A dual protection strategy for stable lithium metal anodes using Ag nanoseed decorated F-doped porous graphene current collectors
Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by...
Saved in:
Published in | Inorganic chemistry frontiers Vol. 1; no. 13; pp. 3899 - 398 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
27.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by designing a silver (Ag) decorated F-doped graphene (Ag@FG) matrix. Ag@FG was synthesized by a one-step "ion atmosphere" method. When used as a current collector, Ag@FG shows a low nucleation overpotential and a long cycle life due to the enhanced lithiophilicity, high conductivity of the matrix, and the LiF-enriched SEI. The decorated Ag nanoparticles increased the lithiophilicity of the graphene matrix to induce the uniform deposition of lithium. The doped F leads to the formation of a stable SEI. Thus, Ag@FG shows a low nucleation overpotential of only 8 mV at 0.5 mA cm
−2
and long-term stability for over 1600 h at 1.0 mA cm
−2
and 1.0 mA h cm
−2
. The assembled full batteries with LFP also indicate its practicability with good cycling stability and rate capability.
A dual protection strategy is proposed by fabricating a Ag decorated F-doped graphene (Ag@FG) current collector. The decorated Ag induces the uniform deposition of Li and F doping facilitates the formation of a stable LiF-enriched SEI. |
---|---|
AbstractList | Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by designing a silver (Ag) decorated F-doped graphene (Ag@FG) matrix. Ag@FG was synthesized by a one-step "ion atmosphere" method. When used as a current collector, Ag@FG shows a low nucleation overpotential and a long cycle life due to the enhanced lithiophilicity, high conductivity of the matrix, and the LiF-enriched SEI. The decorated Ag nanoparticles increased the lithiophilicity of the graphene matrix to induce the uniform deposition of lithium. The doped F leads to the formation of a stable SEI. Thus, Ag@FG shows a low nucleation overpotential of only 8 mV at 0.5 mA cm
−2
and long-term stability for over 1600 h at 1.0 mA cm
−2
and 1.0 mA h cm
−2
. The assembled full batteries with LFP also indicate its practicability with good cycling stability and rate capability.
A dual protection strategy is proposed by fabricating a Ag decorated F-doped graphene (Ag@FG) current collector. The decorated Ag induces the uniform deposition of Li and F doping facilitates the formation of a stable LiF-enriched SEI. Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by designing a silver (Ag) decorated F-doped graphene (Ag@FG) matrix. Ag@FG was synthesized by a one-step “ion atmosphere” method. When used as a current collector, Ag@FG shows a low nucleation overpotential and a long cycle life due to the enhanced lithiophilicity, high conductivity of the matrix, and the LiF-enriched SEI. The decorated Ag nanoparticles increased the lithiophilicity of the graphene matrix to induce the uniform deposition of lithium. The doped F leads to the formation of a stable SEI. Thus, Ag@FG shows a low nucleation overpotential of only 8 mV at 0.5 mA cm −2 and long-term stability for over 1600 h at 1.0 mA cm −2 and 1.0 mA h cm −2 . The assembled full batteries with LFP also indicate its practicability with good cycling stability and rate capability. Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid electrolyte interface (SEI) lead to safety issues and unsatisfactory performances. We tackle the above issues with a dual protection strategy by designing a silver (Ag) decorated F-doped graphene (Ag@FG) matrix. Ag@FG was synthesized by a one-step “ion atmosphere” method. When used as a current collector, Ag@FG shows a low nucleation overpotential and a long cycle life due to the enhanced lithiophilicity, high conductivity of the matrix, and the LiF-enriched SEI. The decorated Ag nanoparticles increased the lithiophilicity of the graphene matrix to induce the uniform deposition of lithium. The doped F leads to the formation of a stable SEI. Thus, Ag@FG shows a low nucleation overpotential of only 8 mV at 0.5 mA cm−2 and long-term stability for over 1600 h at 1.0 mA cm−2 and 1.0 mA h cm−2. The assembled full batteries with LFP also indicate its practicability with good cycling stability and rate capability. |
Author | Zhang, Juan Wang, Yu-jie Yan, Yang Zhang, Ying Sun, Jing Yang, Hui-qin Liu, Wen Li, Cheng-jie |
AuthorAffiliation | School of Chemical Engineering Shandong Engineering Research Center of Green and High-value Marine Fine Chemical Institute of Chemistry Chinese Academy of Sciences (CAS) Weifang University of Science and Technology CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences State Key Laboratory of Fine Chemicals Dalian University of Technology |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Fine Chemicals – sequence: 0 name: School of Chemical Engineering – sequence: 0 name: Weifang University of Science and Technology – sequence: 0 name: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences – sequence: 0 name: Chinese Academy of Sciences (CAS) – sequence: 0 name: Shandong Engineering Research Center of Green and High-value Marine Fine Chemical – sequence: 0 name: Dalian University of Technology – sequence: 0 name: Institute of Chemistry |
Author_xml | – sequence: 1 givenname: Yang surname: Yan fullname: Yan, Yang – sequence: 2 givenname: Jing surname: Sun fullname: Sun, Jing – sequence: 3 givenname: Ying surname: Zhang fullname: Zhang, Ying – sequence: 4 givenname: Wen surname: Liu fullname: Liu, Wen – sequence: 5 givenname: Yu-jie surname: Wang fullname: Wang, Yu-jie – sequence: 6 givenname: Hui-qin surname: Yang fullname: Yang, Hui-qin – sequence: 7 givenname: Cheng-jie surname: Li fullname: Li, Cheng-jie – sequence: 8 givenname: Juan surname: Zhang fullname: Zhang, Juan |
BookMark | eNptkU1LxDAQhoMoqOtevAsBb0I1SZs0PS7qqiiIoOeSTaa12k1qkh726D8364qKeJoPnneGeWcfbVtnAaFDSk4pyaszk791hBRSvm6hPUY4yyjn-favfBdNQ3ghhFBaECrIHnqfYTOqHg_eRdCxcxaH6FWEdoUb51OhFj3gvovP3bjES4gJVtYZCHgMnW3xrMU2NQKAwQa0W4sNnmfGDSkOzrsx4Nar4RksYD16DzZi7fo-7XM-HKCdRvUBpl9xgp7ml4_n19nd_dXN-ewu00zSmFVUqRy0gNJo0ihpqFCEcyEKVTKqGBdMSTCCcmZK4IwvGllWrJCCVVJzk0_Q8WZuOvVthBDrFzd6m1bWTLJK5KKoSKJONpT2LgQPTT34bqn8qqakXrtcX-QPN58u3yaY_IF1F9XaxGRh1_8vOdpIfNDfo38el38Aq3mMhg |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_155640 crossref_primary_10_1039_D3QI01290E crossref_primary_10_1002_eem2_12830 crossref_primary_10_1002_cphc_202400007 |
Cites_doi | 10.1039/C3EE40795K 10.1021/acsami.6b09031 10.1021/jacs.7b05251 10.1021/acsnano.7b02731 10.1038/nmat2764 10.1039/D0QI01159B 10.1038/nenergy.2017.119 10.1016/j.ensm.2018.03.001 10.1039/D2QI02680E 10.1021/cm901452z 10.1021/acs.chemrev.7b00115 10.1016/j.electacta.2019.06.009 10.1021/nl503125u 10.1038/nnano.2016.32 10.1021/ja3091438 10.1016/j.ensm.2021.09.021 10.1126/science.1253292 10.1016/j.ensm.2017.06.004 10.1038/451652a 10.1039/C4CP05865H 10.1039/C7TA00371D 10.1016/j.nanoen.2017.05.015 10.1002/anie.201702099 10.1021/acs.nanolett.5b02697 10.1016/j.carbon.2021.02.075 10.1039/C7TA08531A 10.1039/C6NR00465B 10.1007/s12613-021-2354-7 10.1016/j.ensm.2018.05.005 10.1002/adma.201601409 10.1007/s12274-017-1461-2 10.1002/smll.201900687 10.1039/C2EE02911A 10.1016/j.cej.2018.04.112 10.1016/j.nanoen.2018.04.040 10.1021/acsnano.5b01990 10.1002/adma.201602704 10.1021/acs.nanolett.6b01581 10.1002/anie.202101537 10.1002/adfm.201700348 10.1021/acssuschemeng.0c08572 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/d3qi00488k |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2052-1553 |
EndPage | 398 |
ExternalDocumentID | 10_1039_D3QI00488K d3qi00488k |
GroupedDBID | 0R~ AAEMU AAJAE AARTK AAXHV ABASK ABPDG ACGFS ACLDK ADSRN AENGV AETIL AFOGI AGEGJ AGRSR AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP BLAPV C6K EBS ECGLT GGIMP H13 HZ~ M~E O9- RCNCU RRC RSCEA RVUXY AAYXX ABJNI AKMSF CITATION 7SR 8BQ 8FD AAIWI AANOJ ABDVN ABRYZ ACIWK ADMRA AEFDR AFRZK ASKNT JG9 RAOCF |
ID | FETCH-LOGICAL-c281t-91aa3ec6e7dc0fa8d16a055664a721a2562a8ed6152d7e525bf8792486298c5d3 |
ISSN | 2052-1553 2052-1545 |
IngestDate | Wed Aug 13 04:03:29 EDT 2025 Thu Apr 24 23:11:07 EDT 2025 Tue Jul 01 02:30:02 EDT 2025 Tue Dec 17 20:58:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-91aa3ec6e7dc0fa8d16a055664a721a2562a8ed6152d7e525bf8792486298c5d3 |
Notes | Electronic supplementary information (ESI) available. See DOI https://doi.org/10.1039/d3qi00488k ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0113-1569 |
PQID | 2829636490 |
PQPubID | 2048885 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1039_D3QI00488K rsc_primary_d3qi00488k crossref_citationtrail_10_1039_D3QI00488K proquest_journals_2829636490 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-27 |
PublicationDateYYYYMMDD | 2023-06-27 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Inorganic chemistry frontiers |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Qian (D3QI00488K/cit10/1) 2015; 6 Armand (D3QI00488K/cit1/1) 2008; 451 Tao (D3QI00488K/cit40/1) 2023; 10 Wang (D3QI00488K/cit11/1) 2021; 420 Goodenough (D3QI00488K/cit4/1) 2013; 135 Lin (D3QI00488K/cit30/1) 2016; 11 Chen (D3QI00488K/cit12/1) 2017; 5 Li (D3QI00488K/cit24/1) 2021; 8 Goodenough (D3QI00488K/cit3/1) 2010; 22 Liu (D3QI00488K/cit20/1) 2021; 60 Bhattacharyya (D3QI00488K/cit13/1) 2010; 9 Cheng (D3QI00488K/cit18/1) 2015; 9 Guo (D3QI00488K/cit5/1) 2017; 29 Yan (D3QI00488K/cit22/1) 2014; 14 Jin (D3QI00488K/cit47/1) 2017; 37 Cui (D3QI00488K/cit50/1) 2020; 32 Zhao (D3QI00488K/cit42/1) 2017; 139 Wang (D3QI00488K/cit45/1) 2017; 5 Bieker (D3QI00488K/cit56/1) 2015; 17 Wen (D3QI00488K/cit49/1) 2021; 9 Zhao (D3QI00488K/cit8/1) 2018; 347 Palacin (D3QI00488K/cit2/1) 2016; 351 Li (D3QI00488K/cit15/1) 2015; 6 Xie (D3QI00488K/cit41/1) 2022; 61 Ghazi (D3QI00488K/cit14/1) 2019; 15 Deng (D3QI00488K/cit33/1) 2018; 8 Cheng (D3QI00488K/cit7/1) 2017; 117 Raji (D3QI00488K/cit29/1) 2017; 11 Zhang (D3QI00488K/cit46/1) 2016; 8 Zhang (D3QI00488K/cit38/1) 2017; 27 Deng (D3QI00488K/cit34/1) 2018; 15 Chi (D3QI00488K/cit36/1) 2017; 27 Di (D3QI00488K/cit37/1) 2021; 43 Zhou (D3QI00488K/cit54/1) 2015; 15 Song (D3QI00488K/cit21/1) 2020; 381 Wang (D3QI00488K/cit35/1) 2021; 177 Yang (D3QI00488K/cit53/1) 2017; 29 Jin (D3QI00488K/cit31/1) 2016; 28 Shen (D3QI00488K/cit27/1) 2019; 317 Yan (D3QI00488K/cit52/1) 2016; 1 Lu (D3QI00488K/cit17/1) 2016; 16 Zhang (D3QI00488K/cit23/1) 2021; 28 Yun (D3QI00488K/cit26/1) 2016; 28 Zuo (D3QI00488K/cit55/1) 2017; 29 Li (D3QI00488K/cit19/1) 2019; 66 Xie (D3QI00488K/cit28/1) 2016; 8 Yang (D3QI00488K/cit48/1) 2020; 384 Zhamu (D3QI00488K/cit16/1) 2012; 5 Sun (D3QI00488K/cit44/1) 2018; 30 Zhang (D3QI00488K/cit43/1) 2017; 56 Zhang (D3QI00488K/cit32/1) 2017; 10 Yang (D3QI00488K/cit9/1) 2018; 14 Xu (D3QI00488K/cit6/1) 2014; 7 Liang (D3QI00488K/cit39/1) 2017; 2 Lu (D3QI00488K/cit25/1) 2017; 9 Li (D3QI00488K/cit51/1) 2018; 49 |
References_xml | – volume: 7 start-page: 513 year: 2014 ident: D3QI00488K/cit6/1 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE40795K – volume: 8 start-page: 26091 year: 2016 ident: D3QI00488K/cit28/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09031 – volume: 139 start-page: 11550 year: 2017 ident: D3QI00488K/cit42/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05251 – volume: 66 start-page: 5 year: 2019 ident: D3QI00488K/cit19/1 publication-title: Nano Energy – volume: 8 start-page: 10 year: 2018 ident: D3QI00488K/cit33/1 publication-title: Adv. Energy Mater. – volume: 11 start-page: 6362 year: 2017 ident: D3QI00488K/cit29/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b02731 – volume: 9 start-page: 504 year: 2010 ident: D3QI00488K/cit13/1 publication-title: Nat. Mater. doi: 10.1038/nmat2764 – volume: 6 start-page: 8 year: 2015 ident: D3QI00488K/cit15/1 publication-title: Nat. Commun. – volume: 8 start-page: 361 year: 2021 ident: D3QI00488K/cit24/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI01159B – volume: 30 start-page: 7 year: 2018 ident: D3QI00488K/cit44/1 publication-title: Adv. Mater. – volume: 2 start-page: 7 year: 2017 ident: D3QI00488K/cit39/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.119 – volume: 14 start-page: 199 year: 2018 ident: D3QI00488K/cit9/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.03.001 – volume: 10 start-page: 1485 year: 2023 ident: D3QI00488K/cit40/1 publication-title: Inorg. Chem. Front. doi: 10.1039/D2QI02680E – volume: 22 start-page: 587 year: 2010 ident: D3QI00488K/cit3/1 publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 117 start-page: 10403 year: 2017 ident: D3QI00488K/cit7/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00115 – volume: 317 start-page: 333 year: 2019 ident: D3QI00488K/cit27/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.009 – volume: 14 start-page: 6016 year: 2014 ident: D3QI00488K/cit22/1 publication-title: Nano Lett. doi: 10.1021/nl503125u – volume: 11 start-page: 626 year: 2016 ident: D3QI00488K/cit30/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.32 – volume: 381 start-page: 9 year: 2020 ident: D3QI00488K/cit21/1 publication-title: Chem. Eng. J. – volume: 135 start-page: 1167 year: 2013 ident: D3QI00488K/cit4/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 29 start-page: 6 year: 2017 ident: D3QI00488K/cit55/1 publication-title: Adv. Mater. – volume: 43 start-page: 375 year: 2021 ident: D3QI00488K/cit37/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.09.021 – volume: 29 start-page: 8 year: 2017 ident: D3QI00488K/cit53/1 publication-title: Adv. Mater. – volume: 351 start-page: 7 year: 2016 ident: D3QI00488K/cit2/1 publication-title: Science doi: 10.1126/science.1253292 – volume: 9 start-page: 31 year: 2017 ident: D3QI00488K/cit25/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.06.004 – volume: 384 start-page: 20 year: 2020 ident: D3QI00488K/cit48/1 publication-title: Chem. Eng. J. – volume: 420 start-page: 18 year: 2021 ident: D3QI00488K/cit11/1 publication-title: Chem. Eng. J. – volume: 451 start-page: 652 year: 2008 ident: D3QI00488K/cit1/1 publication-title: Nature doi: 10.1038/451652a – volume: 32 start-page: 9 year: 2020 ident: D3QI00488K/cit50/1 publication-title: Adv. Mater. – volume: 17 start-page: 8670 year: 2015 ident: D3QI00488K/cit56/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05865H – volume: 27 start-page: 8 year: 2017 ident: D3QI00488K/cit38/1 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 11671 year: 2017 ident: D3QI00488K/cit12/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00371D – volume: 37 start-page: 177 year: 2017 ident: D3QI00488K/cit47/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.015 – volume: 56 start-page: 7764 year: 2017 ident: D3QI00488K/cit43/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702099 – volume: 6 start-page: 9 year: 2015 ident: D3QI00488K/cit10/1 publication-title: Nat. Commun. – volume: 15 start-page: 6222 year: 2015 ident: D3QI00488K/cit54/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02697 – volume: 1 start-page: 8 year: 2016 ident: D3QI00488K/cit52/1 publication-title: Nat. Energy – volume: 177 start-page: 181 year: 2021 ident: D3QI00488K/cit35/1 publication-title: Carbon doi: 10.1016/j.carbon.2021.02.075 – volume: 5 start-page: 23434 year: 2017 ident: D3QI00488K/cit45/1 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08531A – volume: 8 start-page: 11161 year: 2016 ident: D3QI00488K/cit46/1 publication-title: Nanoscale doi: 10.1039/C6NR00465B – volume: 28 start-page: 1545 year: 2021 ident: D3QI00488K/cit23/1 publication-title: Int. J. Miner., Metall. Mater. doi: 10.1007/s12613-021-2354-7 – volume: 15 start-page: 266 year: 2018 ident: D3QI00488K/cit34/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.05.005 – volume: 28 start-page: 6932 year: 2016 ident: D3QI00488K/cit26/1 publication-title: Adv. Mater. doi: 10.1002/adma.201601409 – volume: 10 start-page: 1356 year: 2017 ident: D3QI00488K/cit32/1 publication-title: Nano Res. doi: 10.1007/s12274-017-1461-2 – volume: 15 start-page: 26 year: 2019 ident: D3QI00488K/cit14/1 publication-title: Small doi: 10.1002/smll.201900687 – volume: 5 start-page: 5701 year: 2012 ident: D3QI00488K/cit16/1 publication-title: Energy Environ. Sci. doi: 10.1039/C2EE02911A – volume: 29 start-page: 25 year: 2017 ident: D3QI00488K/cit5/1 publication-title: Adv. Mater. – volume: 347 start-page: 343 year: 2018 ident: D3QI00488K/cit8/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.112 – volume: 49 start-page: 179 year: 2018 ident: D3QI00488K/cit51/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.040 – volume: 9 start-page: 6373 year: 2015 ident: D3QI00488K/cit18/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b01990 – volume: 28 start-page: 9094 year: 2016 ident: D3QI00488K/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.201602704 – volume: 16 start-page: 4431 year: 2016 ident: D3QI00488K/cit17/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01581 – volume: 60 start-page: 12931 year: 2021 ident: D3QI00488K/cit20/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202101537 – volume: 27 start-page: 10 year: 2017 ident: D3QI00488K/cit36/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700348 – volume: 9 start-page: 2326 year: 2021 ident: D3QI00488K/cit49/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c08572 – volume: 61 start-page: 8 year: 2022 ident: D3QI00488K/cit41/1 publication-title: Angew. Chem., Int. Ed. |
SSID | ssj0001140160 |
Score | 2.2964368 |
Snippet | Lithium metal batteries have been regarded as typical representatives of high-energy storage systems. However, lithium dendrite growth and a fragile solid... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3899 |
SubjectTerms | Decoration Energy storage Graphene Inorganic chemistry Lithium Lithium batteries Nanoparticles Nucleation Silver Solid electrolytes Stability Storage systems |
Title | A dual protection strategy for stable lithium metal anodes using Ag nanoseed decorated F-doped porous graphene current collectors |
URI | https://www.proquest.com/docview/2829636490 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb5RAFJ_Y9uLFaLRxtTWT6MUQKszAAEeibbpaTUy2SXsiw8ywEpWthb305n_umw8YGmuiXmDzGDjwfvvm9x7vA6FXqgGSkdc0zGsJDgoDDsdpI0PGmyJpMhVFtQ4NfPzETs-T9xfphQ9lm-qSoT4SN3fWlfyPVkEGetVVsv-g2emhIIDfoF84gobh-Fc6LgNbSWV7LWhF9rbZrM3CBOKn66KAaH9pt9_1sGjTGGAjVR9sTYygXAcdCHrYwgKpHVGuCehJKDdXcAZqrhNkTU9rMImBcL2cNHZMsL-fU9tlZydEiUCMQ-R08Uo3tMp_Mbq08VY4rf3nKFse0nrRFMW-nAnP2q1JCHS1ay5SQfTUiNAW_h8pY9FIlJJQDyq6ZX7nKKMzW6o7_832ZWqnVf9m8iOqO6ZK-qM11uir39imdEN_cQftEfAnwCDulcer5ZkPx2lHk0VjA1tavPE33aYs3g_ZuR6HxBgysnqIHjgvApcWEo_QPdU9Rj9LrOGAPRzwCAcMcMAWDtjBARs4YAsHbOCAyzUe4YAnOGAHB2zhgEc4YAcH7OHwBJ2fHK_enoZuwkYoSB4PsNNxTpVgKpMianguY8Z1dyWW8IzEHOgw4bmSwHqJzFRK0rrJM_DYwQ0ucpFKuo92u02nniKsmIwaogisTBIuirxOY05jRqTMainkAr0eX2IlXPt5PQXlW2XSIGhRvaOfl-aFf1igl9PaK9t05c5VB6MuKven7CudGMAoS4pogfZBP9P9Xp3P_nThObrvYXuAdofrrToEyjnULxxcfgEwLYtb |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dual+protection+strategy+for+stable+lithium+metal+anodes+using+Ag+nanoseed+decorated+F-doped+porous+graphene+current+collectors&rft.jtitle=Inorganic+chemistry+frontiers&rft.au=Yan%2C+Yang&rft.au=Sun%2C+Jing&rft.au=Zhang%2C+Ying&rft.au=Liu%2C+Wen&rft.date=2023-06-27&rft.eissn=2052-1553&rft.volume=1&rft.issue=13&rft.spage=3899&rft.epage=398&rft_id=info:doi/10.1039%2Fd3qi00488k&rft.externalDocID=d3qi00488k |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1553&client=summon |