A two-stage neural network approach for heat flux quantification from boiling images using vision transformers and transfer learning
•Two-stage image-based neural network for heat flux quantification is presented.•Self-supervised pre-training with ViT on public boiling images without labels is incorporated.•Fine-tuning on in-house dataset using transfer learning for heat flux quantification is completed.•This reduces reliance on...
Saved in:
Published in | International journal of heat and mass transfer Vol. 245; p. 127009 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0017-9310 |
DOI | 10.1016/j.ijheatmasstransfer.2025.127009 |
Cover
Loading…
Abstract | •Two-stage image-based neural network for heat flux quantification is presented.•Self-supervised pre-training with ViT on public boiling images without labels is incorporated.•Fine-tuning on in-house dataset using transfer learning for heat flux quantification is completed.•This reduces reliance on large labeled datasets and mitigates overfitting in small samples.•Effectiveness has been proved by metrics, one-stage model comparison, and small-sample tests.
Pool boiling, a fundamental heat transfer process, has been a subject of extensive research due to its significance in various industrial applications. Accurate heat flux quantification is essential for assessing heat transfer performance, but traditional methods face limitations such as complex modeling and intrusive measurement techniques. Recent advances in deep learning have enabled the use of visual data for heat flux quantification, yet challenges such as high dataset labeling costs, small sample sizes leading to overfitting, and the demand for high accuracy in fine-grained tasks persist. This paper proposes a two-stage neural network approach to address these challenges. In the first stage, a self-supervised learning model is pre-trained on public boiling image datasets to extract useful features without requiring labeled data. The second stage involves fine-tuning this model on a small, labeled in-house dataset for precise heat flux quantification. This approach significantly reduces the reliance on large labeled datasets while maintaining good predictive accuracy and effectiveness, even with limited data availability. The proposed method achieved an accuracy of 0.953 (ACC1) and 0.929 (ACC2) on the test set. Even when trained on smaller samples where traditional one-stage models experience a significant drop in accuracy, the two-stage training strategy ensures more effectively maintained prediction accuracy. |
---|---|
AbstractList | •Two-stage image-based neural network for heat flux quantification is presented.•Self-supervised pre-training with ViT on public boiling images without labels is incorporated.•Fine-tuning on in-house dataset using transfer learning for heat flux quantification is completed.•This reduces reliance on large labeled datasets and mitigates overfitting in small samples.•Effectiveness has been proved by metrics, one-stage model comparison, and small-sample tests.
Pool boiling, a fundamental heat transfer process, has been a subject of extensive research due to its significance in various industrial applications. Accurate heat flux quantification is essential for assessing heat transfer performance, but traditional methods face limitations such as complex modeling and intrusive measurement techniques. Recent advances in deep learning have enabled the use of visual data for heat flux quantification, yet challenges such as high dataset labeling costs, small sample sizes leading to overfitting, and the demand for high accuracy in fine-grained tasks persist. This paper proposes a two-stage neural network approach to address these challenges. In the first stage, a self-supervised learning model is pre-trained on public boiling image datasets to extract useful features without requiring labeled data. The second stage involves fine-tuning this model on a small, labeled in-house dataset for precise heat flux quantification. This approach significantly reduces the reliance on large labeled datasets while maintaining good predictive accuracy and effectiveness, even with limited data availability. The proposed method achieved an accuracy of 0.953 (ACC1) and 0.929 (ACC2) on the test set. Even when trained on smaller samples where traditional one-stage models experience a significant drop in accuracy, the two-stage training strategy ensures more effectively maintained prediction accuracy. |
ArticleNumber | 127009 |
Author | Gui, Nan Wu, Mengqi Tu, Jiyuan Jiang, Shengyao Chen, Zeliang Yang, Xingtuan |
Author_xml | – sequence: 1 givenname: Mengqi surname: Wu fullname: Wu, Mengqi organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China – sequence: 2 givenname: Nan orcidid: 0000-0003-4731-3082 surname: Gui fullname: Gui, Nan email: guinan@mail.tsinghua.edu.cn organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China – sequence: 3 givenname: Zeliang surname: Chen fullname: Chen, Zeliang organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China – sequence: 4 givenname: Xingtuan surname: Yang fullname: Yang, Xingtuan organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China – sequence: 5 givenname: Jiyuan surname: Tu fullname: Tu, Jiyuan organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China – sequence: 6 givenname: Shengyao surname: Jiang fullname: Jiang, Shengyao organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China |
BookMark | eNqNkDtPwzAUhT0UiRb4Dx5ZEuykeXijqniqEgvM0Y1z3TokdrHdAjs_nESBiYXp6Nx79OnoLMjMWIOEXHIWc8bzqzbW7Q4h9OB9cGC8QhcnLMlinhSMiRmZM8aLSKScnZKF9-1o2TKfk68VDe828gG2SA0eHHSDDCf3SmG_dxbkjirr6Minqjt80LcDmKCVlhC0NVQ529Pa6k6bLdX9wPH04Edz1H4MTI2s69F5CqahvxVph-DMkDwnJwo6jxc_ekZebm-e1_fR5unuYb3aRDIpeYjEMikyZGnW1CVTZaGwVgxAgQAOaQ0osrpYlkLlEoDXqBhCUWSiZlkmMp6nZ-R64kpnvXeoqr0bGrvPirNqXLJqq79LVuOS1bTkgHicEDj0POrh66VGI7HRDmWoGqv_D_sGX3GSFw |
Cites_doi | 10.1016/j.applthermaleng.2011.11.039 10.1016/j.icheatmasstransfer.2017.06.009 10.1063/5.0048391 10.1016/j.expthermflusci.2023.110879 10.1016/j.icheatmasstransfer.2022.106465 10.1016/j.ijheatmasstransfer.2018.12.170 10.1016/S0301-9322(01)00048-9 10.1016/j.ijheatmasstransfer.2018.04.131 10.1016/j.applthermaleng.2019.114357 10.1016/j.applthermaleng.2021.116849 10.3390/en16124762 10.1007/s42757-022-0134-x 10.1016/j.applthermaleng.2023.121807 10.1016/j.ijmultiphaseflow.2013.06.008 10.1016/j.ijmultiphaseflow.2023.104589 10.1007/s42757-023-0174-x 10.1016/j.ijmultiphaseflow.2022.104336 10.1016/j.icheatmasstransfer.2022.106383 10.1007/s42757-019-0023-0 10.1016/S0017-9310(01)00084-9 10.2514/1.T3917 10.1016/j.dib.2024.110582 10.1038/s41598-021-85150-4 10.1115/IPACK2019-6307 10.1016/j.patcog.2024.110967 10.1016/j.ijheatmasstransfer.2016.10.018 10.1016/j.ijheatmasstransfer.2015.11.097 10.1016/j.ijheatmasstransfer.2018.04.156 10.1016/j.applthermaleng.2023.120558 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijheatmasstransfer.2025.127009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2025_127009 S0017931025003503 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29J 6TJ AAQXK AAYXX ABDMP ABDPE ABWVN ABXDB ACKIV ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET T9H VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c281t-94275e035db80f87febf0aafa9a1a3bae95b7489f6caa1bef0ea7759b05595163 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Tue Aug 05 11:56:55 EDT 2025 Sat Aug 09 17:30:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vision transformer Two-stage framework Small sample Pool boiling Heat flux quantification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c281t-94275e035db80f87febf0aafa9a1a3bae95b7489f6caa1bef0ea7759b05595163 |
ORCID | 0000-0003-4731-3082 |
ParticipantIDs | crossref_primary_10_1016_j_ijheatmasstransfer_2025_127009 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2025_127009 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 2025-08-00 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ravichandran, Su, Wang, Seong, Kossolapov, Phillips, Rahman, Bucci (bib0029) 2021; 118 Soibam, Scheiff, Aslanidou, Kyprianidis, Bel Fdhila (bib0034) 2023 Huang, Chen, Gui, Yang, Tu, Jiang (bib0015) 2023; 5 Viereckl, Schleicher, Schuster, Lippmann, Hurtado (bib0036) 2019; 1 Sato, Niceno (bib0031) 2017; 105 Noman, Naseer, Cholakkal, Anwar, Khan, Khan (bib0019) 2024 Pandey (bib0020) 2024 Huang, Chen, Gui, Yang, Tu, Jiang (bib0014) 2023; 5 Dunlap, Pandey, Weems, Hu (bib0008) 2023; 228 Serrao, Kim, Duarte (bib0033) 2023; 16 Chen, Huang, Wu, Gui, Yang, Jiang, Gong (bib41) 2022; 39 Chen, Huang, Wu (bib0004) 2022; 39 Prajapati, Pathak, Khan (bib0024) 2017; 86 Ravichandran, Kossolapov, Aguiar, Phillips, Bucci (bib0028) 2023; 145 Hobold, Da Silva (bib0012) 2019; 134 Barbosa, Govan, Hewitt (bib0002) 2001; 27 Suh, Bostanabad, Won (bib0035) 2021; 11 Minseok, H., Bertina, B., Graham, S., 2014. Pool boiling experiment. Youtube. Zhou, Liu, Bae, He, Samaras, Prasanna (bib0040) 2023 Seong, Ravichandran, Su, Phillips, Bucci (bib0032) 2023; 159 Li, Chen, Tang, Shen (bib0016) 2025; 158 You (bib0038) 2014 Waltrich, Falcone, Barbosa (bib0037) 2013; 57 Ravichandran, Bucci (bib0027) 2019; 163 Rassoulinejad-Mousavi, Al-Hindawi, Soori, Rokoni, Yoon, Hu, Wu, Sun (bib0026) 2021; 190 Du, Tian, Su, Qiu, Huang, Yan (bib0007) 2012; 36 Pham, Suh, Shao, Won (bib0023) 2019 Cong, Khanna, Meng, Liu, Rozi, He, Burke, Lobell, Ermon (bib0005) 2023 Barathula, Srinivasan (bib0001) 2022; 139 Purdue University Mechanical Engineering, 2017. Experiment brings pool boiling into the classroom. Youtube. Sato, Niceno (bib0030) 2018; 125 Liter, Kaviany (bib0017) 2001; 44 . Han, Liu, Chu, Zhao, Bo (bib0010) 2022; 138 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bib0006) 2021 Zhang, Zhang, Liu, Wei, An, Wu (bib0039) 2024; 238 Park, Kim, Kim, Kim, Ahn (bib0022) 2016; 95 He, Chen, Xie, Li, Dollár, Girshick (bib0011) 2021 Hobold, da Silva (bib0013) 2018; 125 Pandey, Li, Hu (bib0021) 2024; 55 Chen, Wang, Ouyang, Wang, Li, Wang (bib0003) 2024; 6 Frankel, Keyhani, Elkins (bib0009) 2013; 27 Park (10.1016/j.ijheatmasstransfer.2025.127009_bib0022) 2016; 95 Li (10.1016/j.ijheatmasstransfer.2025.127009_bib0016) 2025; 158 Pham (10.1016/j.ijheatmasstransfer.2025.127009_bib0023) 2019 Zhang (10.1016/j.ijheatmasstransfer.2025.127009_bib0039) 2024; 238 Huang (10.1016/j.ijheatmasstransfer.2025.127009_bib0015) 2023; 5 Cong (10.1016/j.ijheatmasstransfer.2025.127009_bib0005) 2023 Barathula (10.1016/j.ijheatmasstransfer.2025.127009_bib0001) 2022; 139 Ravichandran (10.1016/j.ijheatmasstransfer.2025.127009_bib0029) 2021; 118 You (10.1016/j.ijheatmasstransfer.2025.127009_bib0038) 2014 Barbosa (10.1016/j.ijheatmasstransfer.2025.127009_bib0002) 2001; 27 Hobold (10.1016/j.ijheatmasstransfer.2025.127009_bib0013) 2018; 125 10.1016/j.ijheatmasstransfer.2025.127009_bib0025 Chen (10.1016/j.ijheatmasstransfer.2025.127009_bib0004) 2022; 39 Ravichandran (10.1016/j.ijheatmasstransfer.2025.127009_bib0027) 2019; 163 Ravichandran (10.1016/j.ijheatmasstransfer.2025.127009_bib0028) 2023; 145 Chen (10.1016/j.ijheatmasstransfer.2025.127009_bib41) 2022; 39 Rassoulinejad-Mousavi (10.1016/j.ijheatmasstransfer.2025.127009_bib0026) 2021; 190 Pandey (10.1016/j.ijheatmasstransfer.2025.127009_bib0020) 2024 Dosovitskiy (10.1016/j.ijheatmasstransfer.2025.127009_bib0006) 2021 Suh (10.1016/j.ijheatmasstransfer.2025.127009_bib0035) 2021; 11 Noman (10.1016/j.ijheatmasstransfer.2025.127009_bib0019) 2024 Huang (10.1016/j.ijheatmasstransfer.2025.127009_bib0014) 2023; 5 Seong (10.1016/j.ijheatmasstransfer.2025.127009_bib0032) 2023; 159 Han (10.1016/j.ijheatmasstransfer.2025.127009_bib0010) 2022; 138 Pandey (10.1016/j.ijheatmasstransfer.2025.127009_bib0021) 2024; 55 Waltrich (10.1016/j.ijheatmasstransfer.2025.127009_bib0037) 2013; 57 Du (10.1016/j.ijheatmasstransfer.2025.127009_bib0007) 2012; 36 Soibam (10.1016/j.ijheatmasstransfer.2025.127009_bib0034) 2023 Chen (10.1016/j.ijheatmasstransfer.2025.127009_bib0003) 2024; 6 Hobold (10.1016/j.ijheatmasstransfer.2025.127009_bib0012) 2019; 134 10.1016/j.ijheatmasstransfer.2025.127009_bib0018 Zhou (10.1016/j.ijheatmasstransfer.2025.127009_bib0040) 2023 Prajapati (10.1016/j.ijheatmasstransfer.2025.127009_bib0024) 2017; 86 Frankel (10.1016/j.ijheatmasstransfer.2025.127009_bib0009) 2013; 27 Viereckl (10.1016/j.ijheatmasstransfer.2025.127009_bib0036) 2019; 1 He (10.1016/j.ijheatmasstransfer.2025.127009_bib0011) 2021 Liter (10.1016/j.ijheatmasstransfer.2025.127009_bib0017) 2001; 44 Sato (10.1016/j.ijheatmasstransfer.2025.127009_bib0030) 2018; 125 Sato (10.1016/j.ijheatmasstransfer.2025.127009_bib0031) 2017; 105 Serrao (10.1016/j.ijheatmasstransfer.2025.127009_bib0033) 2023; 16 Dunlap (10.1016/j.ijheatmasstransfer.2025.127009_bib0008) 2023; 228 |
References_xml | – year: 2021 ident: bib0011 article-title: Masked Autoencoders are Scalable Vision Learners – volume: 125 start-page: 1296 year: 2018 end-page: 1309 ident: bib0013 article-title: Machine learning classification of boiling regimes with low speed, direct and indirect visualization publication-title: Int. J. Heat Mass Transf. – volume: 228 year: 2023 ident: bib0008 article-title: Nonintrusive heat flux quantification using acoustic emissions during pool boiling publication-title: Appl. Therm. Eng. – year: 2021 ident: bib0006 article-title: An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale – volume: 16 start-page: 4762 year: 2023 ident: bib0033 article-title: Analysis of the effects of different nanofluids on critical heat flux using artificial intelligence publication-title: Energies – volume: 1 start-page: 286 year: 2019 end-page: 299 ident: bib0036 article-title: Experimental and theoretical investigation of the boiling heat transfer in a low-pressure natural circulation system publication-title: Exp. Comput. Multiph. Flow – volume: 145 year: 2023 ident: bib0028 article-title: Autonomous and online detection of dry areas on a boiling surface using deep learning and infrared thermometry publication-title: Exper. Therm. Fluid Sci. – year: 2023 ident: bib0034 article-title: Application of deep learning for segmentation of bubble dynamics in subcooled boiling publication-title: Int. J. Multiph. Flow – volume: 57 start-page: 38 year: 2013 end-page: 48 ident: bib0037 article-title: Axial development of annular, churn and slug flows in a long vertical tube publication-title: Int. J. Multiph. Flow – volume: 11 start-page: 5622 year: 2021 ident: bib0035 article-title: Deep learning predicts boiling heat transfer publication-title: Sci. Rep. – year: 2023 ident: bib0005 article-title: SatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite Imagery – year: 2024 ident: bib0019 article-title: Rethinking Transformers Pre-Training for Multi-Spectral Satellite Imagery – volume: 95 start-page: 214 year: 2016 end-page: 223 ident: bib0022 article-title: Boiling characteristics on a serpentine-like geometry thin-film platinum heater under pool boiling publication-title: Int. J. Heat Mass Transf. – volume: 190 year: 2021 ident: bib0026 article-title: Deep learning strategies for critical heat flux detection in pool boiling publication-title: Appl. Therm. Eng. – volume: 163 year: 2019 ident: bib0027 article-title: Online, quasi-real-time analysis of high-resolution, infrared, boiling heat transfer investigations using artificial neural networks publication-title: Appl. Therm. Eng. – reference: Purdue University Mechanical Engineering, 2017. Experiment brings pool boiling into the classroom. Youtube. – volume: 39 start-page: 10 year: 2022 end-page: 16 ident: bib0004 article-title: Investigation progress on the experimental technology of critical heat flux publication-title: Exper. Technol. Manage. – volume: 138 year: 2022 ident: bib0010 article-title: Experimental study on visualized flow boiling in a narrow rectangular channel publication-title: Int. Commun. Heat Mass Transf. – volume: 125 start-page: 876 year: 2018 end-page: 890 ident: bib0030 article-title: Pool boiling simulation using an interface tracking method: from nucleate boiling to film boiling regime through critical heat flux publication-title: Int. J. Heat Mass Transf. – volume: 27 start-page: 189 year: 2013 end-page: 205 ident: bib0009 article-title: Surface heat flux prediction through physics-based calibration, part 1: theory publication-title: J. Thermophys. Heat Transf. – volume: 6 start-page: 126 year: 2024 end-page: 134 ident: bib0003 article-title: Experimental and LBM simulation study on the effect of bubble merging on saturated pool boiling in pure water publication-title: Exp. Comput. Multiph. Flow – volume: 5 start-page: 192 year: 2023 end-page: 198 ident: bib0015 article-title: Experimental study on pool boiling heat transfer enhancement in reduced graphene oxide nanofluid publication-title: J. Tsinghua Univ. (Sci. & Technol.) – volume: 36 start-page: 21 year: 2012 end-page: 31 ident: bib0007 article-title: Theoretical study on the characteristics of critical heat flux in vertical narrow rectangular channels publication-title: Appl. Therm. Eng. – volume: 86 start-page: 215 year: 2017 end-page: 221 ident: bib0024 article-title: Numerical investigation of subcooled flow boiling in segmented finned microchannels publication-title: Int. Commun. Heat Mass Transf. – reference: . – volume: 159 year: 2023 ident: bib0032 article-title: Automated bubble analysis of high-speed subcooled flow boiling images using U-net transfer learning and global optical flow publication-title: Int. J. Multiph. Flow – year: 2023 ident: bib0040 article-title: Self Pre-Training with Masked Autoencoders for Medical Image Classification and Segmentation – volume: 118 year: 2021 ident: bib0029 article-title: Decrypting the boiling crisis through data-driven exploration of high-resolution infrared thermometry measurements publication-title: Appl. Phys. Lett. – volume: 134 start-page: 511 year: 2019 end-page: 520 ident: bib0012 article-title: Visualization-based nucleate boiling heat flux quantification using machine learning publication-title: Int. J. Heat Mass Transf. – volume: 158 year: 2025 ident: bib0016 article-title: HTR-VT: handwritten text recognition with vision transformer publication-title: Patt. Recognit. – year: 2014 ident: bib0038 article-title: Pool Boiling – year: 2019 ident: bib0023 article-title: Boiling heat transfer using spatially-variant and uniform microporous coatings publication-title: ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. Presented at the ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems – volume: 139 year: 2022 ident: bib0001 article-title: Review on research progress in boiling acoustics publication-title: Int. Commun. Heat Mass Transf. – year: 2024 ident: bib0020 article-title: Acoustic sensing for investigating critical heat flux enhancement during pool boiling on electrodeposited copper foams publication-title: Appl. Therm. Eng. – volume: 105 start-page: 505 year: 2017 end-page: 524 ident: bib0031 article-title: Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region publication-title: Int. J. Heat Mass Transf. – volume: 27 start-page: 2105 year: 2001 end-page: 2127 ident: bib0002 article-title: Visualisation and modelling studies of churn flow in a vertical pipe publication-title: Int. J. Multiph. Flow – volume: 238 year: 2024 ident: bib0039 article-title: Maize seed variety identification using hyperspectral imaging and self-supervised learning: a two-stage training approach without spectral preprocessing publication-title: Expert Syst. Appl. – volume: 39 start-page: 10 year: 2022 end-page: 16 ident: bib41 article-title: Investigation progress on the experimental technology of critical heat flux publication-title: Exper. Technol. Manag. – reference: Minseok, H., Bertina, B., Graham, S., 2014. Pool boiling experiment. Youtube. – volume: 44 start-page: 4287 year: 2001 end-page: 4311 ident: bib0017 article-title: Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment publication-title: Int. J. Heat Mass Transf. – volume: 55 year: 2024 ident: bib0021 article-title: Multimodal boiling dataset with synchronized acoustic, optical, and thermal measurements under steady-state and transient heat loads publication-title: Data Brief – volume: 5 start-page: 192 year: 2023 end-page: 198 ident: bib0014 article-title: Pool boiling experiment characteristics on the pure copper surface publication-title: Exp. Comput. Multiph. Flow – volume: 36 start-page: 21 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0007 article-title: Theoretical study on the characteristics of critical heat flux in vertical narrow rectangular channels publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.11.039 – volume: 86 start-page: 215 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0024 article-title: Numerical investigation of subcooled flow boiling in segmented finned microchannels publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2017.06.009 – volume: 39 start-page: 10 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0004 article-title: Investigation progress on the experimental technology of critical heat flux publication-title: Exper. Technol. Manage. – year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0006 – year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0019 – volume: 118 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0029 article-title: Decrypting the boiling crisis through data-driven exploration of high-resolution infrared thermometry measurements publication-title: Appl. Phys. Lett. doi: 10.1063/5.0048391 – volume: 145 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0028 article-title: Autonomous and online detection of dry areas on a boiling surface using deep learning and infrared thermometry publication-title: Exper. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2023.110879 – volume: 139 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0001 article-title: Review on research progress in boiling acoustics publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2022.106465 – volume: 134 start-page: 511 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0012 article-title: Visualization-based nucleate boiling heat flux quantification using machine learning publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.12.170 – volume: 27 start-page: 2105 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0002 article-title: Visualisation and modelling studies of churn flow in a vertical pipe publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(01)00048-9 – ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0025 – volume: 125 start-page: 876 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0030 article-title: Pool boiling simulation using an interface tracking method: from nucleate boiling to film boiling regime through critical heat flux publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.131 – volume: 163 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0027 article-title: Online, quasi-real-time analysis of high-resolution, infrared, boiling heat transfer investigations using artificial neural networks publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114357 – volume: 39 start-page: 10 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib41 article-title: Investigation progress on the experimental technology of critical heat flux publication-title: Exper. Technol. Manag. – volume: 238 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0039 article-title: Maize seed variety identification using hyperspectral imaging and self-supervised learning: a two-stage training approach without spectral preprocessing publication-title: Expert Syst. Appl. – volume: 190 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0026 article-title: Deep learning strategies for critical heat flux detection in pool boiling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116849 – volume: 16 start-page: 4762 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0033 article-title: Analysis of the effects of different nanofluids on critical heat flux using artificial intelligence publication-title: Energies doi: 10.3390/en16124762 – volume: 5 start-page: 192 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0014 article-title: Pool boiling experiment characteristics on the pure copper surface publication-title: Exp. Comput. Multiph. Flow doi: 10.1007/s42757-022-0134-x – volume: 5 start-page: 192 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0015 article-title: Experimental study on pool boiling heat transfer enhancement in reduced graphene oxide nanofluid publication-title: J. Tsinghua Univ. (Sci. & Technol.) – year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0020 article-title: Acoustic sensing for investigating critical heat flux enhancement during pool boiling on electrodeposited copper foams publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.121807 – volume: 57 start-page: 38 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0037 article-title: Axial development of annular, churn and slug flows in a long vertical tube publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2013.06.008 – year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0034 article-title: Application of deep learning for segmentation of bubble dynamics in subcooled boiling publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2023.104589 – year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0011 – year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0005 – year: 2014 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0038 – volume: 6 start-page: 126 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0003 article-title: Experimental and LBM simulation study on the effect of bubble merging on saturated pool boiling in pure water publication-title: Exp. Comput. Multiph. Flow doi: 10.1007/s42757-023-0174-x – volume: 159 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0032 article-title: Automated bubble analysis of high-speed subcooled flow boiling images using U-net transfer learning and global optical flow publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2022.104336 – volume: 138 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0010 article-title: Experimental study on visualized flow boiling in a narrow rectangular channel publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2022.106383 – volume: 1 start-page: 286 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0036 article-title: Experimental and theoretical investigation of the boiling heat transfer in a low-pressure natural circulation system publication-title: Exp. Comput. Multiph. Flow doi: 10.1007/s42757-019-0023-0 – volume: 44 start-page: 4287 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0017 article-title: Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(01)00084-9 – volume: 27 start-page: 189 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0009 article-title: Surface heat flux prediction through physics-based calibration, part 1: theory publication-title: J. Thermophys. Heat Transf. doi: 10.2514/1.T3917 – volume: 55 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0021 article-title: Multimodal boiling dataset with synchronized acoustic, optical, and thermal measurements under steady-state and transient heat loads publication-title: Data Brief doi: 10.1016/j.dib.2024.110582 – year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0040 – volume: 11 start-page: 5622 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0035 article-title: Deep learning predicts boiling heat transfer publication-title: Sci. Rep. doi: 10.1038/s41598-021-85150-4 – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0023 article-title: Boiling heat transfer using spatially-variant and uniform microporous coatings doi: 10.1115/IPACK2019-6307 – volume: 158 year: 2025 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0016 article-title: HTR-VT: handwritten text recognition with vision transformer publication-title: Patt. Recognit. doi: 10.1016/j.patcog.2024.110967 – volume: 105 start-page: 505 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0031 article-title: Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.10.018 – volume: 95 start-page: 214 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0022 article-title: Boiling characteristics on a serpentine-like geometry thin-film platinum heater under pool boiling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.11.097 – volume: 125 start-page: 1296 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0013 article-title: Machine learning classification of boiling regimes with low speed, direct and indirect visualization publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.04.156 – volume: 228 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0008 article-title: Nonintrusive heat flux quantification using acoustic emissions during pool boiling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120558 – ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0018 |
SSID | ssj0017046 |
Score | 2.473127 |
Snippet | •Two-stage image-based neural network for heat flux quantification is presented.•Self-supervised pre-training with ViT on public boiling images without labels... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 127009 |
SubjectTerms | Heat flux quantification Pool boiling Small sample Two-stage framework Vision transformer |
Title | A two-stage neural network approach for heat flux quantification from boiling images using vision transformers and transfer learning |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2025.127009 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCMSCeIpndQMDS9okxHE8VhWoUNEBgWCLzq5TBUHKIxVMTPxwfHHCQzAwMEWOrJNzdzp_kb_7zNi-TVn0JcZeHAvfiyKtPRlzYYeR5sokPlZSSmfDuH8ZnV7z6xnWa3phiFZZ135X06tqXb_p1N7s3Oc59fhScgW0idPxGCl-knqdzen26wfNIxC-a9ahakyzF9jBJ8crv6GKd2dhalnBREMKoSFvV8ex8vet6sv2c7zMlmrcCF23tBU2Y4pVNl_xN_XTGnvrQvk88SzUGxsgjUo7t3AMb2hkw8HiU6CVQHY7fYGHKTqiUBUboD4TUJOc2tMhv7N2noBI8WNw7edQNhDXAkbAYgTNx0B988R4nV0eH130-l59wYKnwyQoPRmFghvrvJFK_CwRmVGZj5ihxAAPFRrJFanTZLFGDJTJfINCcKl8-x_CLZLbYLPFpDCbDFQiAwxNkCScFAd5Mgr1SOhDnRktEOUWk40v03uno5E2BLOb9GccUopD6uKwxXqN89NvuZHasv9nK9v_YmWHLdLIUQB32Wz5ODV7FpaUqlXlXYvNdU8G_SE9B-dXg3fiIOs5 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RRS1cqtIW8Sh0Dj30kpJk4zg-rlag5bUnkLhFY6-zygqyPLKCH8APxxMn0IoeOHDMy7JnRuMvmm8-A_xyIUuhojRIUxkGSWJMoFIh3WVihLZZSI2U0uk4HZ0nRxfiYgmGXS8M0yrb3O9zepOt2zt7rTX3rsuSe3w5uCLexLk81v8Ay6xOlfRgeXB4PBo_FxNk6Pt1OCHzB5_g9wvNq5xx0rtySLVukKJlkdBY_Gkqsur_u9VfO9DBF_jcQkcc-NmtwZKtvsLHhsJp7r7B4wDr-3ng0N7UIstUuncrT_LGTjkcHURFngkWl4sHvFmQ5wo17kFuNUE9L7lDHcsrN84dMi9-ir4DHesO5TrMiFRNsFsMtodPTL_D-cH-2XAUtGcsBCbOojpQSSyFdfab6CwsMllYXYREBSmKqK_JKqFZoKZIDVGkbRFaklIoHbpfEeHA3Dr0qnllNwB1piKKbZRlgkUHRTaJzUSavimskURqE1Rny_zaS2nkHcdslr_2Q85-yL0fNmHYGT__Jzxyl_nfPMrWu4zyE1ZGZ6cn-cnh-HgbVvmJZwT-gF59u7A7DqXUereNwieBf-xH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+neural+network+approach+for+heat+flux+quantification+from+boiling+images+using+vision+transformers+and+transfer+learning&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Wu%2C+Mengqi&rft.au=Gui%2C+Nan&rft.au=Chen%2C+Zeliang&rft.au=Yang%2C+Xingtuan&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.volume=245&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2025.127009&rft.externalDocID=S0017931025003503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |