A dual protection strategy for stable lithium metal anodes using Ag nanoseed decorated F-doped porous graphene current collectors

Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by...

Full description

Saved in:
Bibliographic Details
Published inInorganic chemistry frontiers Vol. 1; no. 13; pp. 3899 - 398
Main Authors Yan, Yang, Sun, Jing, Zhang, Ying, Liu, Wen, Wang, Yu-jie, Yang, Hui-qin, Li, Cheng-jie, Zhang, Juan
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 27.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by designing a silver (Ag) decorated F-doped graphene (Ag@FG) matrix. Ag@FG was synthesized by a one-step "ion atmosphere" method. When used as a current collector, Ag@FG shows a low nucleation overpotential and a long cycle life due to the enhanced lithiophilicity, high conductivity of the matrix, and the LiF-enriched SEI. The decorated Ag nanoparticles increased the lithiophilicity of the graphene matrix to induce the uniform deposition of lithium. The doped F leads to the formation of a stable SEI. Thus, Ag@FG shows a low nucleation overpotential of only 8 mV at 0.5 mA cm −2 and long-term stability for over 1600 h at 1.0 mA cm −2 and 1.0 mA h cm −2 . The assembled full batteries with LFP also indicate its practicability with good cycling stability and rate capability. A dual protection strategy is proposed by fabricating a Ag decorated F-doped graphene (Ag@FG) current collector. The decorated Ag induces the uniform deposition of Li and F doping facilitates the formation of a stable LiF-enriched SEI.
AbstractList Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by designing a silver (Ag) decorated F-doped graphene (Ag@FG) matrix. Ag@FG was synthesized by a one-step "ion atmosphere" method. When used as a current collector, Ag@FG shows a low nucleation overpotential and a long cycle life due to the enhanced lithiophilicity, high conductivity of the matrix, and the LiF-enriched SEI. The decorated Ag nanoparticles increased the lithiophilicity of the graphene matrix to induce the uniform deposition of lithium. The doped F leads to the formation of a stable SEI. Thus, Ag@FG shows a low nucleation overpotential of only 8 mV at 0.5 mA cm −2 and long-term stability for over 1600 h at 1.0 mA cm −2 and 1.0 mA h cm −2 . The assembled full batteries with LFP also indicate its practicability with good cycling stability and rate capability. A dual protection strategy is proposed by fabricating a Ag decorated F-doped graphene (Ag@FG) current collector. The decorated Ag induces the uniform deposition of Li and F doping facilitates the formation of a stable LiF-enriched SEI.
Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by designing a silver (Ag) decorated F-doped graphene (Ag@FG) matrix. Ag@FG was synthesized by a one-step “ion atmosphere” method. When used as a current collector, Ag@FG shows a low nucleation overpotential and a long cycle life due to the enhanced lithiophilicity, high conductivity of the matrix, and the LiF-enriched SEI. The decorated Ag nanoparticles increased the lithiophilicity of the graphene matrix to induce the uniform deposition of lithium. The doped F leads to the formation of a stable SEI. Thus, Ag@FG shows a low nucleation overpotential of only 8 mV at 0.5 mA cm −2 and long-term stability for over 1600 h at 1.0 mA cm −2 and 1.0 mA h cm −2 . The assembled full batteries with LFP also indicate its practicability with good cycling stability and rate capability.
Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by designing a silver (Ag) decorated F-doped graphene (Ag@FG) matrix. Ag@FG was synthesized by a one-step “ion atmosphere” method. When used as a current collector, Ag@FG shows a low nucleation overpotential and a long cycle life due to the enhanced lithiophilicity, high conductivity of the matrix, and the LiF-enriched SEI. The decorated Ag nanoparticles increased the lithiophilicity of the graphene matrix to induce the uniform deposition of lithium. The doped F leads to the formation of a stable SEI. Thus, Ag@FG shows a low nucleation overpotential of only 8 mV at 0.5 mA cm−2 and long-term stability for over 1600 h at 1.0 mA cm−2 and 1.0 mA h cm−2. The assembled full batteries with LFP also indicate its practicability with good cycling stability and rate capability.
Author Zhang, Juan
Wang, Yu-jie
Yan, Yang
Zhang, Ying
Sun, Jing
Yang, Hui-qin
Liu, Wen
Li, Cheng-jie
AuthorAffiliation School of Chemical Engineering
Shandong Engineering Research Center of Green and High-value Marine Fine Chemical
Institute of Chemistry
Chinese Academy of Sciences (CAS)
Weifang University of Science and Technology
CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences
State Key Laboratory of Fine Chemicals
Dalian University of Technology
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Fine Chemicals
– sequence: 0
  name: School of Chemical Engineering
– sequence: 0
  name: Weifang University of Science and Technology
– sequence: 0
  name: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences
– sequence: 0
  name: Chinese Academy of Sciences (CAS)
– sequence: 0
  name: Shandong Engineering Research Center of Green and High-value Marine Fine Chemical
– sequence: 0
  name: Dalian University of Technology
– sequence: 0
  name: Institute of Chemistry
Author_xml – sequence: 1
  givenname: Yang
  surname: Yan
  fullname: Yan, Yang
– sequence: 2
  givenname: Jing
  surname: Sun
  fullname: Sun, Jing
– sequence: 3
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
– sequence: 4
  givenname: Wen
  surname: Liu
  fullname: Liu, Wen
– sequence: 5
  givenname: Yu-jie
  surname: Wang
  fullname: Wang, Yu-jie
– sequence: 6
  givenname: Hui-qin
  surname: Yang
  fullname: Yang, Hui-qin
– sequence: 7
  givenname: Cheng-jie
  surname: Li
  fullname: Li, Cheng-jie
– sequence: 8
  givenname: Juan
  surname: Zhang
  fullname: Zhang, Juan
BookMark eNptkU1LxDAQhoMoqOtevAsBb0I1SZs0PS7qqiiIoOeSTaa12k1qkh726D8364qKeJoPnneGeWcfbVtnAaFDSk4pyaszk791hBRSvm6hPUY4yyjn-favfBdNQ3ghhFBaECrIHnqfYTOqHg_eRdCxcxaH6FWEdoUb51OhFj3gvovP3bjES4gJVtYZCHgMnW3xrMU2NQKAwQa0W4sNnmfGDSkOzrsx4Nar4RksYD16DzZi7fo-7XM-HKCdRvUBpl9xgp7ml4_n19nd_dXN-ewu00zSmFVUqRy0gNJo0ihpqFCEcyEKVTKqGBdMSTCCcmZK4IwvGllWrJCCVVJzk0_Q8WZuOvVthBDrFzd6m1bWTLJK5KKoSKJONpT2LgQPTT34bqn8qqakXrtcX-QPN58u3yaY_IF1F9XaxGRh1_8vOdpIfNDfo38el38Aq3mMhg
CitedBy_id crossref_primary_10_1016_j_cej_2024_155640
crossref_primary_10_1039_D3QI01290E
crossref_primary_10_1002_eem2_12830
crossref_primary_10_1002_cphc_202400007
Cites_doi 10.1039/C3EE40795K
10.1021/acsami.6b09031
10.1021/jacs.7b05251
10.1021/acsnano.7b02731
10.1038/nmat2764
10.1039/D0QI01159B
10.1038/nenergy.2017.119
10.1016/j.ensm.2018.03.001
10.1039/D2QI02680E
10.1021/cm901452z
10.1021/acs.chemrev.7b00115
10.1016/j.electacta.2019.06.009
10.1021/nl503125u
10.1038/nnano.2016.32
10.1021/ja3091438
10.1016/j.ensm.2021.09.021
10.1126/science.1253292
10.1016/j.ensm.2017.06.004
10.1038/451652a
10.1039/C4CP05865H
10.1039/C7TA00371D
10.1016/j.nanoen.2017.05.015
10.1002/anie.201702099
10.1021/acs.nanolett.5b02697
10.1016/j.carbon.2021.02.075
10.1039/C7TA08531A
10.1039/C6NR00465B
10.1007/s12613-021-2354-7
10.1016/j.ensm.2018.05.005
10.1002/adma.201601409
10.1007/s12274-017-1461-2
10.1002/smll.201900687
10.1039/C2EE02911A
10.1016/j.cej.2018.04.112
10.1016/j.nanoen.2018.04.040
10.1021/acsnano.5b01990
10.1002/adma.201602704
10.1021/acs.nanolett.6b01581
10.1002/anie.202101537
10.1002/adfm.201700348
10.1021/acssuschemeng.0c08572
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/d3qi00488k
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
EISSN 2052-1553
EndPage 398
ExternalDocumentID 10_1039_D3QI00488K
d3qi00488k
GroupedDBID 0R~
AAEMU
AAJAE
AARTK
AAXHV
ABASK
ABPDG
ACGFS
ACLDK
ADSRN
AENGV
AETIL
AFOGI
AGEGJ
AGRSR
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
BLAPV
C6K
EBS
ECGLT
GGIMP
H13
HZ~
M~E
O9-
RCNCU
RRC
RSCEA
RVUXY
AAYXX
ABJNI
AKMSF
CITATION
7SR
8BQ
8FD
AAIWI
AANOJ
ABDVN
ABRYZ
ACIWK
ADMRA
AEFDR
AFRZK
ASKNT
JG9
RAOCF
ID FETCH-LOGICAL-c281t-91aa3ec6e7dc0fa8d16a055664a721a2562a8ed6152d7e525bf8792486298c5d3
ISSN 2052-1553
2052-1545
IngestDate Wed Aug 13 04:03:29 EDT 2025
Thu Apr 24 23:11:07 EDT 2025
Tue Jul 01 02:30:02 EDT 2025
Tue Dec 17 20:58:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-91aa3ec6e7dc0fa8d16a055664a721a2562a8ed6152d7e525bf8792486298c5d3
Notes Electronic supplementary information (ESI) available. See DOI
https://doi.org/10.1039/d3qi00488k
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0113-1569
PQID 2829636490
PQPubID 2048885
PageCount 1
ParticipantIDs crossref_primary_10_1039_D3QI00488K
rsc_primary_d3qi00488k
crossref_citationtrail_10_1039_D3QI00488K
proquest_journals_2829636490
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-27
PublicationDateYYYYMMDD 2023-06-27
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Inorganic chemistry frontiers
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Qian (D3QI00488K/cit10/1) 2015; 6
Armand (D3QI00488K/cit1/1) 2008; 451
Tao (D3QI00488K/cit40/1) 2023; 10
Wang (D3QI00488K/cit11/1) 2021; 420
Goodenough (D3QI00488K/cit4/1) 2013; 135
Lin (D3QI00488K/cit30/1) 2016; 11
Chen (D3QI00488K/cit12/1) 2017; 5
Li (D3QI00488K/cit24/1) 2021; 8
Goodenough (D3QI00488K/cit3/1) 2010; 22
Liu (D3QI00488K/cit20/1) 2021; 60
Bhattacharyya (D3QI00488K/cit13/1) 2010; 9
Cheng (D3QI00488K/cit18/1) 2015; 9
Guo (D3QI00488K/cit5/1) 2017; 29
Yan (D3QI00488K/cit22/1) 2014; 14
Jin (D3QI00488K/cit47/1) 2017; 37
Cui (D3QI00488K/cit50/1) 2020; 32
Zhao (D3QI00488K/cit42/1) 2017; 139
Wang (D3QI00488K/cit45/1) 2017; 5
Bieker (D3QI00488K/cit56/1) 2015; 17
Wen (D3QI00488K/cit49/1) 2021; 9
Zhao (D3QI00488K/cit8/1) 2018; 347
Palacin (D3QI00488K/cit2/1) 2016; 351
Li (D3QI00488K/cit15/1) 2015; 6
Xie (D3QI00488K/cit41/1) 2022; 61
Ghazi (D3QI00488K/cit14/1) 2019; 15
Deng (D3QI00488K/cit33/1) 2018; 8
Cheng (D3QI00488K/cit7/1) 2017; 117
Raji (D3QI00488K/cit29/1) 2017; 11
Zhang (D3QI00488K/cit46/1) 2016; 8
Zhang (D3QI00488K/cit38/1) 2017; 27
Deng (D3QI00488K/cit34/1) 2018; 15
Chi (D3QI00488K/cit36/1) 2017; 27
Di (D3QI00488K/cit37/1) 2021; 43
Zhou (D3QI00488K/cit54/1) 2015; 15
Song (D3QI00488K/cit21/1) 2020; 381
Wang (D3QI00488K/cit35/1) 2021; 177
Yang (D3QI00488K/cit53/1) 2017; 29
Jin (D3QI00488K/cit31/1) 2016; 28
Shen (D3QI00488K/cit27/1) 2019; 317
Yan (D3QI00488K/cit52/1) 2016; 1
Lu (D3QI00488K/cit17/1) 2016; 16
Zhang (D3QI00488K/cit23/1) 2021; 28
Yun (D3QI00488K/cit26/1) 2016; 28
Zuo (D3QI00488K/cit55/1) 2017; 29
Li (D3QI00488K/cit19/1) 2019; 66
Xie (D3QI00488K/cit28/1) 2016; 8
Yang (D3QI00488K/cit48/1) 2020; 384
Zhamu (D3QI00488K/cit16/1) 2012; 5
Sun (D3QI00488K/cit44/1) 2018; 30
Zhang (D3QI00488K/cit43/1) 2017; 56
Zhang (D3QI00488K/cit32/1) 2017; 10
Yang (D3QI00488K/cit9/1) 2018; 14
Xu (D3QI00488K/cit6/1) 2014; 7
Liang (D3QI00488K/cit39/1) 2017; 2
Lu (D3QI00488K/cit25/1) 2017; 9
Li (D3QI00488K/cit51/1) 2018; 49
References_xml – volume: 7
  start-page: 513
  year: 2014
  ident: D3QI00488K/cit6/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE40795K
– volume: 8
  start-page: 26091
  year: 2016
  ident: D3QI00488K/cit28/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09031
– volume: 139
  start-page: 11550
  year: 2017
  ident: D3QI00488K/cit42/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05251
– volume: 66
  start-page: 5
  year: 2019
  ident: D3QI00488K/cit19/1
  publication-title: Nano Energy
– volume: 8
  start-page: 10
  year: 2018
  ident: D3QI00488K/cit33/1
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 6362
  year: 2017
  ident: D3QI00488K/cit29/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02731
– volume: 9
  start-page: 504
  year: 2010
  ident: D3QI00488K/cit13/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2764
– volume: 6
  start-page: 8
  year: 2015
  ident: D3QI00488K/cit15/1
  publication-title: Nat. Commun.
– volume: 8
  start-page: 361
  year: 2021
  ident: D3QI00488K/cit24/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI01159B
– volume: 30
  start-page: 7
  year: 2018
  ident: D3QI00488K/cit44/1
  publication-title: Adv. Mater.
– volume: 2
  start-page: 7
  year: 2017
  ident: D3QI00488K/cit39/1
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.119
– volume: 14
  start-page: 199
  year: 2018
  ident: D3QI00488K/cit9/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.03.001
– volume: 10
  start-page: 1485
  year: 2023
  ident: D3QI00488K/cit40/1
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D2QI02680E
– volume: 22
  start-page: 587
  year: 2010
  ident: D3QI00488K/cit3/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 117
  start-page: 10403
  year: 2017
  ident: D3QI00488K/cit7/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 317
  start-page: 333
  year: 2019
  ident: D3QI00488K/cit27/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.06.009
– volume: 14
  start-page: 6016
  year: 2014
  ident: D3QI00488K/cit22/1
  publication-title: Nano Lett.
  doi: 10.1021/nl503125u
– volume: 11
  start-page: 626
  year: 2016
  ident: D3QI00488K/cit30/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.32
– volume: 381
  start-page: 9
  year: 2020
  ident: D3QI00488K/cit21/1
  publication-title: Chem. Eng. J.
– volume: 135
  start-page: 1167
  year: 2013
  ident: D3QI00488K/cit4/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 29
  start-page: 6
  year: 2017
  ident: D3QI00488K/cit55/1
  publication-title: Adv. Mater.
– volume: 43
  start-page: 375
  year: 2021
  ident: D3QI00488K/cit37/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.09.021
– volume: 29
  start-page: 8
  year: 2017
  ident: D3QI00488K/cit53/1
  publication-title: Adv. Mater.
– volume: 351
  start-page: 7
  year: 2016
  ident: D3QI00488K/cit2/1
  publication-title: Science
  doi: 10.1126/science.1253292
– volume: 9
  start-page: 31
  year: 2017
  ident: D3QI00488K/cit25/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.06.004
– volume: 384
  start-page: 20
  year: 2020
  ident: D3QI00488K/cit48/1
  publication-title: Chem. Eng. J.
– volume: 420
  start-page: 18
  year: 2021
  ident: D3QI00488K/cit11/1
  publication-title: Chem. Eng. J.
– volume: 451
  start-page: 652
  year: 2008
  ident: D3QI00488K/cit1/1
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 32
  start-page: 9
  year: 2020
  ident: D3QI00488K/cit50/1
  publication-title: Adv. Mater.
– volume: 17
  start-page: 8670
  year: 2015
  ident: D3QI00488K/cit56/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05865H
– volume: 27
  start-page: 8
  year: 2017
  ident: D3QI00488K/cit38/1
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 11671
  year: 2017
  ident: D3QI00488K/cit12/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00371D
– volume: 37
  start-page: 177
  year: 2017
  ident: D3QI00488K/cit47/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.015
– volume: 56
  start-page: 7764
  year: 2017
  ident: D3QI00488K/cit43/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702099
– volume: 6
  start-page: 9
  year: 2015
  ident: D3QI00488K/cit10/1
  publication-title: Nat. Commun.
– volume: 15
  start-page: 6222
  year: 2015
  ident: D3QI00488K/cit54/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02697
– volume: 1
  start-page: 8
  year: 2016
  ident: D3QI00488K/cit52/1
  publication-title: Nat. Energy
– volume: 177
  start-page: 181
  year: 2021
  ident: D3QI00488K/cit35/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.02.075
– volume: 5
  start-page: 23434
  year: 2017
  ident: D3QI00488K/cit45/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08531A
– volume: 8
  start-page: 11161
  year: 2016
  ident: D3QI00488K/cit46/1
  publication-title: Nanoscale
  doi: 10.1039/C6NR00465B
– volume: 28
  start-page: 1545
  year: 2021
  ident: D3QI00488K/cit23/1
  publication-title: Int. J. Miner., Metall. Mater.
  doi: 10.1007/s12613-021-2354-7
– volume: 15
  start-page: 266
  year: 2018
  ident: D3QI00488K/cit34/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.05.005
– volume: 28
  start-page: 6932
  year: 2016
  ident: D3QI00488K/cit26/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601409
– volume: 10
  start-page: 1356
  year: 2017
  ident: D3QI00488K/cit32/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1461-2
– volume: 15
  start-page: 26
  year: 2019
  ident: D3QI00488K/cit14/1
  publication-title: Small
  doi: 10.1002/smll.201900687
– volume: 5
  start-page: 5701
  year: 2012
  ident: D3QI00488K/cit16/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE02911A
– volume: 29
  start-page: 25
  year: 2017
  ident: D3QI00488K/cit5/1
  publication-title: Adv. Mater.
– volume: 347
  start-page: 343
  year: 2018
  ident: D3QI00488K/cit8/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.112
– volume: 49
  start-page: 179
  year: 2018
  ident: D3QI00488K/cit51/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.040
– volume: 9
  start-page: 6373
  year: 2015
  ident: D3QI00488K/cit18/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01990
– volume: 28
  start-page: 9094
  year: 2016
  ident: D3QI00488K/cit31/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602704
– volume: 16
  start-page: 4431
  year: 2016
  ident: D3QI00488K/cit17/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01581
– volume: 60
  start-page: 12931
  year: 2021
  ident: D3QI00488K/cit20/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202101537
– volume: 27
  start-page: 10
  year: 2017
  ident: D3QI00488K/cit36/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700348
– volume: 9
  start-page: 2326
  year: 2021
  ident: D3QI00488K/cit49/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08572
– volume: 61
  start-page: 8
  year: 2022
  ident: D3QI00488K/cit41/1
  publication-title: Angew. Chem., Int. Ed.
SSID ssj0001140160
Score 2.2964368
Snippet Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3899
SubjectTerms Decoration
Energy storage
Graphene
Inorganic chemistry
Lithium
Lithium batteries
Nanoparticles
Nucleation
Silver
Solid electrolytes
Stability
Storage systems
Title A dual protection strategy for stable lithium metal anodes using Ag nanoseed decorated F-doped porous graphene current collectors
URI https://www.proquest.com/docview/2829636490
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ_Y9uLFaLRxtTWT6MUQKszAAEeibbpaTUy2SXsiw8ywEpWthb305n_umw8YGmuiXmDzGDjwfvvm9x7vA6FXqgGSkdc0zGsJDgoDDsdpI0PGmyJpMhVFtQ4NfPzETs-T9xfphQ9lm-qSoT4SN3fWlfyPVkEGetVVsv-g2emhIIDfoF84gobh-Fc6LgNbSWV7LWhF9rbZrM3CBOKn66KAaH9pt9_1sGjTGGAjVR9sTYygXAcdCHrYwgKpHVGuCehJKDdXcAZqrhNkTU9rMImBcL2cNHZMsL-fU9tlZydEiUCMQ-R08Uo3tMp_Mbq08VY4rf3nKFse0nrRFMW-nAnP2q1JCHS1ay5SQfTUiNAW_h8pY9FIlJJQDyq6ZX7nKKMzW6o7_832ZWqnVf9m8iOqO6ZK-qM11uir39imdEN_cQftEfAnwCDulcer5ZkPx2lHk0VjA1tavPE33aYs3g_ZuR6HxBgysnqIHjgvApcWEo_QPdU9Rj9LrOGAPRzwCAcMcMAWDtjBARs4YAsHbOCAyzUe4YAnOGAHB2zhgEc4YAcH7OHwBJ2fHK_enoZuwkYoSB4PsNNxTpVgKpMianguY8Z1dyWW8IzEHOgw4bmSwHqJzFRK0rrJM_DYwQ0ucpFKuo92u02nniKsmIwaogisTBIuirxOY05jRqTMainkAr0eX2IlXPt5PQXlW2XSIGhRvaOfl-aFf1igl9PaK9t05c5VB6MuKven7CudGMAoS4pogfZBP9P9Xp3P_nThObrvYXuAdofrrToEyjnULxxcfgEwLYtb
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dual+protection+strategy+for+stable+lithium+metal+anodes+using+Ag+nanoseed+decorated+F-doped+porous+graphene+current+collectors&rft.jtitle=Inorganic+chemistry+frontiers&rft.au=Yan%2C+Yang&rft.au=Sun%2C+Jing&rft.au=Zhang%2C+Ying&rft.au=Liu%2C+Wen&rft.date=2023-06-27&rft.eissn=2052-1553&rft.volume=1&rft.issue=13&rft.spage=3899&rft.epage=398&rft_id=info:doi/10.1039%2Fd3qi00488k&rft.externalDocID=d3qi00488k
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1553&client=summon