Three multi-responsive luminescent Zn-CPs for the detection of antibiotics/cations/anions in aqueous media
Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn 1 (L)(4,4′-bbibp)]-[Zn 2 (L)(4,4′-bbibp)]} n [ YMUN 6 (for Youjiang Medical University for...
Saved in:
Published in | CrystEngComm Vol. 25; no. 4; pp. 593 - 6 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
23.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1466-8033 1466-8033 |
DOI | 10.1039/d2ce01507b |
Cover
Loading…
Abstract | Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn
1
(L)(4,4′-bbibp)]-[Zn
2
(L)(4,4′-bbibp)]}
n
[
YMUN
6
(for Youjiang Medical University for Nationalities)], [Zn(L)(1,4-bimb)]
n
(
YMUN
7
), and [Zn(L)(4,4′-bidpe)]
n
(
YMUN
8
), were fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H
2
L) and different imidazole ligands [4,4′-bbibp = 4,4′-bis(benzimidazol-1-yl)biphenyl, 1,4-bimb = 1,4-bis(imidazol-1ylmethyl)benzene, 4,4′-bidpe = 4,4′-bis(imidazolyl)diphenyl ether] using solvothermal conditions. They were characterized using X-ray diffraction (XRD), infrared (IR), thermogravimetric (TG), powder X-ray diffraction (PXRD), and photoluminescence (PL) spectroscopic techniques.
YMUN
6
possessed the "ABAB" interpenetrating 2D complanate structure.
YMUN
7
showed a three-interpenetrating 2D network.
YMUN
8
displayed a
hcb
3-connected 3-fold interpenetrated 2D network. Photoluminescent properties of
YMUN
6-8
were investigated, and
6-8
served as "turn off" sensors that could detect chlortetracycline (
Chl
), Ag
+
, and Cr
2
O
7
2−
in an aqueous solution with simultaneous high efficiency and sensitivity. Notably, the investigation of Ag
+
sensing was most focused on lanthanide metal LCPs, and Zn-LCPs have rarely been reported in this direction. Furthermore, selectivity and recyclability were also investigated.
The designed synthesized route of
YMUN
6-8
. |
---|---|
AbstractList | Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn
1
(L)(4,4′-bbibp)]-[Zn
2
(L)(4,4′-bbibp)]}
n
[
YMUN
6
(for Youjiang Medical University for Nationalities)], [Zn(L)(1,4-bimb)]
n
(
YMUN
7
), and [Zn(L)(4,4′-bidpe)]
n
(
YMUN
8
), were fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H
2
L) and different imidazole ligands [4,4′-bbibp = 4,4′-bis(benzimidazol-1-yl)biphenyl, 1,4-bimb = 1,4-bis(imidazol-1ylmethyl)benzene, 4,4′-bidpe = 4,4′-bis(imidazolyl)diphenyl ether] using solvothermal conditions. They were characterized using X-ray diffraction (XRD), infrared (IR), thermogravimetric (TG), powder X-ray diffraction (PXRD), and photoluminescence (PL) spectroscopic techniques.
YMUN
6
possessed the "ABAB" interpenetrating 2D complanate structure.
YMUN
7
showed a three-interpenetrating 2D network.
YMUN
8
displayed a
hcb
3-connected 3-fold interpenetrated 2D network. Photoluminescent properties of
YMUN
6-8
were investigated, and
6-8
served as "turn off" sensors that could detect chlortetracycline (
Chl
), Ag
+
, and Cr
2
O
7
2−
in an aqueous solution with simultaneous high efficiency and sensitivity. Notably, the investigation of Ag
+
sensing was most focused on lanthanide metal LCPs, and Zn-LCPs have rarely been reported in this direction. Furthermore, selectivity and recyclability were also investigated.
The designed synthesized route of
YMUN
6-8
. Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn1(L)(4,4′-bbibp)]–[Zn2(L)(4,4′-bbibp)]}n [YMUN6 (for Youjiang Medical University for Nationalities)], [Zn(L)(1,4-bimb)]n (YMUN7), and [Zn(L)(4,4′-bidpe)]n (YMUN8), were fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H2L) and different imidazole ligands [4,4′-bbibp = 4,4′-bis(benzimidazol-1-yl)biphenyl, 1,4-bimb = 1,4-bis(imidazol-1ylmethyl)benzene, 4,4′-bidpe = 4,4′-bis(imidazolyl)diphenyl ether] using solvothermal conditions. They were characterized using X-ray diffraction (XRD), infrared (IR), thermogravimetric (TG), powder X-ray diffraction (PXRD), and photoluminescence (PL) spectroscopic techniques. YMUN6 possessed the “ABAB” interpenetrating 2D complanate structure. YMUN7 showed a three-interpenetrating 2D network. YMUN8 displayed a hcb 3-connected 3-fold interpenetrated 2D network. Photoluminescent properties of YMUN6–8 were investigated, and 6–8 served as “turn off” sensors that could detect chlortetracycline (Chl), Ag+, and Cr2O72− in an aqueous solution with simultaneous high efficiency and sensitivity. Notably, the investigation of Ag+ sensing was most focused on lanthanide metal LCPs, and Zn-LCPs have rarely been reported in this direction. Furthermore, selectivity and recyclability were also investigated. Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and environmental protection. Three novel Zn-LCPs, {[Zn 1 (L)(4,4′-bbibp)]–[Zn 2 (L)(4,4′-bbibp)]} n [ YMUN 6 (for Youjiang Medical University for Nationalities)], [Zn(L)(1,4-bimb)] n ( YMUN 7), and [Zn(L)(4,4′-bidpe)] n ( YMUN 8), were fabricated from flexible dicarboxylic acid 1,3-bis(4′-carboxylphenoxy)benzene (H 2 L) and different imidazole ligands [4,4′-bbibp = 4,4′-bis(benzimidazol-1-yl)biphenyl, 1,4-bimb = 1,4-bis(imidazol-1ylmethyl)benzene, 4,4′-bidpe = 4,4′-bis(imidazolyl)diphenyl ether] using solvothermal conditions. They were characterized using X-ray diffraction (XRD), infrared (IR), thermogravimetric (TG), powder X-ray diffraction (PXRD), and photoluminescence (PL) spectroscopic techniques. YMUN 6 possessed the “ABAB” interpenetrating 2D complanate structure. YMUN 7 showed a three-interpenetrating 2D network. YMUN 8 displayed a hcb 3-connected 3-fold interpenetrated 2D network. Photoluminescent properties of YMUN 6–8 were investigated, and 6–8 served as “turn off” sensors that could detect chlortetracycline ( Chl ), Ag + , and Cr 2 O 7 2− in an aqueous solution with simultaneous high efficiency and sensitivity. Notably, the investigation of Ag + sensing was most focused on lanthanide metal LCPs, and Zn-LCPs have rarely been reported in this direction. Furthermore, selectivity and recyclability were also investigated. |
Author | Huang, Shifu Huang, Qingping Xing, Zhiyong Huang, Guimei Fan, Chuanbin Zong, Ziao Guo, Feng Wang, Junli Pang, Yaqin |
AuthorAffiliation | Industrial College of Biomedicine and Health Industry School of Laboratory Medicine Guangxi Normal University School of Chemistry and Pharmaceutical Sciences Youjiang Medical University for Nationalities |
AuthorAffiliation_xml | – sequence: 0 name: School of Laboratory Medicine – sequence: 0 name: Industrial College of Biomedicine and Health Industry – sequence: 0 name: School of Chemistry and Pharmaceutical Sciences – sequence: 0 name: Youjiang Medical University for Nationalities – sequence: 0 name: Guangxi Normal University |
Author_xml | – sequence: 1 givenname: Chuanbin surname: Fan fullname: Fan, Chuanbin – sequence: 2 givenname: Guimei surname: Huang fullname: Huang, Guimei – sequence: 3 givenname: Zhiyong surname: Xing fullname: Xing, Zhiyong – sequence: 4 givenname: Junli surname: Wang fullname: Wang, Junli – sequence: 5 givenname: Yaqin surname: Pang fullname: Pang, Yaqin – sequence: 6 givenname: Qingping surname: Huang fullname: Huang, Qingping – sequence: 7 givenname: Shifu surname: Huang fullname: Huang, Shifu – sequence: 8 givenname: Ziao surname: Zong fullname: Zong, Ziao – sequence: 9 givenname: Feng surname: Guo fullname: Guo, Feng |
BookMark | eNptkU1LAzEQhoMo2FYv3oWAN2FtstnN7h611g8o6KFevCzZ7ISm7CY1yQr-e9NWVMTTDMMz8847M0aHxhpA6IySK0pYNW1TCYTmpGgO0IhmnCclYezwV36Mxt6vCaEZpWSE1suVA8D90AWdOPAba7x-B9wNvTbgJZiAX00ye_ZYWYfDCnALAWTQ1mCrsDBBN9oGLf1Uim3VT4XZBqwNFm8D2MHjHlotTtCREp2H0684QS938-XsIVk83T_OrheJTEsakiqthJJty-OOtGpFyQvKiiqPzrKcCcIUYzmVTcpbYIw1CoTiRGVFWVW5jMgEXeznbpyN-j7Uazs4EyXrtOBlymnUiRTZU9JZ7x2oWuqwMxCc0F1NSb29aH2bzua7i97Elss_LRune-E-_ofP97Dz8pv7eQ_7BFKCgtY |
CitedBy_id | crossref_primary_10_1016_j_inoche_2024_113354 crossref_primary_10_1039_D3CE00135K crossref_primary_10_3390_polym15071803 crossref_primary_10_1016_j_molstruc_2024_139339 crossref_primary_10_1016_j_poly_2023_116684 crossref_primary_10_1021_acs_inorgchem_4c02795 crossref_primary_10_1021_acs_cgd_4c00161 crossref_primary_10_1016_j_inoche_2023_111108 |
Cites_doi | 10.1021/acs.analchem.9b00319 10.1039/C8NJ02338G 10.1021/acs.cgd.0c01221 10.1021/acs.cgd.9b01448 10.1021/acs.cgd.1c00359 10.1107/S1600576714022985 10.1016/j.ccr.2020.213299 10.1021/acs.inorgchem.2c02195 10.1002/jat.2907 10.1039/C9CS00778D 10.1021/acs.cgd.0c01018 10.1016/j.cej.2021.130942 10.1016/j.talanta.2019.120297 10.1002/smll.202005327 10.1016/j.ccr.2019.02.033 10.1021/acs.cgd.2c00080 10.1016/j.ccr.2022.214759 10.1002/aoc.5977 10.1107/S2053229614024218 10.1021/acsmaterialslett.0c00456 10.1021/acs.inorgchem.1c02499 10.1007/s00604-022-05183-y 10.1021/acs.inorgchem.2c01517 10.1039/C4CS00285G 10.1002/admi.202000813 10.1021/acsomega.0c05867 10.1039/D0CE01619E 10.1038/s41598-022-15663-z 10.1016/j.ccr.2021.214260 10.1039/C4TA03990D 10.1039/D2CE00057A 10.1021/acs.inorgchem.8b00272 10.1039/D0CS01236J 10.1021/acs.cgd.2c00398 10.1016/j.microc.2020.105880 10.1021/acs.inorgchem.9b03152 10.1021/acs.inorgchem.0c03268 10.1039/C9CE01166H 10.1016/j.jpba.2020.113444 10.1007/s10311-020-01119-1 10.1039/C7CS00614D 10.1002/aoc.6456 10.1039/D0CE01268H 10.1016/j.microc.2021.106658 10.1126/science.1230444 10.1039/C8TA11596F |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d2ce01507b |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 6 |
ExternalDocumentID | 10_1039_D2CE01507B d2ce01507b |
GroupedDBID | -JG 0-7 0R~ 29F 5GY 6J9 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION R56 7U5 8FD L7M |
ID | FETCH-LOGICAL-c281t-929afcdd600119da867137952ce453a03f3351cb26de333bfeaf60f478995c453 |
ISSN | 1466-8033 |
IngestDate | Mon Jun 30 03:33:34 EDT 2025 Tue Jul 01 02:07:34 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Tue Dec 17 20:59:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-929afcdd600119da867137952ce453a03f3351cb26de333bfeaf60f478995c453 |
Notes | Electronic supplementary information (ESI) available. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI https://doi.org/10.1039/d2ce01507b 2217153-2217155 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0945-8435 0000-0003-2084-8909 |
PQID | 2768261281 |
PQPubID | 2047491 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2768261281 crossref_citationtrail_10_1039_D2CE01507B crossref_primary_10_1039_D2CE01507B rsc_primary_d2ce01507b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-23 |
PublicationDateYYYYMMDD | 2023-01-23 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wei (D2CE01507B/cit25/1) 2020; 22 Wen (D2CE01507B/cit29/1) 2019; 7 Liu (D2CE01507B/cit18/1) 2021; 21 Chen (D2CE01507B/cit31/1) 2021; 21 Xiao (D2CE01507B/cit26/1) 2020; 49 Wang (D2CE01507B/cit32/1) 2021; 60 Zhu (D2CE01507B/cit5/1) 2015; 44 Sun (D2CE01507B/cit37/1) 2020; 3 Shao (D2CE01507B/cit20/1) 2022; 24 Yu (D2CE01507B/cit13/1) 2020; 207 Liu (D2CE01507B/cit30/1) 2020; 7 Cai (D2CE01507B/cit44/1) 2022; 61 Shi (D2CE01507B/cit19/1) 2021; 23 Zhu (D2CE01507B/cit46/1) 2021; 162 Liu (D2CE01507B/cit15/1) 2021; 170 Fan (D2CE01507B/cit45/1) 2020; 188 Fu (D2CE01507B/cit43/1) 2021; 60 Tian (D2CE01507B/cit40/1) 2020; 59 Mu (D2CE01507B/cit8/1) 2020; 20 Zhang (D2CE01507B/cit21/1) 2021; 6 Liu (D2CE01507B/cit27/1) 2021; 50 Thompson (D2CE01507B/cit1/1) 2014; 34 Chand (D2CE01507B/cit39/1) 2018; 42 Deng (D2CE01507B/cit17/1) 2019; 21 Han (D2CE01507B/cit28/1) 2022; 471 Liu (D2CE01507B/cit24/1) 2020; 20 Furukawa (D2CE01507B/cit22/1) 2013; 341 Yu (D2CE01507B/cit14/1) 2019; 91 Razavi (D2CE01507B/cit9/1) 2020; 415 Li (D2CE01507B/cit23/1) 2019; 388 Jiao (D2CE01507B/cit7/1) 2022; 189 López (D2CE01507B/cit2/1) 2021; 19 Yang (D2CE01507B/cit6/1) 2021; 17 Hao (D2CE01507B/cit16/1) 2014; 2 Wu (D2CE01507B/cit3/1) 2022; 451 Sheldrick (D2CE01507B/cit42/1) 2015; 71 Liu (D2CE01507B/cit12/1) 2021; 36 Rozenberga (D2CE01507B/cit33/1) 2022; 12 Kang (D2CE01507B/cit4/1) 2022; 427 Wang (D2CE01507B/cit38/1) 2018; 57 Krause (D2CE01507B/cit41/1) 2015; 48 Wang (D2CE01507B/cit34/1) 2022; 22 Wang (D2CE01507B/cit11/1) 2020; 34 Li (D2CE01507B/cit10/1) 2020; 49 Qin (D2CE01507B/cit36/1) 2022; 61 Qin (D2CE01507B/cit35/1) 2022; 22 |
References_xml | – volume: 91 start-page: 5913 year: 2019 ident: D2CE01507B/cit14/1 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b00319 – volume: 42 start-page: 12865 year: 2018 ident: D2CE01507B/cit39/1 publication-title: New J. Chem. doi: 10.1039/C8NJ02338G – volume: 21 start-page: 869 year: 2021 ident: D2CE01507B/cit31/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01221 – volume: 20 start-page: 1130 year: 2020 ident: D2CE01507B/cit8/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b01448 – volume: 21 start-page: 5558 year: 2021 ident: D2CE01507B/cit18/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.1c00359 – volume: 48 start-page: 3 year: 2015 ident: D2CE01507B/cit41/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576714022985 – volume: 415 start-page: 213299 year: 2020 ident: D2CE01507B/cit9/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213299 – volume: 61 start-page: 14770 year: 2022 ident: D2CE01507B/cit44/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c02195 – volume: 34 start-page: 525 year: 2014 ident: D2CE01507B/cit1/1 publication-title: J. Appl. Toxicol. doi: 10.1002/jat.2907 – volume: 49 start-page: 6364 year: 2020 ident: D2CE01507B/cit10/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00778D – volume: 20 start-page: 7350 year: 2020 ident: D2CE01507B/cit24/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01018 – volume: 427 start-page: 130942 year: 2022 ident: D2CE01507B/cit4/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130942 – volume: 207 start-page: 120297 year: 2020 ident: D2CE01507B/cit13/1 publication-title: Talanta doi: 10.1016/j.talanta.2019.120297 – volume: 17 start-page: e2005327 year: 2021 ident: D2CE01507B/cit6/1 publication-title: Small doi: 10.1002/smll.202005327 – volume: 388 start-page: 79 year: 2019 ident: D2CE01507B/cit23/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.02.033 – volume: 22 start-page: 3719 year: 2022 ident: D2CE01507B/cit34/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.2c00080 – volume: 471 start-page: 214759 year: 2022 ident: D2CE01507B/cit28/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214759 – volume: 34 start-page: 5977 year: 2020 ident: D2CE01507B/cit11/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.5977 – volume: 71 start-page: 3 year: 2015 ident: D2CE01507B/cit42/1 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. doi: 10.1107/S2053229614024218 – volume: 3 start-page: 64 year: 2020 ident: D2CE01507B/cit37/1 publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.0c00456 – volume: 60 start-page: 17926 year: 2021 ident: D2CE01507B/cit32/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c02499 – volume: 189 start-page: 78 year: 2022 ident: D2CE01507B/cit7/1 publication-title: Microchim. Acta doi: 10.1007/s00604-022-05183-y – volume: 61 start-page: 13234 year: 2022 ident: D2CE01507B/cit36/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c01517 – volume: 44 start-page: 4337 year: 2015 ident: D2CE01507B/cit5/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00285G – volume: 7 start-page: 2000813 year: 2020 ident: D2CE01507B/cit30/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202000813 – volume: 6 start-page: 6810 issue: 10 year: 2021 ident: D2CE01507B/cit21/1 publication-title: ACS Omega doi: 10.1021/acsomega.0c05867 – volume: 23 start-page: 1604 year: 2021 ident: D2CE01507B/cit19/1 publication-title: CrystEngComm doi: 10.1039/D0CE01619E – volume: 12 start-page: 11982 year: 2022 ident: D2CE01507B/cit33/1 publication-title: Sci. Rep. doi: 10.1038/s41598-022-15663-z – volume: 451 start-page: 214260 year: 2022 ident: D2CE01507B/cit3/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214260 – volume: 2 start-page: 18018 year: 2014 ident: D2CE01507B/cit16/1 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03990D – volume: 24 start-page: 2479 year: 2022 ident: D2CE01507B/cit20/1 publication-title: CrystEngComm doi: 10.1039/D2CE00057A – volume: 57 start-page: 5232 year: 2018 ident: D2CE01507B/cit38/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00272 – volume: 50 start-page: 5706 year: 2021 ident: D2CE01507B/cit27/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01236J – volume: 22 start-page: 4018 year: 2022 ident: D2CE01507B/cit35/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.2c00398 – volume: 162 start-page: 105880 year: 2021 ident: D2CE01507B/cit46/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2020.105880 – volume: 59 start-page: 2803 year: 2020 ident: D2CE01507B/cit40/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.9b03152 – volume: 60 start-page: 1116 year: 2021 ident: D2CE01507B/cit43/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03268 – volume: 21 start-page: 6056 year: 2019 ident: D2CE01507B/cit17/1 publication-title: CrystEngComm doi: 10.1039/C9CE01166H – volume: 188 start-page: 113444 year: 2020 ident: D2CE01507B/cit45/1 publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2020.113444 – volume: 19 start-page: 1295 year: 2021 ident: D2CE01507B/cit2/1 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-020-01119-1 – volume: 49 start-page: 301 year: 2020 ident: D2CE01507B/cit26/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00614D – volume: 36 start-page: 6456 year: 2021 ident: D2CE01507B/cit12/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.6456 – volume: 22 start-page: 7538 year: 2020 ident: D2CE01507B/cit25/1 publication-title: CrystEngComm doi: 10.1039/D0CE01268H – volume: 170 start-page: 106658 year: 2021 ident: D2CE01507B/cit15/1 publication-title: Microchem. J. doi: 10.1016/j.microc.2021.106658 – volume: 341 start-page: 1230444 year: 2013 ident: D2CE01507B/cit22/1 publication-title: Science doi: 10.1126/science.1230444 – volume: 7 start-page: 3128 year: 2019 ident: D2CE01507B/cit29/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11596F |
SSID | ssj0014110 |
Score | 2.4305146 |
Snippet | Development of luminescent coordination polymers (LCPs) for effective detection of the environmental pollutants is urgent and important for human health and... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 593 |
SubjectTerms | Antibiotics Aqueous solutions Benzene Coordination polymers Dicarboxylic acids Environmental protection Hydrocarbons Imidazole Investigations Photoluminescence Pollutants Recyclability Selectivity X ray powder diffraction X-ray diffraction Zinc |
Title | Three multi-responsive luminescent Zn-CPs for the detection of antibiotics/cations/anions in aqueous media |
URI | https://www.proquest.com/docview/2768261281 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gKHilfFloIswQVVbhM_st1jWbYUBIjDVlr1EtnJGIJKFmWzSOXXM3acB2iRgEsUOU6k-HPsmck33xDy3ALgPqFiFsegmDRGM8MnmiWRAMUVSOPL-bz_kFxcyrdLtezLW_nsktocZz-25pX8D6rYhri6LNl_QLZ7KDbgOeKLR0QYj3-JcQXQcAJZFciu3-EI1xtHZne8y6Orks0-rjsyYQ41ZK2RiINamGJVe67QeYjdeUXfll-ucddwHFmfXzK0Y2fVzbqel59cfkk3BXT4gb_RpSnKfsKEkPTrTfEVirZ5GYqpXH0ublZh-_SB_UAR3pTXxTAkwR0hizVZw8fQLKMycTLHjcRFu842Cc5hPsnBoqmmYrD_JlsX9kg4XdScZ-BCNBPTb18dqbC_uEN2OXoN0Yjsns0Xb951v5UkGjutRq2YnvR3_GqV9K7GTtXWgfH2xuIu2QuOAj1rUL9HbkF5n9wZyEc-IF88_vR3_OkAf9rgTxF_ivjTDn-6snSA_0nLYWiwp0VJA_bUY_-QXJ7PF7MLFmpnsIyfxjVDq1fbLM8TL-qXaydjKCZThW8sldCRsEKoODM8yUEIYSxom0RWTtD_Vhl22SejclXCI0KdXW3x-wXLjYxza5JEO9ddQGyEzMWYvGjHLs2CsLyrb3KdeoKDmKav-Gzux_nlmDzr-n5r5FS29jpsIUjD57ZOOTrGTu_uNB6TfYSlu79H8eBPFx6T2_08PSSjutrAEzQma_M0TJGfxgh6pw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+multi-responsive+luminescent+Zn-CPs+for+the+detection+of+antibiotics%2Fcations%2Fanions+in+aqueous+media&rft.jtitle=CrystEngComm&rft.au=Fan%2C+Chuanbin&rft.au=Huang%2C+Guimei&rft.au=Xing%2C+Zhiyong&rft.au=Wang%2C+Junli&rft.date=2023-01-23&rft.eissn=1466-8033&rft.volume=25&rft.issue=4&rft.spage=593&rft.epage=6&rft_id=info:doi/10.1039%2Fd2ce01507b&rft.externalDocID=d2ce01507b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |