Two-stage distributionally robust optimization for joint system design and maintenance scheduling in high-consequence systems

The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To protect high-consequence systems, both optimal system design and maintenance activities contribute to improving system reliability and social s...

Full description

Saved in:
Bibliographic Details
Published inIIE transactions Vol. 56; no. 8; pp. 793 - 810
Main Authors Zhang, Hanxiao, Li, Yan-Fu, Xie, Min, Zhang, Chen
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis Ltd 02.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To protect high-consequence systems, both optimal system design and maintenance activities contribute to improving system reliability and social safety. The existing works generally optimize these two problems sequentially and assume that the degradation process of components is precisely known. However, sequential optimization often results in significant losses due to redundancies, and such a presumption usually cannot be guaranteed in practice, due to limited historical data or a lack of expert knowledge, referred to as epistemic uncertainty. To fill this gap, in this article, we consider an integrated optimization of system design and maintenance scheduling for multi-state high-consequence systems in which the component’s degradation is known with limited distributional information. To address this issue, we utilize the framework of distributionally robust optimization to provide a risk-averse decision to decision-makers even under the worst realizations of random parameters, and develop a two-stage integer distributionally robust model with moment-based ambiguity set to determine the system design and maintenance scheduling simultaneously. The proposed model can be converted to a tractable approximation as an integer linear stochastic programming problem. In order to solve large-scale problems, we develop a sample-based adaptive large neighborhood search algorithm to find the optimal system designs. In the numerical experiments, we present a case study on feedwater heating systems in nuclear power plants and demonstrate that an integrated optimization consideration creates significant benefits in profitability. We also present the out-of-sample performance of the distributionally robust design to avoid extreme risk.
AbstractList The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To protect high-consequence systems, both optimal system design and maintenance activities contribute to improving system reliability and social safety. The existing works generally optimize these two problems sequentially and assume that the degradation process of components is precisely known. However, sequential optimization often results in significant losses due to redundancies, and such a presumption usually cannot be guaranteed in practice, due to limited historical data or a lack of expert knowledge, referred to as epistemic uncertainty. To fill this gap, in this article, we consider an integrated optimization of system design and maintenance scheduling for multi-state high-consequence systems in which the component’s degradation is known with limited distributional information. To address this issue, we utilize the framework of distributionally robust optimization to provide a risk-averse decision to decision-makers even under the worst realizations of random parameters, and develop a two-stage integer distributionally robust model with moment-based ambiguity set to determine the system design and maintenance scheduling simultaneously. The proposed model can be converted to a tractable approximation as an integer linear stochastic programming problem. In order to solve large-scale problems, we develop a sample-based adaptive large neighborhood search algorithm to find the optimal system designs. In the numerical experiments, we present a case study on feedwater heating systems in nuclear power plants and demonstrate that an integrated optimization consideration creates significant benefits in profitability. We also present the out-of-sample performance of the distributionally robust design to avoid extreme risk.
Author Xie, Min
Zhang, Chen
Li, Yan-Fu
Zhang, Hanxiao
Author_xml – sequence: 1
  givenname: Hanxiao
  orcidid: 0000-0002-7452-8073
  surname: Zhang
  fullname: Zhang, Hanxiao
  organization: Department of Systems Engineering, City University of Hong Kong, Hong Kong, China, Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science Park, Hong Kong, China
– sequence: 2
  givenname: Yan-Fu
  surname: Li
  fullname: Li, Yan-Fu
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Min
  surname: Xie
  fullname: Xie, Min
  organization: Department of Systems Engineering, City University of Hong Kong, Hong Kong, China, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
– sequence: 4
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
BookMark eNqFUE1LAzEQDVLBWvsThIDnrcnsJpviScQvKHip5yXNR5uyTWqSRSr439226sGLc5nhzXvDvHeOBj54g9AlJRNKBLmGqgYmWDUBAuUEABiZ1idouMcLJjgMfmdWnaFxSmtCCK0ZI3w6RJ_z91CkLJcGa5dydIsuu-Bl2-5wDIsuZRy22W3ch9zj2IaI18H5jNMuZbPB2iS39Fh6jTeyx42XXhmc1MrornV-iZ3HK7dcFSr4ZN46c1gfxOkCnVrZJjP-7iP0-nA_v3sqZi-Pz3e3s0KBoLmYggHLraB8MbUcNFdCUlGX3FhludZKVMwSTQVoo4BrxQCMrZRmVC_KUpQjdHW8u42h_yDlZh262LtMTUkYp1D31bNujiwVQ0rR2Ea5fLCdo3RtQ0mzj7z5ibzZR958R96r2R_1NrqNjLt_dF8d1Ym8
CitedBy_id crossref_primary_10_1080_0305215X_2024_2447078
Cites_doi 10.1287/opre.2018.1729
10.1007/s10107-021-01641-2
10.1287/mnsc.2016.2621
10.1016/j.ress.2022.108340
10.1016/j.ejor.2019.01.038
10.1287/opre.2017.1688
10.1080/24725854.2020.1831712
10.1137/17M1115046
10.1016/j.ejor.2019.05.033
10.1002/qre.2136
10.1016/j.ejor.2018.10.008
10.1109/TR.2017.2715172
10.1080/24725854.2019.1672908
10.1080/24725854.2018.1437301
10.1287/opre.2017.1698
10.1016/j.cor.2017.03.003
10.1287/trsc.2021.1109
10.1016/j.ress.2019.106629
10.1016/j.ress.2021.108134
10.1137/19M1290115
10.1016/j.cie.2020.106889
10.1080/24725854.2021.1906467
10.1016/j.ress.2020.107253
10.1080/24725854.2022.2100523
10.1016/j.enconman.2016.01.027
10.1007/s10898-020-00986-w
10.1137/20M1370227
10.1016/j.fuel.2020.118577
10.1016/j.ejor.2021.06.033
10.1016/j.ejor.2021.09.004
10.1016/j.orl.2020.06.003
10.1016/j.ijpe.2017.08.003
10.1016/j.ress.2022.108564
10.1137/20M1378600
10.1016/j.cie.2017.01.019
10.1080/24725854.2019.1660831
10.1080/24725854.2022.2127164
ContentType Journal Article
Copyright Copyright © 2023 “IISE”
Copyright_xml – notice: Copyright © 2023 “IISE”
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1080/24725854.2023.2225097
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2472-5862
EndPage 810
ExternalDocumentID 10_1080_24725854_2023_2225097
GroupedDBID 0R~
30N
AAGDL
AAHIA
AAJMT
AAPUL
AAQRR
AAYXX
ABDBF
ABJNI
ABPAQ
ABXUL
ABXYU
ACGFS
ACIWK
ACTIO
ADGTB
ADYSH
AEISY
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AIJEM
AIYEW
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AWYRJ
BLEHA
CCCUG
CITATION
DGEBU
DKSSO
EBS
EBU
ESX
GEVLZ
H13
IPNFZ
KYCEM
LJTGL
M4Z
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
SNACF
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
UT3
ZGOLN
-~X
.7F
.86
.QJ
0BK
29I
2DF
4.4
5GY
5VS
6TJ
7TB
85S
8FD
8VB
AAENE
ABFIM
ABHAV
ABPEM
ABPPZ
ACGEJ
ACGFO
ACNCT
ADCVX
ADXPE
AEGXH
AENEX
AFKVX
AHBYD
AHDZW
AIAGR
AJWEG
AVBZW
CE4
CS3
EAP
EBR
EST
E~A
E~B
FAC
FJW
FR3
GTTXZ
HF~
HZ~
H~9
H~P
I-F
J.P
NA5
O9-
P2P
QWB
RNS
RWL
RXW
S-T
TAE
TAJZE
TN5
TNC
TUS
TWF
U5U
UPT
UT5
UU3
WH7
ZL0
~S~
ID FETCH-LOGICAL-c281t-92e2f6f816b9f62d6c8a18736efcf6ddc845f0d182dec26dc522ef4cd51db3383
ISSN 2472-5854
IngestDate Sat Aug 23 12:25:56 EDT 2025
Tue Jul 01 04:14:53 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-92e2f6f816b9f62d6c8a18736efcf6ddc845f0d182dec26dc522ef4cd51db3383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7452-8073
PQID 3056127777
PQPubID 35122
PageCount 18
ParticipantIDs proquest_journals_3056127777
crossref_citationtrail_10_1080_24725854_2023_2225097
crossref_primary_10_1080_24725854_2023_2225097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-02
PublicationDateYYYYMMDD 2024-08-02
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle IIE transactions
PublicationYear 2024
Publisher Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Ltd
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
e_1_3_2_42_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
Zhang N. (e_1_3_2_40_1) 2023
Langewiesche W. (e_1_3_2_21_1) 2019
Li J. (e_1_3_2_22_1) 2023
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
References_xml – ident: e_1_3_2_18_1
  doi: 10.1287/opre.2018.1729
– ident: e_1_3_2_24_1
  doi: 10.1007/s10107-021-01641-2
– ident: e_1_3_2_20_1
  doi: 10.1287/mnsc.2016.2621
– ident: e_1_3_2_23_1
  doi: 10.1016/j.ress.2022.108340
– ident: e_1_3_2_12_1
  doi: 10.1016/j.ejor.2019.01.038
– ident: e_1_3_2_26_1
  doi: 10.1287/opre.2017.1688
– ident: e_1_3_2_17_1
  doi: 10.1080/24725854.2020.1831712
– ident: e_1_3_2_7_1
  doi: 10.1137/17M1115046
– ident: e_1_3_2_28_1
– ident: e_1_3_2_8_1
  doi: 10.1016/j.ejor.2019.05.033
– ident: e_1_3_2_5_1
  doi: 10.1002/qre.2136
– ident: e_1_3_2_27_1
  doi: 10.1016/j.ejor.2018.10.008
– ident: e_1_3_2_11_1
  doi: 10.1109/TR.2017.2715172
– ident: e_1_3_2_34_1
  doi: 10.1080/24725854.2019.1672908
– ident: e_1_3_2_3_1
  doi: 10.1080/24725854.2018.1437301
– ident: e_1_3_2_16_1
  doi: 10.1287/opre.2017.1698
– ident: e_1_3_2_14_1
  doi: 10.1016/j.cor.2017.03.003
– ident: e_1_3_2_33_1
  doi: 10.1287/trsc.2021.1109
– ident: e_1_3_2_37_1
  doi: 10.1016/j.ress.2019.106629
– ident: e_1_3_2_38_1
  doi: 10.1016/j.ress.2021.108134
– ident: e_1_3_2_41_1
  doi: 10.1137/19M1290115
– ident: e_1_3_2_42_1
  doi: 10.1016/j.cie.2020.106889
– ident: e_1_3_2_6_1
  doi: 10.1080/24725854.2021.1906467
– ident: e_1_3_2_35_1
  doi: 10.1016/j.ress.2020.107253
– ident: e_1_3_2_19_1
  doi: 10.1080/24725854.2022.2100523
– ident: e_1_3_2_4_1
  doi: 10.1016/j.enconman.2016.01.027
– ident: e_1_3_2_9_1
  doi: 10.1007/s10898-020-00986-w
– ident: e_1_3_2_13_1
  doi: 10.1137/20M1370227
– ident: e_1_3_2_25_1
  doi: 10.1016/j.fuel.2020.118577
– ident: e_1_3_2_29_1
  doi: 10.1016/j.ejor.2021.06.033
– ident: e_1_3_2_31_1
  doi: 10.1016/j.ejor.2021.09.004
– ident: e_1_3_2_36_1
  doi: 10.1016/j.orl.2020.06.003
– ident: e_1_3_2_30_1
  doi: 10.1016/j.ijpe.2017.08.003
– ident: e_1_3_2_39_1
  doi: 10.1016/j.ress.2022.108564
– ident: e_1_3_2_15_1
  doi: 10.1137/20M1378600
– year: 2023
  ident: e_1_3_2_40_1
  article-title: Condition-based maintenance assessment for a deteriorating system considering stochastic failure dependence
  publication-title: IISE Transactions
– ident: e_1_3_2_2_1
  doi: 10.1016/j.cie.2017.01.019
– ident: e_1_3_2_10_1
  doi: 10.1080/24725854.2019.1660831
– year: 2019
  ident: e_1_3_2_21_1
  article-title: What really brought down the Boeing 737 MAX
  publication-title: The New York Times Magazine
– year: 2023
  ident: e_1_3_2_22_1
  article-title: Redundancy allocation under state-dependent distributional uncertainty of component lifetimes
  publication-title: Production and Operations Management
– ident: e_1_3_2_32_1
  doi: 10.1080/24725854.2022.2127164
SSID ssj0001755069
ssj0007018
Score 2.4180145
Snippet The failures of high-consequence systems can cause serious harm to humans, including loss of human health, life security, finance, and even social chaos. To...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 793
SubjectTerms Adaptive sampling
Degradation
Design optimization
Feedwater
Maintenance management
Nuclear power plants
Nuclear safety
Optimization
Preventive maintenance
Risk aversion
Robust design
Scheduling
Search algorithms
Stochastic programming
System reliability
Systems design
Title Two-stage distributionally robust optimization for joint system design and maintenance scheduling in high-consequence systems
URI https://www.proquest.com/docview/3056127777
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l7QUOiKcoLdUeuEVrbMf2OseqJEpRGy6OiLhY-xSpUhs1jihI_BD-LbPeteM0Fa-LFW20trzzeR67M98g9EZyzmigBkRzKok5mCNcxIIwP9SUJRLMuikUvpwmk1n0fh7Pe72fnayldcU98f3eupL_kSqMgVxNlew_SLa9KQzAb5AvXEHCcP07GX8tCXh3EPdLw3_rWlex5fJb_6bk61XVL0EjXLtSyzqj8KpcFJXjb-7LOn2jPj-4ZoY4oqgLCCDgBQO0dNUuhtCYiE3StZu86rq15-cj02yi6Tze-untdvSEFbcLVrY6hhVkvLZ7As3Y3J6UXC6Kndlnn13BmtueCKM6OW4TzGY7nUI66Uqg5MKIQjCcWiJpT3XHtrW0pR93aEw7KpfaDouN9bZJsjuGwWZSmjubh3mmabxnQl3fZgdvE3FPP-Tj2cVFno3m2R46CCECARV6cDp59-lja-apX28ety_QlIel_tt7H7Pt-Gzb_dqZyR6jRy4KwacWUk9QTxVP0cMON-Uz9KMFF74LLmzBhbvgwgAuXIMLW3xgCy4M4MIdcOENuPCiwHfB5SavnqPZeJSdTYjr1UFEmAYVGYYq1IlOg4QPdRLKRKQsSOkgUVroREqRRrH2JUSzUokwkQL8fqUjIeNAcrNN8gLtF2WhXiLMBpHWAWUmATlKlc95CD5lMow1TXnE1SGKmoXMhSOyN_1Ulnng-G6b9c_N-udu_Q-R1077Yplc_jThuJFS7j76VV5H3AAISl_9_u8j9GDzORyj_epmrV6D_1rxE7Q38KcnDk-_AP3Znxk
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+distributionally+robust+optimization+for+joint+system+design+and+maintenance+scheduling+in+high-consequence+systems&rft.jtitle=IIE+transactions&rft.au=Zhang%2C+Hanxiao&rft.au=Yan-Fu%2C+Li&rft.au=Xie%2C+Min&rft.au=Zhang%2C+Chen&rft.date=2024-08-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2472-5854&rft.eissn=2472-5862&rft.volume=56&rft.issue=8&rft.spage=793&rft.epage=810&rft_id=info:doi/10.1080%2F24725854.2023.2225097&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-5854&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-5854&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-5854&client=summon