Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes

Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials wit...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 9; no. 8; pp. 2691 - 273
Main Authors Kim, Kyoungtea, Jeon, Su-Ji, Hu, Peiguang, Anastasia, Caroline M, Beimers, William F, Giraldo, Juan Pablo, Pedersen, Joel A
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 11.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using a quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from Arabidopsis thaliana using confocal laser-scanning microscopy. Our results indicate that carbon nanodot-chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is the component that governs both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure-property-interaction relationships of sustainable nanomaterials with plant organelle membranes. The relative abundance of sulfoquinovosyl diacylglycerol (SQDG) in model chloroplast membranes dictates both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots (CNDs).
AbstractList Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using a quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from Arabidopsis thaliana using confocal laser-scanning microscopy. Our results indicate that carbon nanodot-chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is the component that governs both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure-property-interaction relationships of sustainable nanomaterials with plant organelle membranes. The relative abundance of sulfoquinovosyl diacylglycerol (SQDG) in model chloroplast membranes dictates both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots (CNDs).
Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using a quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from Arabidopsis thaliana using confocal laser-scanning microscopy. Our results indicate that carbon nanodot-chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is the component that governs both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure–property-interaction relationships of sustainable nanomaterials with plant organelle membranes.
Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using a quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from Arabidopsis thaliana using confocal laser-scanning microscopy. Our results indicate that carbon nanodot-chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is the component that governs both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure–property-interaction relationships of sustainable nanomaterials with plant organelle membranes.
Author Pedersen, Joel A
Hu, Peiguang
Beimers, William F
Giraldo, Juan Pablo
Anastasia, Caroline M
Jeon, Su-Ji
Kim, Kyoungtea
AuthorAffiliation Department of Chemistry
University of California-Riverside
St. Olaf College
University of Wisconsin-Madison
Department of Botany and Plant Sciences
Molecular and Environmental Toxicology
Departments of Soil Science and Civil & Environmental Engineering
AuthorAffiliation_xml – name: Molecular and Environmental Toxicology
– name: Department of Chemistry
– name: St. Olaf College
– name: Departments of Soil Science and Civil & Environmental Engineering
– name: Department of Botany and Plant Sciences
– name: University of Wisconsin-Madison
– name: University of California-Riverside
Author_xml – sequence: 1
  givenname: Kyoungtea
  surname: Kim
  fullname: Kim, Kyoungtea
– sequence: 2
  givenname: Su-Ji
  surname: Jeon
  fullname: Jeon, Su-Ji
– sequence: 3
  givenname: Peiguang
  surname: Hu
  fullname: Hu, Peiguang
– sequence: 4
  givenname: Caroline M
  surname: Anastasia
  fullname: Anastasia, Caroline M
– sequence: 5
  givenname: William F
  surname: Beimers
  fullname: Beimers, William F
– sequence: 6
  givenname: Juan Pablo
  surname: Giraldo
  fullname: Giraldo, Juan Pablo
– sequence: 7
  givenname: Joel A
  surname: Pedersen
  fullname: Pedersen, Joel A
BookMark eNpFkM1LAzEQxYMoWGsv3oWAN2E1k-xXj1JbFYoe1POSTWZpyjZZkxTtf2-0UmFgHo8fM7x3Ro6ts0jIBbAbYGJ6qzlaxqCouyMy4qyArIYSjg-6EKdkEsKaJQh4IcpqRJrXbd-53gxGU402mLij2qgoIwYaV0jxK6KN1HVUSd86S620TrtIjY3opYomeZ8mrqha9c67oZch0g1uWi8thnNy0sk-4ORvj8n7Yv42e8yWLw9Ps7tlpngNMZOFxlq2IhfAJKpcoRCQQ4WaF1PgKZTOq6QlVFAJWXR5VzKB07otdYqSizG52t8dvPvYYojN2m29TS8bXjFWslqkGZPrPaW8C8Fj1wzebKTfNcCanw6bez5__u1wkeDLPeyDOnD_HYtvXrxwDA
CitedBy_id crossref_primary_10_1021_acs_est_3c05686
crossref_primary_10_1021_acs_est_3c09757
crossref_primary_10_1038_s41565_024_01667_5
crossref_primary_10_1021_acs_chemrev_3c00581
Cites_doi 10.1146/annurev-arplant-050718-100202
10.1080/01621459.1988.10478639
10.1038/s41477-017-0063-z
10.1038/s43016-020-0110-1
10.1002/biot.200690011
10.1063/1.463820
10.1038/s41565-019-0375-4
10.1038/s41565-019-0461-7
10.1111/nph.15730
10.1038/s41467-020-15731-w
10.1007/s11120-007-9195-8
10.3390/nano8121011
10.1021/ac201778h
10.1021/jp9933065
10.1038/s41598-018-25197-y
10.1146/annurev-arplant-050213-040212
10.1351/PAC-REP-10-09-31
10.1186/s12951-019-0525-8
10.1021/acsnano.6b07563
10.1039/C5DT02964C
10.1016/S0163-7827(98)00016-2
10.1016/j.colcom.2020.100289
10.1007/s11051-018-4388-y
10.1074/jbc.RA118.004304
10.1039/C4TC00988F
10.1021/jp502692q
10.1038/nprot.2010.65
10.1039/C5CC07754K
10.1063/1.472409
10.3389/fpls.2016.01288
10.1021/la202287k
10.1021/acsnano.0c09732
10.1007/BF00029747
10.1021/acsnano.9b09178
10.1021/la034698g
10.1111/nph.16766
10.3389/fpls.2021.691295
10.1016/S0022-2275(20)40670-4
10.1021/acs.analchem.9b05397
10.3389/fpls.2019.00281
10.1039/c3sm51692j
10.1038/s41565-019-0382-5
10.1007/s12011-010-8901-0
10.1002/adhm.201200033
10.1021/la025911w
10.1021/acsnano.8b09781
10.1002/adfm.201603803
10.1021/es3045899
10.1063/1.4762830
10.3389/fenvs.2017.00012
10.1016/j.jcis.2006.12.075
10.1039/C6TB01259K
10.1016/S0021-9258(17)44113-5
10.3389/fpls.2018.00126
10.1021/ja501225p
10.1021/la970815u
10.1016/j.jmb.2012.03.017
10.1002/app.45637
10.1016/S1673-8527(08)60128-9
10.1002/smll.201302126
10.1021/acs.est.5b01841
10.1016/j.tibtech.2018.03.009
10.1021/acs.nanolett.5b04467
10.1007/s10265-016-0827-y
10.1021/acs.est.7b02823
10.1039/C4CS00269E
10.1039/D0TB00217H
10.1038/nmat3890
10.1104/pp.24.1.1
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/d2en00158f
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 273
ExternalDocumentID 10_1039_D2EN00158F
d2en00158f
GroupedDBID 0R
4.4
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AFOGI
AFRAH
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
H13
HZ
H~N
J3I
JG
O-G
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
RVUXY
-JG
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
GGIMP
HZ~
RAOCF
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c281t-a5de8ab34310aec4ce331417ed25912015d47d25a17173a5f4f603e98b6d12543
ISSN 2051-8153
IngestDate Thu Oct 10 21:02:59 EDT 2024
Fri Aug 23 03:18:42 EDT 2024
Fri Aug 12 04:20:20 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-a5de8ab34310aec4ce331417ed25912015d47d25a17173a5f4f603e98b6d12543
Notes https://doi.org/10.1039/d2en00158f
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0002-5235-0489
0000-0002-9526-6295
0000-0002-8400-8944
0000-0002-3918-1860
0000-0002-5917-8837
0000-0003-2605-9716
0000-0001-7478-5574
PQID 2700608308
PQPubID 2047519
PageCount 13
ParticipantIDs proquest_journals_2700608308
rsc_primary_d2en00158f
crossref_primary_10_1039_D2EN00158F
PublicationCentury 2000
PublicationDate 2022-08-11
PublicationDateYYYYMMDD 2022-08-11
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-11
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science. Nano
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Arnon (D2EN00158F/cit57/1) 1949; 24
Block (D2EN00158F/cit33/1) 2007; 92
Janero (D2EN00158F/cit28/1) 1981; 22
Lim (D2EN00158F/cit35/1) 2015; 44
Koczkur (D2EN00158F/cit61/1) 2015; 44
Santana (D2EN00158F/cit5/1) 2020; 11
Newkirk (D2EN00158F/cit21/1) 2021; 12
Kankare (D2EN00158F/cit46/1) 2002; 18
Sharma (D2EN00158F/cit36/1) 2019; 17
Zhang (D2EN00158F/cit50/1) 2011; 27
Tian (D2EN00158F/cit10/1) 2012; 1
Zeng (D2EN00158F/cit39/1) 2016; 4
Walters (D2EN00158F/cit47/1) 2012; 421
Giraldo (D2EN00158F/cit8/1) 2014; 13
Jacobson (D2EN00158F/cit52/1) 2013; 47
Hu (D2EN00158F/cit2/1) 2020; 14
Mensch (D2EN00158F/cit48/1) 2017; 51
Cunningham (D2EN00158F/cit6/1) 2018; 36
Zhao (D2EN00158F/cit12/1) 2017; 3
Barber (D2EN00158F/cit25/1) 1986; 9
Pérez-de-Luque (D2EN00158F/cit37/1) 2017; 5
Raliya (D2EN00158F/cit3/1) 2016; 7
Yu (D2EN00158F/cit31/1) 2020; 228
Schaaf (D2EN00158F/cit66/1) 2000; 104
Jacobson (D2EN00158F/cit42/1) 2015; 49
Avellan (D2EN00158F/cit4/1) 2019; 13
Ragel (D2EN00158F/cit70/1) 2019; 10
Höök (D2EN00158F/cit68/1) 1998; 14
García Raya (D2EN00158F/cit75/1) 2014; 118
Wang (D2EN00158F/cit38/1) 2014; 2
Karny (D2EN00158F/cit9/1) 2018; 8
Adamczyk (D2EN00158F/cit69/1) 2020; 92
Nakajima (D2EN00158F/cit27/1) 2018; 293
Trotsiuk (D2EN00158F/cit62/1) 2020; 37
Chen (D2EN00158F/cit65/1) 2016; 10
Block (D2EN00158F/cit24/1) 1983; 258
Kelley (D2EN00158F/cit55/1) 2018; 20
Cleveland (D2EN00158F/cit51/1) 1988; 83
Brouwer (D2EN00158F/cit74/1) 2003; 19
Zhang (D2EN00158F/cit49/1) 2013; 9
Adamczyk (D2EN00158F/cit54/1) 1996; 105
Nedyalkova (D2EN00158F/cit59/1) 2012; 137
Melby (D2EN00158F/cit53/1) 2016; 3
Lee (D2EN00158F/cit64/1) 2014; 136
Kuskov (D2EN00158F/cit63/1) 2018; 135
Rocha (D2EN00158F/cit30/1) 2018; 9
Kelley (D2EN00158F/cit72/1) 2018; 20
Viot (D2EN00158F/cit73/1) 1992; 97
Cayuela (D2EN00158F/cit34/1) 2016; 52
Kirchhoff (D2EN00158F/cit16/1) 2019; 223
Shang (D2EN00158F/cit1/1) 2019
Lowry (D2EN00158F/cit14/1) 2019; 14
Jiang (D2EN00158F/cit56/1) 2014; 10
Demirer (D2EN00158F/cit13/1) 2019; 14
Voronova (D2EN00158F/cit60/1) 2018; 8
Wang (D2EN00158F/cit18/1) 2009; 36
Moreau (D2EN00158F/cit26/1) 1998; 37
Delgado (D2EN00158F/cit71/1) 2007; 309
Bock (D2EN00158F/cit20/1) 2015; 66
Jeon (D2EN00158F/cit40/1) 2016; 26
Daniell (D2EN00158F/cit19/1) 2006; 1
Dixon (D2EN00158F/cit44/1) 2008; 19
Kwak (D2EN00158F/cit22/1) 2019; 14
Lochbaum (D2EN00158F/cit67/1) 2021; 15
Hölzl (D2EN00158F/cit32/1) 2019; 70
Brouwer (D2EN00158F/cit41/1) 2011; 83
Brown (D2EN00158F/cit58/1) 2016; 6
Cho (D2EN00158F/cit43/1) 2010; 5
Ze (D2EN00158F/cit17/1) 2011; 143
Kobayashi (D2EN00158F/cit29/1) 2016; 129
Jat (D2EN00158F/cit7/1) 2020; 8
Wong (D2EN00158F/cit23/1) 2016; 16
Hofmann (D2EN00158F/cit15/1) 2020; 1
Reviakine (D2EN00158F/cit45/1) 2011; 83
Zhao (D2EN00158F/cit11/1) 2014; 9
References_xml – volume: 70
  start-page: 51
  year: 2019
  ident: D2EN00158F/cit32/1
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-100202
  contributor:
    fullname: Hölzl
– volume: 83
  start-page: 596
  year: 1988
  ident: D2EN00158F/cit51/1
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1988.10478639
  contributor:
    fullname: Cleveland
– volume: 3
  start-page: 956
  year: 2017
  ident: D2EN00158F/cit12/1
  publication-title: Nat. Plants
  doi: 10.1038/s41477-017-0063-z
  contributor:
    fullname: Zhao
– volume: 1
  start-page: 416
  year: 2020
  ident: D2EN00158F/cit15/1
  publication-title: Nat. Food
  doi: 10.1038/s43016-020-0110-1
  contributor:
    fullname: Hofmann
– volume: 1
  start-page: 31
  year: 2006
  ident: D2EN00158F/cit19/1
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.200690011
  contributor:
    fullname: Daniell
– volume: 97
  start-page: 5212
  year: 1992
  ident: D2EN00158F/cit73/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463820
  contributor:
    fullname: Viot
– volume: 14
  start-page: 447
  year: 2019
  ident: D2EN00158F/cit22/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0375-4
  contributor:
    fullname: Kwak
– volume: 14
  start-page: 517
  year: 2019
  ident: D2EN00158F/cit14/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0461-7
  contributor:
    fullname: Lowry
– volume: 223
  start-page: 565
  year: 2019
  ident: D2EN00158F/cit16/1
  publication-title: New Phytol.
  doi: 10.1111/nph.15730
  contributor:
    fullname: Kirchhoff
– volume: 11
  start-page: 2045
  year: 2020
  ident: D2EN00158F/cit5/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15731-w
  contributor:
    fullname: Santana
– volume: 92
  start-page: 225
  year: 2007
  ident: D2EN00158F/cit33/1
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-007-9195-8
  contributor:
    fullname: Block
– volume: 8
  start-page: 1011
  year: 2018
  ident: D2EN00158F/cit60/1
  publication-title: Nanomaterials
  doi: 10.3390/nano8121011
  contributor:
    fullname: Voronova
– volume: 83
  start-page: 8838
  year: 2011
  ident: D2EN00158F/cit45/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac201778h
  contributor:
    fullname: Reviakine
– volume: 104
  start-page: 2204
  year: 2000
  ident: D2EN00158F/cit66/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9933065
  contributor:
    fullname: Schaaf
– volume: 8
  start-page: 1
  year: 2018
  ident: D2EN00158F/cit9/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25197-y
  contributor:
    fullname: Karny
– volume: 66
  start-page: 211
  year: 2015
  ident: D2EN00158F/cit20/1
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050213-040212
  contributor:
    fullname: Bock
– volume: 83
  start-page: 2213
  year: 2011
  ident: D2EN00158F/cit41/1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-REP-10-09-31
  contributor:
    fullname: Brouwer
– volume: 17
  start-page: 1
  year: 2019
  ident: D2EN00158F/cit36/1
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-019-0525-8
  contributor:
    fullname: Sharma
– volume: 10
  start-page: 11541
  year: 2016
  ident: D2EN00158F/cit65/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07563
  contributor:
    fullname: Chen
– volume: 44
  start-page: 17883
  year: 2015
  ident: D2EN00158F/cit61/1
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT02964C
  contributor:
    fullname: Koczkur
– volume: 37
  start-page: 371
  year: 1998
  ident: D2EN00158F/cit26/1
  publication-title: Prog. Lipid Res.
  doi: 10.1016/S0163-7827(98)00016-2
  contributor:
    fullname: Moreau
– volume: 37
  start-page: 100289
  year: 2020
  ident: D2EN00158F/cit62/1
  publication-title: Colloid Interface Sci. Commun.
  doi: 10.1016/j.colcom.2020.100289
  contributor:
    fullname: Trotsiuk
– volume: 19
  start-page: 151
  year: 2008
  ident: D2EN00158F/cit44/1
  publication-title: J. Biomol. Tech.
  contributor:
    fullname: Dixon
– volume: 20
  start-page: 290
  year: 2018
  ident: D2EN00158F/cit72/1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-018-4388-y
  contributor:
    fullname: Kelley
– volume: 293
  start-page: 14786
  year: 2018
  ident: D2EN00158F/cit27/1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.004304
  contributor:
    fullname: Nakajima
– volume: 2
  start-page: 6921
  year: 2014
  ident: D2EN00158F/cit38/1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC00988F
  contributor:
    fullname: Wang
– volume: 118
  start-page: 14617
  year: 2014
  ident: D2EN00158F/cit75/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp502692q
  contributor:
    fullname: García Raya
– volume: 5
  start-page: 1096
  year: 2010
  ident: D2EN00158F/cit43/1
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.65
  contributor:
    fullname: Cho
– volume: 52
  start-page: 1311
  year: 2016
  ident: D2EN00158F/cit34/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07754K
  contributor:
    fullname: Cayuela
– volume: 105
  start-page: 5562
  year: 1996
  ident: D2EN00158F/cit54/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472409
  contributor:
    fullname: Adamczyk
– start-page: 24
  year: 2019
  ident: D2EN00158F/cit1/1
  publication-title: Molecules
  contributor:
    fullname: Shang
– volume: 7
  start-page: 1288
  year: 2016
  ident: D2EN00158F/cit3/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01288
  contributor:
    fullname: Raliya
– volume: 20
  start-page: 290
  year: 2018
  ident: D2EN00158F/cit55/1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-018-4388-y
  contributor:
    fullname: Kelley
– volume: 27
  start-page: 12550
  year: 2011
  ident: D2EN00158F/cit50/1
  publication-title: Langmuir
  doi: 10.1021/la202287k
  contributor:
    fullname: Zhang
– volume: 15
  start-page: 6562
  year: 2021
  ident: D2EN00158F/cit67/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09732
  contributor:
    fullname: Lochbaum
– volume: 9
  start-page: 239
  year: 1986
  ident: D2EN00158F/cit25/1
  publication-title: Photosynth. Res.
  doi: 10.1007/BF00029747
  contributor:
    fullname: Barber
– volume: 14
  start-page: 7970
  year: 2020
  ident: D2EN00158F/cit2/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09178
  contributor:
    fullname: Hu
– volume: 3
  start-page: 45
  year: 2016
  ident: D2EN00158F/cit53/1
  publication-title: Environ. Sci.: Nano
  contributor:
    fullname: Melby
– volume: 19
  start-page: 8102
  year: 2003
  ident: D2EN00158F/cit74/1
  publication-title: Langmuir
  doi: 10.1021/la034698g
  contributor:
    fullname: Brouwer
– volume: 228
  start-page: 1327
  year: 2020
  ident: D2EN00158F/cit31/1
  publication-title: New Phytol.
  doi: 10.1111/nph.16766
  contributor:
    fullname: Yu
– volume: 6
  start-page: 1
  year: 2016
  ident: D2EN00158F/cit58/1
  publication-title: Phys. Rev. X
  contributor:
    fullname: Brown
– volume: 12
  start-page: 1
  year: 2021
  ident: D2EN00158F/cit21/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.691295
  contributor:
    fullname: Newkirk
– volume: 22
  start-page: 1119
  year: 1981
  ident: D2EN00158F/cit28/1
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)40670-4
  contributor:
    fullname: Janero
– volume: 92
  start-page: 3896
  year: 2020
  ident: D2EN00158F/cit69/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05397
  contributor:
    fullname: Adamczyk
– volume: 10
  start-page: 1
  year: 2019
  ident: D2EN00158F/cit70/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00281
  contributor:
    fullname: Ragel
– volume: 9
  start-page: 10155
  year: 2013
  ident: D2EN00158F/cit49/1
  publication-title: Soft Matter
  doi: 10.1039/c3sm51692j
  contributor:
    fullname: Zhang
– volume: 9
  start-page: 2
  year: 2014
  ident: D2EN00158F/cit11/1
  publication-title: PLoS One
  contributor:
    fullname: Zhao
– volume: 14
  start-page: 456
  year: 2019
  ident: D2EN00158F/cit13/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0382-5
  contributor:
    fullname: Demirer
– volume: 143
  start-page: 1131
  year: 2011
  ident: D2EN00158F/cit17/1
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-010-8901-0
  contributor:
    fullname: Ze
– volume: 1
  start-page: 337
  year: 2012
  ident: D2EN00158F/cit10/1
  publication-title: Adv. Healthcare Mater.
  doi: 10.1002/adhm.201200033
  contributor:
    fullname: Tian
– volume: 18
  start-page: 7092
  year: 2002
  ident: D2EN00158F/cit46/1
  publication-title: Langmuir
  doi: 10.1021/la025911w
  contributor:
    fullname: Kankare
– volume: 13
  start-page: 5291
  year: 2019
  ident: D2EN00158F/cit4/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09781
  contributor:
    fullname: Avellan
– volume: 26
  start-page: 8211
  year: 2016
  ident: D2EN00158F/cit40/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603803
  contributor:
    fullname: Jeon
– volume: 47
  start-page: 6925
  year: 2013
  ident: D2EN00158F/cit52/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3045899
  contributor:
    fullname: Jacobson
– volume: 137
  start-page: 174701
  year: 2012
  ident: D2EN00158F/cit59/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4762830
  contributor:
    fullname: Nedyalkova
– volume: 5
  start-page: 12
  year: 2017
  ident: D2EN00158F/cit37/1
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2017.00012
  contributor:
    fullname: Pérez-de-Luque
– volume: 309
  start-page: 194
  year: 2007
  ident: D2EN00158F/cit71/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.12.075
  contributor:
    fullname: Delgado
– volume: 4
  start-page: 5119
  year: 2016
  ident: D2EN00158F/cit39/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB01259K
  contributor:
    fullname: Zeng
– volume: 258
  start-page: 13281
  year: 1983
  ident: D2EN00158F/cit24/1
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)44113-5
  contributor:
    fullname: Block
– volume: 9
  start-page: 1
  year: 2018
  ident: D2EN00158F/cit30/1
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00126
  contributor:
    fullname: Rocha
– volume: 136
  start-page: 4081
  year: 2014
  ident: D2EN00158F/cit64/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501225p
  contributor:
    fullname: Lee
– volume: 14
  start-page: 729
  year: 1998
  ident: D2EN00158F/cit68/1
  publication-title: Langmuir
  doi: 10.1021/la970815u
  contributor:
    fullname: Höök
– volume: 421
  start-page: 329
  year: 2012
  ident: D2EN00158F/cit47/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.03.017
  contributor:
    fullname: Walters
– volume: 135
  start-page: 45637
  year: 2018
  ident: D2EN00158F/cit63/1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.45637
  contributor:
    fullname: Kuskov
– volume: 36
  start-page: 387
  year: 2009
  ident: D2EN00158F/cit18/1
  publication-title: J. Genet. Genomics
  doi: 10.1016/S1673-8527(08)60128-9
  contributor:
    fullname: Wang
– volume: 10
  start-page: 609
  year: 2014
  ident: D2EN00158F/cit56/1
  publication-title: Small
  doi: 10.1002/smll.201302126
  contributor:
    fullname: Jiang
– volume: 49
  start-page: 10642
  issue: 17
  year: 2015
  ident: D2EN00158F/cit42/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01841
  contributor:
    fullname: Jacobson
– volume: 36
  start-page: 882
  year: 2018
  ident: D2EN00158F/cit6/1
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.03.009
  contributor:
    fullname: Cunningham
– volume: 16
  start-page: 1161
  year: 2016
  ident: D2EN00158F/cit23/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04467
  contributor:
    fullname: Wong
– volume: 129
  start-page: 565
  year: 2016
  ident: D2EN00158F/cit29/1
  publication-title: J. Plant Res.
  doi: 10.1007/s10265-016-0827-y
  contributor:
    fullname: Kobayashi
– volume: 51
  start-page: 11075
  year: 2017
  ident: D2EN00158F/cit48/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02823
  contributor:
    fullname: Mensch
– volume: 44
  start-page: 362
  year: 2015
  ident: D2EN00158F/cit35/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00269E
  contributor:
    fullname: Lim
– volume: 8
  start-page: 4165
  year: 2020
  ident: D2EN00158F/cit7/1
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00217H
  contributor:
    fullname: Jat
– volume: 13
  start-page: 400
  year: 2014
  ident: D2EN00158F/cit8/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3890
  contributor:
    fullname: Giraldo
– volume: 24
  start-page: 1
  year: 1949
  ident: D2EN00158F/cit57/1
  publication-title: Plant Physiol.
  doi: 10.1104/pp.24.1.1
  contributor:
    fullname: Arnon
SSID ssj0001125367
Score 2.3358223
Snippet Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 2691
SubjectTerms Biomaterials
Biomedical materials
Carbon
Chemical interactions
Chloroplasts
Compression
Compressive strength
Cytoplasmic organelles
Diglycerides
Electrostatic properties
Electrostatics
Functional groups
Genetic engineering
Ionic strength
Lasers
Lipids
Membrane composition
Membranes
Microscopy
Molecular interactions
Nanomaterials
Nanotechnology
Photosynthesis
Plant stress
Plants
Quartz crystal microbalance
Quartz crystals
Relative abundance
Scanning microscopy
Title Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes
URI https://www.proquest.com/docview/2700608308
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXo9sIFgaCitCBL9FZlSewk6xwr2KotbS_dSr1FtjOBSG2yWrIH-PWMPxIHFSTgEkWOYkWel_HM-M0MIUc1BxYDoKeKuz86KLKIVGwFIvJY6URntmnf1XV-dpte3GV3gRJks0t6Ndc_fptX8j9SxTGUq8mS_QfJjpPiAN6jfPGKEsbrX8n4Zntfd_fNuqmOK0NER4O6arQ1Hx1Zw0S47VG_lhuFcm5la9xQWyRi47uEO_L5V_TbuzWa0v3xAzygC916cuEQtQ8JcUMapYa5Uc5dOMa32Pr83SgQxM5IzgF3sn-zjS6aACPHDm6-bKXfPG0wAj_A5HWOXBRjBF9NQxPo1ZpSsUnQYAz_-EgkrhrwHKZjrgL7oIKLCdLEVJ3mrpWX35qZ63rySOvH3BRNrRi0xgQUddjbRsZheLhDdhkqJTEjuyfL1flliMihrcdty-Hxu4d6trz4ECb41YIJbsnOZugZY22T1XPyzDsV9MQh5AV5Au1LUgZ0UI8OOqCDIjqoQwftaurQQT066AQd1KCDTtBBR3S8Ireny9XHs8i304g0E0kfyawCIRVHkzGWoFMNnCdpsoAKXeAEDcGsShd4LxPDzJBZndZ5zKEQKq8SUzNhj8zaroXXhGb5QteFKmKuIQWZKlA5Y0ryQjCltdgn74clKteuakpp2Q68KD-x5bVdyNN9cjisXun_qm-lIULk6BfEOMkeruj4fhDAmz89OCBPAwwPyazfbOEt2oy9eueF_RPsT3EC
link.rule.ids 315,783,787,27938,27939
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfolipid+density+dictates+the+extent+of+carbon+nanodot+interaction+with+chloroplast+membranes&rft.jtitle=Environmental+science.+Nano&rft.au=Kim%2C+Kyoungtea&rft.au=Jeon%2C+Su-Ji&rft.au=Hu%2C+Peiguang&rft.au=Anastasia%2C+Caroline+M&rft.date=2022-08-11&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=9&rft.issue=8&rft.spage=2691&rft.epage=273&rft_id=info:doi/10.1039%2Fd2en00158f&rft.externalDocID=d2en00158f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon