Two-stage distributionally robust optimization for joint system design and maintenance scheduling in high-consequence systems
The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To protect high-consequence systems, both optimal system design and maintenance activities contribute to improving system reliability and social s...
Saved in:
Published in | IIE transactions Vol. 56; no. 8; pp. 793 - 810 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis Ltd
02.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To protect high-consequence systems, both optimal system design and maintenance activities contribute to improving system reliability and social safety. The existing works generally optimize these two problems sequentially and assume that the degradation process of components is precisely known. However, sequential optimization often results in significant losses due to redundancies, and such a presumption usually cannot be guaranteed in practice, due to limited historical data or a lack of expert knowledge, referred to as epistemic uncertainty. To fill this gap, in this article, we consider an integrated optimization of system design and maintenance scheduling for multi-state high-consequence systems in which the component’s degradation is known with limited distributional information. To address this issue, we utilize the framework of distributionally robust optimization to provide a risk-averse decision to decision-makers even under the worst realizations of random parameters, and develop a two-stage integer distributionally robust model with moment-based ambiguity set to determine the system design and maintenance scheduling simultaneously. The proposed model can be converted to a tractable approximation as an integer linear stochastic programming problem. In order to solve large-scale problems, we develop a sample-based adaptive large neighborhood search algorithm to find the optimal system designs. In the numerical experiments, we present a case study on feedwater heating systems in nuclear power plants and demonstrate that an integrated optimization consideration creates significant benefits in profitability. We also present the out-of-sample performance of the distributionally robust design to avoid extreme risk. |
---|---|
AbstractList | The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To protect high-consequence systems, both optimal system design and maintenance activities contribute to improving system reliability and social safety. The existing works generally optimize these two problems sequentially and assume that the degradation process of components is precisely known. However, sequential optimization often results in significant losses due to redundancies, and such a presumption usually cannot be guaranteed in practice, due to limited historical data or a lack of expert knowledge, referred to as epistemic uncertainty. To fill this gap, in this article, we consider an integrated optimization of system design and maintenance scheduling for multi-state high-consequence systems in which the component’s degradation is known with limited distributional information. To address this issue, we utilize the framework of distributionally robust optimization to provide a risk-averse decision to decision-makers even under the worst realizations of random parameters, and develop a two-stage integer distributionally robust model with moment-based ambiguity set to determine the system design and maintenance scheduling simultaneously. The proposed model can be converted to a tractable approximation as an integer linear stochastic programming problem. In order to solve large-scale problems, we develop a sample-based adaptive large neighborhood search algorithm to find the optimal system designs. In the numerical experiments, we present a case study on feedwater heating systems in nuclear power plants and demonstrate that an integrated optimization consideration creates significant benefits in profitability. We also present the out-of-sample performance of the distributionally robust design to avoid extreme risk. |
Author | Xie, Min Zhang, Chen Li, Yan-Fu Zhang, Hanxiao |
Author_xml | – sequence: 1 givenname: Hanxiao orcidid: 0000-0002-7452-8073 surname: Zhang fullname: Zhang, Hanxiao organization: Department of Systems Engineering, City University of Hong Kong, Hong Kong, China, Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong, China – sequence: 2 givenname: Yan-Fu surname: Li fullname: Li, Yan-Fu organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Min surname: Xie fullname: Xie, Min organization: Department of Systems Engineering, City University of Hong Kong, Hong Kong, China, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China – sequence: 4 givenname: Chen surname: Zhang fullname: Zhang, Chen organization: Department of Industrial Engineering, Tsinghua University, Beijing, China |
BookMark | eNqFUE1LAzEQDVLBWvsThIDnrcnsJpviScQvKHip5yXNR5uyTWqSRSr439226sGLc5nhzXvDvHeOBj54g9AlJRNKBLmGqgYmWDUBAuUEABiZ1idouMcLJjgMfmdWnaFxSmtCCK0ZI3w6RJ_z91CkLJcGa5dydIsuu-Bl2-5wDIsuZRy22W3ch9zj2IaI18H5jNMuZbPB2iS39Fh6jTeyx42XXhmc1MrornV-iZ3HK7dcFSr4ZN46c1gfxOkCnVrZJjP-7iP0-nA_v3sqZi-Pz3e3s0KBoLmYggHLraB8MbUcNFdCUlGX3FhludZKVMwSTQVoo4BrxQCMrZRmVC_KUpQjdHW8u42h_yDlZh262LtMTUkYp1D31bNujiwVQ0rR2Ea5fLCdo3RtQ0mzj7z5ibzZR958R96r2R_1NrqNjLt_dF8d1Ym8 |
CitedBy_id | crossref_primary_10_1080_0305215X_2024_2447078 |
Cites_doi | 10.1287/opre.2018.1729 10.1007/s10107-021-01641-2 10.1287/mnsc.2016.2621 10.1016/j.ress.2022.108340 10.1016/j.ejor.2019.01.038 10.1287/opre.2017.1688 10.1080/24725854.2020.1831712 10.1137/17M1115046 10.1016/j.ejor.2019.05.033 10.1002/qre.2136 10.1016/j.ejor.2018.10.008 10.1109/TR.2017.2715172 10.1080/24725854.2019.1672908 10.1080/24725854.2018.1437301 10.1287/opre.2017.1698 10.1016/j.cor.2017.03.003 10.1287/trsc.2021.1109 10.1016/j.ress.2019.106629 10.1016/j.ress.2021.108134 10.1137/19M1290115 10.1016/j.cie.2020.106889 10.1080/24725854.2021.1906467 10.1016/j.ress.2020.107253 10.1080/24725854.2022.2100523 10.1016/j.enconman.2016.01.027 10.1007/s10898-020-00986-w 10.1137/20M1370227 10.1016/j.fuel.2020.118577 10.1016/j.ejor.2021.06.033 10.1016/j.ejor.2021.09.004 10.1016/j.orl.2020.06.003 10.1016/j.ijpe.2017.08.003 10.1016/j.ress.2022.108564 10.1137/20M1378600 10.1016/j.cie.2017.01.019 10.1080/24725854.2019.1660831 10.1080/24725854.2022.2127164 |
ContentType | Journal Article |
Copyright | Copyright © 2023 “IISE” |
Copyright_xml | – notice: Copyright © 2023 “IISE” |
DBID | AAYXX CITATION 7TB 8FD FR3 |
DOI | 10.1080/24725854.2023.2225097 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2472-5862 |
EndPage | 810 |
ExternalDocumentID | 10_1080_24725854_2023_2225097 |
GroupedDBID | 0R~ 30N AAGDL AAHIA AAJMT AAPUL AAQRR AAYXX ABDBF ABJNI ABPAQ ABXUL ABXYU ACGFS ACIWK ACTIO ADGTB ADYSH AEISY AEOZL AEPSL AEYOC AFRVT AGDLA AIJEM AIYEW AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AWYRJ BLEHA CCCUG CITATION DGEBU DKSSO EBS EBU ESX GEVLZ H13 IPNFZ KYCEM LJTGL M4Z PQQKQ RIG RNANH ROSJB RTWRZ SNACF TDBHL TEN TFL TFT TFW TTHFI TUROJ UT3 ZGOLN -~X .7F .86 .QJ 0BK 29I 2DF 4.4 5GY 5VS 6TJ 7TB 85S 8FD 8VB AAENE ABFIM ABHAV ABPEM ABPPZ ACGEJ ACGFO ACNCT ADCVX ADXPE AEGXH AENEX AFKVX AHBYD AHDZW AIAGR AJWEG AVBZW CE4 CS3 EAP EBR EST E~A E~B FAC FJW FR3 GTTXZ HF~ HZ~ H~9 H~P I-F J.P NA5 O9- P2P QWB RNS RWL RXW S-T TAE TAJZE TN5 TNC TUS TWF U5U UPT UT5 UU3 WH7 ZL0 ~S~ |
ID | FETCH-LOGICAL-c281t-92e2f6f816b9f62d6c8a18736efcf6ddc845f0d182dec26dc522ef4cd51db3383 |
ISSN | 2472-5854 |
IngestDate | Sat Aug 23 12:25:56 EDT 2025 Tue Jul 01 04:14:53 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-92e2f6f816b9f62d6c8a18736efcf6ddc845f0d182dec26dc522ef4cd51db3383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7452-8073 |
PQID | 3056127777 |
PQPubID | 35122 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3056127777 crossref_citationtrail_10_1080_24725854_2023_2225097 crossref_primary_10_1080_24725854_2023_2225097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-02 |
PublicationDateYYYYMMDD | 2024-08-02 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | IIE transactions |
PublicationYear | 2024 |
Publisher | Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Ltd |
References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 Zhang N. (e_1_3_2_40_1) 2023 Langewiesche W. (e_1_3_2_21_1) 2019 Li J. (e_1_3_2_22_1) 2023 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 |
References_xml | – ident: e_1_3_2_18_1 doi: 10.1287/opre.2018.1729 – ident: e_1_3_2_24_1 doi: 10.1007/s10107-021-01641-2 – ident: e_1_3_2_20_1 doi: 10.1287/mnsc.2016.2621 – ident: e_1_3_2_23_1 doi: 10.1016/j.ress.2022.108340 – ident: e_1_3_2_12_1 doi: 10.1016/j.ejor.2019.01.038 – ident: e_1_3_2_26_1 doi: 10.1287/opre.2017.1688 – ident: e_1_3_2_17_1 doi: 10.1080/24725854.2020.1831712 – ident: e_1_3_2_7_1 doi: 10.1137/17M1115046 – ident: e_1_3_2_28_1 – ident: e_1_3_2_8_1 doi: 10.1016/j.ejor.2019.05.033 – ident: e_1_3_2_5_1 doi: 10.1002/qre.2136 – ident: e_1_3_2_27_1 doi: 10.1016/j.ejor.2018.10.008 – ident: e_1_3_2_11_1 doi: 10.1109/TR.2017.2715172 – ident: e_1_3_2_34_1 doi: 10.1080/24725854.2019.1672908 – ident: e_1_3_2_3_1 doi: 10.1080/24725854.2018.1437301 – ident: e_1_3_2_16_1 doi: 10.1287/opre.2017.1698 – ident: e_1_3_2_14_1 doi: 10.1016/j.cor.2017.03.003 – ident: e_1_3_2_33_1 doi: 10.1287/trsc.2021.1109 – ident: e_1_3_2_37_1 doi: 10.1016/j.ress.2019.106629 – ident: e_1_3_2_38_1 doi: 10.1016/j.ress.2021.108134 – ident: e_1_3_2_41_1 doi: 10.1137/19M1290115 – ident: e_1_3_2_42_1 doi: 10.1016/j.cie.2020.106889 – ident: e_1_3_2_6_1 doi: 10.1080/24725854.2021.1906467 – ident: e_1_3_2_35_1 doi: 10.1016/j.ress.2020.107253 – ident: e_1_3_2_19_1 doi: 10.1080/24725854.2022.2100523 – ident: e_1_3_2_4_1 doi: 10.1016/j.enconman.2016.01.027 – ident: e_1_3_2_9_1 doi: 10.1007/s10898-020-00986-w – ident: e_1_3_2_13_1 doi: 10.1137/20M1370227 – ident: e_1_3_2_25_1 doi: 10.1016/j.fuel.2020.118577 – ident: e_1_3_2_29_1 doi: 10.1016/j.ejor.2021.06.033 – ident: e_1_3_2_31_1 doi: 10.1016/j.ejor.2021.09.004 – ident: e_1_3_2_36_1 doi: 10.1016/j.orl.2020.06.003 – ident: e_1_3_2_30_1 doi: 10.1016/j.ijpe.2017.08.003 – ident: e_1_3_2_39_1 doi: 10.1016/j.ress.2022.108564 – ident: e_1_3_2_15_1 doi: 10.1137/20M1378600 – year: 2023 ident: e_1_3_2_40_1 article-title: Condition-based maintenance assessment for a deteriorating system considering stochastic failure dependence publication-title: IISE Transactions – ident: e_1_3_2_2_1 doi: 10.1016/j.cie.2017.01.019 – ident: e_1_3_2_10_1 doi: 10.1080/24725854.2019.1660831 – year: 2019 ident: e_1_3_2_21_1 article-title: What really brought down the Boeing 737 MAX publication-title: The New York Times Magazine – year: 2023 ident: e_1_3_2_22_1 article-title: Redundancy allocation under state-dependent distributional uncertainty of component lifetimes publication-title: Production and Operations Management – ident: e_1_3_2_32_1 doi: 10.1080/24725854.2022.2127164 |
SSID | ssj0001755069 ssj0007018 |
Score | 2.4180145 |
Snippet | The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 793 |
SubjectTerms | Adaptive sampling Degradation Design optimization Feedwater Maintenance management Nuclear power plants Nuclear safety Optimization Preventive maintenance Risk aversion Robust design Scheduling Search algorithms Stochastic programming System reliability Systems design |
Title | Two-stage distributionally robust optimization for joint system design and maintenance scheduling in high-consequence systems |
URI | https://www.proquest.com/docview/3056127777 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QUOiKcoLdUeuEVrbMf2OseqJEpRGy6OiLhY-xSpUhs1jihI_BD-LbPeteM0Fa-LFW20trzzeR67M98g9EZyzmigBkRzKok5mCNcxIIwP9SUJRLMuikUvpwmk1n0fh7Pe72fnayldcU98f3eupL_kSqMgVxNlew_SLa9KQzAb5AvXEHCcP07GX8tCXh3EPdLw3_rWlex5fJb_6bk61XVL0EjXLtSyzqj8KpcFJXjb-7LOn2jPj-4ZoY4oqgLCCDgBQO0dNUuhtCYiE3StZu86rq15-cj02yi6Tze-untdvSEFbcLVrY6hhVkvLZ7As3Y3J6UXC6Kndlnn13BmtueCKM6OW4TzGY7nUI66Uqg5MKIQjCcWiJpT3XHtrW0pR93aEw7KpfaDouN9bZJsjuGwWZSmjubh3mmabxnQl3fZgdvE3FPP-Tj2cVFno3m2R46CCECARV6cDp59-lja-apX28ety_QlIel_tt7H7Pt-Gzb_dqZyR6jRy4KwacWUk9QTxVP0cMON-Uz9KMFF74LLmzBhbvgwgAuXIMLW3xgCy4M4MIdcOENuPCiwHfB5SavnqPZeJSdTYjr1UFEmAYVGYYq1IlOg4QPdRLKRKQsSOkgUVroREqRRrH2JUSzUokwkQL8fqUjIeNAcrNN8gLtF2WhXiLMBpHWAWUmATlKlc95CD5lMow1TXnE1SGKmoXMhSOyN_1Ulnng-G6b9c_N-udu_Q-R1077Yplc_jThuJFS7j76VV5H3AAISl_9_u8j9GDzORyj_epmrV6D_1rxE7Q38KcnDk-_AP3Znxk |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+distributionally+robust+optimization+for+joint+system+design+and+maintenance+scheduling+in+high-consequence+systems&rft.jtitle=IIE+transactions&rft.au=Zhang%2C+Hanxiao&rft.au=Yan-Fu%2C+Li&rft.au=Xie%2C+Min&rft.au=Zhang%2C+Chen&rft.date=2024-08-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2472-5854&rft.eissn=2472-5862&rft.volume=56&rft.issue=8&rft.spage=793&rft.epage=810&rft_id=info:doi/10.1080%2F24725854.2023.2225097&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-5854&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-5854&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-5854&client=summon |