Highly efficient and stable broadband near-infrared-emitting lead-free metal halide double perovskites
Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband ne...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 9; no. 38; pp. 13474 - 13483 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband near-infrared (NIR) emitting MHP with high optical efficiency and robust chemical stability remains a challenge. In this work, we report a broadband NIR emitting lead-free MHDP Cs
2
SnCl
4
Br
2
activated by Sb
3+
with the largest full width at half maximum of 164 nm. The morphology and particle size were controllably evolved
via
finely adjusting the preparation temperature. Most surprising is that the high-temperature post-treatment, which is to be avoided always, was applied for the as-obtained NIR MHDP, achieving an unexpectedly great boosting of the NIR emission efficiency by 13 times. Moreover, excellent stability was achieved, which showed that the broadband NIR emission intensity retains 90% of the initial level after continuous UV irradiation for 48 h, maintains 100% of the initial level after being immersed in water for 6 h, and increases up to 102% after being stored in air for 2 months. The origin of NIR emission from Sb
3+
ionoluminescence was verified with the combination of experimental and DFT studies. As a proof-of-concept, a broadband NIR light emitting diode with a radiant flux of 17.23 mW was fabricated using the as-obtained broadband NIR MHDP for NIR spectroscopy applications. This work not only provides a method for the rational design of broadband NIR MHPs and extending their applications, but also prompts the steps to develop novel MHDPs with superior chemical and optical stability.
A novel lead-free perovskite variant with controllable morphology evolution was developed as a highly efficient and stable broadband near-infrared emitter. High-temperature post-treatment boosted the PLQY of the broadband NIR emission by 13-fold. |
---|---|
AbstractList | Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband near-infrared (NIR) emitting MHP with high optical efficiency and robust chemical stability remains a challenge. In this work, we report a broadband NIR emitting lead-free MHDP Cs2SnCl4Br2 activated by Sb3+ with the largest full width at half maximum of 164 nm. The morphology and particle size were controllably evolved via finely adjusting the preparation temperature. Most surprising is that the high-temperature post-treatment, which is to be avoided always, was applied for the as-obtained NIR MHDP, achieving an unexpectedly great boosting of the NIR emission efficiency by 13 times. Moreover, excellent stability was achieved, which showed that the broadband NIR emission intensity retains 90% of the initial level after continuous UV irradiation for 48 h, maintains 100% of the initial level after being immersed in water for 6 h, and increases up to 102% after being stored in air for 2 months. The origin of NIR emission from Sb3+ ionoluminescence was verified with the combination of experimental and DFT studies. As a proof-of-concept, a broadband NIR light emitting diode with a radiant flux of 17.23 mW was fabricated using the as-obtained broadband NIR MHDP for NIR spectroscopy applications. This work not only provides a method for the rational design of broadband NIR MHPs and extending their applications, but also prompts the steps to develop novel MHDPs with superior chemical and optical stability. Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband near-infrared (NIR) emitting MHP with high optical efficiency and robust chemical stability remains a challenge. In this work, we report a broadband NIR emitting lead-free MHDP Cs 2 SnCl 4 Br 2 activated by Sb 3+ with the largest full width at half maximum of 164 nm. The morphology and particle size were controllably evolved via finely adjusting the preparation temperature. Most surprising is that the high-temperature post-treatment, which is to be avoided always, was applied for the as-obtained NIR MHDP, achieving an unexpectedly great boosting of the NIR emission efficiency by 13 times. Moreover, excellent stability was achieved, which showed that the broadband NIR emission intensity retains 90% of the initial level after continuous UV irradiation for 48 h, maintains 100% of the initial level after being immersed in water for 6 h, and increases up to 102% after being stored in air for 2 months. The origin of NIR emission from Sb 3+ ionoluminescence was verified with the combination of experimental and DFT studies. As a proof-of-concept, a broadband NIR light emitting diode with a radiant flux of 17.23 mW was fabricated using the as-obtained broadband NIR MHDP for NIR spectroscopy applications. This work not only provides a method for the rational design of broadband NIR MHPs and extending their applications, but also prompts the steps to develop novel MHDPs with superior chemical and optical stability. Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband near-infrared (NIR) emitting MHP with high optical efficiency and robust chemical stability remains a challenge. In this work, we report a broadband NIR emitting lead-free MHDP Cs 2 SnCl 4 Br 2 activated by Sb 3+ with the largest full width at half maximum of 164 nm. The morphology and particle size were controllably evolved via finely adjusting the preparation temperature. Most surprising is that the high-temperature post-treatment, which is to be avoided always, was applied for the as-obtained NIR MHDP, achieving an unexpectedly great boosting of the NIR emission efficiency by 13 times. Moreover, excellent stability was achieved, which showed that the broadband NIR emission intensity retains 90% of the initial level after continuous UV irradiation for 48 h, maintains 100% of the initial level after being immersed in water for 6 h, and increases up to 102% after being stored in air for 2 months. The origin of NIR emission from Sb 3+ ionoluminescence was verified with the combination of experimental and DFT studies. As a proof-of-concept, a broadband NIR light emitting diode with a radiant flux of 17.23 mW was fabricated using the as-obtained broadband NIR MHDP for NIR spectroscopy applications. This work not only provides a method for the rational design of broadband NIR MHPs and extending their applications, but also prompts the steps to develop novel MHDPs with superior chemical and optical stability. A novel lead-free perovskite variant with controllable morphology evolution was developed as a highly efficient and stable broadband near-infrared emitter. High-temperature post-treatment boosted the PLQY of the broadband NIR emission by 13-fold. |
Author | Qu, Bingyan Xiong, Guangting Yuan, Lifang Wu, Haoyi Yang, Shihe Ju, Guifang Chen, Li Jin, Yahong Hu, Yihua Li, Zhenzhang |
AuthorAffiliation | School of Materials Science and Engineering School of Chemical Biology and Biotechnology Peking University Department Experimental Teaching Department Guangdong Polytechnic Normal University School of Physics and Optoelectronic Engineering Hefei University of Technology Guangdong Key Lab of Nano-Micro Material Research Guangdong University of Technology Shenzhen Graduate School College of Mathematics and Systems Science Gaoke International Innovation Center Institute of Biomedical Engineering Shenzhen Bay Laboratory |
AuthorAffiliation_xml | – name: Institute of Biomedical Engineering – name: Hefei University of Technology – name: School of Materials Science and Engineering – name: School of Chemical Biology and Biotechnology – name: Gaoke International Innovation Center – name: Department Experimental Teaching Department – name: Guangdong University of Technology – name: School of Physics and Optoelectronic Engineering – name: Guangdong Key Lab of Nano-Micro Material Research – name: Peking University – name: Shenzhen Graduate School – name: Guangdong Polytechnic Normal University – name: Shenzhen Bay Laboratory – name: College of Mathematics and Systems Science |
Author_xml | – sequence: 1 givenname: Guangting surname: Xiong fullname: Xiong, Guangting – sequence: 2 givenname: Lifang surname: Yuan fullname: Yuan, Lifang – sequence: 3 givenname: Yahong surname: Jin fullname: Jin, Yahong – sequence: 4 givenname: Haoyi surname: Wu fullname: Wu, Haoyi – sequence: 5 givenname: Bingyan surname: Qu fullname: Qu, Bingyan – sequence: 6 givenname: Zhenzhang surname: Li fullname: Li, Zhenzhang – sequence: 7 givenname: Guifang surname: Ju fullname: Ju, Guifang – sequence: 8 givenname: Li surname: Chen fullname: Chen, Li – sequence: 9 givenname: Shihe surname: Yang fullname: Yang, Shihe – sequence: 10 givenname: Yihua surname: Hu fullname: Hu, Yihua |
BookMark | eNpFkE1LAzEQhoMoWGsv3oWAN2E12exms0epn1DwUs_LbDJpU7fZmqRC_71bK3UuM7w8MwPPBTn1vUdCrji740zU94YnzXIlq8UJGeWsZFlViuL0OOfynExiXLGhFJdK1iNiX91i2e0oWuu0Q58oeENjgrZD2oYeTLsPPELInLcBApoM1y4l5xe0QzCZDYh0jQk6uoTOGaSm3-7XNxj67_jpEsZLcmahizj562Py8fw0n75ms_eXt-nDLNO54imDqrAggLWAwiJnhTK5NoaXDLTkWqvCACgha50XrSxFxbjlqrRDwuuytmJMbg53N6H_2mJMzarfBj-8bPKyqgcFSqqBuj1QOvQxBrTNJrg1hF3DWbNX2Tzy-fRX5csAXx_gEPWR-1ctfgDML3Lx |
CitedBy_id | crossref_primary_10_1021_acsami_4c03419 crossref_primary_10_1021_acs_inorgchem_4c01339 crossref_primary_10_1021_acs_inorgchem_2c00272 crossref_primary_10_1039_D2DT01243J crossref_primary_10_1007_s12598_023_02462_2 crossref_primary_10_1039_D2QI00711H crossref_primary_10_1002_adma_202312482 crossref_primary_10_1021_acs_inorgchem_2c03409 crossref_primary_10_1039_D3NR02208K crossref_primary_10_1038_s41598_022_21698_z crossref_primary_10_1016_j_materresbull_2023_112537 crossref_primary_10_1039_D1TC04704C crossref_primary_10_1002_adom_202201509 crossref_primary_10_1016_j_ceramint_2023_12_063 crossref_primary_10_1002_inf2_12542 crossref_primary_10_1016_j_jcis_2022_05_153 crossref_primary_10_1016_j_jphotochem_2023_115102 |
Cites_doi | 10.1021/acs.accounts.9b00422 10.1021/jacs.7b02227 10.1103/PhysRevB.81.115126 10.1016/j.mser.2018.12.001 10.1002/adom.202000779 10.1021/acsenergylett.8b01643 10.1021/acsenergylett.7b00191 10.1063/1.4999192 10.1002/adfm.201801131 10.1039/C7RA07101A 10.1021/acs.jpcc.8b12146 10.1002/aenm.201803150 10.1002/smll.201903496 10.1002/advs.202003334 10.1002/anie.202002721 10.1021/acs.chemrev.8b00539 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.54.11169 10.1039/C9CS00790C 10.1021/acs.jpclett.0c00330 10.1002/anie.201811610 10.1002/anie.201911638 10.1016/j.materresbull.2021.111296 10.1021/acs.jpclett.5b01252 10.1007/s12598-020-01402-8 10.1107/S0567739476001551 10.1002/anie.201901081 10.1039/c0an00233j 10.1002/adma.201806105 10.1021/jacs.8b07424 10.1103/PhysRevB.59.1758 10.1021/acs.chemmater.8b00427 10.1021/acs.chemmater.7b01705 10.1021/acs.jpclett.8b00301 10.1103/PhysRevB.49.16223 10.1002/ange.201916020 10.1002/lsm.10248 10.1016/j.surfin.2020.100821 10.1021/acs.jpclett.6b00376 10.1002/pssb.19660150224 10.1038/nnano.2016.110 10.1021/acs.jpcc.8b03542 10.1002/adma.201803792 10.1021/acsami.9b02367 10.1103/PhysRevB.47.558 10.1021/acs.chemrev.8b00477 10.1103/PhysRevB.50.17953 10.1002/advs.202004118 10.1021/cm4021436 10.1002/anie.202009101 10.1002/lpor.202000123 10.1002/ange.202009896 10.1021/acsaelm.0c00825 10.1021/acsnano.8b01122 10.1016/0025-5408(68)90023-8 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/d1tc02867g |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 13483 |
ExternalDocumentID | 10_1039_D1TC02867G d1tc02867g |
GroupedDBID | 0-7 0R 4.4 705 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ -JG 0R~ AAJAE AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AGEGJ AHGCF APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c281t-a74fa3a0bae3fe1048d2cdd150ac61cc84daa8369c24b653701f185f3691959f3 |
ISSN | 2050-7526 |
IngestDate | Thu Oct 10 18:40:38 EDT 2024 Fri Aug 23 00:40:03 EDT 2024 Sun Apr 17 04:30:16 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-a74fa3a0bae3fe1048d2cdd150ac61cc84daa8369c24b653701f185f3691959f3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d1tc02867g |
ORCID | 0000-0001-9211-0167 0000-0003-0714-6320 0000-0002-1676-7586 0000-0002-6626-7264 0000-0002-1953-5916 0000-0001-6037-976X |
PQID | 2579526868 |
PQPubID | 2047521 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2579526868 crossref_primary_10_1039_D1TC02867G rsc_primary_d1tc02867g |
PublicationCentury | 2000 |
PublicationDate | 2021-10-07 |
PublicationDateYYYYMMDD | 2021-10-07 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wang (D1TC02867G/cit42) 2021; 133 Pradhan (D1TC02867G/cit16) 2018; 30 Sun (D1TC02867G/cit24) 2018; 9 Zhou (D1TC02867G/cit33) 2019; 137 Volonakis (D1TC02867G/cit23) 2016; 7 Deng (D1TC02867G/cit37) 2017; 111 Yao (D1TC02867G/cit36) 2017; 7 Yang (D1TC02867G/cit56) 2019; 58 Pal (D1TC02867G/cit15) 2018; 122 Deng (D1TC02867G/cit53) 2021; 140 Smith (D1TC02867G/cit34) 2019; 119 Lignos (D1TC02867G/cit3) 2018; 12 Xiao (D1TC02867G/cit22) 2017; 139 Zharov (D1TC02867G/cit8) 2004; 34 Zhang (D1TC02867G/cit2) 2019; 58 Tan (D1TC02867G/cit59) 2018; 28 Kresse (D1TC02867G/cit43) 1996; 54 Hu (D1TC02867G/cit38) 2019 Harl (D1TC02867G/cit49) 2010; 81 Liu (D1TC02867G/cit55) 2020; 59 Tauc (D1TC02867G/cit51) 1966; 15 Chen (D1TC02867G/cit40) 2019; 11 Liu (D1TC02867G/cit30) 2020; 132 Xiong (D1TC02867G/cit58) 2020; 8 Qiu (D1TC02867G/cit31) 2019; 31 Yuan (D1TC02867G/cit12) 2020; 14 Ma (D1TC02867G/cit9) 2010; 135 Wu (D1TC02867G/cit4) 2020; 59 Li (D1TC02867G/cit14) 2021; 8 Yang (D1TC02867G/cit29) 2018; 140 Igbari (D1TC02867G/cit26) 2019; 9 Lee (D1TC02867G/cit39) 2019; 123 Shannon (D1TC02867G/cit50) 1976; 32 Lu (D1TC02867G/cit25) 2020; 49 Kresse (D1TC02867G/cit44) 1993; 47 Zeng (D1TC02867G/cit54) 2020; 11 Altınoğlu (D1TC02867G/cit10) 2010; 2 Yang (D1TC02867G/cit28) 2019; 52 Chen (D1TC02867G/cit35) 2012; 101 Wei (D1TC02867G/cit57) 2009 Yuan (D1TC02867G/cit19) 2021; 22 Swarnkar (D1TC02867G/cit17) 2017; 2 Arfin (D1TC02867G/cit41) 2020; 59 Jena (D1TC02867G/cit1) 2019; 119 Minh (D1TC02867G/cit5) 2017; 29 Blöchl (D1TC02867G/cit47) 1994; 50 Blöchl (D1TC02867G/cit48) 1994; 49 Tang (D1TC02867G/cit18) 2021 Voznyy (D1TC02867G/cit21) 2020; 39 Perdew (D1TC02867G/cit45) 1996; 77 Kresse (D1TC02867G/cit46) 1999; 59 Tauc (D1TC02867G/cit52) 1968; 3 Zheng (D1TC02867G/cit7) 2015; 6 Rajendran (D1TC02867G/cit13) 2018; 3 Xiao (D1TC02867G/cit27) 2019; 31 Veggel (D1TC02867G/cit11) 2014; 26 Roknuzzaman (D1TC02867G/cit20) 2021; 186 Yuan (D1TC02867G/cit6) 2016; 11 Vashishtha (D1TC02867G/cit32) 2020; 2 |
References_xml | – volume: 52 start-page: 3188 year: 2019 ident: D1TC02867G/cit28 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00422 contributor: fullname: Yang – start-page: 3555 year: 2009 ident: D1TC02867G/cit57 publication-title: Chin. Phys. B contributor: fullname: Wei – volume: 139 start-page: 6054 year: 2017 ident: D1TC02867G/cit22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02227 contributor: fullname: Xiao – volume: 81 start-page: 115126 year: 2010 ident: D1TC02867G/cit49 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.115126 contributor: fullname: Harl – volume: 137 start-page: 38 year: 2019 ident: D1TC02867G/cit33 publication-title: Mater. Sci. Eng., R doi: 10.1016/j.mser.2018.12.001 contributor: fullname: Zhou – volume: 8 start-page: 2000779 year: 2020 ident: D1TC02867G/cit58 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000779 contributor: fullname: Xiong – volume: 3 start-page: 2679 year: 2018 ident: D1TC02867G/cit13 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01643 contributor: fullname: Rajendran – volume: 2 start-page: 1089 year: 2017 ident: D1TC02867G/cit17 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00191 contributor: fullname: Swarnkar – volume: 111 start-page: 151602 year: 2017 ident: D1TC02867G/cit37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4999192 contributor: fullname: Deng – volume: 28 start-page: 1801131 year: 2018 ident: D1TC02867G/cit59 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801131 contributor: fullname: Tan – volume: 7 start-page: 38155 year: 2017 ident: D1TC02867G/cit36 publication-title: RSC Adv. doi: 10.1039/C7RA07101A contributor: fullname: Yao – volume: 123 start-page: 2665 year: 2019 ident: D1TC02867G/cit39 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b12146 contributor: fullname: Lee – volume: 9 start-page: 1803150 year: 2019 ident: D1TC02867G/cit26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803150 contributor: fullname: Igbari – start-page: e1903496 year: 2019 ident: D1TC02867G/cit38 publication-title: Small doi: 10.1002/smll.201903496 contributor: fullname: Hu – volume: 8 start-page: 2003334 year: 2021 ident: D1TC02867G/cit14 publication-title: Adv. Sci. doi: 10.1002/advs.202003334 contributor: fullname: Li – volume: 59 start-page: 11307 year: 2020 ident: D1TC02867G/cit41 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202002721 contributor: fullname: Arfin – volume: 119 start-page: 3036 year: 2019 ident: D1TC02867G/cit1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00539 contributor: fullname: Jena – volume: 77 start-page: 3865 year: 1996 ident: D1TC02867G/cit45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 contributor: fullname: Perdew – volume: 54 start-page: 11169 year: 1996 ident: D1TC02867G/cit43 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 contributor: fullname: Kresse – volume: 49 start-page: 4953 year: 2020 ident: D1TC02867G/cit25 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00790C contributor: fullname: Lu – volume: 11 start-page: 2053 year: 2020 ident: D1TC02867G/cit54 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00330 contributor: fullname: Zeng – volume: 58 start-page: 2278 year: 2019 ident: D1TC02867G/cit56 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811610 contributor: fullname: Yang – volume: 59 start-page: 7738 year: 2020 ident: D1TC02867G/cit4 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201911638 contributor: fullname: Wu – volume: 140 start-page: 111296 year: 2021 ident: D1TC02867G/cit53 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2021.111296 contributor: fullname: Deng – volume: 6 start-page: 2969 year: 2015 ident: D1TC02867G/cit7 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01252 contributor: fullname: Zheng – volume: 39 start-page: 330 year: 2020 ident: D1TC02867G/cit21 publication-title: Rare Met. doi: 10.1007/s12598-020-01402-8 contributor: fullname: Voznyy – volume: 32 start-page: 751 year: 1976 ident: D1TC02867G/cit50 publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr doi: 10.1107/S0567739476001551 contributor: fullname: Shannon – volume: 58 start-page: 15596 year: 2019 ident: D1TC02867G/cit2 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201901081 contributor: fullname: Zhang – volume: 135 start-page: 1867 year: 2010 ident: D1TC02867G/cit9 publication-title: Analyst doi: 10.1039/c0an00233j contributor: fullname: Ma – volume: 31 start-page: 1806105 year: 2019 ident: D1TC02867G/cit31 publication-title: Adv. Mater. doi: 10.1002/adma.201806105 contributor: fullname: Qiu – volume: 140 start-page: 17001 year: 2018 ident: D1TC02867G/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07424 contributor: fullname: Yang – volume: 59 start-page: 1758 year: 1999 ident: D1TC02867G/cit46 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 contributor: fullname: Kresse – volume: 30 start-page: 2135 year: 2018 ident: D1TC02867G/cit16 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b00427 contributor: fullname: Pradhan – volume: 29 start-page: 5713 year: 2017 ident: D1TC02867G/cit5 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01705 contributor: fullname: Minh – volume: 9 start-page: 1573 year: 2018 ident: D1TC02867G/cit24 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b00301 contributor: fullname: Sun – volume: 49 start-page: 16223 year: 1994 ident: D1TC02867G/cit48 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.49.16223 contributor: fullname: Blöchl – volume: 132 start-page: 8499 year: 2020 ident: D1TC02867G/cit30 publication-title: Angew. Chem. doi: 10.1002/ange.201916020 contributor: fullname: Liu – volume: 34 start-page: 56 year: 2004 ident: D1TC02867G/cit8 publication-title: Lasers Surg. Med. doi: 10.1002/lsm.10248 contributor: fullname: Zharov – volume: 22 start-page: 100821 year: 2021 ident: D1TC02867G/cit19 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2020.100821 contributor: fullname: Yuan – volume: 7 start-page: 1254 year: 2016 ident: D1TC02867G/cit23 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00376 contributor: fullname: Volonakis – volume: 15 start-page: 627 year: 1966 ident: D1TC02867G/cit51 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.19660150224 contributor: fullname: Tauc – volume: 11 start-page: 872 year: 2016 ident: D1TC02867G/cit6 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.110 contributor: fullname: Yuan – volume: 122 start-page: 10643 year: 2018 ident: D1TC02867G/cit15 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03542 contributor: fullname: Pal – volume: 31 start-page: 1803792 year: 2019 ident: D1TC02867G/cit27 publication-title: Adv. Mater. doi: 10.1002/adma.201803792 contributor: fullname: Xiao – volume: 186 start-page: 110009 year: 2021 ident: D1TC02867G/cit20 publication-title: Mater. Sci. contributor: fullname: Roknuzzaman – volume: 11 start-page: 16855 year: 2019 ident: D1TC02867G/cit40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02367 contributor: fullname: Chen – volume: 47 start-page: 558 year: 1993 ident: D1TC02867G/cit44 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.47.558 contributor: fullname: Kresse – volume: 119 start-page: 3104 year: 2019 ident: D1TC02867G/cit34 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00477 contributor: fullname: Smith – volume: 50 start-page: 17953 year: 1994 ident: D1TC02867G/cit47 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 contributor: fullname: Blöchl – volume: 101 start-page: 143 year: 2012 ident: D1TC02867G/cit35 publication-title: Appl. Phys. Lett. contributor: fullname: Chen – volume: 2 start-page: 461 year: 2010 ident: D1TC02867G/cit10 publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. contributor: fullname: Altınoğlu – start-page: 2004118 year: 2021 ident: D1TC02867G/cit18 publication-title: Adv. Sci. doi: 10.1002/advs.202004118 contributor: fullname: Tang – volume: 26 start-page: 111 issue: 1 year: 2014 ident: D1TC02867G/cit11 publication-title: Chem. Mater. doi: 10.1021/cm4021436 contributor: fullname: Veggel – volume: 59 start-page: 21925 year: 2020 ident: D1TC02867G/cit55 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009101 contributor: fullname: Liu – volume: 14 start-page: 2000123 year: 2020 ident: D1TC02867G/cit12 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202000123 contributor: fullname: Yuan – volume: 133 start-page: 548 year: 2021 ident: D1TC02867G/cit42 publication-title: Angew. Chem. doi: 10.1002/ange.202009896 contributor: fullname: Wang – volume: 2 start-page: 3470 year: 2020 ident: D1TC02867G/cit32 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00825 contributor: fullname: Vashishtha – volume: 12 start-page: 5504 year: 2018 ident: D1TC02867G/cit3 publication-title: ACS Nano doi: 10.1021/acsnano.8b01122 contributor: fullname: Lignos – volume: 3 start-page: 37 year: 1968 ident: D1TC02867G/cit52 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(68)90023-8 contributor: fullname: Tauc |
SSID | ssj0000816869 |
Score | 2.4368684 |
Snippet | Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 13474 |
SubjectTerms | Broadband High temperature Lead free Light emitting diodes Metal halides Morphology Near infrared radiation Perovskites Radiant flux Stability Ultraviolet radiation |
Title | Highly efficient and stable broadband near-infrared-emitting lead-free metal halide double perovskites |
URI | https://www.proquest.com/docview/2579526868 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2rZDggKBQsVCQJbitXBLHeR2rpVAq4LQVyynys0QqSZXNIpV_wz9lbOeFaCXgEu2OlWTj-TIz9s58g9ArRZnkPA-JEColTLLcvnMpSQwPY50oQwNbO_zxU3J6zs7W8Xo2-znJWtq24kj-uLGu5H-0CjLQq62S_QfNDhcFAXwG_cIRNAzHv9KxTdK4vLY5GaWra3T_BEC4Z6uhRFNzJaygAjATuF1jc82J_lb6VOdL0C4xjda2i7StiISIXOmFqrf2dMsf_n1jt3Y3t8SvEOr6Z1zIvmnc0WLp63_6EZvDWF-1AyPBpOmO0s5G9Qpfl11uMGC2umh7h-pahnXlEaXho_TMcx984V_rUfh56zwpr6_L6W4G9el06Wj0aBAHJI1pR489lXWbnp3Vzifg9PwwnQm2tbFs4s_hu2-V84ezCCLLtarCVkKQlaQXo0scEhXHwR20R8GWgRHdOz5Zvf8wbOS5ziWudeLw23sa3Ch_PV7g98BnXM3sNH2rGRfSrB6g-50u8bEH1kM009U-ujdhqNxHd1yGsNw8QsaDDQ9gw6BQ7MGGB7Dhm8GGB7BhBzbswYY92PAEbI_R-duT1fKUdE06iKRZ2BKeMsMjHgiuI6NhcZ8pKpWCdQaXSShlxhTnWZTkkjKRxFEahAZiRAMSy2tkogO0W9WVfoJwwrXhWlBlYsV0TkUomIjhsaKUZjnXc_Syn8HiynOxFC6HIsqLN-Fq6eb53Rwd9pNbdO_qpgDHlFtioySbowOY8OH8UT9Pbxt4hu6OSD1Eu22z1c8hEm3Fiw4LvwCqcpBU |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+and+stable+broadband+near-infrared-emitting+lead-free+metal+halide+double+perovskites&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Xiong%2C+Guangting&rft.au=Yuan%2C+Lifang&rft.au=Jin%2C+Yahong&rft.au=Wu%2C+Haoyi&rft.date=2021-10-07&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=9&rft.issue=38&rft.spage=13474&rft.epage=13483&rft_id=info:doi/10.1039%2Fd1tc02867g&rft.externalDocID=d1tc02867g |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |