MVSG-GS: A metaheuristic virtual sample generation method for soft sensor modeling based on guidelines sharing
In the modern chemical industry, obtaining a sufficient number of samples for developing soft sensors can be challenging due to physical limitations and the high cost of measurements. The scarcity and uneven distribution of modeling data significantly hinder the widespread application of data-driven...
Saved in:
Published in | Expert systems with applications Vol. 290; p. 128427 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
25.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the modern chemical industry, obtaining a sufficient number of samples for developing soft sensors can be challenging due to physical limitations and the high cost of measurements. The scarcity and uneven distribution of modeling data significantly hinder the widespread application of data-driven methods in intelligent optimization. Taking inspiration from generative adversarial networks and neuroevolution, a metaheuristic virtual sample generation model based on guidelines sharing (MVSG-GS) is proposed to enhance the data quality and diversity. MVSG-GS learns the overall distribution of original data based on metaheuristic optimization framework, and improves the consistency with structured low-entropy data. Further, a sparse knowledge transfer mechanism is designed to reveal the implicit relevance of multivariate data in biochemical processes, enabling multi-task parallel modeling of complex reaction processes. Experiments based on different datasets show that the proposed model outperforms the baseline approach in terms of accuracy and effectiveness. Based on the results, virtual samples generated by the proposed method show a closer resemblance to the real samples when compared to the other seven competitors. Furthermore, as an open framework, MVSG-GS introduces an effective approach to enhancing limited training data, contributing to improving the prediction accuracy and broader model generalization. |
---|---|
AbstractList | In the modern chemical industry, obtaining a sufficient number of samples for developing soft sensors can be challenging due to physical limitations and the high cost of measurements. The scarcity and uneven distribution of modeling data significantly hinder the widespread application of data-driven methods in intelligent optimization. Taking inspiration from generative adversarial networks and neuroevolution, a metaheuristic virtual sample generation model based on guidelines sharing (MVSG-GS) is proposed to enhance the data quality and diversity. MVSG-GS learns the overall distribution of original data based on metaheuristic optimization framework, and improves the consistency with structured low-entropy data. Further, a sparse knowledge transfer mechanism is designed to reveal the implicit relevance of multivariate data in biochemical processes, enabling multi-task parallel modeling of complex reaction processes. Experiments based on different datasets show that the proposed model outperforms the baseline approach in terms of accuracy and effectiveness. Based on the results, virtual samples generated by the proposed method show a closer resemblance to the real samples when compared to the other seven competitors. Furthermore, as an open framework, MVSG-GS introduces an effective approach to enhancing limited training data, contributing to improving the prediction accuracy and broader model generalization. |
ArticleNumber | 128427 |
Author | Li, Erchao Peng, Yu |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-3326-3910 surname: Peng fullname: Peng, Yu – sequence: 2 givenname: Erchao orcidid: 0000-0001-7050-072X surname: Li fullname: Li, Erchao email: lecstarr@163.com |
BookMark | eNp9kE1OwzAQRr0oEi1wAVa-QILtOomD2FQVFKQiFq3YWv6ZtK4Su7LTIm5PQlmzmtHM90ajN0MTHzwgdE9JTgktHw45pC-VM8KKnDLBWTVBU1IXVcZpxa_RLKUDIbQipJoi__65WWWrzSNe4A56tYdTdKl3Bp9d7E-qxUl1xxbwDjxE1bvgx9w-WNyEiFNoepzAp6HvgoXW-R3WKoHFQ3B3cr8jSDjtVRx2t-iqUW2Cu796g7Yvz9vla7b-WL0tF-vMMEH7rBaiKHXFhGFFWRNt-dwSxahoNFgGzJS21qLmXNmazhmjIHRDOdMV50QV8xvELmdNDClFaOQxuk7Fb0mJHCXJgxwlyVGSvEgaoKcLBMNjZwdRJuPAG7AugumlDe4__AcSrHVb |
Cites_doi | 10.1109/JPROC.2022.3226481 10.1016/j.heliyon.2023.e20614 10.1016/j.chemolab.2021.104425 10.1016/j.inffus.2024.102383 10.1016/j.compchemeng.2024.108925 10.1016/j.asoc.2023.110805 10.1016/j.dss.2017.10.013 10.1016/j.patcog.2020.107643 10.1109/TKDE.2021.3130191 10.1016/j.apenergy.2024.124166 10.1016/j.asoc.2024.111301 10.1016/j.isatra.2020.10.006 10.1016/j.engappai.2023.105988 10.1016/j.commatsci.2022.111475 10.1007/s00521-021-06809-7 10.1109/TAI.2021.3067574 10.1007/s11831-019-09388-y 10.1016/j.neucom.2023.126380 10.1109/TEVC.2019.2895748 10.1016/j.eswa.2022.117363 10.1080/13658816.2019.1599122 10.3390/app13074643 10.1016/j.neucom.2021.10.060 10.1016/j.neucom.2014.06.004 10.1016/j.dss.2009.05.016 10.1016/j.jprocont.2019.11.004 10.1109/ACCESS.2020.3020801 10.1109/TCYB.2022.3170344 10.1007/s11042-024-18352-3 10.1109/TCDS.2022.3146327 10.1016/j.asoc.2023.110738 10.1007/s10489-023-04760-9 10.1007/s00521-022-08104-5 10.1109/TII.2021.3053128 10.1109/5.726787 10.1145/3422622 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2025.128427 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2025_128427 S0957417425020469 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY1 LY7 M41 R2- SBC SET WUQ XPP ZMT |
ID | FETCH-LOGICAL-c281t-98856b728c25690bd43d0a218fbed2e2c6d9b8944ad913221e8bf142b7440a53 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Wed Aug 27 16:29:45 EDT 2025 Sat Jul 05 17:12:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Virtual sample generation Metaheuristic Soft sensors Wastewater treatment process Neuroevolution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c281t-98856b728c25690bd43d0a218fbed2e2c6d9b8944ad913221e8bf142b7440a53 |
ORCID | 0000-0001-7050-072X 0000-0002-3326-3910 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_128427 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128427 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-25 |
PublicationDateYYYYMMDD | 2025-09-25 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Asokan, Spider (b0010) 2023 Xia, Tang, Qiao (b0215) 2022; 34 Shen, Qian (b0165) 2022; 211 Huang, Li, Huang (b0075) 2020; 8 Frankle, Dziugaite, Roy (b0050) 2020 Nouri, Ghandri, Driss (b0140) 2023; 147 Liu, Wang, Jin (b0115) 2023; 53 Chen, Lv, Di (b0020) 2023; 548 Galván, Mooney (b0055) 2021; 2 Zhang, Hao, Gao (b0235) 2022; 15 Cui, Tang, Xia (b0035) 2023; 35 Fan, Huang, Liang (b0045) 2023; 53 Perera, Ratnaweera, Dasanayaka (b0145) 2023; 121 Qiao, Guo, Tang (b0155) 2020; 71 Xu, Zhu, Ke (b0220) 2025; 193 Zhu, Cheng, Zhang (b0245) 2020; 34 Li, Lin, Chen (b0100) 2018; 105 Wang, Li, Gao (b0190) 2024; 153 Wang, Tang, Xia (b0200) 2022; 45 Niyogi, Girosi, Poggio (b0135) 1998; 86 Ming-Fei, Xin, Jian-Wei (b0130) 2022; 48 Wang, Han (b0185) 2020; 85 Sun, Shao, Li (b0180) 2020 Zhu, Liu, Xu (b0250) 2021; 217 Wang, Pei, Li (b0195) 2023; 13 Cortez, Cerdeira, Almeida (b0030) 2009; 47 Gui, Sun, Wen (b0065) 2021; 35 Khan, Yin, Guo (b0085) 2024; 83 Gutiérrez, Tardaguila (b0070) 2023; 147 Chen, Zhu, He (b0025) 2021; 72 Kim, Song (b0090) 2021; 110 Li, Wen (b0105) 2014; 143 Wu, Feng, Shang (b0210) 2024; 108 Poggio, Vetter (b0150) 1992, 1347. Karras, Aittala, Hellsten (b0080) 2020; 33 Liu, Wang, Zhang (b0120) 2022; 469 Sun, Ge (b0175) 2021; 17 Yu, Zhang, Yin (b0230) 2022; 202 Chen, Huang, Zheng (b0015) 2024; 375 Revathi, Sathish Babu (b0160) 2024; 15 Yu, Fan, Wang (b0225) 2023 Wang, Xu, Yao (b0205) 2019; 23 Alqahtani, Kavakli-Thorne, Kumar (b0005) 2021; 28 Shuvo, Islam, Cheng (b0170) 2022; 111 Fan (b0040) 2022; 34 Liu, Liu, Chang (b0110) 2023; 9 Ma, Hu, Sun (b0125) 2019; 45 Goodfellow, Pouget-Abadie, Mirza (b0060) 2020; 63 Zhang, Xu, He (b0240) 2021; 109 Wang (10.1016/j.eswa.2025.128427_b0190) 2024; 153 Asokan (10.1016/j.eswa.2025.128427_b0010) 2023 Sun (10.1016/j.eswa.2025.128427_b0175) 2021; 17 Chen (10.1016/j.eswa.2025.128427_b0025) 2021; 72 Ming-Fei (10.1016/j.eswa.2025.128427_b0130) 2022; 48 Xu (10.1016/j.eswa.2025.128427_b0220) 2025; 193 Nouri (10.1016/j.eswa.2025.128427_b0140) 2023; 147 Poggio (10.1016/j.eswa.2025.128427_b0150) 1992 Cortez (10.1016/j.eswa.2025.128427_b0030) 2009; 47 Perera (10.1016/j.eswa.2025.128427_b0145) 2023; 121 Ma (10.1016/j.eswa.2025.128427_b0125) 2019; 45 Wang (10.1016/j.eswa.2025.128427_b0195) 2023; 13 Cui (10.1016/j.eswa.2025.128427_b0035) 2023; 35 Wang (10.1016/j.eswa.2025.128427_b0200) 2022; 45 Gui (10.1016/j.eswa.2025.128427_b0065) 2021; 35 Fan (10.1016/j.eswa.2025.128427_b0045) 2023; 53 Wang (10.1016/j.eswa.2025.128427_b0185) 2020; 85 Zhang (10.1016/j.eswa.2025.128427_b0235) 2022; 15 Gutiérrez (10.1016/j.eswa.2025.128427_b0070) 2023; 147 Wang (10.1016/j.eswa.2025.128427_b0205) 2019; 23 Niyogi (10.1016/j.eswa.2025.128427_b0135) 1998; 86 Zhang (10.1016/j.eswa.2025.128427_b0240) 2021; 109 Karras (10.1016/j.eswa.2025.128427_b0080) 2020; 33 Qiao (10.1016/j.eswa.2025.128427_b0155) 2020; 71 Chen (10.1016/j.eswa.2025.128427_b0015) 2024; 375 Wu (10.1016/j.eswa.2025.128427_b0210) 2024; 108 Shuvo (10.1016/j.eswa.2025.128427_b0170) 2022; 111 Sun (10.1016/j.eswa.2025.128427_b0180) 2020 Fan (10.1016/j.eswa.2025.128427_b0040) 2022; 34 Yu (10.1016/j.eswa.2025.128427_b0225) 2023 Huang (10.1016/j.eswa.2025.128427_b0075) 2020; 8 Kim (10.1016/j.eswa.2025.128427_b0090) 2021; 110 Xia (10.1016/j.eswa.2025.128427_b0215) 2022; 34 Liu (10.1016/j.eswa.2025.128427_b0120) 2022; 469 Alqahtani (10.1016/j.eswa.2025.128427_b0005) 2021; 28 Goodfellow (10.1016/j.eswa.2025.128427_b0060) 2020; 63 Shen (10.1016/j.eswa.2025.128427_b0165) 2022; 211 Li (10.1016/j.eswa.2025.128427_b0100) 2018; 105 Galván (10.1016/j.eswa.2025.128427_b0055) 2021; 2 Yu (10.1016/j.eswa.2025.128427_b0230) 2022; 202 Khan (10.1016/j.eswa.2025.128427_b0085) 2024; 83 Revathi (10.1016/j.eswa.2025.128427_b0160) 2024; 15 Zhu (10.1016/j.eswa.2025.128427_b0250) 2021; 217 Liu (10.1016/j.eswa.2025.128427_b0110) 2023; 9 Zhu (10.1016/j.eswa.2025.128427_b0245) 2020; 34 Liu (10.1016/j.eswa.2025.128427_b0115) 2023; 53 Li (10.1016/j.eswa.2025.128427_b0105) 2014; 143 Frankle (10.1016/j.eswa.2025.128427_b0050) 2020 Chen (10.1016/j.eswa.2025.128427_b0020) 2023; 548 |
References_xml | – volume: 85 start-page: 91 year: 2020 end-page: 99 ident: b0185 article-title: Data supplement for a soft sensor using a new generative model based on a variational autoencoder and Wasserstein GAN publication-title: Journal of Process Control – volume: 193 year: 2025 ident: b0220 article-title: Virtual sample generation for soft-sensing in small sample scenarios using glow-embedded variational autoencoder publication-title: Computers & Chemical Engineering – volume: 548 year: 2023 ident: b0020 article-title: A novel virtual sample generation method to improve the quality of data and the accuracy of data-driven models publication-title: Neurocomputing – volume: 109 start-page: 229 year: 2021 end-page: 241 ident: b0240 article-title: Novel manifold learning based virtual sample generation for optimizing soft sensor with small data publication-title: ISA transactions – volume: 147 year: 2023 ident: b0070 article-title: Evolutionary conditional GANs for supervised data augmentation: The case of assessing berry number per cluster in grapevine publication-title: Applied Soft Computing – volume: 34 year: 2022 ident: b0040 article-title: Improving the accuracy of the neuroevolution machine learning potential for multi-component systems publication-title: Journal of Physics: Condensed Matter – start-page: 3259 year: 2020 end-page: 3269 ident: b0050 article-title: Linear mode connectivity and the lottery ticket hypothesis publication-title: International conference on machine learning – volume: 217 year: 2021 ident: b0250 article-title: Novel space projection interpolation based virtual sample generation for solving the small data problem in development soft sensor publication-title: Chemometrics and Intelligent Laboratory Systems – start-page: 3883 year: 2023 end-page: 3893 ident: b0010 article-title: Gan: Leveraging friendly neighbors to accelerate GAN training publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 72 start-page: 1529 year: 2021 end-page: 1538 ident: b0025 article-title: Quantile regression CGAN based virtual samples generation and its applications to process modeling publication-title: CIESC Journal – volume: 2 start-page: 476 year: 2021 end-page: 493 ident: b0055 article-title: Neuroevolution in deep neural networks: Current trends and future challenges publication-title: IEEE Transactions on Artificial Intelligence – volume: 110 year: 2021 ident: b0090 article-title: Virtual sample-based deep metric learning using discriminant analysis publication-title: Pattern Recognition – volume: 143 start-page: 222 year: 2014 end-page: 230 ident: b0105 article-title: A genetic algorithm-based virtual sample generation technique to improve small data set learning publication-title: Neurocomputing – volume: 33 start-page: 12104 year: 2020 end-page: 12114 ident: b0080 article-title: Training generative adversarial networks with limited data publication-title: Advances in neural information processing systems – volume: 45 start-page: 163 year: 2019 end-page: 173 ident: b0125 article-title: Cyber-physical abnormity diagnosis method using data feature fusion for pipeline network publication-title: Acta Automatica Sinica – volume: 34 start-page: 735 year: 2020 end-page: 758 ident: b0245 article-title: Spatial interpolation using conditional generative adversarial neural networks publication-title: International Journal of Geographical Information Science – volume: 15 year: 2024 ident: b0160 article-title: Synthesizing realistic knee MRI images: A VAE-GAN approach for enhanced medical data augmentation publication-title: International Journal of Advanced Computer Science and Applications. – start-page: 8936 year: 2020 end-page: 8943 ident: b0180 article-title: Learning sparse sharing architectures for multiple tasks publication-title: Proceedings of the AAAI conference on artificial intelligence – volume: 47 start-page: 547 year: 2009 end-page: 553 ident: b0030 article-title: Modeling wine preferences by data mining from physicochemical properties publication-title: Decision support systems – volume: 17 start-page: 5853 year: 2021 end-page: 5866 ident: b0175 article-title: A survey on deep learning for data-driven soft sensors publication-title: IEEE Transactions on Industrial Informatics – volume: 15 start-page: 111 year: 2022 end-page: 121 ident: b0235 article-title: Optimizing deep neural networks through neuroevolution with stochastic gradient descent publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 13 start-page: 4643 year: 2023 ident: b0195 article-title: A survey on search strategy of evolutionary multi-objective optimization algorithms publication-title: Applied Sciences – volume: 8 start-page: 159552 year: 2020 end-page: 159565 ident: b0075 article-title: Deep hybrid neural network and improved differential neuroevolution for chaotic time series prediction publication-title: IEEE Access – volume: 147 year: 2023 ident: b0140 article-title: Bi-EvoGAN: Bi-level Evolutionary approach for generative Adversarial Networks publication-title: Applied Soft Computing – volume: 83 start-page: 69759 year: 2024 end-page: 69795 ident: b0085 article-title: Heterogeneous transfer learning: Recent developments, applications, and challenges publication-title: Multimedia Tools and Applications – volume: 108 year: 2024 ident: b0210 article-title: Multi-task multi-objective evolutionary network for hyperspectral image classification and pansharpening publication-title: Information Fusion – volume: 202 year: 2022 ident: b0230 article-title: An extreme learning machine based virtual sample generation method with feature engineering for credit risk assessment with data scarcity publication-title: Expert Systems with Applications – volume: 34 start-page: 2785 year: 2022 end-page: 2810 ident: b0215 article-title: DF classification algorithm for constructing a small sample size of data-oriented DF regression model publication-title: Neural Computing and Applications – year: 2023 ident: b0225 article-title: VSG 3 a 2: A genetic algorithm-based virtual sample generation approach using information gain and acceptance-rejection sampling publication-title: IEEE Transactions on Evolutionary Computation – volume: 105 start-page: 66 year: 2018 end-page: 76 ident: b0100 article-title: Rebuilding sample distributions for small dataset learning publication-title: Decision Support Systems – volume: 86 start-page: 2196 year: 1998 end-page: 2209 ident: b0135 article-title: Incorporating prior information in machine learning by creating virtual examples publication-title: Proceedings of the IEEE – volume: 35 start-page: 6979 year: 2023 end-page: 7001 ident: b0035 article-title: Virtual sample generation method based on generative adversarial fuzzy neural network publication-title: Neural Computing and Applications – volume: 23 start-page: 921 year: 2019 end-page: 934 ident: b0205 article-title: Evolutionary generative adversarial networks publication-title: IEEE Transactions on Evolutionary Computation – volume: 469 start-page: 81 year: 2022 end-page: 90 ident: b0120 article-title: EvoGAN: An evolutionary computation assisted GAN publication-title: Neurocomputing – volume: 35 start-page: 3313 year: 2021 end-page: 3332 ident: b0065 article-title: A review on generative adversarial networks: Algorithms, theory, and applications publication-title: IEEE transactions on knowledge and data engineering – volume: 375 year: 2024 ident: b0015 article-title: A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model publication-title: Applied Energy – volume: 121 year: 2023 ident: b0145 article-title: The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: A critical review publication-title: Engineering Applications of Artificial Intelligence – year: 1992, 1347. ident: b0150 article-title: Recognition and structure from one 2D model view: Observations on prototypes, object classes and symmetries publication-title: Laboratory Massachusetts Institute of Technology – volume: 53 start-page: 6263 year: 2023 end-page: 6276 ident: b0115 article-title: Performance indicator-based adaptive model selection for offline data-driven multiobjective evolutionary optimization publication-title: IEEE Transactions on Cybernetics – volume: 153 year: 2024 ident: b0190 article-title: A generative adversarial networks based methodology for imbalanced multidimensional time-series augmentation of complex electromechanical systems publication-title: Applied Soft Computing – volume: 211 year: 2022 ident: b0165 article-title: A virtual sample generation algorithm supporting machine learning with a small-sample dataset: A case study for rubber materials publication-title: Computational Materials Science – volume: 48 start-page: 40 year: 2022 end-page: 74 ident: b0130 article-title: Survey on deep generative model publication-title: Acta Automatica Sinica – volume: 45 start-page: 1 year: 2022 end-page: 22 ident: b0200 article-title: Virtual sample generation method based on hybrid optimization with multi-objective PSO publication-title: Acta Automatica Sinica – volume: 71 start-page: 5681 year: 2020 end-page: 5695 ident: b0155 article-title: Virtual sample generation method based on improved megatrend diffusion and hidden layer interpolation with its application publication-title: CIESC Journal – volume: 53 start-page: 22775 year: 2023 end-page: 22788 ident: b0045 article-title: Unsupervised meta-learning via spherical latent representations and dual VAE-GAN publication-title: Applied Intelligence – volume: 28 start-page: 525 year: 2021 end-page: 552 ident: b0005 article-title: Applications of generative adversarial networks (gans): An updated review publication-title: Archives of Computational Methods in Engineering – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: b0060 article-title: Generative adversarial networks publication-title: Communications of the ACM – volume: 9 year: 2023 ident: b0110 article-title: MGGAN: A multi-generator generative adversarial network for breast cancer immunohistochemical image generation publication-title: Heliyon – volume: 111 start-page: 42 year: 2022 end-page: 91 ident: b0170 article-title: Efficient acceleration of deep learning inference on resource-constrained edge devices: A review publication-title: Proceedings of the IEEE – volume: 111 start-page: 42 issue: 1 year: 2022 ident: 10.1016/j.eswa.2025.128427_b0170 article-title: Efficient acceleration of deep learning inference on resource-constrained edge devices: A review publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2022.3226481 – start-page: 8936 year: 2020 ident: 10.1016/j.eswa.2025.128427_b0180 article-title: Learning sparse sharing architectures for multiple tasks – volume: 9 issue: 10 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0110 article-title: MGGAN: A multi-generator generative adversarial network for breast cancer immunohistochemical image generation publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e20614 – volume: 217 year: 2021 ident: 10.1016/j.eswa.2025.128427_b0250 article-title: Novel space projection interpolation based virtual sample generation for solving the small data problem in development soft sensor publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/j.chemolab.2021.104425 – volume: 108 year: 2024 ident: 10.1016/j.eswa.2025.128427_b0210 article-title: Multi-task multi-objective evolutionary network for hyperspectral image classification and pansharpening publication-title: Information Fusion doi: 10.1016/j.inffus.2024.102383 – volume: 193 year: 2025 ident: 10.1016/j.eswa.2025.128427_b0220 article-title: Virtual sample generation for soft-sensing in small sample scenarios using glow-embedded variational autoencoder publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2024.108925 – volume: 147 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0070 article-title: Evolutionary conditional GANs for supervised data augmentation: The case of assessing berry number per cluster in grapevine publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110805 – volume: 105 start-page: 66 year: 2018 ident: 10.1016/j.eswa.2025.128427_b0100 article-title: Rebuilding sample distributions for small dataset learning publication-title: Decision Support Systems doi: 10.1016/j.dss.2017.10.013 – volume: 110 year: 2021 ident: 10.1016/j.eswa.2025.128427_b0090 article-title: Virtual sample-based deep metric learning using discriminant analysis publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107643 – volume: 45 start-page: 163 issue: 1 year: 2019 ident: 10.1016/j.eswa.2025.128427_b0125 article-title: Cyber-physical abnormity diagnosis method using data feature fusion for pipeline network publication-title: Acta Automatica Sinica – volume: 35 start-page: 3313 issue: 4 year: 2021 ident: 10.1016/j.eswa.2025.128427_b0065 article-title: A review on generative adversarial networks: Algorithms, theory, and applications publication-title: IEEE transactions on knowledge and data engineering doi: 10.1109/TKDE.2021.3130191 – volume: 48 start-page: 40 issue: 1 year: 2022 ident: 10.1016/j.eswa.2025.128427_b0130 article-title: Survey on deep generative model publication-title: Acta Automatica Sinica – volume: 375 year: 2024 ident: 10.1016/j.eswa.2025.128427_b0015 article-title: A load forecasting approach for integrated energy systems based on aggregation hybrid modal decomposition and combined model publication-title: Applied Energy doi: 10.1016/j.apenergy.2024.124166 – start-page: 3883 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0010 article-title: Gan: Leveraging friendly neighbors to accelerate GAN training – volume: 153 year: 2024 ident: 10.1016/j.eswa.2025.128427_b0190 article-title: A generative adversarial networks based methodology for imbalanced multidimensional time-series augmentation of complex electromechanical systems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2024.111301 – volume: 109 start-page: 229 year: 2021 ident: 10.1016/j.eswa.2025.128427_b0240 article-title: Novel manifold learning based virtual sample generation for optimizing soft sensor with small data publication-title: ISA transactions doi: 10.1016/j.isatra.2020.10.006 – volume: 121 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0145 article-title: The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: A critical review publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.105988 – volume: 211 year: 2022 ident: 10.1016/j.eswa.2025.128427_b0165 article-title: A virtual sample generation algorithm supporting machine learning with a small-sample dataset: A case study for rubber materials publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2022.111475 – volume: 34 start-page: 2785 issue: 4 year: 2022 ident: 10.1016/j.eswa.2025.128427_b0215 article-title: DF classification algorithm for constructing a small sample size of data-oriented DF regression model publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06809-7 – year: 2023 ident: 10.1016/j.eswa.2025.128427_b0225 article-title: VSG 3 a 2: A genetic algorithm-based virtual sample generation approach using information gain and acceptance-rejection sampling publication-title: IEEE Transactions on Evolutionary Computation – volume: 34 issue: 12 year: 2022 ident: 10.1016/j.eswa.2025.128427_b0040 article-title: Improving the accuracy of the neuroevolution machine learning potential for multi-component systems publication-title: Journal of Physics: Condensed Matter – volume: 2 start-page: 476 issue: 6 year: 2021 ident: 10.1016/j.eswa.2025.128427_b0055 article-title: Neuroevolution in deep neural networks: Current trends and future challenges publication-title: IEEE Transactions on Artificial Intelligence doi: 10.1109/TAI.2021.3067574 – volume: 45 start-page: 1 issue: x year: 2022 ident: 10.1016/j.eswa.2025.128427_b0200 article-title: Virtual sample generation method based on hybrid optimization with multi-objective PSO publication-title: Acta Automatica Sinica – volume: 28 start-page: 525 year: 2021 ident: 10.1016/j.eswa.2025.128427_b0005 article-title: Applications of generative adversarial networks (gans): An updated review publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-019-09388-y – volume: 548 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0020 article-title: A novel virtual sample generation method to improve the quality of data and the accuracy of data-driven models publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126380 – volume: 23 start-page: 921 issue: 6 year: 2019 ident: 10.1016/j.eswa.2025.128427_b0205 article-title: Evolutionary generative adversarial networks publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2019.2895748 – volume: 71 start-page: 5681 issue: 12 year: 2020 ident: 10.1016/j.eswa.2025.128427_b0155 article-title: Virtual sample generation method based on improved megatrend diffusion and hidden layer interpolation with its application publication-title: CIESC Journal – volume: 15 issue: 11 year: 2024 ident: 10.1016/j.eswa.2025.128427_b0160 article-title: Synthesizing realistic knee MRI images: A VAE-GAN approach for enhanced medical data augmentation publication-title: International Journal of Advanced Computer Science and Applications. – volume: 33 start-page: 12104 year: 2020 ident: 10.1016/j.eswa.2025.128427_b0080 article-title: Training generative adversarial networks with limited data publication-title: Advances in neural information processing systems – volume: 202 year: 2022 ident: 10.1016/j.eswa.2025.128427_b0230 article-title: An extreme learning machine based virtual sample generation method with feature engineering for credit risk assessment with data scarcity publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117363 – volume: 34 start-page: 735 issue: 4 year: 2020 ident: 10.1016/j.eswa.2025.128427_b0245 article-title: Spatial interpolation using conditional generative adversarial neural networks publication-title: International Journal of Geographical Information Science doi: 10.1080/13658816.2019.1599122 – volume: 13 start-page: 4643 issue: 7 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0195 article-title: A survey on search strategy of evolutionary multi-objective optimization algorithms publication-title: Applied Sciences doi: 10.3390/app13074643 – volume: 469 start-page: 81 year: 2022 ident: 10.1016/j.eswa.2025.128427_b0120 article-title: EvoGAN: An evolutionary computation assisted GAN publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.060 – volume: 143 start-page: 222 year: 2014 ident: 10.1016/j.eswa.2025.128427_b0105 article-title: A genetic algorithm-based virtual sample generation technique to improve small data set learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.004 – volume: 47 start-page: 547 issue: 4 year: 2009 ident: 10.1016/j.eswa.2025.128427_b0030 article-title: Modeling wine preferences by data mining from physicochemical properties publication-title: Decision support systems doi: 10.1016/j.dss.2009.05.016 – year: 1992 ident: 10.1016/j.eswa.2025.128427_b0150 article-title: Recognition and structure from one 2D model view: Observations on prototypes, object classes and symmetries publication-title: Laboratory Massachusetts Institute of Technology – volume: 85 start-page: 91 year: 2020 ident: 10.1016/j.eswa.2025.128427_b0185 article-title: Data supplement for a soft sensor using a new generative model based on a variational autoencoder and Wasserstein GAN publication-title: Journal of Process Control doi: 10.1016/j.jprocont.2019.11.004 – volume: 8 start-page: 159552 year: 2020 ident: 10.1016/j.eswa.2025.128427_b0075 article-title: Deep hybrid neural network and improved differential neuroevolution for chaotic time series prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3020801 – volume: 53 start-page: 6263 issue: 10 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0115 article-title: Performance indicator-based adaptive model selection for offline data-driven multiobjective evolutionary optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2022.3170344 – volume: 72 start-page: 1529 issue: 3 year: 2021 ident: 10.1016/j.eswa.2025.128427_b0025 article-title: Quantile regression CGAN based virtual samples generation and its applications to process modeling publication-title: CIESC Journal – volume: 83 start-page: 69759 issue: 27 year: 2024 ident: 10.1016/j.eswa.2025.128427_b0085 article-title: Heterogeneous transfer learning: Recent developments, applications, and challenges publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-024-18352-3 – volume: 15 start-page: 111 issue: 1 year: 2022 ident: 10.1016/j.eswa.2025.128427_b0235 article-title: Optimizing deep neural networks through neuroevolution with stochastic gradient descent publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2022.3146327 – start-page: 3259 year: 2020 ident: 10.1016/j.eswa.2025.128427_b0050 article-title: Linear mode connectivity and the lottery ticket hypothesis – volume: 147 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0140 article-title: Bi-EvoGAN: Bi-level Evolutionary approach for generative Adversarial Networks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110738 – volume: 53 start-page: 22775 issue: 19 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0045 article-title: Unsupervised meta-learning via spherical latent representations and dual VAE-GAN publication-title: Applied Intelligence doi: 10.1007/s10489-023-04760-9 – volume: 35 start-page: 6979 issue: 9 year: 2023 ident: 10.1016/j.eswa.2025.128427_b0035 article-title: Virtual sample generation method based on generative adversarial fuzzy neural network publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-08104-5 – volume: 17 start-page: 5853 issue: 9 year: 2021 ident: 10.1016/j.eswa.2025.128427_b0175 article-title: A survey on deep learning for data-driven soft sensors publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2021.3053128 – volume: 86 start-page: 2196 issue: 11 year: 1998 ident: 10.1016/j.eswa.2025.128427_b0135 article-title: Incorporating prior information in machine learning by creating virtual examples publication-title: Proceedings of the IEEE doi: 10.1109/5.726787 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 10.1016/j.eswa.2025.128427_b0060 article-title: Generative adversarial networks publication-title: Communications of the ACM doi: 10.1145/3422622 |
SSID | ssj0017007 |
Score | 2.4706256 |
Snippet | In the modern chemical industry, obtaining a sufficient number of samples for developing soft sensors can be challenging due to physical limitations and the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 128427 |
SubjectTerms | Metaheuristic Neuroevolution Soft sensors Virtual sample generation Wastewater treatment process |
Title | MVSG-GS: A metaheuristic virtual sample generation method for soft sensor modeling based on guidelines sharing |
URI | https://dx.doi.org/10.1016/j.eswa.2025.128427 |
Volume | 290 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YENuU3TOI7ZqopSQO3SgrpFfvWBRKmaFDZ-O3d5IJAQA1ti2VJ0tu_7Lrr7jpBLJY3xlGcYBD-aBYJbpmR7yqTWkbNCRjxrBzQYhv3H4H7CJxXSLWthMK2y8P25T8-8dTHSLKzZXC0WzRGQA4BDCO04FniGWMQXBAJPeePjK80D5edErrcnGM4uCmfyHC-XvKP2kM8b6Kaxs8xv4PQNcHp7ZKdgirSTf8w-qbjlAdktuzDQ4lIekuXgaXTLbkfXtENfXKrmbpOrL9O3xRqrQ2iiUAKYzjKFadwImveNpkBYaQJ-mCYQzMJz1hYHsIwitlkKE2ebRTbkEprMFf4DPCLj3s2422dFFwVm_KiVMhlFPNTCjwywG-lpG7StpwDZp9pZ3_kmtFJHMgiUlRiatlykp63A1ygdqHj7mFSXr0t3QqgSwNWEBEZkAdM8q4UJjZChCYVph0rVyFVpvXiVa2XEZRLZc4y2jtHWcW7rGuGlgeMfOx6DM_9j3ek_152RbXzDXA-fn5Nqut64CyAUqa5nJ6ZOtjp3D_3hJyIgytU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDLDwRrzxwIbcpmkcx2xVRSnQdmlB3SK_2gaJgkgLG7-duzwQSIiBLXJsKTrbd99Fd99HyLmSxnjKMwySH80CwS1TsjFmUuvIWSEjnskB9fph5z64HfFRhbTKXhgsqyx8f-7TM29djNQKa9ZekqQ2AHAA4RBSO44NnqFcIisBXF-UMah-fNV5IP-cyAn3BMPpRedMXuTl0nckH_J5Ff00Ssv8Fp2-RZz2JlkvoCJt5l-zRSputk02ShkGWtzKHTLrPQyu2fXgkjbpk5urqVvk9Mv0LXnF9hCaKuQAppOMYhp3gubC0RQQK03BEdMUsll4znRxIJhRDG6WwsTJIsmGXErTqcKfgLtk2L4atjqskFFgxo_qcyajiIda-JEBeCM9bYOG9RSE9rF21ne-Ca3UkQwCZSXmpnUX6XE98DVyByre2CPLs-eZ2ydUCQBrQgIkshDUPKuFCY2QoQmFaYRKHZCL0nrxS06WEZdVZI8x2jpGW8e5rQ8ILw0c_9jyGLz5H-sO_7nujKx2hr1u3L3p3x2RNXyDhR8-PybL89eFOwF0Mden2en5BPhWzGM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MVSG-GS%3A+A+metaheuristic+virtual+sample+generation+method+for+soft+sensor+modeling+based+on+guidelines+sharing&rft.jtitle=Expert+systems+with+applications&rft.au=Peng%2C+Yu&rft.au=Li%2C+Erchao&rft.date=2025-09-25&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=290&rft_id=info:doi/10.1016%2Fj.eswa.2025.128427&rft.externalDocID=S0957417425020469 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |