Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes
Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials wit...
Saved in:
Published in | Environmental science. Nano Vol. 9; no. 8; pp. 2691 - 273 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
11.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using a quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from
Arabidopsis thaliana
using confocal laser-scanning microscopy. Our results indicate that carbon nanodot-chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is the component that governs both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure-property-interaction relationships of sustainable nanomaterials with plant organelle membranes.
The relative abundance of sulfoquinovosyl diacylglycerol (SQDG) in model chloroplast membranes dictates both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots (CNDs). |
---|---|
AbstractList | Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using a quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from
Arabidopsis thaliana
using confocal laser-scanning microscopy. Our results indicate that carbon nanodot-chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is the component that governs both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure-property-interaction relationships of sustainable nanomaterials with plant organelle membranes.
The relative abundance of sulfoquinovosyl diacylglycerol (SQDG) in model chloroplast membranes dictates both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots (CNDs). Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using a quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from Arabidopsis thaliana using confocal laser-scanning microscopy. Our results indicate that carbon nanodot-chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is the component that governs both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure–property-interaction relationships of sustainable nanomaterials with plant organelle membranes. Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic engineering, and manufacture self-repairing biomaterials, fuels, and biopharmaceuticals. However, the molecular interactions of nanomaterials with chloroplast membranes are not well understood. In this study, we examine the interactions of an important set of chloroplast membrane lipids including sulfoquinovosyl diacylglycerols with carbon nanodots varying in functional group charge. To accomplish this objective, we constructed a novel model chloroplast membrane and interrogated the influence of carbon nanodot functional group charge, model chloroplast membrane composition, and ionic strength on the carbon nanodot-chloroplast membrane interactions using a quartz crystal microbalance with dissipation monitoring. We further examined the interaction of carbon nanodots with native chloroplasts isolated from Arabidopsis thaliana using confocal laser-scanning microscopy. Our results indicate that carbon nanodot-chloroplast membrane interactions are dictated primarily by electrostatics. Despite being the least abundant lipids in chloroplast membranes, we find that the relative abundance of sulfoquinovosyl diacylglycerol in model membranes is the component that governs both the affinity for and capacity of the membrane to interact with positively charged carbon nanodots. Rates of carbon nanodot attachment to model chloroplast membranes varied with ionic strength in a manner consistent with electrical double layer compression on carbon nanodots. Our findings elucidate chemical interactions between nanomaterials and plant biosurfaces at the molecular level and potentially contribute to establishing structure–property-interaction relationships of sustainable nanomaterials with plant organelle membranes. |
Author | Pedersen, Joel A Hu, Peiguang Beimers, William F Giraldo, Juan Pablo Anastasia, Caroline M Jeon, Su-Ji Kim, Kyoungtea |
AuthorAffiliation | Department of Chemistry University of California-Riverside St. Olaf College University of Wisconsin-Madison Department of Botany and Plant Sciences Molecular and Environmental Toxicology Departments of Soil Science and Civil & Environmental Engineering |
AuthorAffiliation_xml | – name: Molecular and Environmental Toxicology – name: Department of Chemistry – name: St. Olaf College – name: Departments of Soil Science and Civil & Environmental Engineering – name: Department of Botany and Plant Sciences – name: University of Wisconsin-Madison – name: University of California-Riverside |
Author_xml | – sequence: 1 givenname: Kyoungtea surname: Kim fullname: Kim, Kyoungtea – sequence: 2 givenname: Su-Ji surname: Jeon fullname: Jeon, Su-Ji – sequence: 3 givenname: Peiguang surname: Hu fullname: Hu, Peiguang – sequence: 4 givenname: Caroline M surname: Anastasia fullname: Anastasia, Caroline M – sequence: 5 givenname: William F surname: Beimers fullname: Beimers, William F – sequence: 6 givenname: Juan Pablo surname: Giraldo fullname: Giraldo, Juan Pablo – sequence: 7 givenname: Joel A surname: Pedersen fullname: Pedersen, Joel A |
BookMark | eNpFkM1LAzEQxYMoWGsv3oWAN2E1k-xXj1JbFYoe1POSTWZpyjZZkxTtf2-0UmFgHo8fM7x3Ro6ts0jIBbAbYGJ6qzlaxqCouyMy4qyArIYSjg-6EKdkEsKaJQh4IcpqRJrXbd-53gxGU402mLij2qgoIwYaV0jxK6KN1HVUSd86S620TrtIjY3opYomeZ8mrqha9c67oZch0g1uWi8thnNy0sk-4ORvj8n7Yv42e8yWLw9Ps7tlpngNMZOFxlq2IhfAJKpcoRCQQ4WaF1PgKZTOq6QlVFAJWXR5VzKB07otdYqSizG52t8dvPvYYojN2m29TS8bXjFWslqkGZPrPaW8C8Fj1wzebKTfNcCanw6bez5__u1wkeDLPeyDOnD_HYtvXrxwDA |
CitedBy_id | crossref_primary_10_1021_acs_est_3c05686 crossref_primary_10_1021_acs_est_3c09757 crossref_primary_10_1038_s41565_024_01667_5 crossref_primary_10_1021_acs_chemrev_3c00581 |
Cites_doi | 10.1146/annurev-arplant-050718-100202 10.1080/01621459.1988.10478639 10.1038/s41477-017-0063-z 10.1038/s43016-020-0110-1 10.1002/biot.200690011 10.1063/1.463820 10.1038/s41565-019-0375-4 10.1038/s41565-019-0461-7 10.1111/nph.15730 10.1038/s41467-020-15731-w 10.1007/s11120-007-9195-8 10.3390/nano8121011 10.1021/ac201778h 10.1021/jp9933065 10.1038/s41598-018-25197-y 10.1146/annurev-arplant-050213-040212 10.1351/PAC-REP-10-09-31 10.1186/s12951-019-0525-8 10.1021/acsnano.6b07563 10.1039/C5DT02964C 10.1016/S0163-7827(98)00016-2 10.1016/j.colcom.2020.100289 10.1007/s11051-018-4388-y 10.1074/jbc.RA118.004304 10.1039/C4TC00988F 10.1021/jp502692q 10.1038/nprot.2010.65 10.1039/C5CC07754K 10.1063/1.472409 10.3389/fpls.2016.01288 10.1021/la202287k 10.1021/acsnano.0c09732 10.1007/BF00029747 10.1021/acsnano.9b09178 10.1021/la034698g 10.1111/nph.16766 10.3389/fpls.2021.691295 10.1016/S0022-2275(20)40670-4 10.1021/acs.analchem.9b05397 10.3389/fpls.2019.00281 10.1039/c3sm51692j 10.1038/s41565-019-0382-5 10.1007/s12011-010-8901-0 10.1002/adhm.201200033 10.1021/la025911w 10.1021/acsnano.8b09781 10.1002/adfm.201603803 10.1021/es3045899 10.1063/1.4762830 10.3389/fenvs.2017.00012 10.1016/j.jcis.2006.12.075 10.1039/C6TB01259K 10.1016/S0021-9258(17)44113-5 10.3389/fpls.2018.00126 10.1021/ja501225p 10.1021/la970815u 10.1016/j.jmb.2012.03.017 10.1002/app.45637 10.1016/S1673-8527(08)60128-9 10.1002/smll.201302126 10.1021/acs.est.5b01841 10.1016/j.tibtech.2018.03.009 10.1021/acs.nanolett.5b04467 10.1007/s10265-016-0827-y 10.1021/acs.est.7b02823 10.1039/C4CS00269E 10.1039/D0TB00217H 10.1038/nmat3890 10.1104/pp.24.1.1 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/d2en00158f |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 273 |
ExternalDocumentID | 10_1039_D2EN00158F d2en00158f |
GroupedDBID | 0R 4.4 AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AFOGI AFRAH AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- H13 HZ H~N J3I JG O-G O9- RCNCU RIG RPMJG RRC RSCEA RVUXY -JG 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AETIL AFLYV AGEGJ AHGCF AKBGW APEMP CITATION GGIMP HZ~ RAOCF 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c281t-a5de8ab34310aec4ce331417ed25912015d47d25a17173a5f4f603e98b6d12543 |
ISSN | 2051-8153 |
IngestDate | Thu Oct 10 21:02:59 EDT 2024 Fri Aug 23 03:18:42 EDT 2024 Fri Aug 12 04:20:20 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-a5de8ab34310aec4ce331417ed25912015d47d25a17173a5f4f603e98b6d12543 |
Notes | https://doi.org/10.1039/d2en00158f Electronic supplementary information (ESI) available. See DOI |
ORCID | 0000-0002-5235-0489 0000-0002-9526-6295 0000-0002-8400-8944 0000-0002-3918-1860 0000-0002-5917-8837 0000-0003-2605-9716 0000-0001-7478-5574 |
PQID | 2700608308 |
PQPubID | 2047519 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2700608308 rsc_primary_d2en00158f crossref_primary_10_1039_D2EN00158F |
PublicationCentury | 2000 |
PublicationDate | 2022-08-11 |
PublicationDateYYYYMMDD | 2022-08-11 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Arnon (D2EN00158F/cit57/1) 1949; 24 Block (D2EN00158F/cit33/1) 2007; 92 Janero (D2EN00158F/cit28/1) 1981; 22 Lim (D2EN00158F/cit35/1) 2015; 44 Koczkur (D2EN00158F/cit61/1) 2015; 44 Santana (D2EN00158F/cit5/1) 2020; 11 Newkirk (D2EN00158F/cit21/1) 2021; 12 Kankare (D2EN00158F/cit46/1) 2002; 18 Sharma (D2EN00158F/cit36/1) 2019; 17 Zhang (D2EN00158F/cit50/1) 2011; 27 Tian (D2EN00158F/cit10/1) 2012; 1 Zeng (D2EN00158F/cit39/1) 2016; 4 Walters (D2EN00158F/cit47/1) 2012; 421 Giraldo (D2EN00158F/cit8/1) 2014; 13 Jacobson (D2EN00158F/cit52/1) 2013; 47 Hu (D2EN00158F/cit2/1) 2020; 14 Mensch (D2EN00158F/cit48/1) 2017; 51 Cunningham (D2EN00158F/cit6/1) 2018; 36 Zhao (D2EN00158F/cit12/1) 2017; 3 Barber (D2EN00158F/cit25/1) 1986; 9 Pérez-de-Luque (D2EN00158F/cit37/1) 2017; 5 Raliya (D2EN00158F/cit3/1) 2016; 7 Yu (D2EN00158F/cit31/1) 2020; 228 Schaaf (D2EN00158F/cit66/1) 2000; 104 Jacobson (D2EN00158F/cit42/1) 2015; 49 Avellan (D2EN00158F/cit4/1) 2019; 13 Ragel (D2EN00158F/cit70/1) 2019; 10 Höök (D2EN00158F/cit68/1) 1998; 14 García Raya (D2EN00158F/cit75/1) 2014; 118 Wang (D2EN00158F/cit38/1) 2014; 2 Karny (D2EN00158F/cit9/1) 2018; 8 Adamczyk (D2EN00158F/cit69/1) 2020; 92 Nakajima (D2EN00158F/cit27/1) 2018; 293 Trotsiuk (D2EN00158F/cit62/1) 2020; 37 Chen (D2EN00158F/cit65/1) 2016; 10 Block (D2EN00158F/cit24/1) 1983; 258 Kelley (D2EN00158F/cit55/1) 2018; 20 Cleveland (D2EN00158F/cit51/1) 1988; 83 Brouwer (D2EN00158F/cit74/1) 2003; 19 Zhang (D2EN00158F/cit49/1) 2013; 9 Adamczyk (D2EN00158F/cit54/1) 1996; 105 Nedyalkova (D2EN00158F/cit59/1) 2012; 137 Melby (D2EN00158F/cit53/1) 2016; 3 Lee (D2EN00158F/cit64/1) 2014; 136 Kuskov (D2EN00158F/cit63/1) 2018; 135 Rocha (D2EN00158F/cit30/1) 2018; 9 Kelley (D2EN00158F/cit72/1) 2018; 20 Viot (D2EN00158F/cit73/1) 1992; 97 Cayuela (D2EN00158F/cit34/1) 2016; 52 Kirchhoff (D2EN00158F/cit16/1) 2019; 223 Shang (D2EN00158F/cit1/1) 2019 Lowry (D2EN00158F/cit14/1) 2019; 14 Jiang (D2EN00158F/cit56/1) 2014; 10 Demirer (D2EN00158F/cit13/1) 2019; 14 Voronova (D2EN00158F/cit60/1) 2018; 8 Wang (D2EN00158F/cit18/1) 2009; 36 Moreau (D2EN00158F/cit26/1) 1998; 37 Delgado (D2EN00158F/cit71/1) 2007; 309 Bock (D2EN00158F/cit20/1) 2015; 66 Jeon (D2EN00158F/cit40/1) 2016; 26 Daniell (D2EN00158F/cit19/1) 2006; 1 Dixon (D2EN00158F/cit44/1) 2008; 19 Kwak (D2EN00158F/cit22/1) 2019; 14 Lochbaum (D2EN00158F/cit67/1) 2021; 15 Hölzl (D2EN00158F/cit32/1) 2019; 70 Brouwer (D2EN00158F/cit41/1) 2011; 83 Brown (D2EN00158F/cit58/1) 2016; 6 Cho (D2EN00158F/cit43/1) 2010; 5 Ze (D2EN00158F/cit17/1) 2011; 143 Kobayashi (D2EN00158F/cit29/1) 2016; 129 Jat (D2EN00158F/cit7/1) 2020; 8 Wong (D2EN00158F/cit23/1) 2016; 16 Hofmann (D2EN00158F/cit15/1) 2020; 1 Reviakine (D2EN00158F/cit45/1) 2011; 83 Zhao (D2EN00158F/cit11/1) 2014; 9 |
References_xml | – volume: 70 start-page: 51 year: 2019 ident: D2EN00158F/cit32/1 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-100202 contributor: fullname: Hölzl – volume: 83 start-page: 596 year: 1988 ident: D2EN00158F/cit51/1 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1988.10478639 contributor: fullname: Cleveland – volume: 3 start-page: 956 year: 2017 ident: D2EN00158F/cit12/1 publication-title: Nat. Plants doi: 10.1038/s41477-017-0063-z contributor: fullname: Zhao – volume: 1 start-page: 416 year: 2020 ident: D2EN00158F/cit15/1 publication-title: Nat. Food doi: 10.1038/s43016-020-0110-1 contributor: fullname: Hofmann – volume: 1 start-page: 31 year: 2006 ident: D2EN00158F/cit19/1 publication-title: Biotechnol. J. doi: 10.1002/biot.200690011 contributor: fullname: Daniell – volume: 97 start-page: 5212 year: 1992 ident: D2EN00158F/cit73/1 publication-title: J. Chem. Phys. doi: 10.1063/1.463820 contributor: fullname: Viot – volume: 14 start-page: 447 year: 2019 ident: D2EN00158F/cit22/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0375-4 contributor: fullname: Kwak – volume: 14 start-page: 517 year: 2019 ident: D2EN00158F/cit14/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0461-7 contributor: fullname: Lowry – volume: 223 start-page: 565 year: 2019 ident: D2EN00158F/cit16/1 publication-title: New Phytol. doi: 10.1111/nph.15730 contributor: fullname: Kirchhoff – volume: 11 start-page: 2045 year: 2020 ident: D2EN00158F/cit5/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15731-w contributor: fullname: Santana – volume: 92 start-page: 225 year: 2007 ident: D2EN00158F/cit33/1 publication-title: Photosynth. Res. doi: 10.1007/s11120-007-9195-8 contributor: fullname: Block – volume: 8 start-page: 1011 year: 2018 ident: D2EN00158F/cit60/1 publication-title: Nanomaterials doi: 10.3390/nano8121011 contributor: fullname: Voronova – volume: 83 start-page: 8838 year: 2011 ident: D2EN00158F/cit45/1 publication-title: Anal. Chem. doi: 10.1021/ac201778h contributor: fullname: Reviakine – volume: 104 start-page: 2204 year: 2000 ident: D2EN00158F/cit66/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp9933065 contributor: fullname: Schaaf – volume: 8 start-page: 1 year: 2018 ident: D2EN00158F/cit9/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-25197-y contributor: fullname: Karny – volume: 66 start-page: 211 year: 2015 ident: D2EN00158F/cit20/1 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050213-040212 contributor: fullname: Bock – volume: 83 start-page: 2213 year: 2011 ident: D2EN00158F/cit41/1 publication-title: Pure Appl. Chem. doi: 10.1351/PAC-REP-10-09-31 contributor: fullname: Brouwer – volume: 17 start-page: 1 year: 2019 ident: D2EN00158F/cit36/1 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-019-0525-8 contributor: fullname: Sharma – volume: 10 start-page: 11541 year: 2016 ident: D2EN00158F/cit65/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b07563 contributor: fullname: Chen – volume: 44 start-page: 17883 year: 2015 ident: D2EN00158F/cit61/1 publication-title: Dalton Trans. doi: 10.1039/C5DT02964C contributor: fullname: Koczkur – volume: 37 start-page: 371 year: 1998 ident: D2EN00158F/cit26/1 publication-title: Prog. Lipid Res. doi: 10.1016/S0163-7827(98)00016-2 contributor: fullname: Moreau – volume: 37 start-page: 100289 year: 2020 ident: D2EN00158F/cit62/1 publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2020.100289 contributor: fullname: Trotsiuk – volume: 19 start-page: 151 year: 2008 ident: D2EN00158F/cit44/1 publication-title: J. Biomol. Tech. contributor: fullname: Dixon – volume: 20 start-page: 290 year: 2018 ident: D2EN00158F/cit72/1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-018-4388-y contributor: fullname: Kelley – volume: 293 start-page: 14786 year: 2018 ident: D2EN00158F/cit27/1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004304 contributor: fullname: Nakajima – volume: 2 start-page: 6921 year: 2014 ident: D2EN00158F/cit38/1 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC00988F contributor: fullname: Wang – volume: 118 start-page: 14617 year: 2014 ident: D2EN00158F/cit75/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp502692q contributor: fullname: García Raya – volume: 5 start-page: 1096 year: 2010 ident: D2EN00158F/cit43/1 publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.65 contributor: fullname: Cho – volume: 52 start-page: 1311 year: 2016 ident: D2EN00158F/cit34/1 publication-title: Chem. Commun. doi: 10.1039/C5CC07754K contributor: fullname: Cayuela – volume: 105 start-page: 5562 year: 1996 ident: D2EN00158F/cit54/1 publication-title: J. Chem. Phys. doi: 10.1063/1.472409 contributor: fullname: Adamczyk – start-page: 24 year: 2019 ident: D2EN00158F/cit1/1 publication-title: Molecules contributor: fullname: Shang – volume: 7 start-page: 1288 year: 2016 ident: D2EN00158F/cit3/1 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01288 contributor: fullname: Raliya – volume: 20 start-page: 290 year: 2018 ident: D2EN00158F/cit55/1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-018-4388-y contributor: fullname: Kelley – volume: 27 start-page: 12550 year: 2011 ident: D2EN00158F/cit50/1 publication-title: Langmuir doi: 10.1021/la202287k contributor: fullname: Zhang – volume: 15 start-page: 6562 year: 2021 ident: D2EN00158F/cit67/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c09732 contributor: fullname: Lochbaum – volume: 9 start-page: 239 year: 1986 ident: D2EN00158F/cit25/1 publication-title: Photosynth. Res. doi: 10.1007/BF00029747 contributor: fullname: Barber – volume: 14 start-page: 7970 year: 2020 ident: D2EN00158F/cit2/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b09178 contributor: fullname: Hu – volume: 3 start-page: 45 year: 2016 ident: D2EN00158F/cit53/1 publication-title: Environ. Sci.: Nano contributor: fullname: Melby – volume: 19 start-page: 8102 year: 2003 ident: D2EN00158F/cit74/1 publication-title: Langmuir doi: 10.1021/la034698g contributor: fullname: Brouwer – volume: 228 start-page: 1327 year: 2020 ident: D2EN00158F/cit31/1 publication-title: New Phytol. doi: 10.1111/nph.16766 contributor: fullname: Yu – volume: 6 start-page: 1 year: 2016 ident: D2EN00158F/cit58/1 publication-title: Phys. Rev. X contributor: fullname: Brown – volume: 12 start-page: 1 year: 2021 ident: D2EN00158F/cit21/1 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.691295 contributor: fullname: Newkirk – volume: 22 start-page: 1119 year: 1981 ident: D2EN00158F/cit28/1 publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)40670-4 contributor: fullname: Janero – volume: 92 start-page: 3896 year: 2020 ident: D2EN00158F/cit69/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05397 contributor: fullname: Adamczyk – volume: 10 start-page: 1 year: 2019 ident: D2EN00158F/cit70/1 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00281 contributor: fullname: Ragel – volume: 9 start-page: 10155 year: 2013 ident: D2EN00158F/cit49/1 publication-title: Soft Matter doi: 10.1039/c3sm51692j contributor: fullname: Zhang – volume: 9 start-page: 2 year: 2014 ident: D2EN00158F/cit11/1 publication-title: PLoS One contributor: fullname: Zhao – volume: 14 start-page: 456 year: 2019 ident: D2EN00158F/cit13/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0382-5 contributor: fullname: Demirer – volume: 143 start-page: 1131 year: 2011 ident: D2EN00158F/cit17/1 publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-010-8901-0 contributor: fullname: Ze – volume: 1 start-page: 337 year: 2012 ident: D2EN00158F/cit10/1 publication-title: Adv. Healthcare Mater. doi: 10.1002/adhm.201200033 contributor: fullname: Tian – volume: 18 start-page: 7092 year: 2002 ident: D2EN00158F/cit46/1 publication-title: Langmuir doi: 10.1021/la025911w contributor: fullname: Kankare – volume: 13 start-page: 5291 year: 2019 ident: D2EN00158F/cit4/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b09781 contributor: fullname: Avellan – volume: 26 start-page: 8211 year: 2016 ident: D2EN00158F/cit40/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603803 contributor: fullname: Jeon – volume: 47 start-page: 6925 year: 2013 ident: D2EN00158F/cit52/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es3045899 contributor: fullname: Jacobson – volume: 137 start-page: 174701 year: 2012 ident: D2EN00158F/cit59/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4762830 contributor: fullname: Nedyalkova – volume: 5 start-page: 12 year: 2017 ident: D2EN00158F/cit37/1 publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2017.00012 contributor: fullname: Pérez-de-Luque – volume: 309 start-page: 194 year: 2007 ident: D2EN00158F/cit71/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.12.075 contributor: fullname: Delgado – volume: 4 start-page: 5119 year: 2016 ident: D2EN00158F/cit39/1 publication-title: J. Mater. Chem. B doi: 10.1039/C6TB01259K contributor: fullname: Zeng – volume: 258 start-page: 13281 year: 1983 ident: D2EN00158F/cit24/1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)44113-5 contributor: fullname: Block – volume: 9 start-page: 1 year: 2018 ident: D2EN00158F/cit30/1 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00126 contributor: fullname: Rocha – volume: 136 start-page: 4081 year: 2014 ident: D2EN00158F/cit64/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501225p contributor: fullname: Lee – volume: 14 start-page: 729 year: 1998 ident: D2EN00158F/cit68/1 publication-title: Langmuir doi: 10.1021/la970815u contributor: fullname: Höök – volume: 421 start-page: 329 year: 2012 ident: D2EN00158F/cit47/1 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.03.017 contributor: fullname: Walters – volume: 135 start-page: 45637 year: 2018 ident: D2EN00158F/cit63/1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.45637 contributor: fullname: Kuskov – volume: 36 start-page: 387 year: 2009 ident: D2EN00158F/cit18/1 publication-title: J. Genet. Genomics doi: 10.1016/S1673-8527(08)60128-9 contributor: fullname: Wang – volume: 10 start-page: 609 year: 2014 ident: D2EN00158F/cit56/1 publication-title: Small doi: 10.1002/smll.201302126 contributor: fullname: Jiang – volume: 49 start-page: 10642 issue: 17 year: 2015 ident: D2EN00158F/cit42/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01841 contributor: fullname: Jacobson – volume: 36 start-page: 882 year: 2018 ident: D2EN00158F/cit6/1 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.03.009 contributor: fullname: Cunningham – volume: 16 start-page: 1161 year: 2016 ident: D2EN00158F/cit23/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04467 contributor: fullname: Wong – volume: 129 start-page: 565 year: 2016 ident: D2EN00158F/cit29/1 publication-title: J. Plant Res. doi: 10.1007/s10265-016-0827-y contributor: fullname: Kobayashi – volume: 51 start-page: 11075 year: 2017 ident: D2EN00158F/cit48/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02823 contributor: fullname: Mensch – volume: 44 start-page: 362 year: 2015 ident: D2EN00158F/cit35/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00269E contributor: fullname: Lim – volume: 8 start-page: 4165 year: 2020 ident: D2EN00158F/cit7/1 publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00217H contributor: fullname: Jat – volume: 13 start-page: 400 year: 2014 ident: D2EN00158F/cit8/1 publication-title: Nat. Mater. doi: 10.1038/nmat3890 contributor: fullname: Giraldo – volume: 24 start-page: 1 year: 1949 ident: D2EN00158F/cit57/1 publication-title: Plant Physiol. doi: 10.1104/pp.24.1.1 contributor: fullname: Arnon |
SSID | ssj0001125367 |
Score | 2.3358223 |
Snippet | Mechanisms of nanomaterial delivery to plant chloroplasts have been explored to improve plant stress tolerance, promote photosynthesis, facilitate genetic... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 2691 |
SubjectTerms | Biomaterials Biomedical materials Carbon Chemical interactions Chloroplasts Compression Compressive strength Cytoplasmic organelles Diglycerides Electrostatic properties Electrostatics Functional groups Genetic engineering Ionic strength Lasers Lipids Membrane composition Membranes Microscopy Molecular interactions Nanomaterials Nanotechnology Photosynthesis Plant stress Plants Quartz crystal microbalance Quartz crystals Relative abundance Scanning microscopy |
Title | Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes |
URI | https://www.proquest.com/docview/2700608308 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXo9sIFgaCitCBL9FZlSewk6xwr2KotbS_dSr1FtjOBSG2yWrIH-PWMPxIHFSTgEkWOYkWel_HM-M0MIUc1BxYDoKeKuz86KLKIVGwFIvJY6URntmnf1XV-dpte3GV3gRJks0t6Ndc_fptX8j9SxTGUq8mS_QfJjpPiAN6jfPGKEsbrX8n4Zntfd_fNuqmOK0NER4O6arQ1Hx1Zw0S47VG_lhuFcm5la9xQWyRi47uEO_L5V_TbuzWa0v3xAzygC916cuEQtQ8JcUMapYa5Uc5dOMa32Pr83SgQxM5IzgF3sn-zjS6aACPHDm6-bKXfPG0wAj_A5HWOXBRjBF9NQxPo1ZpSsUnQYAz_-EgkrhrwHKZjrgL7oIKLCdLEVJ3mrpWX35qZ63rySOvH3BRNrRi0xgQUddjbRsZheLhDdhkqJTEjuyfL1flliMihrcdty-Hxu4d6trz4ECb41YIJbsnOZugZY22T1XPyzDsV9MQh5AV5Au1LUgZ0UI8OOqCDIjqoQwftaurQQT066AQd1KCDTtBBR3S8Ireny9XHs8i304g0E0kfyawCIRVHkzGWoFMNnCdpsoAKXeAEDcGsShd4LxPDzJBZndZ5zKEQKq8SUzNhj8zaroXXhGb5QteFKmKuIQWZKlA5Y0ryQjCltdgn74clKteuakpp2Q68KD-x5bVdyNN9cjisXun_qm-lIULk6BfEOMkeruj4fhDAmz89OCBPAwwPyazfbOEt2oy9eueF_RPsT3EC |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulfolipid+density+dictates+the+extent+of+carbon+nanodot+interaction+with+chloroplast+membranes&rft.jtitle=Environmental+science.+Nano&rft.au=Kim%2C+Kyoungtea&rft.au=Jeon%2C+Su-Ji&rft.au=Hu%2C+Peiguang&rft.au=Anastasia%2C+Caroline+M&rft.date=2022-08-11&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=9&rft.issue=8&rft.spage=2691&rft.epage=273&rft_id=info:doi/10.1039%2Fd2en00158f&rft.externalDocID=d2en00158f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |