Decoding Attractive Interactions in Granular Materials through Vibration-Induced Densification
Within the intricate world of granular materials, the behavior of grain assemblies presents complexities characterized by nonlinear and inelastic phenomena, which seamlessly link the microscopic grain scale to the macroscopic bulk scale. A key challenge in understanding the mechanics of granular mat...
Saved in:
Published in | KONA Powder and Particle Journal p. 2025018 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hosokawa Powder Technology Foundation
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Within the intricate world of granular materials, the behavior of grain assemblies presents complexities characterized by nonlinear and inelastic phenomena, which seamlessly link the microscopic grain scale to the macroscopic bulk scale. A key challenge in understanding the mechanics of granular materials lies in establishing connections between these microscopic grain properties and their macroscopic flow behavior. This study delves into vibration-induced densification, a phenomenon relevant across various technological domains in powder processing and manufacturing. Specifically, we explore the vibrational conditions that induce compaction and decompaction under vertical vibration, employing a particle damper across industrial powders, including glass beads, joint filler, wheat flour, and pharmaceutical excipients. The experiments involve controlling the vibration wave by adjusting parameters such as frequency and amplitude while measuring and recording the acceleration and force signals. Our findings reveal a significant correlation between the force required to decompact the powder bed and the attractive forces between grains. This correlation facilitates the determination of a dimensionless granular number Ad, offering insights into the contact force network at a macroscopic level and its relation to flow indices. By proposing this experimental approach, we provide a straightforward method to unveil the intricate relationship between local particle interactions and the overarching mechanical behavior of granular materials, contributing to advancements in understanding and predicting powder flow behavior. |
---|---|
AbstractList | Within the intricate world of granular materials, the behavior of grain assemblies presents complexities characterized by nonlinear and inelastic phenomena, which seamlessly link the microscopic grain scale to the macroscopic bulk scale. A key challenge in understanding the mechanics of granular materials lies in establishing connections between these microscopic grain properties and their macroscopic flow behavior. This study delves into vibration-induced densification, a phenomenon relevant across various technological domains in powder processing and manufacturing. Specifically, we explore the vibrational conditions that induce compaction and decompaction under vertical vibration, employing a particle damper across industrial powders, including glass beads, joint filler, wheat flour, and pharmaceutical excipients. The experiments involve controlling the vibration wave by adjusting parameters such as frequency and amplitude while measuring and recording the acceleration and force signals. Our findings reveal a significant correlation between the force required to decompact the powder bed and the attractive forces between grains. This correlation facilitates the determination of a dimensionless granular number Ad, offering insights into the contact force network at a macroscopic level and its relation to flow indices. By proposing this experimental approach, we provide a straightforward method to unveil the intricate relationship between local particle interactions and the overarching mechanical behavior of granular materials, contributing to advancements in understanding and predicting powder flow behavior. |
ArticleNumber | 2025018 |
Author | Cares-Pacheco, Maria-Graciela Falk, Véronique |
Author_xml | – sequence: 1 orcidid: 0000-0002-7515-4122 fullname: Cares-Pacheco, Maria-Graciela organization: Reactions and Chemical Engineering Laboratory (LRGP-CNRS), Université de Lorraine, France – sequence: 2 orcidid: 0000-0001-9780-3480 fullname: Falk, Véronique organization: Reactions and Chemical Engineering Laboratory (LRGP-CNRS), Université de Lorraine, France |
BackLink | https://hal.science/hal-04771911$$DView record in HAL |
BookMark | eNo90E1PAjEQBuDGYCIiR-979bDYr92WIwEFDMaLerSZ7QdbxC7pLiT-e1kWmctMps_08N6iXqiCReie4BHhLMsfv6sAI4pphom8Qn1KpEizjIke6mMqZcozxm_QsK43uC2Bc8n66GtmdWV8WCeTpomgG3-wyTI09jRXoU58SOYRwn4LMXmF44OHbZ00Zaz26zL59EWEFqbLYPbammRmQ-2d16ftHbp2R26H5z5AH89P79NFunqbL6eTVaqpJE0qseHSGcqAODDEZZzndIwBRKY5Y9Y6UghHhDSZyV1OreFjSq12BSFiTA0boIfu3xK2ahf9D8RfVYFXi8lKtTvMhSBjQg7kaNPO6ljVdbTuckCwOmWp2izVOcujf-n8pm5gbS8aYuP11nYYzGG3LxT-H87HF6RLiMoG9gdQ4YYx |
Cites_doi | 10.3390/powders3020017 10.1038/nature03805 10.1088/0953-8984/17/24/024 10.1016/j.ijpharm.2021.120747 10.1007/978-94-017-2653-5 10.1103/PhysRevLett.123.248005 10.1016/j.jsv.2023.117690 10.1016/j.jsv.2004.04.013 10.1007/s10035-022-01290-y 10.1016/0032-5910(73)80037-3 10.1103/PhysRevE.75.011303 10.1039/D3SM01116J 10.14356/kona.2021007 10.1016/j.ultras.2010.12.012 10.1016/j.apt.2023.104105 10.1063/1.3435395 10.1002/aic.11368 10.1103/PhysRevE.87.052207 10.1103/PhysRevE.51.3957 10.1140/epje/e2007-00017-x 10.1016/j.powtec.2010.11.033 10.1103/PhysRevLett.111.018001 10.1016/j.apt.2022.103888 10.1016/j.phpro.2010.01.024 10.1103/RevModPhys.68.1259 10.14356/kona.2020018 10.1016/j.ces.2020.115971 10.1093/comnet/cny005 10.1016/j.powtec.2019.05.032 10.1016/j.ces.2023.118571 10.1007/s10035-016-0667-4 10.1002/cjce.5450640301 10.1115/1.4051818 10.1016/j.enggeo.2021.106444 10.1039/C8SM01372A 10.1016/j.powtec.2015.08.031 |
ContentType | Journal Article |
Copyright | 2024 Hosokawa Powder Technology Foundation Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 Hosokawa Powder Technology Foundation – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC |
DOI | 10.14356/kona.2025018 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2187-5537 |
ExternalDocumentID | oai_HAL_hal_04771911v1 10_14356_kona_2025018 article_kona_advpub_0_advpub_2025018_article_char_en |
GroupedDBID | .4S 2WC 3V. 7.U 8FE 8FG ABJCF ABUWG ACIWK ADBBV AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BPHCQ BVBZV CCPQU D1I EBS EJD FRP GROUPED_DOAJ HCIFZ HH5 JSF JSH KB. KQ8 M~E OK1 PDBOC PQQKQ PROAC RJT RNS RZJ TUS WH7 AAYXX CITATION 1XC |
ID | FETCH-LOGICAL-c281t-80d48fd23a1fad1f5446290aa75c433eef1b7f178d5d6f62ed4922ecfb11792d3 |
ISSN | 0288-4534 |
IngestDate | Sat Nov 09 06:43:44 EST 2024 Wed Oct 23 14:21:38 EDT 2024 Thu Nov 07 14:37:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-80d48fd23a1fad1f5446290aa75c433eef1b7f178d5d6f62ed4922ecfb11792d3 |
ORCID | 0000-0001-9780-3480 0000-0002-7515-4122 |
OpenAccessLink | http://dx.doi.org/10.14356/kona.2025018 |
ParticipantIDs | hal_primary_oai_HAL_hal_04771911v1 crossref_primary_10_14356_kona_2025018 jstage_primary_article_kona_advpub_0_advpub_2025018_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | KONA Powder and Particle Journal |
PublicationTitleAlternate | KONA |
PublicationYear | 2024 |
Publisher | Hosokawa Powder Technology Foundation |
Publisher_xml | – name: Hosokawa Powder Technology Foundation |
References | Cares-Pacheco M.-G., Cordeiro E., Gérardin F., Falk V., Consistency in young’s modulus of powders: a review with experiments, Powders, 3(2) (2024) 280–304. https://doi.org/10.3390/powders3020017 Geldart D., Types of gas fluidization, Powder Technology, 7 (1973) 285–292. https://doi.org/10.1016/0032-5910(73)80037-3 Jiménez Garavito M.C., Cares Pacheco M.G., Witschger O., Bau S., Gerardin F., Falk V., The effect of silica nanoparticles on the dustiness of industrial powders, Advanced Powder Technology, 34 (2023) 104105. https://doi.org/10.1016/j.apt.2023.104105 Gaete-Garretón L., Vargas-Hernández Y., Cares-Pacheco M.G., Sainz J., Alarcón J., Ultrasonically enhanced extraction of bioactive principles from Quillaja Saponaria Molina, Ultrasonics, 51 (2011) 581–585. https://doi.org/10.1016/j.ultras.2010.12.012 Terzioglu F., Rongong J.A., Lord C.E., Influence of particle sphericity on granular dampers operating in the bouncing bed motional phase, Journal of Sound and Vibration, 554 (2023) 117690. https://doi.org/10.1016/j.jsv.2023.117690 Ghadiri M., Pasha Mehrdad, Nan W., Hare C., Vivacqua V., Zafar U., Nezamabadi S., Lopez A., Pasha Massih, Nadimi S., Cohesive powder flow: trends and challenges in characterisation and analysis, KONA Powder and Particle Journal, 37 (2020) 3–18. https://doi.org/10.14356/kona.2020018 Sonzogni M. Vanson J.-M., Ioannidou K., Reynier Y., Martinet S., Radjai F., Dynamic compaction of cohesive granular materials: scaling behavior and bonding structures, Soft Matter, 20 (2024) 5296–5313. https://doi.org/10.1039/D3SM01116J Marteau E., Andrade J.E., An experimental study of the effect of particle shape on force transmission and mobilized strength of granular materials, Journal of Applied Mechanics, 88 (2021) 111009. https://doi.org/10.1115/1.4051818 Chen Y., Yang J., Dave R., Pfeffer R., Fluidization of coated group C powders, AIChE Journal, 54 (2008) 104–121. https://doi.org/10.1002/aic.11368 Kollmer J.E., Daniels K.E., Betweenness centrality as predictor for forces in granular packings, Soft Matter, 15 (2019) 1793–1798. https://doi.org/10.1039/C8SM01372A Hueter T.F., Bolt R.H., Sonics: Techniques for the Use of Sound and Ultrasound in Engineering and Science, Wiley, 1955, ISBN: 9780471419761. Marhadi K.S., Kinra V.K., Particle impact damping: effect of mass ratio, material, and shape, Journal of Sound and Vibration, 283 (2005) 433–448. https://doi.org/10.1016/j.jsv.2004.04.013 Papadopoulos L., Porter M.A., Daniels K.E., Bassett D.S., Network analysis of particles and grains, Journal of Complex Networks, 6 (2018) 485–565. https://doi.org/10.1039/d3sm01116j Giraud M., Gatumel S., Vaudez S., Bernard-Granger G., Nos J., Gervais T., Berthiaux H., Investigation of a granular Bond number based rheological model for polydispersed particulate systems, Chemical Engineering Science, 228 (2020) 115971. https://doi.org/10.1016/j.ces.2020.115971 Suaza-Montalvo A., Cares-Pacheco M.G., Falk V., Time-dependent behaviour of industrial granular materials under vibration: modelling and phenomenology., Chemical Engineering Science, 271 (2023a) 118571. https://doi.org/10.1016/j.ces.2023.118571 Cares-Pacheco M.G., Falk V., A phenomenological law for complex granular materials from Mohr-Coulomb theory, Advanced Powder Technology, 34 (2023) 103888. https://doi.org/10.1016/j.apt.2022.103888 Suaza-Montalvo A., Cares Pacheco M.-G., Falk V., Vidéos des phenomenes observés pendant la compaction de poudres. Partie de la thèse: étude expérimentale de la compaction par vibration des poudres industrielles: phénoménologie et intérêt, Université de Lorraine, Dorel data repository (2023b). https://doi.org/10.12763/VKDBAS Knight J.B., Fandrich C.G., Lau C.N., Jaeger H.M., Nagel S.R., Density relaxation in a vibrated granular material, Physical Review E, 51 (1995) 3957–3963. https://doi.org/10.1103/PhysRevE.51.3957 Jaeger H.M., Nagel S.R., Behringer R.P., Granular solids, liquids, and gases, Reviews of Modern Physics, 68 (1996) 1259–1273. https://doi.org/10.1103/RevModPhys.68.1259 Ribière P., Philippe P., Richard P., Delannay R., Bideau D., Slow compaction of granular systems, Journal of Physics: Condensed Matter, 17 (2005) S2743–S2754. https://doi.org/10.1088/0953-8984/17/24/024 Majmudar T.S., Behringer R.P., Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435 (2005) 1079–1082. https://doi.org/10.1038/nature03805 Hausner H., Friction conditions in a mass of metal powder, International Journal of Powder Metal, 3 (1967) 7–13. Gilabert F.A., Roux J.-N., Castellanos A., Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states, Physical Review E, 75 (2007) 011303. https://doi.org/10.1103/PhysRevE.75.011303 Landi G., Barletta D., Poletto M., Modelling and experiments on the effect of air humidity on the flow properties of glass powders, Powder Technology, 207 (2011) 437–443. https://doi.org/10.1016/j.powtec.2010.11.033 Radjai F., Topin V., Richefeu V., Voivret C., Delenne J.-Y., Azéma E., El Youssoufi M.S., Force transmission in cohesive granular media, in: J. D. Goddard J.T.J. et P.G. (Ed.), Mathematical Modeling and Physical Instances of Granular Flows, AIP, 2010, pp. 240–260. Bérut A., Pouliquen O., Forterre Y., Brownian granular flows down heaps, Physical Review Letters, 123 (2019) 248005. https://doi.org/10.1103/PhysRevLett.123.248005 Saint-Cyr B., Radjai F., Delenne J.-Y., Sornay P., Cohesive granular materials composed of nonconvex particles, Physical Review E, 87 (2013) 052207. https://doi.org/10.1103/PhysRevE.87.052207 Andreotti B., Forterre Y., Pouliquen O., Les Milieux Granulaires—Entre Fluide et Solide, EDP Sciences, 2011. ISBN: 978-2759800971. Capece M., Ho R., Strong J., Gao P., Prediction of powder flow performance using a multi-component granular Bond number, Powder Technology, 286 (2015) 561–571. https://doi.org/10.1016/j.powtec.2015.08.031 Schulze D., Powders and Bulk Solids: Behavior, Characterization, Storage and Flow, Springer International Publishing, Cham, 2021, ISBN: 978-3030767198. https://doi.org/10.1007/978-3-030-76720-4 Sack A., Heckel M., Kollmer J.E., Zimber F., Pöschel T., Energy dissipation in driven granular matter in the absence of gravity, Physical Review Letters, 111 (2013) 018001. https://doi.org/10.1103/PhysRevLett.111.018001 Cares-Pacheco M.G., Vargas Y., Gaete L., Sainz J., Alarcón J., Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina, Physics Procedia, 3 (2010) 169–178. https://doi.org/10.1016/j.phpro.2010.01.024 Herrmann H.J., Hovi J.-P., Luding S., Eds., Physics of Dry Granular Media, Springer Netherlands, Dordrecht, 1998, ISBN: 978-0792351023. https://doi.org/10.1007/978-94-017-2653-5 Saker A., Cares-Pacheco M.-G., Marchal P., Falk V., Powders flowability assessment in granular compaction: What about the consistency of Hausner ratio?, Powder Technology, 354 (2019) 52–63. https://doi.org/10.1016/j.powtec.2019.05.032 Masmoudi M., Job S., Abbes M.S., Tawfiq I., Haddar M., Experimental and numerical investigations of dissipation mechanisms in particle dampers, Granular Matter, 18 (2016) 71. https://doi.org/10.1007/s10035-016-0667-4 Carson J.W., Wellwood G., Maynard E.P., How to reduce safety risks when storing and handling bulk solids, Informa Markets, (2019).<https://www.powderbulksolids.com/> accessed 16.05.2024. Wu M., Wang J., Prediction of 3D contact force chains using artificial neural networks, Engineering Geology, 296 (2022) 106444. https://doi.org/10.1016/j.enggeo.2021.106444 Cares-Pacheco M.-G., Jiménez Garavito M.-C., Ober A., Gerardin F., Silvente E., Falk V., Effects of humidity and glidants on the flowability of pharmaceutical excipients. An experimental energetical approach during granular compaction, International Journal of Pharmaceutics, 604 (2021) 120747. https://doi.org/10.1016/j.ijpharm.2021.120747 Zhao Y., Phalswal P., Shetty A., Ambrose R.P.K., Effects of powder vibration and time consolidation on soft and hard wheat flour properties, KONA Powder and Particle Journal, 38 (2021) 226–234. https://doi.org/10.14356/kona.2021007 Meyer N., Seifried R., Systematic design of particle dampers for transient vertical vibrations, Granular Matter, 25 (2023) 3. https://doi.org/10.1007/s10035-022-01290-y Gaete-Garretón L., Hernández Y., Cares M., Vega R., Influence of acoustic parameters in ultrasonic comminution of Zn powders in liquid phase, Presented at the Internation Congress on Acoustics, ICA 19th, Madrid, 2007. Grace J.R., Contacting modes and behaviour classification of gas—solid and other two-phase suspensions, The Canadian Journal of Chemical Engineering, 64 (1986) 353–363. https://doi.org/10.1002/cjce.5450640301 Ribière Ph., Richard P., Philippe P., Bideau D., Delannay R., On the existence of stationary states during granular compaction, The European Physical Journal E, 22 (2007) 249–253. https://doi.org/10.1140/epje/e2007-00017-x 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – ident: 4 doi: 10.3390/powders3020017 – ident: 25 doi: 10.1038/nature03805 – ident: 32 doi: 10.1088/0953-8984/17/24/024 – ident: 37 – ident: 6 doi: 10.1016/j.ijpharm.2021.120747 – ident: 18 doi: 10.1007/978-94-017-2653-5 – ident: 2 doi: 10.1103/PhysRevLett.123.248005 – ident: 10 – ident: 41 doi: 10.1016/j.jsv.2023.117690 – ident: 26 doi: 10.1016/j.jsv.2004.04.013 – ident: 29 doi: 10.1007/s10035-022-01290-y – ident: 12 doi: 10.1016/0032-5910(73)80037-3 – ident: 14 doi: 10.1103/PhysRevE.75.011303 – ident: 38 doi: 10.1039/D3SM01116J – ident: 43 doi: 10.14356/kona.2021007 – ident: 11 doi: 10.1016/j.ultras.2010.12.012 – ident: 21 doi: 10.1016/j.apt.2023.104105 – ident: 31 doi: 10.1063/1.3435395 – ident: 9 doi: 10.1002/aic.11368 – ident: 35 doi: 10.1103/PhysRevE.87.052207 – ident: 22 doi: 10.1103/PhysRevE.51.3957 – ident: 33 doi: 10.1140/epje/e2007-00017-x – ident: 24 doi: 10.1016/j.powtec.2010.11.033 – ident: 17 – ident: 34 doi: 10.1103/PhysRevLett.111.018001 – ident: 5 doi: 10.1016/j.apt.2022.103888 – ident: 7 doi: 10.1016/j.phpro.2010.01.024 – ident: 1 – ident: 20 doi: 10.1103/RevModPhys.68.1259 – ident: 13 doi: 10.14356/kona.2020018 – ident: 15 doi: 10.1016/j.ces.2020.115971 – ident: 30 doi: 10.1093/comnet/cny005 – ident: 19 – ident: 36 doi: 10.1016/j.powtec.2019.05.032 – ident: 39 doi: 10.1016/j.ces.2023.118571 – ident: 28 doi: 10.1007/s10035-016-0667-4 – ident: 16 doi: 10.1002/cjce.5450640301 – ident: 27 doi: 10.1115/1.4051818 – ident: 42 doi: 10.1016/j.enggeo.2021.106444 – ident: 8 – ident: 23 doi: 10.1039/C8SM01372A – ident: 3 doi: 10.1016/j.powtec.2015.08.031 – ident: 40 |
SSID | ssj0000070683 |
Score | 2.3497114 |
Snippet | Within the intricate world of granular materials, the behavior of grain assemblies presents complexities characterized by nonlinear and inelastic phenomena,... |
SourceID | hal crossref jstage |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 2025018 |
SubjectTerms | adhesion compaction densification force network Physics vibration |
Title | Decoding Attractive Interactions in Granular Materials through Vibration-Induced Densification |
URI | https://www.jstage.jst.go.jp/article/kona/advpub/0/advpub_2025018/_article/-char/en https://hal.science/hal-04771911 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | KONA Powder and Particle Journal, 2024, pp.2025018 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELa2hQMcUHmpW2hlIcQFGWLHTnaPq75WlJYitVVPRE4ci0K1qSDdShz55cz4kU0pB6i4ZCPL64xmJpOZ8cxnQl5yW2mdcs50LcZMCm5YCbEtw9AgA_Nn0wx7h_cPsumxfHeqTgeDn72qpcu2fFP9-GNfyW2kCmMgV-yS_QfJdovCANyDfOEKEobrX8l4C2JH15QyaVvX7TQPlZC-W8GVuu7Cx8iVmu7r1tPUnc1zgqEyTmR4gAcWAmxhObsNaby-37r34WDy-rC5QuQJ118QqInb2YutDAjf2SGiRFdN6AU60wyIABty3n0CdvS5s8Infp8e8Xl98XeXgRCL3OO0-d581Vc6Pn-xG9A7FKpn0ATIT6qQvKzdGHgYOVPKA79EI4p-mbfKNww8eHeYbADnGUGjunm_YWYHHhQ4rdBmDsQWSbwJfyviJGxvA21aIncEGCssC937OOrydIiHlHk010h-gGpFUt72Cbnm2ix9xsLau1_Ax4_1gc5lOVohD4Jo6MRT8JAM6tkjcr-HQPmYfIoqRBcqRPsqRM9mNKoQ7VSIBhWiN1SIXlOhJ-R4Z_toc8rCkRusEiPegr9i5MgakWputeFWSQlvbKJ1riqZpnVteZlbno-MMpnNRG3kWIi6siVCCwqTPiXLs2ZWrxKqdG7Bmx6bUkuZwxoKfpPEpEonxiZ2SF5FbhUXHlmlwIgU2eoFF9g6JC-Al90cxEOfTt4XOJbIPAerwud8SDY9q7t5t9GBtf-yyjNyD18Tn6h7Tpbbb5f1OriubbnhUj4bTsN-AUBppu0 |
link.rule.ids | 230,315,783,787,867,888,4031,27935,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Attractive+Interactions+in+Granular+Materials+through+Vibration-Induced+Densification&rft.jtitle=KONA+Powder+and+Particle+Journal&rft.au=Cares-Pacheco%2C+Maria-Graciela&rft.au=Falk%2C+V%C3%A9ronique&rft.date=2024&rft.pub=Hosokawa+Powder+Technology+Foundation&rft.issn=0288-4534&rft.eissn=2187-5537&rft.spage=2025018&rft_id=info:doi/10.14356%2Fkona.2025018&rft.externalDocID=article_kona_advpub_0_advpub_2025018_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-4534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-4534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-4534&client=summon |