Three multi-responsive luminescent Zn-CPs for the detection of antibiotics/cations/anions in aqueous media

Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn 1 (L)(4,4′-bbibp)]-[Zn 2 (L)(4,4′-bbibp)]} n [ YMUN 6 (for Youjiang Medical University for...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 25; no. 4; pp. 593 - 6
Main Authors Fan, Chuanbin, Huang, Guimei, Xing, Zhiyong, Wang, Junli, Pang, Yaqin, Huang, Qingping, Huang, Shifu, Zong, Ziao, Guo, Feng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 23.01.2023
Subjects
Online AccessGet full text
ISSN1466-8033
1466-8033
DOI10.1039/d2ce01507b

Cover

Loading…
Abstract Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn 1 (L)(4,4′-bbibp)]-[Zn 2 (L)(4,4′-bbibp)]} n [ YMUN 6 (for Youjiang Medical University for Nationalities)], [Zn(L)(1,4-bimb)] n ( YMUN 7 ), and [Zn(L)(4,4′-bidpe)] n ( YMUN 8 ), were fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H 2 L) and different imidazole ligands [4,4′-bbibp = 4,4′-bis(benzimidazol-1-yl)biphenyl, 1,4-bimb = 1,4-bis(imidazol-1ylmethyl)benzene, 4,4′-bidpe = 4,4′-bis(imidazolyl)diphenyl ether] using solvothermal conditions. They were characterized using X-ray diffraction (XRD), infrared (IR), thermogravimetric (TG), powder X-ray diffraction (PXRD), and photoluminescence (PL) spectroscopic techniques. YMUN 6 possessed the "ABAB" interpenetrating 2D complanate structure. YMUN 7 showed a three-interpenetrating 2D network. YMUN 8 displayed a hcb 3-connected 3-fold interpenetrated 2D network. Photoluminescent properties of YMUN 6-8 were investigated, and 6-8 served as "turn off" sensors that could detect chlortetracycline ( Chl ), Ag + , and Cr 2 O 7 2− in an aqueous solution with simultaneous high efficiency and sensitivity. Notably, the investigation of Ag + sensing was most focused on lanthanide metal LCPs, and Zn-LCPs have rarely been reported in this direction. Furthermore, selectivity and recyclability were also investigated. The designed synthesized route of YMUN 6-8 .
AbstractList Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn 1 (L)(4,4′-bbibp)]-[Zn 2 (L)(4,4′-bbibp)]} n [ YMUN 6 (for Youjiang Medical University for Nationalities)], [Zn(L)(1,4-bimb)] n ( YMUN 7 ), and [Zn(L)(4,4′-bidpe)] n ( YMUN 8 ), were fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H 2 L) and different imidazole ligands [4,4′-bbibp = 4,4′-bis(benzimidazol-1-yl)biphenyl, 1,4-bimb = 1,4-bis(imidazol-1ylmethyl)benzene, 4,4′-bidpe = 4,4′-bis(imidazolyl)diphenyl ether] using solvothermal conditions. They were characterized using X-ray diffraction (XRD), infrared (IR), thermogravimetric (TG), powder X-ray diffraction (PXRD), and photoluminescence (PL) spectroscopic techniques. YMUN 6 possessed the "ABAB" interpenetrating 2D complanate structure. YMUN 7 showed a three-interpenetrating 2D network. YMUN 8 displayed a hcb 3-connected 3-fold interpenetrated 2D network. Photoluminescent properties of YMUN 6-8 were investigated, and 6-8 served as "turn off" sensors that could detect chlortetracycline ( Chl ), Ag + , and Cr 2 O 7 2− in an aqueous solution with simultaneous high efficiency and sensitivity. Notably, the investigation of Ag + sensing was most focused on lanthanide metal LCPs, and Zn-LCPs have rarely been reported in this direction. Furthermore, selectivity and recyclability were also investigated. The designed synthesized route of YMUN 6-8 .
Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn1(L)(4,4′-bbibp)]–[Zn2(L)(4,4′-bbibp)]}n [YMUN6 (for Youjiang Medical University for Nationalities)], [Zn(L)(1,4-bimb)]n (YMUN7), and [Zn(L)(4,4′-bidpe)]n (YMUN8), were fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H2L) and different imidazole ligands [4,4′-bbibp = 4,4′-bis(benzimidazol-1-yl)biphenyl, 1,4-bimb = 1,4-bis(imidazol-1ylmethyl)benzene, 4,4′-bidpe = 4,4′-bis(imidazolyl)diphenyl ether] using solvothermal conditions. They were characterized using X-ray diffraction (XRD), infrared (IR), thermogravimetric (TG), powder X-ray diffraction (PXRD), and photoluminescence (PL) spectroscopic techniques. YMUN6 possessed the “ABAB” interpenetrating 2D complanate structure. YMUN7 showed a three-interpenetrating 2D network. YMUN8 displayed a hcb 3-connected 3-fold interpenetrated 2D network. Photoluminescent properties of YMUN6–8 were investigated, and 6–8 served as “turn off” sensors that could detect chlortetracycline (Chl), Ag+, and Cr2O72− in an aqueous solution with simultaneous high efficiency and sensitivity. Notably, the investigation of Ag+ sensing was most focused on lanthanide metal LCPs, and Zn-LCPs have rarely been reported in this direction. Furthermore, selectivity and recyclability were also investigated.
Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn 1 (L)(4,4′-bbibp)]–[Zn 2 (L)(4,4′-bbibp)]} n [ YMUN 6 (for Youjiang Medical University for Nationalities)], [Zn(L)(1,4-bimb)] n ( YMUN 7), and [Zn(L)(4,4′-bidpe)] n ( YMUN 8), were fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H 2 L) and different imidazole ligands [4,4′-bbibp = 4,4′-bis(benzimidazol-1-yl)biphenyl, 1,4-bimb = 1,4-bis(imidazol-1ylmethyl)benzene, 4,4′-bidpe = 4,4′-bis(imidazolyl)diphenyl ether] using solvothermal conditions. They were characterized using X-ray diffraction (XRD), infrared (IR), thermogravimetric (TG), powder X-ray diffraction (PXRD), and photoluminescence (PL) spectroscopic techniques. YMUN 6 possessed the “ABAB” interpenetrating 2D complanate structure. YMUN 7 showed a three-interpenetrating 2D network. YMUN 8 displayed a hcb 3-connected 3-fold interpenetrated 2D network. Photoluminescent properties of YMUN 6–8 were investigated, and 6–8 served as “turn off” sensors that could detect chlortetracycline ( Chl ), Ag + , and Cr 2 O 7 2− in an aqueous solution with simultaneous high efficiency and sensitivity. Notably, the investigation of Ag + sensing was most focused on lanthanide metal LCPs, and Zn-LCPs have rarely been reported in this direction. Furthermore, selectivity and recyclability were also investigated.
Author Huang, Shifu
Huang, Qingping
Xing, Zhiyong
Huang, Guimei
Fan, Chuanbin
Zong, Ziao
Guo, Feng
Wang, Junli
Pang, Yaqin
AuthorAffiliation Industrial College of Biomedicine and Health Industry
School of Laboratory Medicine
Guangxi Normal University
School of Chemistry and Pharmaceutical Sciences
Youjiang Medical University for Nationalities
AuthorAffiliation_xml – sequence: 0
  name: School of Laboratory Medicine
– sequence: 0
  name: Industrial College of Biomedicine and Health Industry
– sequence: 0
  name: School of Chemistry and Pharmaceutical Sciences
– sequence: 0
  name: Youjiang Medical University for Nationalities
– sequence: 0
  name: Guangxi Normal University
Author_xml – sequence: 1
  givenname: Chuanbin
  surname: Fan
  fullname: Fan, Chuanbin
– sequence: 2
  givenname: Guimei
  surname: Huang
  fullname: Huang, Guimei
– sequence: 3
  givenname: Zhiyong
  surname: Xing
  fullname: Xing, Zhiyong
– sequence: 4
  givenname: Junli
  surname: Wang
  fullname: Wang, Junli
– sequence: 5
  givenname: Yaqin
  surname: Pang
  fullname: Pang, Yaqin
– sequence: 6
  givenname: Qingping
  surname: Huang
  fullname: Huang, Qingping
– sequence: 7
  givenname: Shifu
  surname: Huang
  fullname: Huang, Shifu
– sequence: 8
  givenname: Ziao
  surname: Zong
  fullname: Zong, Ziao
– sequence: 9
  givenname: Feng
  surname: Guo
  fullname: Guo, Feng
BookMark eNptkU1LAzEQhoMo2FYv3oWAN2FtstnN7h611g8o6KFevCzZ7ISm7CY1yQr-e9NWVMTTDMMz8847M0aHxhpA6IySK0pYNW1TCYTmpGgO0IhmnCclYezwV36Mxt6vCaEZpWSE1suVA8D90AWdOPAba7x-B9wNvTbgJZiAX00ye_ZYWYfDCnALAWTQ1mCrsDBBN9oGLf1Uim3VT4XZBqwNFm8D2MHjHlotTtCREp2H0684QS938-XsIVk83T_OrheJTEsakiqthJJty-OOtGpFyQvKiiqPzrKcCcIUYzmVTcpbYIw1CoTiRGVFWVW5jMgEXeznbpyN-j7Uazs4EyXrtOBlymnUiRTZU9JZ7x2oWuqwMxCc0F1NSb29aH2bzua7i97Elss_LRune-E-_ofP97Dz8pv7eQ_7BFKCgtY
CitedBy_id crossref_primary_10_1016_j_inoche_2024_113354
crossref_primary_10_1039_D3CE00135K
crossref_primary_10_3390_polym15071803
crossref_primary_10_1016_j_molstruc_2024_139339
crossref_primary_10_1016_j_poly_2023_116684
crossref_primary_10_1021_acs_inorgchem_4c02795
crossref_primary_10_1021_acs_cgd_4c00161
crossref_primary_10_1016_j_inoche_2023_111108
Cites_doi 10.1021/acs.analchem.9b00319
10.1039/C8NJ02338G
10.1021/acs.cgd.0c01221
10.1021/acs.cgd.9b01448
10.1021/acs.cgd.1c00359
10.1107/S1600576714022985
10.1016/j.ccr.2020.213299
10.1021/acs.inorgchem.2c02195
10.1002/jat.2907
10.1039/C9CS00778D
10.1021/acs.cgd.0c01018
10.1016/j.cej.2021.130942
10.1016/j.talanta.2019.120297
10.1002/smll.202005327
10.1016/j.ccr.2019.02.033
10.1021/acs.cgd.2c00080
10.1016/j.ccr.2022.214759
10.1002/aoc.5977
10.1107/S2053229614024218
10.1021/acsmaterialslett.0c00456
10.1021/acs.inorgchem.1c02499
10.1007/s00604-022-05183-y
10.1021/acs.inorgchem.2c01517
10.1039/C4CS00285G
10.1002/admi.202000813
10.1021/acsomega.0c05867
10.1039/D0CE01619E
10.1038/s41598-022-15663-z
10.1016/j.ccr.2021.214260
10.1039/C4TA03990D
10.1039/D2CE00057A
10.1021/acs.inorgchem.8b00272
10.1039/D0CS01236J
10.1021/acs.cgd.2c00398
10.1016/j.microc.2020.105880
10.1021/acs.inorgchem.9b03152
10.1021/acs.inorgchem.0c03268
10.1039/C9CE01166H
10.1016/j.jpba.2020.113444
10.1007/s10311-020-01119-1
10.1039/C7CS00614D
10.1002/aoc.6456
10.1039/D0CE01268H
10.1016/j.microc.2021.106658
10.1126/science.1230444
10.1039/C8TA11596F
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d2ce01507b
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 6
ExternalDocumentID 10_1039_D2CE01507B
d2ce01507b
GroupedDBID -JG
0-7
0R~
29F
5GY
6J9
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
R56
7U5
8FD
L7M
ID FETCH-LOGICAL-c281t-929afcdd600119da867137952ce453a03f3351cb26de333bfeaf60f478995c453
ISSN 1466-8033
IngestDate Mon Jun 30 03:33:34 EDT 2025
Tue Jul 01 02:07:34 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Dec 17 20:59:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-929afcdd600119da867137952ce453a03f3351cb26de333bfeaf60f478995c453
Notes Electronic supplementary information (ESI) available. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
https://doi.org/10.1039/d2ce01507b
2217153-2217155
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0945-8435
0000-0003-2084-8909
PQID 2768261281
PQPubID 2047491
PageCount 8
ParticipantIDs proquest_journals_2768261281
crossref_citationtrail_10_1039_D2CE01507B
crossref_primary_10_1039_D2CE01507B
rsc_primary_d2ce01507b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-23
PublicationDateYYYYMMDD 2023-01-23
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-23
  day: 23
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wei (D2CE01507B/cit25/1) 2020; 22
Wen (D2CE01507B/cit29/1) 2019; 7
Liu (D2CE01507B/cit18/1) 2021; 21
Chen (D2CE01507B/cit31/1) 2021; 21
Xiao (D2CE01507B/cit26/1) 2020; 49
Wang (D2CE01507B/cit32/1) 2021; 60
Zhu (D2CE01507B/cit5/1) 2015; 44
Sun (D2CE01507B/cit37/1) 2020; 3
Shao (D2CE01507B/cit20/1) 2022; 24
Yu (D2CE01507B/cit13/1) 2020; 207
Liu (D2CE01507B/cit30/1) 2020; 7
Cai (D2CE01507B/cit44/1) 2022; 61
Shi (D2CE01507B/cit19/1) 2021; 23
Zhu (D2CE01507B/cit46/1) 2021; 162
Liu (D2CE01507B/cit15/1) 2021; 170
Fan (D2CE01507B/cit45/1) 2020; 188
Fu (D2CE01507B/cit43/1) 2021; 60
Tian (D2CE01507B/cit40/1) 2020; 59
Mu (D2CE01507B/cit8/1) 2020; 20
Zhang (D2CE01507B/cit21/1) 2021; 6
Liu (D2CE01507B/cit27/1) 2021; 50
Thompson (D2CE01507B/cit1/1) 2014; 34
Chand (D2CE01507B/cit39/1) 2018; 42
Deng (D2CE01507B/cit17/1) 2019; 21
Han (D2CE01507B/cit28/1) 2022; 471
Liu (D2CE01507B/cit24/1) 2020; 20
Furukawa (D2CE01507B/cit22/1) 2013; 341
Yu (D2CE01507B/cit14/1) 2019; 91
Razavi (D2CE01507B/cit9/1) 2020; 415
Li (D2CE01507B/cit23/1) 2019; 388
Jiao (D2CE01507B/cit7/1) 2022; 189
López (D2CE01507B/cit2/1) 2021; 19
Yang (D2CE01507B/cit6/1) 2021; 17
Hao (D2CE01507B/cit16/1) 2014; 2
Wu (D2CE01507B/cit3/1) 2022; 451
Sheldrick (D2CE01507B/cit42/1) 2015; 71
Liu (D2CE01507B/cit12/1) 2021; 36
Rozenberga (D2CE01507B/cit33/1) 2022; 12
Kang (D2CE01507B/cit4/1) 2022; 427
Wang (D2CE01507B/cit38/1) 2018; 57
Krause (D2CE01507B/cit41/1) 2015; 48
Wang (D2CE01507B/cit34/1) 2022; 22
Wang (D2CE01507B/cit11/1) 2020; 34
Li (D2CE01507B/cit10/1) 2020; 49
Qin (D2CE01507B/cit36/1) 2022; 61
Qin (D2CE01507B/cit35/1) 2022; 22
References_xml – volume: 91
  start-page: 5913
  year: 2019
  ident: D2CE01507B/cit14/1
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b00319
– volume: 42
  start-page: 12865
  year: 2018
  ident: D2CE01507B/cit39/1
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ02338G
– volume: 21
  start-page: 869
  year: 2021
  ident: D2CE01507B/cit31/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01221
– volume: 20
  start-page: 1130
  year: 2020
  ident: D2CE01507B/cit8/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b01448
– volume: 21
  start-page: 5558
  year: 2021
  ident: D2CE01507B/cit18/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.1c00359
– volume: 48
  start-page: 3
  year: 2015
  ident: D2CE01507B/cit41/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576714022985
– volume: 415
  start-page: 213299
  year: 2020
  ident: D2CE01507B/cit9/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213299
– volume: 61
  start-page: 14770
  year: 2022
  ident: D2CE01507B/cit44/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c02195
– volume: 34
  start-page: 525
  year: 2014
  ident: D2CE01507B/cit1/1
  publication-title: J. Appl. Toxicol.
  doi: 10.1002/jat.2907
– volume: 49
  start-page: 6364
  year: 2020
  ident: D2CE01507B/cit10/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00778D
– volume: 20
  start-page: 7350
  year: 2020
  ident: D2CE01507B/cit24/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01018
– volume: 427
  start-page: 130942
  year: 2022
  ident: D2CE01507B/cit4/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130942
– volume: 207
  start-page: 120297
  year: 2020
  ident: D2CE01507B/cit13/1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.120297
– volume: 17
  start-page: e2005327
  year: 2021
  ident: D2CE01507B/cit6/1
  publication-title: Small
  doi: 10.1002/smll.202005327
– volume: 388
  start-page: 79
  year: 2019
  ident: D2CE01507B/cit23/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.02.033
– volume: 22
  start-page: 3719
  year: 2022
  ident: D2CE01507B/cit34/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.2c00080
– volume: 471
  start-page: 214759
  year: 2022
  ident: D2CE01507B/cit28/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214759
– volume: 34
  start-page: 5977
  year: 2020
  ident: D2CE01507B/cit11/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.5977
– volume: 71
  start-page: 3
  year: 2015
  ident: D2CE01507B/cit42/1
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
  doi: 10.1107/S2053229614024218
– volume: 3
  start-page: 64
  year: 2020
  ident: D2CE01507B/cit37/1
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.0c00456
– volume: 60
  start-page: 17926
  year: 2021
  ident: D2CE01507B/cit32/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c02499
– volume: 189
  start-page: 78
  year: 2022
  ident: D2CE01507B/cit7/1
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-022-05183-y
– volume: 61
  start-page: 13234
  year: 2022
  ident: D2CE01507B/cit36/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c01517
– volume: 44
  start-page: 4337
  year: 2015
  ident: D2CE01507B/cit5/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00285G
– volume: 7
  start-page: 2000813
  year: 2020
  ident: D2CE01507B/cit30/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202000813
– volume: 6
  start-page: 6810
  issue: 10
  year: 2021
  ident: D2CE01507B/cit21/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c05867
– volume: 23
  start-page: 1604
  year: 2021
  ident: D2CE01507B/cit19/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01619E
– volume: 12
  start-page: 11982
  year: 2022
  ident: D2CE01507B/cit33/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-15663-z
– volume: 451
  start-page: 214260
  year: 2022
  ident: D2CE01507B/cit3/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214260
– volume: 2
  start-page: 18018
  year: 2014
  ident: D2CE01507B/cit16/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03990D
– volume: 24
  start-page: 2479
  year: 2022
  ident: D2CE01507B/cit20/1
  publication-title: CrystEngComm
  doi: 10.1039/D2CE00057A
– volume: 57
  start-page: 5232
  year: 2018
  ident: D2CE01507B/cit38/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00272
– volume: 50
  start-page: 5706
  year: 2021
  ident: D2CE01507B/cit27/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01236J
– volume: 22
  start-page: 4018
  year: 2022
  ident: D2CE01507B/cit35/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.2c00398
– volume: 162
  start-page: 105880
  year: 2021
  ident: D2CE01507B/cit46/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2020.105880
– volume: 59
  start-page: 2803
  year: 2020
  ident: D2CE01507B/cit40/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03152
– volume: 60
  start-page: 1116
  year: 2021
  ident: D2CE01507B/cit43/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c03268
– volume: 21
  start-page: 6056
  year: 2019
  ident: D2CE01507B/cit17/1
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01166H
– volume: 188
  start-page: 113444
  year: 2020
  ident: D2CE01507B/cit45/1
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2020.113444
– volume: 19
  start-page: 1295
  year: 2021
  ident: D2CE01507B/cit2/1
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-020-01119-1
– volume: 49
  start-page: 301
  year: 2020
  ident: D2CE01507B/cit26/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00614D
– volume: 36
  start-page: 6456
  year: 2021
  ident: D2CE01507B/cit12/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.6456
– volume: 22
  start-page: 7538
  year: 2020
  ident: D2CE01507B/cit25/1
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01268H
– volume: 170
  start-page: 106658
  year: 2021
  ident: D2CE01507B/cit15/1
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2021.106658
– volume: 341
  start-page: 1230444
  year: 2013
  ident: D2CE01507B/cit22/1
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 7
  start-page: 3128
  year: 2019
  ident: D2CE01507B/cit29/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11596F
SSID ssj0014110
Score 2.4305146
Snippet Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 593
SubjectTerms Antibiotics
Aqueous solutions
Benzene
Coordination polymers
Dicarboxylic acids
Environmental protection
Hydrocarbons
Imidazole
Investigations
Photoluminescence
Pollutants
Recyclability
Selectivity
X ray powder diffraction
X-ray diffraction
Zinc
Title Three multi-responsive luminescent Zn-CPs for the detection of antibiotics/cations/anions in aqueous media
URI https://www.proquest.com/docview/2768261281
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gKHilfFloIswQVVbhM_st1jWbYUBIjDVlr1EtnJGIJKFmWzSOXXM3acB2iRgEsUOU6k-HPsmck33xDy3ALgPqFiFsegmDRGM8MnmiWRAMUVSOPL-bz_kFxcyrdLtezLW_nsktocZz-25pX8D6rYhri6LNl_QLZ7KDbgOeKLR0QYj3-JcQXQcAJZFciu3-EI1xtHZne8y6Orks0-rjsyYQ41ZK2RiINamGJVe67QeYjdeUXfll-ucddwHFmfXzK0Y2fVzbqel59cfkk3BXT4gb_RpSnKfsKEkPTrTfEVirZ5GYqpXH0ublZh-_SB_UAR3pTXxTAkwR0hizVZw8fQLKMycTLHjcRFu842Cc5hPsnBoqmmYrD_JlsX9kg4XdScZ-BCNBPTb18dqbC_uEN2OXoN0Yjsns0Xb951v5UkGjutRq2YnvR3_GqV9K7GTtXWgfH2xuIu2QuOAj1rUL9HbkF5n9wZyEc-IF88_vR3_OkAf9rgTxF_ivjTDn-6snSA_0nLYWiwp0VJA_bUY_-QXJ7PF7MLFmpnsIyfxjVDq1fbLM8TL-qXaydjKCZThW8sldCRsEKoODM8yUEIYSxom0RWTtD_Vhl22SejclXCI0KdXW3x-wXLjYxza5JEO9ddQGyEzMWYvGjHLs2CsLyrb3KdeoKDmKav-Gzux_nlmDzr-n5r5FS29jpsIUjD57ZOOTrGTu_uNB6TfYSlu79H8eBPFx6T2_08PSSjutrAEzQma_M0TJGfxgh6pw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+multi-responsive+luminescent+Zn-CPs+for+the+detection+of+antibiotics%2Fcations%2Fanions+in+aqueous+media&rft.jtitle=CrystEngComm&rft.au=Fan%2C+Chuanbin&rft.au=Huang%2C+Guimei&rft.au=Xing%2C+Zhiyong&rft.au=Wang%2C+Junli&rft.date=2023-01-23&rft.eissn=1466-8033&rft.volume=25&rft.issue=4&rft.spage=593&rft.epage=6&rft_id=info:doi/10.1039%2Fd2ce01507b&rft.externalDocID=d2ce01507b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon