A two-stage neural network approach for heat flux quantification from boiling images using vision transformers and transfer learning

•Two-stage image-based neural network for heat flux quantification is presented.•Self-supervised pre-training with ViT on public boiling images without labels is incorporated.•Fine-tuning on in-house dataset using transfer learning for heat flux quantification is completed.•This reduces reliance on...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 245; p. 127009
Main Authors Wu, Mengqi, Gui, Nan, Chen, Zeliang, Yang, Xingtuan, Tu, Jiyuan, Jiang, Shengyao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2025
Subjects
Online AccessGet full text
ISSN0017-9310
DOI10.1016/j.ijheatmasstransfer.2025.127009

Cover

Loading…
Abstract •Two-stage image-based neural network for heat flux quantification is presented.•Self-supervised pre-training with ViT on public boiling images without labels is incorporated.•Fine-tuning on in-house dataset using transfer learning for heat flux quantification is completed.•This reduces reliance on large labeled datasets and mitigates overfitting in small samples.•Effectiveness has been proved by metrics, one-stage model comparison, and small-sample tests. Pool boiling, a fundamental heat transfer process, has been a subject of extensive research due to its significance in various industrial applications. Accurate heat flux quantification is essential for assessing heat transfer performance, but traditional methods face limitations such as complex modeling and intrusive measurement techniques. Recent advances in deep learning have enabled the use of visual data for heat flux quantification, yet challenges such as high dataset labeling costs, small sample sizes leading to overfitting, and the demand for high accuracy in fine-grained tasks persist. This paper proposes a two-stage neural network approach to address these challenges. In the first stage, a self-supervised learning model is pre-trained on public boiling image datasets to extract useful features without requiring labeled data. The second stage involves fine-tuning this model on a small, labeled in-house dataset for precise heat flux quantification. This approach significantly reduces the reliance on large labeled datasets while maintaining good predictive accuracy and effectiveness, even with limited data availability. The proposed method achieved an accuracy of 0.953 (ACC1) and 0.929 (ACC2) on the test set. Even when trained on smaller samples where traditional one-stage models experience a significant drop in accuracy, the two-stage training strategy ensures more effectively maintained prediction accuracy.
AbstractList •Two-stage image-based neural network for heat flux quantification is presented.•Self-supervised pre-training with ViT on public boiling images without labels is incorporated.•Fine-tuning on in-house dataset using transfer learning for heat flux quantification is completed.•This reduces reliance on large labeled datasets and mitigates overfitting in small samples.•Effectiveness has been proved by metrics, one-stage model comparison, and small-sample tests. Pool boiling, a fundamental heat transfer process, has been a subject of extensive research due to its significance in various industrial applications. Accurate heat flux quantification is essential for assessing heat transfer performance, but traditional methods face limitations such as complex modeling and intrusive measurement techniques. Recent advances in deep learning have enabled the use of visual data for heat flux quantification, yet challenges such as high dataset labeling costs, small sample sizes leading to overfitting, and the demand for high accuracy in fine-grained tasks persist. This paper proposes a two-stage neural network approach to address these challenges. In the first stage, a self-supervised learning model is pre-trained on public boiling image datasets to extract useful features without requiring labeled data. The second stage involves fine-tuning this model on a small, labeled in-house dataset for precise heat flux quantification. This approach significantly reduces the reliance on large labeled datasets while maintaining good predictive accuracy and effectiveness, even with limited data availability. The proposed method achieved an accuracy of 0.953 (ACC1) and 0.929 (ACC2) on the test set. Even when trained on smaller samples where traditional one-stage models experience a significant drop in accuracy, the two-stage training strategy ensures more effectively maintained prediction accuracy.
ArticleNumber 127009
Author Gui, Nan
Wu, Mengqi
Tu, Jiyuan
Jiang, Shengyao
Chen, Zeliang
Yang, Xingtuan
Author_xml – sequence: 1
  givenname: Mengqi
  surname: Wu
  fullname: Wu, Mengqi
  organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China
– sequence: 2
  givenname: Nan
  orcidid: 0000-0003-4731-3082
  surname: Gui
  fullname: Gui, Nan
  email: guinan@mail.tsinghua.edu.cn
  organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China
– sequence: 3
  givenname: Zeliang
  surname: Chen
  fullname: Chen, Zeliang
  organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China
– sequence: 4
  givenname: Xingtuan
  surname: Yang
  fullname: Yang, Xingtuan
  organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China
– sequence: 5
  givenname: Jiyuan
  surname: Tu
  fullname: Tu, Jiyuan
  organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China
– sequence: 6
  givenname: Shengyao
  surname: Jiang
  fullname: Jiang, Shengyao
  organization: Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing, 100084, PR China
BookMark eNqNkDtPwzAUhT0UiRb4Dx5ZEuykeXijqniqEgvM0Y1z3TokdrHdAjs_nESBiYXp6Nx79OnoLMjMWIOEXHIWc8bzqzbW7Q4h9OB9cGC8QhcnLMlinhSMiRmZM8aLSKScnZKF9-1o2TKfk68VDe828gG2SA0eHHSDDCf3SmG_dxbkjirr6Minqjt80LcDmKCVlhC0NVQ529Pa6k6bLdX9wPH04Edz1H4MTI2s69F5CqahvxVph-DMkDwnJwo6jxc_ekZebm-e1_fR5unuYb3aRDIpeYjEMikyZGnW1CVTZaGwVgxAgQAOaQ0osrpYlkLlEoDXqBhCUWSiZlkmMp6nZ-R64kpnvXeoqr0bGrvPirNqXLJqq79LVuOS1bTkgHicEDj0POrh66VGI7HRDmWoGqv_D_sGX3GSFw
Cites_doi 10.1016/j.applthermaleng.2011.11.039
10.1016/j.icheatmasstransfer.2017.06.009
10.1063/5.0048391
10.1016/j.expthermflusci.2023.110879
10.1016/j.icheatmasstransfer.2022.106465
10.1016/j.ijheatmasstransfer.2018.12.170
10.1016/S0301-9322(01)00048-9
10.1016/j.ijheatmasstransfer.2018.04.131
10.1016/j.applthermaleng.2019.114357
10.1016/j.applthermaleng.2021.116849
10.3390/en16124762
10.1007/s42757-022-0134-x
10.1016/j.applthermaleng.2023.121807
10.1016/j.ijmultiphaseflow.2013.06.008
10.1016/j.ijmultiphaseflow.2023.104589
10.1007/s42757-023-0174-x
10.1016/j.ijmultiphaseflow.2022.104336
10.1016/j.icheatmasstransfer.2022.106383
10.1007/s42757-019-0023-0
10.1016/S0017-9310(01)00084-9
10.2514/1.T3917
10.1016/j.dib.2024.110582
10.1038/s41598-021-85150-4
10.1115/IPACK2019-6307
10.1016/j.patcog.2024.110967
10.1016/j.ijheatmasstransfer.2016.10.018
10.1016/j.ijheatmasstransfer.2015.11.097
10.1016/j.ijheatmasstransfer.2018.04.156
10.1016/j.applthermaleng.2023.120558
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatmasstransfer.2025.127009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2025_127009
S0017931025003503
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29J
6TJ
AAQXK
AAYXX
ABDMP
ABDPE
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
T9H
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c281t-94275e035db80f87febf0aafa9a1a3bae95b7489f6caa1bef0ea7759b05595163
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Tue Aug 05 11:56:55 EDT 2025
Sat Aug 09 17:30:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Vision transformer
Two-stage framework
Small sample
Pool boiling
Heat flux quantification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-94275e035db80f87febf0aafa9a1a3bae95b7489f6caa1bef0ea7759b05595163
ORCID 0000-0003-4731-3082
ParticipantIDs crossref_primary_10_1016_j_ijheatmasstransfer_2025_127009
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2025_127009
PublicationCentury 2000
PublicationDate 2025-08-01
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of heat and mass transfer
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ravichandran, Su, Wang, Seong, Kossolapov, Phillips, Rahman, Bucci (bib0029) 2021; 118
Soibam, Scheiff, Aslanidou, Kyprianidis, Bel Fdhila (bib0034) 2023
Huang, Chen, Gui, Yang, Tu, Jiang (bib0015) 2023; 5
Viereckl, Schleicher, Schuster, Lippmann, Hurtado (bib0036) 2019; 1
Sato, Niceno (bib0031) 2017; 105
Noman, Naseer, Cholakkal, Anwar, Khan, Khan (bib0019) 2024
Pandey (bib0020) 2024
Huang, Chen, Gui, Yang, Tu, Jiang (bib0014) 2023; 5
Dunlap, Pandey, Weems, Hu (bib0008) 2023; 228
Serrao, Kim, Duarte (bib0033) 2023; 16
Chen, Huang, Wu, Gui, Yang, Jiang, Gong (bib41) 2022; 39
Chen, Huang, Wu (bib0004) 2022; 39
Prajapati, Pathak, Khan (bib0024) 2017; 86
Ravichandran, Kossolapov, Aguiar, Phillips, Bucci (bib0028) 2023; 145
Hobold, Da Silva (bib0012) 2019; 134
Barbosa, Govan, Hewitt (bib0002) 2001; 27
Suh, Bostanabad, Won (bib0035) 2021; 11
Minseok, H., Bertina, B., Graham, S., 2014. Pool boiling experiment. Youtube.
Zhou, Liu, Bae, He, Samaras, Prasanna (bib0040) 2023
Seong, Ravichandran, Su, Phillips, Bucci (bib0032) 2023; 159
Li, Chen, Tang, Shen (bib0016) 2025; 158
You (bib0038) 2014
Waltrich, Falcone, Barbosa (bib0037) 2013; 57
Ravichandran, Bucci (bib0027) 2019; 163
Rassoulinejad-Mousavi, Al-Hindawi, Soori, Rokoni, Yoon, Hu, Wu, Sun (bib0026) 2021; 190
Du, Tian, Su, Qiu, Huang, Yan (bib0007) 2012; 36
Pham, Suh, Shao, Won (bib0023) 2019
Cong, Khanna, Meng, Liu, Rozi, He, Burke, Lobell, Ermon (bib0005) 2023
Barathula, Srinivasan (bib0001) 2022; 139
Purdue University Mechanical Engineering, 2017. Experiment brings pool boiling into the classroom. Youtube.
Sato, Niceno (bib0030) 2018; 125
Liter, Kaviany (bib0017) 2001; 44
.
Han, Liu, Chu, Zhao, Bo (bib0010) 2022; 138
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bib0006) 2021
Zhang, Zhang, Liu, Wei, An, Wu (bib0039) 2024; 238
Park, Kim, Kim, Kim, Ahn (bib0022) 2016; 95
He, Chen, Xie, Li, Dollár, Girshick (bib0011) 2021
Hobold, da Silva (bib0013) 2018; 125
Pandey, Li, Hu (bib0021) 2024; 55
Chen, Wang, Ouyang, Wang, Li, Wang (bib0003) 2024; 6
Frankel, Keyhani, Elkins (bib0009) 2013; 27
Park (10.1016/j.ijheatmasstransfer.2025.127009_bib0022) 2016; 95
Li (10.1016/j.ijheatmasstransfer.2025.127009_bib0016) 2025; 158
Pham (10.1016/j.ijheatmasstransfer.2025.127009_bib0023) 2019
Zhang (10.1016/j.ijheatmasstransfer.2025.127009_bib0039) 2024; 238
Huang (10.1016/j.ijheatmasstransfer.2025.127009_bib0015) 2023; 5
Cong (10.1016/j.ijheatmasstransfer.2025.127009_bib0005) 2023
Barathula (10.1016/j.ijheatmasstransfer.2025.127009_bib0001) 2022; 139
Ravichandran (10.1016/j.ijheatmasstransfer.2025.127009_bib0029) 2021; 118
You (10.1016/j.ijheatmasstransfer.2025.127009_bib0038) 2014
Barbosa (10.1016/j.ijheatmasstransfer.2025.127009_bib0002) 2001; 27
Hobold (10.1016/j.ijheatmasstransfer.2025.127009_bib0013) 2018; 125
10.1016/j.ijheatmasstransfer.2025.127009_bib0025
Chen (10.1016/j.ijheatmasstransfer.2025.127009_bib0004) 2022; 39
Ravichandran (10.1016/j.ijheatmasstransfer.2025.127009_bib0027) 2019; 163
Ravichandran (10.1016/j.ijheatmasstransfer.2025.127009_bib0028) 2023; 145
Chen (10.1016/j.ijheatmasstransfer.2025.127009_bib41) 2022; 39
Rassoulinejad-Mousavi (10.1016/j.ijheatmasstransfer.2025.127009_bib0026) 2021; 190
Pandey (10.1016/j.ijheatmasstransfer.2025.127009_bib0020) 2024
Dosovitskiy (10.1016/j.ijheatmasstransfer.2025.127009_bib0006) 2021
Suh (10.1016/j.ijheatmasstransfer.2025.127009_bib0035) 2021; 11
Noman (10.1016/j.ijheatmasstransfer.2025.127009_bib0019) 2024
Huang (10.1016/j.ijheatmasstransfer.2025.127009_bib0014) 2023; 5
Seong (10.1016/j.ijheatmasstransfer.2025.127009_bib0032) 2023; 159
Han (10.1016/j.ijheatmasstransfer.2025.127009_bib0010) 2022; 138
Pandey (10.1016/j.ijheatmasstransfer.2025.127009_bib0021) 2024; 55
Waltrich (10.1016/j.ijheatmasstransfer.2025.127009_bib0037) 2013; 57
Du (10.1016/j.ijheatmasstransfer.2025.127009_bib0007) 2012; 36
Soibam (10.1016/j.ijheatmasstransfer.2025.127009_bib0034) 2023
Chen (10.1016/j.ijheatmasstransfer.2025.127009_bib0003) 2024; 6
Hobold (10.1016/j.ijheatmasstransfer.2025.127009_bib0012) 2019; 134
10.1016/j.ijheatmasstransfer.2025.127009_bib0018
Zhou (10.1016/j.ijheatmasstransfer.2025.127009_bib0040) 2023
Prajapati (10.1016/j.ijheatmasstransfer.2025.127009_bib0024) 2017; 86
Frankel (10.1016/j.ijheatmasstransfer.2025.127009_bib0009) 2013; 27
Viereckl (10.1016/j.ijheatmasstransfer.2025.127009_bib0036) 2019; 1
He (10.1016/j.ijheatmasstransfer.2025.127009_bib0011) 2021
Liter (10.1016/j.ijheatmasstransfer.2025.127009_bib0017) 2001; 44
Sato (10.1016/j.ijheatmasstransfer.2025.127009_bib0030) 2018; 125
Sato (10.1016/j.ijheatmasstransfer.2025.127009_bib0031) 2017; 105
Serrao (10.1016/j.ijheatmasstransfer.2025.127009_bib0033) 2023; 16
Dunlap (10.1016/j.ijheatmasstransfer.2025.127009_bib0008) 2023; 228
References_xml – year: 2021
  ident: bib0011
  article-title: Masked Autoencoders are Scalable Vision Learners
– volume: 125
  start-page: 1296
  year: 2018
  end-page: 1309
  ident: bib0013
  article-title: Machine learning classification of boiling regimes with low speed, direct and indirect visualization
  publication-title: Int. J. Heat Mass Transf.
– volume: 228
  year: 2023
  ident: bib0008
  article-title: Nonintrusive heat flux quantification using acoustic emissions during pool boiling
  publication-title: Appl. Therm. Eng.
– year: 2021
  ident: bib0006
  article-title: An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale
– volume: 16
  start-page: 4762
  year: 2023
  ident: bib0033
  article-title: Analysis of the effects of different nanofluids on critical heat flux using artificial intelligence
  publication-title: Energies
– volume: 1
  start-page: 286
  year: 2019
  end-page: 299
  ident: bib0036
  article-title: Experimental and theoretical investigation of the boiling heat transfer in a low-pressure natural circulation system
  publication-title: Exp. Comput. Multiph. Flow
– volume: 145
  year: 2023
  ident: bib0028
  article-title: Autonomous and online detection of dry areas on a boiling surface using deep learning and infrared thermometry
  publication-title: Exper. Therm. Fluid Sci.
– year: 2023
  ident: bib0034
  article-title: Application of deep learning for segmentation of bubble dynamics in subcooled boiling
  publication-title: Int. J. Multiph. Flow
– volume: 57
  start-page: 38
  year: 2013
  end-page: 48
  ident: bib0037
  article-title: Axial development of annular, churn and slug flows in a long vertical tube
  publication-title: Int. J. Multiph. Flow
– volume: 11
  start-page: 5622
  year: 2021
  ident: bib0035
  article-title: Deep learning predicts boiling heat transfer
  publication-title: Sci. Rep.
– year: 2023
  ident: bib0005
  article-title: SatMAE: Pre-training Transformers for Temporal and Multi-Spectral Satellite Imagery
– year: 2024
  ident: bib0019
  article-title: Rethinking Transformers Pre-Training for Multi-Spectral Satellite Imagery
– volume: 95
  start-page: 214
  year: 2016
  end-page: 223
  ident: bib0022
  article-title: Boiling characteristics on a serpentine-like geometry thin-film platinum heater under pool boiling
  publication-title: Int. J. Heat Mass Transf.
– volume: 190
  year: 2021
  ident: bib0026
  article-title: Deep learning strategies for critical heat flux detection in pool boiling
  publication-title: Appl. Therm. Eng.
– volume: 163
  year: 2019
  ident: bib0027
  article-title: Online, quasi-real-time analysis of high-resolution, infrared, boiling heat transfer investigations using artificial neural networks
  publication-title: Appl. Therm. Eng.
– reference: Purdue University Mechanical Engineering, 2017. Experiment brings pool boiling into the classroom. Youtube.
– volume: 39
  start-page: 10
  year: 2022
  end-page: 16
  ident: bib0004
  article-title: Investigation progress on the experimental technology of critical heat flux
  publication-title: Exper. Technol. Manage.
– volume: 138
  year: 2022
  ident: bib0010
  article-title: Experimental study on visualized flow boiling in a narrow rectangular channel
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 125
  start-page: 876
  year: 2018
  end-page: 890
  ident: bib0030
  article-title: Pool boiling simulation using an interface tracking method: from nucleate boiling to film boiling regime through critical heat flux
  publication-title: Int. J. Heat Mass Transf.
– volume: 27
  start-page: 189
  year: 2013
  end-page: 205
  ident: bib0009
  article-title: Surface heat flux prediction through physics-based calibration, part 1: theory
  publication-title: J. Thermophys. Heat Transf.
– volume: 6
  start-page: 126
  year: 2024
  end-page: 134
  ident: bib0003
  article-title: Experimental and LBM simulation study on the effect of bubble merging on saturated pool boiling in pure water
  publication-title: Exp. Comput. Multiph. Flow
– volume: 5
  start-page: 192
  year: 2023
  end-page: 198
  ident: bib0015
  article-title: Experimental study on pool boiling heat transfer enhancement in reduced graphene oxide nanofluid
  publication-title: J. Tsinghua Univ. (Sci. & Technol.)
– volume: 36
  start-page: 21
  year: 2012
  end-page: 31
  ident: bib0007
  article-title: Theoretical study on the characteristics of critical heat flux in vertical narrow rectangular channels
  publication-title: Appl. Therm. Eng.
– volume: 86
  start-page: 215
  year: 2017
  end-page: 221
  ident: bib0024
  article-title: Numerical investigation of subcooled flow boiling in segmented finned microchannels
  publication-title: Int. Commun. Heat Mass Transf.
– reference: .
– volume: 159
  year: 2023
  ident: bib0032
  article-title: Automated bubble analysis of high-speed subcooled flow boiling images using U-net transfer learning and global optical flow
  publication-title: Int. J. Multiph. Flow
– year: 2023
  ident: bib0040
  article-title: Self Pre-Training with Masked Autoencoders for Medical Image Classification and Segmentation
– volume: 118
  year: 2021
  ident: bib0029
  article-title: Decrypting the boiling crisis through data-driven exploration of high-resolution infrared thermometry measurements
  publication-title: Appl. Phys. Lett.
– volume: 134
  start-page: 511
  year: 2019
  end-page: 520
  ident: bib0012
  article-title: Visualization-based nucleate boiling heat flux quantification using machine learning
  publication-title: Int. J. Heat Mass Transf.
– volume: 158
  year: 2025
  ident: bib0016
  article-title: HTR-VT: handwritten text recognition with vision transformer
  publication-title: Patt. Recognit.
– year: 2014
  ident: bib0038
  article-title: Pool Boiling
– year: 2019
  ident: bib0023
  article-title: Boiling heat transfer using spatially-variant and uniform microporous coatings
  publication-title: ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. Presented at the ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
– volume: 139
  year: 2022
  ident: bib0001
  article-title: Review on research progress in boiling acoustics
  publication-title: Int. Commun. Heat Mass Transf.
– year: 2024
  ident: bib0020
  article-title: Acoustic sensing for investigating critical heat flux enhancement during pool boiling on electrodeposited copper foams
  publication-title: Appl. Therm. Eng.
– volume: 105
  start-page: 505
  year: 2017
  end-page: 524
  ident: bib0031
  article-title: Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region
  publication-title: Int. J. Heat Mass Transf.
– volume: 27
  start-page: 2105
  year: 2001
  end-page: 2127
  ident: bib0002
  article-title: Visualisation and modelling studies of churn flow in a vertical pipe
  publication-title: Int. J. Multiph. Flow
– volume: 238
  year: 2024
  ident: bib0039
  article-title: Maize seed variety identification using hyperspectral imaging and self-supervised learning: a two-stage training approach without spectral preprocessing
  publication-title: Expert Syst. Appl.
– volume: 39
  start-page: 10
  year: 2022
  end-page: 16
  ident: bib41
  article-title: Investigation progress on the experimental technology of critical heat flux
  publication-title: Exper. Technol. Manag.
– reference: Minseok, H., Bertina, B., Graham, S., 2014. Pool boiling experiment. Youtube.
– volume: 44
  start-page: 4287
  year: 2001
  end-page: 4311
  ident: bib0017
  article-title: Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment
  publication-title: Int. J. Heat Mass Transf.
– volume: 55
  year: 2024
  ident: bib0021
  article-title: Multimodal boiling dataset with synchronized acoustic, optical, and thermal measurements under steady-state and transient heat loads
  publication-title: Data Brief
– volume: 5
  start-page: 192
  year: 2023
  end-page: 198
  ident: bib0014
  article-title: Pool boiling experiment characteristics on the pure copper surface
  publication-title: Exp. Comput. Multiph. Flow
– volume: 36
  start-page: 21
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0007
  article-title: Theoretical study on the characteristics of critical heat flux in vertical narrow rectangular channels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.11.039
– volume: 86
  start-page: 215
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0024
  article-title: Numerical investigation of subcooled flow boiling in segmented finned microchannels
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2017.06.009
– volume: 39
  start-page: 10
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0004
  article-title: Investigation progress on the experimental technology of critical heat flux
  publication-title: Exper. Technol. Manage.
– year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0006
– year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0019
– volume: 118
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0029
  article-title: Decrypting the boiling crisis through data-driven exploration of high-resolution infrared thermometry measurements
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0048391
– volume: 145
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0028
  article-title: Autonomous and online detection of dry areas on a boiling surface using deep learning and infrared thermometry
  publication-title: Exper. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2023.110879
– volume: 139
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0001
  article-title: Review on research progress in boiling acoustics
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.106465
– volume: 134
  start-page: 511
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0012
  article-title: Visualization-based nucleate boiling heat flux quantification using machine learning
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.170
– volume: 27
  start-page: 2105
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0002
  article-title: Visualisation and modelling studies of churn flow in a vertical pipe
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(01)00048-9
– ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0025
– volume: 125
  start-page: 876
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0030
  article-title: Pool boiling simulation using an interface tracking method: from nucleate boiling to film boiling regime through critical heat flux
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.131
– volume: 163
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0027
  article-title: Online, quasi-real-time analysis of high-resolution, infrared, boiling heat transfer investigations using artificial neural networks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114357
– volume: 39
  start-page: 10
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib41
  article-title: Investigation progress on the experimental technology of critical heat flux
  publication-title: Exper. Technol. Manag.
– volume: 238
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0039
  article-title: Maize seed variety identification using hyperspectral imaging and self-supervised learning: a two-stage training approach without spectral preprocessing
  publication-title: Expert Syst. Appl.
– volume: 190
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0026
  article-title: Deep learning strategies for critical heat flux detection in pool boiling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116849
– volume: 16
  start-page: 4762
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0033
  article-title: Analysis of the effects of different nanofluids on critical heat flux using artificial intelligence
  publication-title: Energies
  doi: 10.3390/en16124762
– volume: 5
  start-page: 192
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0014
  article-title: Pool boiling experiment characteristics on the pure copper surface
  publication-title: Exp. Comput. Multiph. Flow
  doi: 10.1007/s42757-022-0134-x
– volume: 5
  start-page: 192
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0015
  article-title: Experimental study on pool boiling heat transfer enhancement in reduced graphene oxide nanofluid
  publication-title: J. Tsinghua Univ. (Sci. & Technol.)
– year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0020
  article-title: Acoustic sensing for investigating critical heat flux enhancement during pool boiling on electrodeposited copper foams
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121807
– volume: 57
  start-page: 38
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0037
  article-title: Axial development of annular, churn and slug flows in a long vertical tube
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2013.06.008
– year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0034
  article-title: Application of deep learning for segmentation of bubble dynamics in subcooled boiling
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2023.104589
– year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0011
– year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0005
– year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0038
– volume: 6
  start-page: 126
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0003
  article-title: Experimental and LBM simulation study on the effect of bubble merging on saturated pool boiling in pure water
  publication-title: Exp. Comput. Multiph. Flow
  doi: 10.1007/s42757-023-0174-x
– volume: 159
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0032
  article-title: Automated bubble analysis of high-speed subcooled flow boiling images using U-net transfer learning and global optical flow
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2022.104336
– volume: 138
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0010
  article-title: Experimental study on visualized flow boiling in a narrow rectangular channel
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2022.106383
– volume: 1
  start-page: 286
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0036
  article-title: Experimental and theoretical investigation of the boiling heat transfer in a low-pressure natural circulation system
  publication-title: Exp. Comput. Multiph. Flow
  doi: 10.1007/s42757-019-0023-0
– volume: 44
  start-page: 4287
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0017
  article-title: Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(01)00084-9
– volume: 27
  start-page: 189
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0009
  article-title: Surface heat flux prediction through physics-based calibration, part 1: theory
  publication-title: J. Thermophys. Heat Transf.
  doi: 10.2514/1.T3917
– volume: 55
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0021
  article-title: Multimodal boiling dataset with synchronized acoustic, optical, and thermal measurements under steady-state and transient heat loads
  publication-title: Data Brief
  doi: 10.1016/j.dib.2024.110582
– year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0040
– volume: 11
  start-page: 5622
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0035
  article-title: Deep learning predicts boiling heat transfer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85150-4
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0023
  article-title: Boiling heat transfer using spatially-variant and uniform microporous coatings
  doi: 10.1115/IPACK2019-6307
– volume: 158
  year: 2025
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0016
  article-title: HTR-VT: handwritten text recognition with vision transformer
  publication-title: Patt. Recognit.
  doi: 10.1016/j.patcog.2024.110967
– volume: 105
  start-page: 505
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0031
  article-title: Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.10.018
– volume: 95
  start-page: 214
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0022
  article-title: Boiling characteristics on a serpentine-like geometry thin-film platinum heater under pool boiling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.11.097
– volume: 125
  start-page: 1296
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0013
  article-title: Machine learning classification of boiling regimes with low speed, direct and indirect visualization
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.04.156
– volume: 228
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0008
  article-title: Nonintrusive heat flux quantification using acoustic emissions during pool boiling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120558
– ident: 10.1016/j.ijheatmasstransfer.2025.127009_bib0018
SSID ssj0017046
Score 2.473127
Snippet •Two-stage image-based neural network for heat flux quantification is presented.•Self-supervised pre-training with ViT on public boiling images without labels...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127009
SubjectTerms Heat flux quantification
Pool boiling
Small sample
Two-stage framework
Vision transformer
Title A two-stage neural network approach for heat flux quantification from boiling images using vision transformers and transfer learning
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2025.127009
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCMSCeIpndQMDS9okxHE8VhWoUNEBgWCLzq5TBUHKIxVMTPxwfHHCQzAwMEWOrJNzdzp_kb_7zNi-TVn0JcZeHAvfiyKtPRlzYYeR5sokPlZSSmfDuH8ZnV7z6xnWa3phiFZZ135X06tqXb_p1N7s3Oc59fhScgW0idPxGCl-knqdzen26wfNIxC-a9ahakyzF9jBJ8crv6GKd2dhalnBREMKoSFvV8ex8vet6sv2c7zMlmrcCF23tBU2Y4pVNl_xN_XTGnvrQvk88SzUGxsgjUo7t3AMb2hkw8HiU6CVQHY7fYGHKTqiUBUboD4TUJOc2tMhv7N2noBI8WNw7edQNhDXAkbAYgTNx0B988R4nV0eH130-l59wYKnwyQoPRmFghvrvJFK_CwRmVGZj5ihxAAPFRrJFanTZLFGDJTJfINCcKl8-x_CLZLbYLPFpDCbDFQiAwxNkCScFAd5Mgr1SOhDnRktEOUWk40v03uno5E2BLOb9GccUopD6uKwxXqN89NvuZHasv9nK9v_YmWHLdLIUQB32Wz5ODV7FpaUqlXlXYvNdU8G_SE9B-dXg3fiIOs5
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7RRS1cqtIW8Sh0Dj30kpJk4zg-rlag5bUnkLhFY6-zygqyPLKCH8APxxMn0IoeOHDMy7JnRuMvmm8-A_xyIUuhojRIUxkGSWJMoFIh3WVihLZZSI2U0uk4HZ0nRxfiYgmGXS8M0yrb3O9zepOt2zt7rTX3rsuSe3w5uCLexLk81v8Ay6xOlfRgeXB4PBo_FxNk6Pt1OCHzB5_g9wvNq5xx0rtySLVukKJlkdBY_Gkqsur_u9VfO9DBF_jcQkcc-NmtwZKtvsLHhsJp7r7B4wDr-3ng0N7UIstUuncrT_LGTjkcHURFngkWl4sHvFmQ5wo17kFuNUE9L7lDHcsrN84dMi9-ir4DHesO5TrMiFRNsFsMtodPTL_D-cH-2XAUtGcsBCbOojpQSSyFdfab6CwsMllYXYREBSmKqK_JKqFZoKZIDVGkbRFaklIoHbpfEeHA3Dr0qnllNwB1piKKbZRlgkUHRTaJzUSavimskURqE1Rny_zaS2nkHcdslr_2Q85-yL0fNmHYGT__Jzxyl_nfPMrWu4zyE1ZGZ6cn-cnh-HgbVvmJZwT-gF59u7A7DqXUereNwieBf-xH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-stage+neural+network+approach+for+heat+flux+quantification+from+boiling+images+using+vision+transformers+and+transfer+learning&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Wu%2C+Mengqi&rft.au=Gui%2C+Nan&rft.au=Chen%2C+Zeliang&rft.au=Yang%2C+Xingtuan&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.volume=245&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2025.127009&rft.externalDocID=S0017931025003503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon