Highly efficient and stable broadband near-infrared-emitting lead-free metal halide double perovskites

Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband ne...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 9; no. 38; pp. 13474 - 13483
Main Authors Xiong, Guangting, Yuan, Lifang, Jin, Yahong, Wu, Haoyi, Qu, Bingyan, Li, Zhenzhang, Ju, Guifang, Chen, Li, Yang, Shihe, Hu, Yihua
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband near-infrared (NIR) emitting MHP with high optical efficiency and robust chemical stability remains a challenge. In this work, we report a broadband NIR emitting lead-free MHDP Cs 2 SnCl 4 Br 2 activated by Sb 3+ with the largest full width at half maximum of 164 nm. The morphology and particle size were controllably evolved via finely adjusting the preparation temperature. Most surprising is that the high-temperature post-treatment, which is to be avoided always, was applied for the as-obtained NIR MHDP, achieving an unexpectedly great boosting of the NIR emission efficiency by 13 times. Moreover, excellent stability was achieved, which showed that the broadband NIR emission intensity retains 90% of the initial level after continuous UV irradiation for 48 h, maintains 100% of the initial level after being immersed in water for 6 h, and increases up to 102% after being stored in air for 2 months. The origin of NIR emission from Sb 3+ ionoluminescence was verified with the combination of experimental and DFT studies. As a proof-of-concept, a broadband NIR light emitting diode with a radiant flux of 17.23 mW was fabricated using the as-obtained broadband NIR MHDP for NIR spectroscopy applications. This work not only provides a method for the rational design of broadband NIR MHPs and extending their applications, but also prompts the steps to develop novel MHDPs with superior chemical and optical stability. A novel lead-free perovskite variant with controllable morphology evolution was developed as a highly efficient and stable broadband near-infrared emitter. High-temperature post-treatment boosted the PLQY of the broadband NIR emission by 13-fold.
AbstractList Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband near-infrared (NIR) emitting MHP with high optical efficiency and robust chemical stability remains a challenge. In this work, we report a broadband NIR emitting lead-free MHDP Cs2SnCl4Br2 activated by Sb3+ with the largest full width at half maximum of 164 nm. The morphology and particle size were controllably evolved via finely adjusting the preparation temperature. Most surprising is that the high-temperature post-treatment, which is to be avoided always, was applied for the as-obtained NIR MHDP, achieving an unexpectedly great boosting of the NIR emission efficiency by 13 times. Moreover, excellent stability was achieved, which showed that the broadband NIR emission intensity retains 90% of the initial level after continuous UV irradiation for 48 h, maintains 100% of the initial level after being immersed in water for 6 h, and increases up to 102% after being stored in air for 2 months. The origin of NIR emission from Sb3+ ionoluminescence was verified with the combination of experimental and DFT studies. As a proof-of-concept, a broadband NIR light emitting diode with a radiant flux of 17.23 mW was fabricated using the as-obtained broadband NIR MHDP for NIR spectroscopy applications. This work not only provides a method for the rational design of broadband NIR MHPs and extending their applications, but also prompts the steps to develop novel MHDPs with superior chemical and optical stability.
Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband near-infrared (NIR) emitting MHP with high optical efficiency and robust chemical stability remains a challenge. In this work, we report a broadband NIR emitting lead-free MHDP Cs 2 SnCl 4 Br 2 activated by Sb 3+ with the largest full width at half maximum of 164 nm. The morphology and particle size were controllably evolved via finely adjusting the preparation temperature. Most surprising is that the high-temperature post-treatment, which is to be avoided always, was applied for the as-obtained NIR MHDP, achieving an unexpectedly great boosting of the NIR emission efficiency by 13 times. Moreover, excellent stability was achieved, which showed that the broadband NIR emission intensity retains 90% of the initial level after continuous UV irradiation for 48 h, maintains 100% of the initial level after being immersed in water for 6 h, and increases up to 102% after being stored in air for 2 months. The origin of NIR emission from Sb 3+ ionoluminescence was verified with the combination of experimental and DFT studies. As a proof-of-concept, a broadband NIR light emitting diode with a radiant flux of 17.23 mW was fabricated using the as-obtained broadband NIR MHDP for NIR spectroscopy applications. This work not only provides a method for the rational design of broadband NIR MHPs and extending their applications, but also prompts the steps to develop novel MHDPs with superior chemical and optical stability.
Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have received enormous attention in recent years due to their nontoxicity and good thermodynamic stability. However, the development of a broadband near-infrared (NIR) emitting MHP with high optical efficiency and robust chemical stability remains a challenge. In this work, we report a broadband NIR emitting lead-free MHDP Cs 2 SnCl 4 Br 2 activated by Sb 3+ with the largest full width at half maximum of 164 nm. The morphology and particle size were controllably evolved via finely adjusting the preparation temperature. Most surprising is that the high-temperature post-treatment, which is to be avoided always, was applied for the as-obtained NIR MHDP, achieving an unexpectedly great boosting of the NIR emission efficiency by 13 times. Moreover, excellent stability was achieved, which showed that the broadband NIR emission intensity retains 90% of the initial level after continuous UV irradiation for 48 h, maintains 100% of the initial level after being immersed in water for 6 h, and increases up to 102% after being stored in air for 2 months. The origin of NIR emission from Sb 3+ ionoluminescence was verified with the combination of experimental and DFT studies. As a proof-of-concept, a broadband NIR light emitting diode with a radiant flux of 17.23 mW was fabricated using the as-obtained broadband NIR MHDP for NIR spectroscopy applications. This work not only provides a method for the rational design of broadband NIR MHPs and extending their applications, but also prompts the steps to develop novel MHDPs with superior chemical and optical stability. A novel lead-free perovskite variant with controllable morphology evolution was developed as a highly efficient and stable broadband near-infrared emitter. High-temperature post-treatment boosted the PLQY of the broadband NIR emission by 13-fold.
Author Qu, Bingyan
Xiong, Guangting
Yuan, Lifang
Wu, Haoyi
Yang, Shihe
Ju, Guifang
Chen, Li
Jin, Yahong
Hu, Yihua
Li, Zhenzhang
AuthorAffiliation School of Materials Science and Engineering
School of Chemical Biology and Biotechnology
Peking University
Department Experimental Teaching Department
Guangdong Polytechnic Normal University
School of Physics and Optoelectronic Engineering
Hefei University of Technology
Guangdong Key Lab of Nano-Micro Material Research
Guangdong University of Technology
Shenzhen Graduate School
College of Mathematics and Systems Science
Gaoke International Innovation Center
Institute of Biomedical Engineering
Shenzhen Bay Laboratory
AuthorAffiliation_xml – name: Institute of Biomedical Engineering
– name: Hefei University of Technology
– name: School of Materials Science and Engineering
– name: School of Chemical Biology and Biotechnology
– name: Gaoke International Innovation Center
– name: Department Experimental Teaching Department
– name: Guangdong University of Technology
– name: School of Physics and Optoelectronic Engineering
– name: Guangdong Key Lab of Nano-Micro Material Research
– name: Peking University
– name: Shenzhen Graduate School
– name: Guangdong Polytechnic Normal University
– name: Shenzhen Bay Laboratory
– name: College of Mathematics and Systems Science
Author_xml – sequence: 1
  givenname: Guangting
  surname: Xiong
  fullname: Xiong, Guangting
– sequence: 2
  givenname: Lifang
  surname: Yuan
  fullname: Yuan, Lifang
– sequence: 3
  givenname: Yahong
  surname: Jin
  fullname: Jin, Yahong
– sequence: 4
  givenname: Haoyi
  surname: Wu
  fullname: Wu, Haoyi
– sequence: 5
  givenname: Bingyan
  surname: Qu
  fullname: Qu, Bingyan
– sequence: 6
  givenname: Zhenzhang
  surname: Li
  fullname: Li, Zhenzhang
– sequence: 7
  givenname: Guifang
  surname: Ju
  fullname: Ju, Guifang
– sequence: 8
  givenname: Li
  surname: Chen
  fullname: Chen, Li
– sequence: 9
  givenname: Shihe
  surname: Yang
  fullname: Yang, Shihe
– sequence: 10
  givenname: Yihua
  surname: Hu
  fullname: Hu, Yihua
BookMark eNpFkE1LAzEQhoMoWGsv3oWAN2E12exms0epn1DwUs_LbDJpU7fZmqRC_71bK3UuM7w8MwPPBTn1vUdCrji740zU94YnzXIlq8UJGeWsZFlViuL0OOfynExiXLGhFJdK1iNiX91i2e0oWuu0Q58oeENjgrZD2oYeTLsPPELInLcBApoM1y4l5xe0QzCZDYh0jQk6uoTOGaSm3-7XNxj67_jpEsZLcmahizj562Py8fw0n75ms_eXt-nDLNO54imDqrAggLWAwiJnhTK5NoaXDLTkWqvCACgha50XrSxFxbjlqrRDwuuytmJMbg53N6H_2mJMzarfBj-8bPKyqgcFSqqBuj1QOvQxBrTNJrg1hF3DWbNX2Tzy-fRX5csAXx_gEPWR-1ctfgDML3Lx
CitedBy_id crossref_primary_10_1021_acsami_4c03419
crossref_primary_10_1021_acs_inorgchem_4c01339
crossref_primary_10_1021_acs_inorgchem_2c00272
crossref_primary_10_1039_D2DT01243J
crossref_primary_10_1007_s12598_023_02462_2
crossref_primary_10_1039_D2QI00711H
crossref_primary_10_1002_adma_202312482
crossref_primary_10_1021_acs_inorgchem_2c03409
crossref_primary_10_1039_D3NR02208K
crossref_primary_10_1038_s41598_022_21698_z
crossref_primary_10_1016_j_materresbull_2023_112537
crossref_primary_10_1039_D1TC04704C
crossref_primary_10_1002_adom_202201509
crossref_primary_10_1016_j_ceramint_2023_12_063
crossref_primary_10_1002_inf2_12542
crossref_primary_10_1016_j_jcis_2022_05_153
crossref_primary_10_1016_j_jphotochem_2023_115102
Cites_doi 10.1021/acs.accounts.9b00422
10.1021/jacs.7b02227
10.1103/PhysRevB.81.115126
10.1016/j.mser.2018.12.001
10.1002/adom.202000779
10.1021/acsenergylett.8b01643
10.1021/acsenergylett.7b00191
10.1063/1.4999192
10.1002/adfm.201801131
10.1039/C7RA07101A
10.1021/acs.jpcc.8b12146
10.1002/aenm.201803150
10.1002/smll.201903496
10.1002/advs.202003334
10.1002/anie.202002721
10.1021/acs.chemrev.8b00539
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.54.11169
10.1039/C9CS00790C
10.1021/acs.jpclett.0c00330
10.1002/anie.201811610
10.1002/anie.201911638
10.1016/j.materresbull.2021.111296
10.1021/acs.jpclett.5b01252
10.1007/s12598-020-01402-8
10.1107/S0567739476001551
10.1002/anie.201901081
10.1039/c0an00233j
10.1002/adma.201806105
10.1021/jacs.8b07424
10.1103/PhysRevB.59.1758
10.1021/acs.chemmater.8b00427
10.1021/acs.chemmater.7b01705
10.1021/acs.jpclett.8b00301
10.1103/PhysRevB.49.16223
10.1002/ange.201916020
10.1002/lsm.10248
10.1016/j.surfin.2020.100821
10.1021/acs.jpclett.6b00376
10.1002/pssb.19660150224
10.1038/nnano.2016.110
10.1021/acs.jpcc.8b03542
10.1002/adma.201803792
10.1021/acsami.9b02367
10.1103/PhysRevB.47.558
10.1021/acs.chemrev.8b00477
10.1103/PhysRevB.50.17953
10.1002/advs.202004118
10.1021/cm4021436
10.1002/anie.202009101
10.1002/lpor.202000123
10.1002/ange.202009896
10.1021/acsaelm.0c00825
10.1021/acsnano.8b01122
10.1016/0025-5408(68)90023-8
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/d1tc02867g
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 13483
ExternalDocumentID 10_1039_D1TC02867G
d1tc02867g
GroupedDBID 0-7
0R
4.4
705
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
-JG
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AGEGJ
AHGCF
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c281t-a74fa3a0bae3fe1048d2cdd150ac61cc84daa8369c24b653701f185f3691959f3
ISSN 2050-7526
IngestDate Thu Oct 10 18:40:38 EDT 2024
Fri Aug 23 00:40:03 EDT 2024
Sun Apr 17 04:30:16 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-a74fa3a0bae3fe1048d2cdd150ac61cc84daa8369c24b653701f185f3691959f3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d1tc02867g
ORCID 0000-0001-9211-0167
0000-0003-0714-6320
0000-0002-1676-7586
0000-0002-6626-7264
0000-0002-1953-5916
0000-0001-6037-976X
PQID 2579526868
PQPubID 2047521
PageCount 1
ParticipantIDs proquest_journals_2579526868
crossref_primary_10_1039_D1TC02867G
rsc_primary_d1tc02867g
PublicationCentury 2000
PublicationDate 2021-10-07
PublicationDateYYYYMMDD 2021-10-07
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-07
  day: 07
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wang (D1TC02867G/cit42) 2021; 133
Pradhan (D1TC02867G/cit16) 2018; 30
Sun (D1TC02867G/cit24) 2018; 9
Zhou (D1TC02867G/cit33) 2019; 137
Volonakis (D1TC02867G/cit23) 2016; 7
Deng (D1TC02867G/cit37) 2017; 111
Yao (D1TC02867G/cit36) 2017; 7
Yang (D1TC02867G/cit56) 2019; 58
Pal (D1TC02867G/cit15) 2018; 122
Deng (D1TC02867G/cit53) 2021; 140
Smith (D1TC02867G/cit34) 2019; 119
Lignos (D1TC02867G/cit3) 2018; 12
Xiao (D1TC02867G/cit22) 2017; 139
Zharov (D1TC02867G/cit8) 2004; 34
Zhang (D1TC02867G/cit2) 2019; 58
Tan (D1TC02867G/cit59) 2018; 28
Kresse (D1TC02867G/cit43) 1996; 54
Hu (D1TC02867G/cit38) 2019
Harl (D1TC02867G/cit49) 2010; 81
Liu (D1TC02867G/cit55) 2020; 59
Tauc (D1TC02867G/cit51) 1966; 15
Chen (D1TC02867G/cit40) 2019; 11
Liu (D1TC02867G/cit30) 2020; 132
Xiong (D1TC02867G/cit58) 2020; 8
Qiu (D1TC02867G/cit31) 2019; 31
Yuan (D1TC02867G/cit12) 2020; 14
Ma (D1TC02867G/cit9) 2010; 135
Wu (D1TC02867G/cit4) 2020; 59
Li (D1TC02867G/cit14) 2021; 8
Yang (D1TC02867G/cit29) 2018; 140
Igbari (D1TC02867G/cit26) 2019; 9
Lee (D1TC02867G/cit39) 2019; 123
Shannon (D1TC02867G/cit50) 1976; 32
Lu (D1TC02867G/cit25) 2020; 49
Kresse (D1TC02867G/cit44) 1993; 47
Zeng (D1TC02867G/cit54) 2020; 11
Altınoğlu (D1TC02867G/cit10) 2010; 2
Yang (D1TC02867G/cit28) 2019; 52
Chen (D1TC02867G/cit35) 2012; 101
Wei (D1TC02867G/cit57) 2009
Yuan (D1TC02867G/cit19) 2021; 22
Swarnkar (D1TC02867G/cit17) 2017; 2
Arfin (D1TC02867G/cit41) 2020; 59
Jena (D1TC02867G/cit1) 2019; 119
Minh (D1TC02867G/cit5) 2017; 29
Blöchl (D1TC02867G/cit47) 1994; 50
Blöchl (D1TC02867G/cit48) 1994; 49
Tang (D1TC02867G/cit18) 2021
Voznyy (D1TC02867G/cit21) 2020; 39
Perdew (D1TC02867G/cit45) 1996; 77
Kresse (D1TC02867G/cit46) 1999; 59
Tauc (D1TC02867G/cit52) 1968; 3
Zheng (D1TC02867G/cit7) 2015; 6
Rajendran (D1TC02867G/cit13) 2018; 3
Xiao (D1TC02867G/cit27) 2019; 31
Veggel (D1TC02867G/cit11) 2014; 26
Roknuzzaman (D1TC02867G/cit20) 2021; 186
Yuan (D1TC02867G/cit6) 2016; 11
Vashishtha (D1TC02867G/cit32) 2020; 2
References_xml – volume: 52
  start-page: 3188
  year: 2019
  ident: D1TC02867G/cit28
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00422
  contributor:
    fullname: Yang
– start-page: 3555
  year: 2009
  ident: D1TC02867G/cit57
  publication-title: Chin. Phys. B
  contributor:
    fullname: Wei
– volume: 139
  start-page: 6054
  year: 2017
  ident: D1TC02867G/cit22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02227
  contributor:
    fullname: Xiao
– volume: 81
  start-page: 115126
  year: 2010
  ident: D1TC02867G/cit49
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.115126
  contributor:
    fullname: Harl
– volume: 137
  start-page: 38
  year: 2019
  ident: D1TC02867G/cit33
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2018.12.001
  contributor:
    fullname: Zhou
– volume: 8
  start-page: 2000779
  year: 2020
  ident: D1TC02867G/cit58
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000779
  contributor:
    fullname: Xiong
– volume: 3
  start-page: 2679
  year: 2018
  ident: D1TC02867G/cit13
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01643
  contributor:
    fullname: Rajendran
– volume: 2
  start-page: 1089
  year: 2017
  ident: D1TC02867G/cit17
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00191
  contributor:
    fullname: Swarnkar
– volume: 111
  start-page: 151602
  year: 2017
  ident: D1TC02867G/cit37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4999192
  contributor:
    fullname: Deng
– volume: 28
  start-page: 1801131
  year: 2018
  ident: D1TC02867G/cit59
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801131
  contributor:
    fullname: Tan
– volume: 7
  start-page: 38155
  year: 2017
  ident: D1TC02867G/cit36
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07101A
  contributor:
    fullname: Yao
– volume: 123
  start-page: 2665
  year: 2019
  ident: D1TC02867G/cit39
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b12146
  contributor:
    fullname: Lee
– volume: 9
  start-page: 1803150
  year: 2019
  ident: D1TC02867G/cit26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803150
  contributor:
    fullname: Igbari
– start-page: e1903496
  year: 2019
  ident: D1TC02867G/cit38
  publication-title: Small
  doi: 10.1002/smll.201903496
  contributor:
    fullname: Hu
– volume: 8
  start-page: 2003334
  year: 2021
  ident: D1TC02867G/cit14
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202003334
  contributor:
    fullname: Li
– volume: 59
  start-page: 11307
  year: 2020
  ident: D1TC02867G/cit41
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202002721
  contributor:
    fullname: Arfin
– volume: 119
  start-page: 3036
  year: 2019
  ident: D1TC02867G/cit1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00539
  contributor:
    fullname: Jena
– volume: 77
  start-page: 3865
  year: 1996
  ident: D1TC02867G/cit45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
  contributor:
    fullname: Perdew
– volume: 54
  start-page: 11169
  year: 1996
  ident: D1TC02867G/cit43
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
  contributor:
    fullname: Kresse
– volume: 49
  start-page: 4953
  year: 2020
  ident: D1TC02867G/cit25
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00790C
  contributor:
    fullname: Lu
– volume: 11
  start-page: 2053
  year: 2020
  ident: D1TC02867G/cit54
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c00330
  contributor:
    fullname: Zeng
– volume: 58
  start-page: 2278
  year: 2019
  ident: D1TC02867G/cit56
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811610
  contributor:
    fullname: Yang
– volume: 59
  start-page: 7738
  year: 2020
  ident: D1TC02867G/cit4
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201911638
  contributor:
    fullname: Wu
– volume: 140
  start-page: 111296
  year: 2021
  ident: D1TC02867G/cit53
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2021.111296
  contributor:
    fullname: Deng
– volume: 6
  start-page: 2969
  year: 2015
  ident: D1TC02867G/cit7
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01252
  contributor:
    fullname: Zheng
– volume: 39
  start-page: 330
  year: 2020
  ident: D1TC02867G/cit21
  publication-title: Rare Met.
  doi: 10.1007/s12598-020-01402-8
  contributor:
    fullname: Voznyy
– volume: 32
  start-page: 751
  year: 1976
  ident: D1TC02867G/cit50
  publication-title: Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr
  doi: 10.1107/S0567739476001551
  contributor:
    fullname: Shannon
– volume: 58
  start-page: 15596
  year: 2019
  ident: D1TC02867G/cit2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201901081
  contributor:
    fullname: Zhang
– volume: 135
  start-page: 1867
  year: 2010
  ident: D1TC02867G/cit9
  publication-title: Analyst
  doi: 10.1039/c0an00233j
  contributor:
    fullname: Ma
– volume: 31
  start-page: 1806105
  year: 2019
  ident: D1TC02867G/cit31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806105
  contributor:
    fullname: Qiu
– volume: 140
  start-page: 17001
  year: 2018
  ident: D1TC02867G/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07424
  contributor:
    fullname: Yang
– volume: 59
  start-page: 1758
  year: 1999
  ident: D1TC02867G/cit46
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
  contributor:
    fullname: Kresse
– volume: 30
  start-page: 2135
  year: 2018
  ident: D1TC02867G/cit16
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b00427
  contributor:
    fullname: Pradhan
– volume: 29
  start-page: 5713
  year: 2017
  ident: D1TC02867G/cit5
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01705
  contributor:
    fullname: Minh
– volume: 9
  start-page: 1573
  year: 2018
  ident: D1TC02867G/cit24
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b00301
  contributor:
    fullname: Sun
– volume: 49
  start-page: 16223
  year: 1994
  ident: D1TC02867G/cit48
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.49.16223
  contributor:
    fullname: Blöchl
– volume: 132
  start-page: 8499
  year: 2020
  ident: D1TC02867G/cit30
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201916020
  contributor:
    fullname: Liu
– volume: 34
  start-page: 56
  year: 2004
  ident: D1TC02867G/cit8
  publication-title: Lasers Surg. Med.
  doi: 10.1002/lsm.10248
  contributor:
    fullname: Zharov
– volume: 22
  start-page: 100821
  year: 2021
  ident: D1TC02867G/cit19
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2020.100821
  contributor:
    fullname: Yuan
– volume: 7
  start-page: 1254
  year: 2016
  ident: D1TC02867G/cit23
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00376
  contributor:
    fullname: Volonakis
– volume: 15
  start-page: 627
  year: 1966
  ident: D1TC02867G/cit51
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.19660150224
  contributor:
    fullname: Tauc
– volume: 11
  start-page: 872
  year: 2016
  ident: D1TC02867G/cit6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.110
  contributor:
    fullname: Yuan
– volume: 122
  start-page: 10643
  year: 2018
  ident: D1TC02867G/cit15
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03542
  contributor:
    fullname: Pal
– volume: 31
  start-page: 1803792
  year: 2019
  ident: D1TC02867G/cit27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803792
  contributor:
    fullname: Xiao
– volume: 186
  start-page: 110009
  year: 2021
  ident: D1TC02867G/cit20
  publication-title: Mater. Sci.
  contributor:
    fullname: Roknuzzaman
– volume: 11
  start-page: 16855
  year: 2019
  ident: D1TC02867G/cit40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02367
  contributor:
    fullname: Chen
– volume: 47
  start-page: 558
  year: 1993
  ident: D1TC02867G/cit44
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.47.558
  contributor:
    fullname: Kresse
– volume: 119
  start-page: 3104
  year: 2019
  ident: D1TC02867G/cit34
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00477
  contributor:
    fullname: Smith
– volume: 50
  start-page: 17953
  year: 1994
  ident: D1TC02867G/cit47
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
  contributor:
    fullname: Blöchl
– volume: 101
  start-page: 143
  year: 2012
  ident: D1TC02867G/cit35
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Chen
– volume: 2
  start-page: 461
  year: 2010
  ident: D1TC02867G/cit10
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
  contributor:
    fullname: Altınoğlu
– start-page: 2004118
  year: 2021
  ident: D1TC02867G/cit18
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004118
  contributor:
    fullname: Tang
– volume: 26
  start-page: 111
  issue: 1
  year: 2014
  ident: D1TC02867G/cit11
  publication-title: Chem. Mater.
  doi: 10.1021/cm4021436
  contributor:
    fullname: Veggel
– volume: 59
  start-page: 21925
  year: 2020
  ident: D1TC02867G/cit55
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009101
  contributor:
    fullname: Liu
– volume: 14
  start-page: 2000123
  year: 2020
  ident: D1TC02867G/cit12
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.202000123
  contributor:
    fullname: Yuan
– volume: 133
  start-page: 548
  year: 2021
  ident: D1TC02867G/cit42
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202009896
  contributor:
    fullname: Wang
– volume: 2
  start-page: 3470
  year: 2020
  ident: D1TC02867G/cit32
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00825
  contributor:
    fullname: Vashishtha
– volume: 12
  start-page: 5504
  year: 2018
  ident: D1TC02867G/cit3
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01122
  contributor:
    fullname: Lignos
– volume: 3
  start-page: 37
  year: 1968
  ident: D1TC02867G/cit52
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(68)90023-8
  contributor:
    fullname: Tauc
SSID ssj0000816869
Score 2.4368684
Snippet Non-lead metal halide double perovskites (MHDPs), recognized as one of the most promising alternatives to lead-based metal halide perovskites (MHPs), have...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 13474
SubjectTerms Broadband
High temperature
Lead free
Light emitting diodes
Metal halides
Morphology
Near infrared radiation
Perovskites
Radiant flux
Stability
Ultraviolet radiation
Title Highly efficient and stable broadband near-infrared-emitting lead-free metal halide double perovskites
URI https://www.proquest.com/docview/2579526868
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa2rZDggKBQsVCQJbitXBLHeR2rpVAq4LQVyynys0QqSZXNIpV_wz9lbOeFaCXgEu2OlWTj-TIz9s58g9ArRZnkPA-JEColTLLcvnMpSQwPY50oQwNbO_zxU3J6zs7W8Xo2-znJWtq24kj-uLGu5H-0CjLQq62S_QfNDhcFAXwG_cIRNAzHv9KxTdK4vLY5GaWra3T_BEC4Z6uhRFNzJaygAjATuF1jc82J_lb6VOdL0C4xjda2i7StiISIXOmFqrf2dMsf_n1jt3Y3t8SvEOr6Z1zIvmnc0WLp63_6EZvDWF-1AyPBpOmO0s5G9Qpfl11uMGC2umh7h-pahnXlEaXho_TMcx984V_rUfh56zwpr6_L6W4G9el06Wj0aBAHJI1pR489lXWbnp3Vzifg9PwwnQm2tbFs4s_hu2-V84ezCCLLtarCVkKQlaQXo0scEhXHwR20R8GWgRHdOz5Zvf8wbOS5ziWudeLw23sa3Ch_PV7g98BnXM3sNH2rGRfSrB6g-50u8bEH1kM009U-ujdhqNxHd1yGsNw8QsaDDQ9gw6BQ7MGGB7Dhm8GGB7BhBzbswYY92PAEbI_R-duT1fKUdE06iKRZ2BKeMsMjHgiuI6NhcZ8pKpWCdQaXSShlxhTnWZTkkjKRxFEahAZiRAMSy2tkogO0W9WVfoJwwrXhWlBlYsV0TkUomIjhsaKUZjnXc_Syn8HiynOxFC6HIsqLN-Fq6eb53Rwd9pNbdO_qpgDHlFtioySbowOY8OH8UT9Pbxt4hu6OSD1Eu22z1c8hEm3Fiw4LvwCqcpBU
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+and+stable+broadband+near-infrared-emitting+lead-free+metal+halide+double+perovskites&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Xiong%2C+Guangting&rft.au=Yuan%2C+Lifang&rft.au=Jin%2C+Yahong&rft.au=Wu%2C+Haoyi&rft.date=2021-10-07&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=9&rft.issue=38&rft.spage=13474&rft.epage=13483&rft_id=info:doi/10.1039%2Fd1tc02867g&rft.externalDocID=d1tc02867g
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon