-2191 0000-0003-3085-1634 0000-0001-5481-6986 |
PQID | 2928148690 |
PQPubID | 2047490 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2928148690 crossref_citationtrail_10_1039_D3GC04548J crossref_primary_10_1039_D3GC04548J rsc_primary_d3gc04548j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-19 |
PublicationDateYYYYMMDD | 2024-02-19 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chen (D3GC04548J/cit1/1) 2021; 54 Hashemi (D3GC04548J/cit25/1) 2019; 33 Ziaee (D3GC04548J/cit38/1) 2018; 32 Preger (D3GC04548J/cit24/1) 2018; 3 Jagadeesh (D3GC04548J/cit26/1) 2014; 5 Sun (D3GC04548J/cit28/1) 2019; 21 Han (D3GC04548J/cit43/1) 2019; 58 Liu (D3GC04548J/cit16/1) 2021; 5 Oishi (D3GC04548J/cit19/1) 2010; 53 Yamaguchi (D3GC04548J/cit23/1) 2002; 41 Wang (D3GC04548J/cit2/1) 2020; 10 Nosaka (D3GC04548J/cit15/1) 2017; 117 Shang (D3GC04548J/cit46/1) 2017; 53 Wang (D3GC04548J/cit14/1) 2019; 9 Fang (D3GC04548J/cit64/1) 2023; 337 Yasukawa (D3GC04548J/cit39/1) 2020; 85 Hua (D3GC04548J/cit48/1) 2021; 60 Rakshit (D3GC04548J/cit8/1) 2022; 17 Liu (D3GC04548J/cit10/1) 2022; 12 Senthamarai (D3GC04548J/cit29/1) 2022; 8 Luo (D3GC04548J/cit33/1) 2019; 2 Meng (D3GC04548J/cit51/1) 2023; 25 Zhou (D3GC04548J/cit22/1) 2023; 59 Qi (D3GC04548J/cit5/1) 2021; 8 Oishi (D3GC04548J/cit18/1) 2009; 48 Zhang (D3GC04548J/cit7/1) 2020; 50 Ishida (D3GC04548J/cit30/1) 2012; 425–426 Zhao (D3GC04548J/cit36/1) 2020; 565 He (D3GC04548J/cit11/1) 2022; 8 Jia (D3GC04548J/cit32/1) 2018; 9 Verma (D3GC04548J/cit50/1) 2019; 119 Ma (D3GC04548J/cit6/1) 2020; 117 Lee (D3GC04548J/cit9/1) 2022; 6 Gómez Fernández (D3GC04548J/cit49/1) 2023; 28 Hong (D3GC04548J/cit44/1) 2022; 18 Fan (D3GC04548J/cit42/1) 2023; 14 Wang (D3GC04548J/cit37/1) 2021; 499 Qin (D3GC04548J/cit12/1) 2022; 8 Zhang (D3GC04548J/cit41/1) 2018; 57 Wang (D3GC04548J/cit34/1) 2017; 8 Ambika (D3GC04548J/cit47/1) 2021; 25 Reddy (D3GC04548J/cit3/1) 2019; 8 Sun (D3GC04548J/cit21/1) 2022; 13 Huang (D3GC04548J/cit63/1) 2022; 6 Xian (D3GC04548J/cit52/1) 2022; 144 Hu (D3GC04548J/cit13/1) 2014; 54 Wang (D3GC04548J/cit17/1) 2023; 62 Sarvi (D3GC04548J/cit35/1) 2022; 152 Wang (D3GC04548J/cit31/1) 2021; 42 Nandi (D3GC04548J/cit53/1) 2019; 17 Ribao (D3GC04548J/cit55/1) 2019; 372 Mao (D3GC04548J/cit27/1) 2017; 7 Shee (D3GC04548J/cit54/1) 2020; 26 Kamata (D3GC04548J/cit20/1) 2022; 12 Xia (D3GC04548J/cit56/1) 2021; 35 Tao (D3GC04548J/cit4/1) 2021; 143 Wang (D3GC04548J/cit58/1) 2023; 6 Anastas (D3GC04548J/cit61/1) 2000 Senthamarai (D3GC04548J/cit57/1) 2022; 6 He (D3GC04548J/cit62/1) 2022; 61 Shang (D3GC04548J/cit45/1) 2016; 6 Han (D3GC04548J/cit60/1) 2023; 62 Wang (D3GC04548J/cit40/1) 2022; 10 Han (D3GC04548J/cit59/1) 2022; 12 |
References_xml | – issn: 2000 publication-title: Green Chemistry: Theory and Practice doi: Anastas Warner – volume: 143 start-page: 19630 year: 2021 ident: D3GC04548J/cit4/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10714 – volume: 25 start-page: 332 year: 2021 ident: D3GC04548J/cit47/1 publication-title: Curr. Org. Chem. doi: 10.2174/1385272824999200401124820 – volume: 117 start-page: 7719 year: 2020 ident: D3GC04548J/cit6/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1919862117 – volume: 42 start-page: 2164 year: 2021 ident: D3GC04548J/cit31/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63803-2 – volume: 8 start-page: 1906 year: 2022 ident: D3GC04548J/cit11/1 publication-title: Chem doi: 10.1016/j.chempr.2022.02.021 – volume: 13 start-page: 1848 year: 2022 ident: D3GC04548J/cit21/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29074-1 – volume: 5 start-page: 2000594 year: 2021 ident: D3GC04548J/cit16/1 publication-title: Sol. RRL doi: 10.1002/solr.202000594 – volume: 152 start-page: 1895 year: 2022 ident: D3GC04548J/cit35/1 publication-title: Catal. Lett. doi: 10.1007/s10562-021-03779-2 – volume: 12 start-page: 2280 year: 2022 ident: D3GC04548J/cit59/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05486 – volume: 3 start-page: 6091 year: 2018 ident: D3GC04548J/cit24/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b00911 – volume: 17 start-page: 9182 year: 2019 ident: D3GC04548J/cit53/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB01918A – volume: 425–426 start-page: 85 year: 2012 ident: D3GC04548J/cit30/1 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2012.03.006 – volume: 57 start-page: 9038 year: 2018 ident: D3GC04548J/cit41/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804958 – volume: 50 start-page: 766 year: 2020 ident: D3GC04548J/cit7/1 publication-title: Sci. Sin.: Chim. doi: 10.1360/SSI-2019-0121 – volume: 6 start-page: 15193 year: 2023 ident: D3GC04548J/cit58/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c02877 – volume: 59 start-page: 11923 year: 2023 ident: D3GC04548J/cit22/1 publication-title: Chem. Commun. doi: 10.1039/D3CC03820C – volume: 2 start-page: 17 year: 2019 ident: D3GC04548J/cit33/1 publication-title: Commun. Chem. doi: 10.1038/s42004-019-0116-5 – volume: 48 start-page: 6286 year: 2009 ident: D3GC04548J/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200900418 – volume: 337 start-page: 122999 year: 2023 ident: D3GC04548J/cit64/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.122999 – volume: 53 start-page: 479 year: 2010 ident: D3GC04548J/cit19/1 publication-title: Top. Catal. doi: 10.1007/s11244-010-9475-y – volume: 60 start-page: 21479 year: 2021 ident: D3GC04548J/cit48/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202107996 – volume: 10 start-page: 311 year: 2020 ident: D3GC04548J/cit2/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b03744 – volume-title: Green Chemistry: Theory and Practice year: 2000 ident: D3GC04548J/cit61/1 doi: 10.1093/oso/9780198506980.001.0001 – volume: 32 start-page: e4253 year: 2018 ident: D3GC04548J/cit38/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.4253 – volume: 54 start-page: 45 year: 2014 ident: D3GC04548J/cit13/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2014.05.010 – volume: 41 start-page: 4538 year: 2002 ident: D3GC04548J/cit23/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20021202)41:23<4538::AID-ANIE4538>3.0.CO;2-6 – volume: 144 start-page: 23321 year: 2022 ident: D3GC04548J/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07061 – volume: 54 start-page: 1711 year: 2021 ident: D3GC04548J/cit1/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00842 – volume: 9 start-page: 1 year: 2018 ident: D3GC04548J/cit32/1 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02088-w – volume: 8 start-page: 1227 year: 2019 ident: D3GC04548J/cit3/1 publication-title: Asian J. Org. Chem. doi: 10.1002/ajoc.201900317 – volume: 26 start-page: 14070 year: 2020 ident: D3GC04548J/cit54/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202001332 – volume: 25 start-page: 4453 year: 2023 ident: D3GC04548J/cit51/1 publication-title: Green Chem. doi: 10.1039/D3GC00968H – volume: 21 start-page: 4334 year: 2019 ident: D3GC04548J/cit28/1 publication-title: Green Chem. doi: 10.1039/C9GC01893J – volume: 35 start-page: 48 year: 2021 ident: D3GC04548J/cit56/1 publication-title: J. Mol. Catal. – volume: 8 start-page: 3137 year: 2021 ident: D3GC04548J/cit5/1 publication-title: Org. Chem. Front. doi: 10.1039/D1QO00275A – volume: 18 start-page: 2106122 year: 2022 ident: D3GC04548J/cit44/1 publication-title: Small doi: 10.1002/smll.202106122 – volume: 372 start-page: 45 year: 2019 ident: D3GC04548J/cit55/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.05.026 – volume: 58 start-page: 5359 year: 2019 ident: D3GC04548J/cit43/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901109 – volume: 8 start-page: 15240 year: 2017 ident: D3GC04548J/cit34/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15240 – volume: 117 start-page: 11302 year: 2017 ident: D3GC04548J/cit15/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00161 – volume: 53 start-page: 1048 year: 2017 ident: D3GC04548J/cit46/1 publication-title: Chem. Commun. doi: 10.1039/C6CC09151B – volume: 7 start-page: 1498 year: 2017 ident: D3GC04548J/cit27/1 publication-title: RSC Adv. doi: 10.1039/C6RA27073E – volume: 8 start-page: 508 year: 2022 ident: D3GC04548J/cit29/1 publication-title: Chem doi: 10.1016/j.chempr.2021.12.001 – volume: 499 start-page: 111293 year: 2021 ident: D3GC04548J/cit37/1 publication-title: Mol. Catal. doi: 10.1016/j.mcat.2020.111293 – volume: 62 start-page: e202301483 year: 2023 ident: D3GC04548J/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202301483 – volume: 565 start-page: 177 year: 2020 ident: D3GC04548J/cit36/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.12.133 – volume: 119 start-page: 76 year: 2019 ident: D3GC04548J/cit50/1 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2018.10.031 – volume: 6 start-page: 5746 year: 2016 ident: D3GC04548J/cit45/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C6CY00195E – volume: 6 start-page: 2200263 year: 2022 ident: D3GC04548J/cit57/1 publication-title: Adv. Sustainable Syst. doi: 10.1002/adsu.202200263 – volume: 33 start-page: e4835 year: 2019 ident: D3GC04548J/cit25/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.4835 – volume: 12 start-page: 13300 year: 2022 ident: D3GC04548J/cit10/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c02847 – volume: 61 start-page: e202112835 year: 2022 ident: D3GC04548J/cit62/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202112835 – volume: 6 start-page: 197 year: 2022 ident: D3GC04548J/cit63/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-022-00359-9 – volume: 85 start-page: 7543 year: 2020 ident: D3GC04548J/cit39/1 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c00670 – volume: 14 start-page: 1426 year: 2023 ident: D3GC04548J/cit42/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37066-y – volume: 17 start-page: e202200792 year: 2022 ident: D3GC04548J/cit8/1 publication-title: Chem. – Asian J. doi: 10.1002/asia.202200792 – volume: 9 start-page: 86 year: 2019 ident: D3GC04548J/cit14/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY01799A – volume: 5 start-page: 4123 year: 2014 ident: D3GC04548J/cit26/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5123 – volume: 12 start-page: 6219 year: 2022 ident: D3GC04548J/cit20/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D2CY01476A – volume: 62 start-page: e202313325 year: 2023 ident: D3GC04548J/cit60/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202313325 – volume: 28 start-page: 4746 year: 2023 ident: D3GC04548J/cit49/1 publication-title: Molecules doi: 10.3390/molecules28124746 – volume: 8 start-page: eadd1267 year: 2022 ident: D3GC04548J/cit12/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.add1267 – volume: 6 start-page: 635 year: 2022 ident: D3GC04548J/cit9/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-022-00411-8 – volume: 10 start-page: 14636 year: 2022 ident: D3GC04548J/cit40/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c05205 |
SSID | ssj0011764 |
Score | 2.460987 |
SecondaryResourceType | review_article |
Snippet | Nitriles constitute essential components in a vast array of both bulk and fine chemicals, as well as in various bioactive molecules. The aerobic oxidative... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1831 |
SubjectTerms | Alcohols Aldehydes Catalysts Fine chemicals Green chemistry Ketones Nitriles Noble metals Oxygen Photocatalysts Raw materials Reaction mechanisms |
Title | Thermo-/photo-catalysts for aerobic oxidative cyanation of diverse oxygen-containing feedstocks |
URI | https://www.proquest.com/docview/2928148690 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QA7IChUKwxkCS6oMlsSJ42PUxmrNuCANjFxiWzHXQsjQU0qUf4U_lqeP-Jko0jAJarsuGnzfnlfef49hF6kaSx4HKQQlgSSUF3mKkQsSD5mKg1FGgnTkuXd-2R6QU8v48te72enamlVi1fyx8Z9Jf8jVRgDuepdsv8gWf-lMACfQb5wBAnD8W9lvPxaEt1Ad17WJTG5mHVVV7Y2UmmOJTkqvy9yS-8t17zwLmJuKjIUTK_hAkTXrNtuEaMZWDTwCeWXquu6mgqdkWwaxJlcAi8M30SbUmyIKHQ6_urWgqV7U2BWnvjs7NRm8RceYZ_m5cqWDjureiOvPV-sF-34W7fLm-tGipP5qiDTspvICKmufXbq0upemkRE0xda09Qds71FGoVtt9g7YNKO9gX1FHQsOQSv8UYrcRhpktU8upKagDD93NpCX6HYTm6hnRBCENChO0dnHz6e-XdUwdiQk_mf3ZDfRuygXX3T3WljmK1l02DGODLn99E9F4HgIwunB6inij66M2nE1Ee7HY7KPhoct1shYZmzBdVDlDn0HdzCHgbsYYc97LGHPfZwOcMOe_g37OEWe4_QxZvj88mUuHYdRIZpUBMuNa_YGB7wMOE8TMHXlUwlhzKRjCcKXHs6ZoyygLNABlIqDndVCA4hiQ6Dg2iAtouyUHsI56mSM3A0Wa7fQjOpKY4E5TRhCadcxUP0srmrmXRc9rqlynVmaioilr2OTiZGAqdD9Nyf-80yuGw8a78RTuYelSoLGfwxqnu2DdEABObXt_J9_KeJJ-huC_J9tF0vV-op-K-1eOaA9AtG259n |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermo-%2Fphoto-catalysts+for+aerobic+oxidative+cyanation+of+diverse+oxygen-containing+feedstocks&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=He%2C+Jie&rft.au=Zhou%2C+Peng&rft.au=Zhang%2C+Shiying&rft.au=Lam%2C+Jason+Chun-Ho&rft.date=2024-02-19&rft.issn=1463-9262&rft.eissn=1463-9270&rft.volume=26&rft.issue=4&rft.spage=1831&rft.epage=1845&rft_id=info:doi/10.1039%2Fd3gc04548j&rft.externalDocID=d3gc04548j |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |