Decoding Attractive Interactions in Granular Materials through Vibration-Induced Densification

Within the intricate world of granular materials, the behavior of grain assemblies presents complexities characterized by nonlinear and inelastic phenomena, which seamlessly link the microscopic grain scale to the macroscopic bulk scale. A key challenge in understanding the mechanics of granular mat...

Full description

Saved in:
Bibliographic Details
Published inKONA Powder and Particle Journal p. 2025018
Main Authors Cares-Pacheco, Maria-Graciela, Falk, Véronique
Format Journal Article
LanguageEnglish
Published Hosokawa Powder Technology Foundation 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Within the intricate world of granular materials, the behavior of grain assemblies presents complexities characterized by nonlinear and inelastic phenomena, which seamlessly link the microscopic grain scale to the macroscopic bulk scale. A key challenge in understanding the mechanics of granular materials lies in establishing connections between these microscopic grain properties and their macroscopic flow behavior. This study delves into vibration-induced densification, a phenomenon relevant across various technological domains in powder processing and manufacturing. Specifically, we explore the vibrational conditions that induce compaction and decompaction under vertical vibration, employing a particle damper across industrial powders, including glass beads, joint filler, wheat flour, and pharmaceutical excipients. The experiments involve controlling the vibration wave by adjusting parameters such as frequency and amplitude while measuring and recording the acceleration and force signals. Our findings reveal a significant correlation between the force required to decompact the powder bed and the attractive forces between grains. This correlation facilitates the determination of a dimensionless granular number Ad, offering insights into the contact force network at a macroscopic level and its relation to flow indices. By proposing this experimental approach, we provide a straightforward method to unveil the intricate relationship between local particle interactions and the overarching mechanical behavior of granular materials, contributing to advancements in understanding and predicting powder flow behavior.
AbstractList Within the intricate world of granular materials, the behavior of grain assemblies presents complexities characterized by nonlinear and inelastic phenomena, which seamlessly link the microscopic grain scale to the macroscopic bulk scale. A key challenge in understanding the mechanics of granular materials lies in establishing connections between these microscopic grain properties and their macroscopic flow behavior. This study delves into vibration-induced densification, a phenomenon relevant across various technological domains in powder processing and manufacturing. Specifically, we explore the vibrational conditions that induce compaction and decompaction under vertical vibration, employing a particle damper across industrial powders, including glass beads, joint filler, wheat flour, and pharmaceutical excipients. The experiments involve controlling the vibration wave by adjusting parameters such as frequency and amplitude while measuring and recording the acceleration and force signals. Our findings reveal a significant correlation between the force required to decompact the powder bed and the attractive forces between grains. This correlation facilitates the determination of a dimensionless granular number Ad, offering insights into the contact force network at a macroscopic level and its relation to flow indices. By proposing this experimental approach, we provide a straightforward method to unveil the intricate relationship between local particle interactions and the overarching mechanical behavior of granular materials, contributing to advancements in understanding and predicting powder flow behavior.
ArticleNumber 2025018
Author Cares-Pacheco, Maria-Graciela
Falk, Véronique
Author_xml – sequence: 1
  orcidid: 0000-0002-7515-4122
  fullname: Cares-Pacheco, Maria-Graciela
  organization: Reactions and Chemical Engineering Laboratory (LRGP-CNRS), Université de Lorraine, France
– sequence: 2
  orcidid: 0000-0001-9780-3480
  fullname: Falk, Véronique
  organization: Reactions and Chemical Engineering Laboratory (LRGP-CNRS), Université de Lorraine, France
BackLink https://hal.science/hal-04771911$$DView record in HAL
BookMark eNo90E1PAjEQBuDGYCIiR-979bDYr92WIwEFDMaLerSZ7QdbxC7pLiT-e1kWmctMps_08N6iXqiCReie4BHhLMsfv6sAI4pphom8Qn1KpEizjIke6mMqZcozxm_QsK43uC2Bc8n66GtmdWV8WCeTpomgG3-wyTI09jRXoU58SOYRwn4LMXmF44OHbZ00Zaz26zL59EWEFqbLYPbammRmQ-2d16ftHbp2R26H5z5AH89P79NFunqbL6eTVaqpJE0qseHSGcqAODDEZZzndIwBRKY5Y9Y6UghHhDSZyV1OreFjSq12BSFiTA0boIfu3xK2ahf9D8RfVYFXi8lKtTvMhSBjQg7kaNPO6ljVdbTuckCwOmWp2izVOcujf-n8pm5gbS8aYuP11nYYzGG3LxT-H87HF6RLiMoG9gdQ4YYx
Cites_doi 10.3390/powders3020017
10.1038/nature03805
10.1088/0953-8984/17/24/024
10.1016/j.ijpharm.2021.120747
10.1007/978-94-017-2653-5
10.1103/PhysRevLett.123.248005
10.1016/j.jsv.2023.117690
10.1016/j.jsv.2004.04.013
10.1007/s10035-022-01290-y
10.1016/0032-5910(73)80037-3
10.1103/PhysRevE.75.011303
10.1039/D3SM01116J
10.14356/kona.2021007
10.1016/j.ultras.2010.12.012
10.1016/j.apt.2023.104105
10.1063/1.3435395
10.1002/aic.11368
10.1103/PhysRevE.87.052207
10.1103/PhysRevE.51.3957
10.1140/epje/e2007-00017-x
10.1016/j.powtec.2010.11.033
10.1103/PhysRevLett.111.018001
10.1016/j.apt.2022.103888
10.1016/j.phpro.2010.01.024
10.1103/RevModPhys.68.1259
10.14356/kona.2020018
10.1016/j.ces.2020.115971
10.1093/comnet/cny005
10.1016/j.powtec.2019.05.032
10.1016/j.ces.2023.118571
10.1007/s10035-016-0667-4
10.1002/cjce.5450640301
10.1115/1.4051818
10.1016/j.enggeo.2021.106444
10.1039/C8SM01372A
10.1016/j.powtec.2015.08.031
ContentType Journal Article
Copyright 2024 Hosokawa Powder Technology Foundation
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Hosokawa Powder Technology Foundation
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.14356/kona.2025018
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2187-5537
ExternalDocumentID oai_HAL_hal_04771911v1
10_14356_kona_2025018
article_kona_advpub_0_advpub_2025018_article_char_en
GroupedDBID .4S
2WC
3V.
7.U
8FE
8FG
ABJCF
ABUWG
ACIWK
ADBBV
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BPHCQ
BVBZV
CCPQU
D1I
EBS
EJD
FRP
GROUPED_DOAJ
HCIFZ
HH5
JSF
JSH
KB.
KQ8
M~E
OK1
PDBOC
PQQKQ
PROAC
RJT
RNS
RZJ
TUS
WH7
AAYXX
CITATION
1XC
ID FETCH-LOGICAL-c281t-80d48fd23a1fad1f5446290aa75c433eef1b7f178d5d6f62ed4922ecfb11792d3
ISSN 0288-4534
IngestDate Sat Nov 09 06:43:44 EST 2024
Wed Oct 23 14:21:38 EDT 2024
Thu Nov 07 14:37:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-80d48fd23a1fad1f5446290aa75c433eef1b7f178d5d6f62ed4922ecfb11792d3
ORCID 0000-0001-9780-3480
0000-0002-7515-4122
OpenAccessLink http://dx.doi.org/10.14356/kona.2025018
ParticipantIDs hal_primary_oai_HAL_hal_04771911v1
crossref_primary_10_14356_kona_2025018
jstage_primary_article_kona_advpub_0_advpub_2025018_article_char_en
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle KONA Powder and Particle Journal
PublicationTitleAlternate KONA
PublicationYear 2024
Publisher Hosokawa Powder Technology Foundation
Publisher_xml – name: Hosokawa Powder Technology Foundation
References Cares-Pacheco M.-G., Cordeiro E., Gérardin F., Falk V., Consistency in young’s modulus of powders: a review with experiments, Powders, 3(2) (2024) 280–304. https://doi.org/10.3390/powders3020017
Geldart D., Types of gas fluidization, Powder Technology, 7 (1973) 285–292. https://doi.org/10.1016/0032-5910(73)80037-3
Jiménez Garavito M.C., Cares Pacheco M.G., Witschger O., Bau S., Gerardin F., Falk V., The effect of silica nanoparticles on the dustiness of industrial powders, Advanced Powder Technology, 34 (2023) 104105. https://doi.org/10.1016/j.apt.2023.104105
Gaete-Garretón L., Vargas-Hernández Y., Cares-Pacheco M.G., Sainz J., Alarcón J., Ultrasonically enhanced extraction of bioactive principles from Quillaja Saponaria Molina, Ultrasonics, 51 (2011) 581–585. https://doi.org/10.1016/j.ultras.2010.12.012
Terzioglu F., Rongong J.A., Lord C.E., Influence of particle sphericity on granular dampers operating in the bouncing bed motional phase, Journal of Sound and Vibration, 554 (2023) 117690. https://doi.org/10.1016/j.jsv.2023.117690
Ghadiri M., Pasha Mehrdad, Nan W., Hare C., Vivacqua V., Zafar U., Nezamabadi S., Lopez A., Pasha Massih, Nadimi S., Cohesive powder flow: trends and challenges in characterisation and analysis, KONA Powder and Particle Journal, 37 (2020) 3–18. https://doi.org/10.14356/kona.2020018
Sonzogni M. Vanson J.-M., Ioannidou K., Reynier Y., Martinet S., Radjai F., Dynamic compaction of cohesive granular materials: scaling behavior and bonding structures, Soft Matter, 20 (2024) 5296–5313. https://doi.org/10.1039/D3SM01116J
Marteau E., Andrade J.E., An experimental study of the effect of particle shape on force transmission and mobilized strength of granular materials, Journal of Applied Mechanics, 88 (2021) 111009. https://doi.org/10.1115/1.4051818
Chen Y., Yang J., Dave R., Pfeffer R., Fluidization of coated group C powders, AIChE Journal, 54 (2008) 104–121. https://doi.org/10.1002/aic.11368
Kollmer J.E., Daniels K.E., Betweenness centrality as predictor for forces in granular packings, Soft Matter, 15 (2019) 1793–1798. https://doi.org/10.1039/C8SM01372A
Hueter T.F., Bolt R.H., Sonics: Techniques for the Use of Sound and Ultrasound in Engineering and Science, Wiley, 1955, ISBN: 9780471419761.
Marhadi K.S., Kinra V.K., Particle impact damping: effect of mass ratio, material, and shape, Journal of Sound and Vibration, 283 (2005) 433–448. https://doi.org/10.1016/j.jsv.2004.04.013
Papadopoulos L., Porter M.A., Daniels K.E., Bassett D.S., Network analysis of particles and grains, Journal of Complex Networks, 6 (2018) 485–565. https://doi.org/10.1039/d3sm01116j
Giraud M., Gatumel S., Vaudez S., Bernard-Granger G., Nos J., Gervais T., Berthiaux H., Investigation of a granular Bond number based rheological model for polydispersed particulate systems, Chemical Engineering Science, 228 (2020) 115971. https://doi.org/10.1016/j.ces.2020.115971
Suaza-Montalvo A., Cares-Pacheco M.G., Falk V., Time-dependent behaviour of industrial granular materials under vibration: modelling and phenomenology., Chemical Engineering Science, 271 (2023a) 118571. https://doi.org/10.1016/j.ces.2023.118571
Cares-Pacheco M.G., Falk V., A phenomenological law for complex granular materials from Mohr-Coulomb theory, Advanced Powder Technology, 34 (2023) 103888. https://doi.org/10.1016/j.apt.2022.103888
Suaza-Montalvo A., Cares Pacheco M.-G., Falk V., Vidéos des phenomenes observés pendant la compaction de poudres. Partie de la thèse: étude expérimentale de la compaction par vibration des poudres industrielles: phénoménologie et intérêt, Université de Lorraine, Dorel data repository (2023b). https://doi.org/10.12763/VKDBAS
Knight J.B., Fandrich C.G., Lau C.N., Jaeger H.M., Nagel S.R., Density relaxation in a vibrated granular material, Physical Review E, 51 (1995) 3957–3963. https://doi.org/10.1103/PhysRevE.51.3957
Jaeger H.M., Nagel S.R., Behringer R.P., Granular solids, liquids, and gases, Reviews of Modern Physics, 68 (1996) 1259–1273. https://doi.org/10.1103/RevModPhys.68.1259
Ribière P., Philippe P., Richard P., Delannay R., Bideau D., Slow compaction of granular systems, Journal of Physics: Condensed Matter, 17 (2005) S2743–S2754. https://doi.org/10.1088/0953-8984/17/24/024
Majmudar T.S., Behringer R.P., Contact force measurements and stress-induced anisotropy in granular materials, Nature, 435 (2005) 1079–1082. https://doi.org/10.1038/nature03805
Hausner H., Friction conditions in a mass of metal powder, International Journal of Powder Metal, 3 (1967) 7–13.
Gilabert F.A., Roux J.-N., Castellanos A., Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states, Physical Review E, 75 (2007) 011303. https://doi.org/10.1103/PhysRevE.75.011303
Landi G., Barletta D., Poletto M., Modelling and experiments on the effect of air humidity on the flow properties of glass powders, Powder Technology, 207 (2011) 437–443. https://doi.org/10.1016/j.powtec.2010.11.033
Radjai F., Topin V., Richefeu V., Voivret C., Delenne J.-Y., Azéma E., El Youssoufi M.S., Force transmission in cohesive granular media, in: J. D. Goddard J.T.J. et P.G. (Ed.), Mathematical Modeling and Physical Instances of Granular Flows, AIP, 2010, pp. 240–260.
Bérut A., Pouliquen O., Forterre Y., Brownian granular flows down heaps, Physical Review Letters, 123 (2019) 248005. https://doi.org/10.1103/PhysRevLett.123.248005
Saint-Cyr B., Radjai F., Delenne J.-Y., Sornay P., Cohesive granular materials composed of nonconvex particles, Physical Review E, 87 (2013) 052207. https://doi.org/10.1103/PhysRevE.87.052207
Andreotti B., Forterre Y., Pouliquen O., Les Milieux Granulaires—Entre Fluide et Solide, EDP Sciences, 2011. ISBN: 978-2759800971.
Capece M., Ho R., Strong J., Gao P., Prediction of powder flow performance using a multi-component granular Bond number, Powder Technology, 286 (2015) 561–571. https://doi.org/10.1016/j.powtec.2015.08.031
Schulze D., Powders and Bulk Solids: Behavior, Characterization, Storage and Flow, Springer International Publishing, Cham, 2021, ISBN: 978-3030767198. https://doi.org/10.1007/978-3-030-76720-4
Sack A., Heckel M., Kollmer J.E., Zimber F., Pöschel T., Energy dissipation in driven granular matter in the absence of gravity, Physical Review Letters, 111 (2013) 018001. https://doi.org/10.1103/PhysRevLett.111.018001
Cares-Pacheco M.G., Vargas Y., Gaete L., Sainz J., Alarcón J., Ultrasonically assisted extraction of bioactive principles from Quillaja Saponaria Molina, Physics Procedia, 3 (2010) 169–178. https://doi.org/10.1016/j.phpro.2010.01.024
Herrmann H.J., Hovi J.-P., Luding S., Eds., Physics of Dry Granular Media, Springer Netherlands, Dordrecht, 1998, ISBN: 978-0792351023. https://doi.org/10.1007/978-94-017-2653-5
Saker A., Cares-Pacheco M.-G., Marchal P., Falk V., Powders flowability assessment in granular compaction: What about the consistency of Hausner ratio?, Powder Technology, 354 (2019) 52–63. https://doi.org/10.1016/j.powtec.2019.05.032
Masmoudi M., Job S., Abbes M.S., Tawfiq I., Haddar M., Experimental and numerical investigations of dissipation mechanisms in particle dampers, Granular Matter, 18 (2016) 71. https://doi.org/10.1007/s10035-016-0667-4
Carson J.W., Wellwood G., Maynard E.P., How to reduce safety risks when storing and handling bulk solids, Informa Markets, (2019).<https://www.powderbulksolids.com/> accessed 16.05.2024.
Wu M., Wang J., Prediction of 3D contact force chains using artificial neural networks, Engineering Geology, 296 (2022) 106444. https://doi.org/10.1016/j.enggeo.2021.106444
Cares-Pacheco M.-G., Jiménez Garavito M.-C., Ober A., Gerardin F., Silvente E., Falk V., Effects of humidity and glidants on the flowability of pharmaceutical excipients. An experimental energetical approach during granular compaction, International Journal of Pharmaceutics, 604 (2021) 120747. https://doi.org/10.1016/j.ijpharm.2021.120747
Zhao Y., Phalswal P., Shetty A., Ambrose R.P.K., Effects of powder vibration and time consolidation on soft and hard wheat flour properties, KONA Powder and Particle Journal, 38 (2021) 226–234. https://doi.org/10.14356/kona.2021007
Meyer N., Seifried R., Systematic design of particle dampers for transient vertical vibrations, Granular Matter, 25 (2023) 3. https://doi.org/10.1007/s10035-022-01290-y
Gaete-Garretón L., Hernández Y., Cares M., Vega R., Influence of acoustic parameters in ultrasonic comminution of Zn powders in liquid phase, Presented at the Internation Congress on Acoustics, ICA 19th, Madrid, 2007.
Grace J.R., Contacting modes and behaviour classification of gas—solid and other two-phase suspensions, The Canadian Journal of Chemical Engineering, 64 (1986) 353–363. https://doi.org/10.1002/cjce.5450640301
Ribière Ph., Richard P., Philippe P., Bideau D., Delannay R., On the existence of stationary states during granular compaction, The European Physical Journal E, 22 (2007) 249–253. https://doi.org/10.1140/epje/e2007-00017-x
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 4
  doi: 10.3390/powders3020017
– ident: 25
  doi: 10.1038/nature03805
– ident: 32
  doi: 10.1088/0953-8984/17/24/024
– ident: 37
– ident: 6
  doi: 10.1016/j.ijpharm.2021.120747
– ident: 18
  doi: 10.1007/978-94-017-2653-5
– ident: 2
  doi: 10.1103/PhysRevLett.123.248005
– ident: 10
– ident: 41
  doi: 10.1016/j.jsv.2023.117690
– ident: 26
  doi: 10.1016/j.jsv.2004.04.013
– ident: 29
  doi: 10.1007/s10035-022-01290-y
– ident: 12
  doi: 10.1016/0032-5910(73)80037-3
– ident: 14
  doi: 10.1103/PhysRevE.75.011303
– ident: 38
  doi: 10.1039/D3SM01116J
– ident: 43
  doi: 10.14356/kona.2021007
– ident: 11
  doi: 10.1016/j.ultras.2010.12.012
– ident: 21
  doi: 10.1016/j.apt.2023.104105
– ident: 31
  doi: 10.1063/1.3435395
– ident: 9
  doi: 10.1002/aic.11368
– ident: 35
  doi: 10.1103/PhysRevE.87.052207
– ident: 22
  doi: 10.1103/PhysRevE.51.3957
– ident: 33
  doi: 10.1140/epje/e2007-00017-x
– ident: 24
  doi: 10.1016/j.powtec.2010.11.033
– ident: 17
– ident: 34
  doi: 10.1103/PhysRevLett.111.018001
– ident: 5
  doi: 10.1016/j.apt.2022.103888
– ident: 7
  doi: 10.1016/j.phpro.2010.01.024
– ident: 1
– ident: 20
  doi: 10.1103/RevModPhys.68.1259
– ident: 13
  doi: 10.14356/kona.2020018
– ident: 15
  doi: 10.1016/j.ces.2020.115971
– ident: 30
  doi: 10.1093/comnet/cny005
– ident: 19
– ident: 36
  doi: 10.1016/j.powtec.2019.05.032
– ident: 39
  doi: 10.1016/j.ces.2023.118571
– ident: 28
  doi: 10.1007/s10035-016-0667-4
– ident: 16
  doi: 10.1002/cjce.5450640301
– ident: 27
  doi: 10.1115/1.4051818
– ident: 42
  doi: 10.1016/j.enggeo.2021.106444
– ident: 8
– ident: 23
  doi: 10.1039/C8SM01372A
– ident: 3
  doi: 10.1016/j.powtec.2015.08.031
– ident: 40
SSID ssj0000070683
Score 2.3497114
Snippet Within the intricate world of granular materials, the behavior of grain assemblies presents complexities characterized by nonlinear and inelastic phenomena,...
SourceID hal
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 2025018
SubjectTerms adhesion
compaction
densification
force network
Physics
vibration
Title Decoding Attractive Interactions in Granular Materials through Vibration-Induced Densification
URI https://www.jstage.jst.go.jp/article/kona/advpub/0/advpub_2025018/_article/-char/en
https://hal.science/hal-04771911
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX KONA Powder and Particle Journal, 2024, pp.2025018
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELa2hQMcUHmpW2hlIcQFGWLHTnaPq75WlJYitVVPRE4ci0K1qSDdShz55cz4kU0pB6i4ZCPL64xmJpOZ8cxnQl5yW2mdcs50LcZMCm5YCbEtw9AgA_Nn0wx7h_cPsumxfHeqTgeDn72qpcu2fFP9-GNfyW2kCmMgV-yS_QfJdovCANyDfOEKEobrX8l4C2JH15QyaVvX7TQPlZC-W8GVuu7Cx8iVmu7r1tPUnc1zgqEyTmR4gAcWAmxhObsNaby-37r34WDy-rC5QuQJ118QqInb2YutDAjf2SGiRFdN6AU60wyIABty3n0CdvS5s8Infp8e8Xl98XeXgRCL3OO0-d581Vc6Pn-xG9A7FKpn0ATIT6qQvKzdGHgYOVPKA79EI4p-mbfKNww8eHeYbADnGUGjunm_YWYHHhQ4rdBmDsQWSbwJfyviJGxvA21aIncEGCssC937OOrydIiHlHk010h-gGpFUt72Cbnm2ix9xsLau1_Ax4_1gc5lOVohD4Jo6MRT8JAM6tkjcr-HQPmYfIoqRBcqRPsqRM9mNKoQ7VSIBhWiN1SIXlOhJ-R4Z_toc8rCkRusEiPegr9i5MgakWputeFWSQlvbKJ1riqZpnVteZlbno-MMpnNRG3kWIi6siVCCwqTPiXLs2ZWrxKqdG7Bmx6bUkuZwxoKfpPEpEonxiZ2SF5FbhUXHlmlwIgU2eoFF9g6JC-Al90cxEOfTt4XOJbIPAerwud8SDY9q7t5t9GBtf-yyjNyD18Tn6h7Tpbbb5f1OriubbnhUj4bTsN-AUBppu0
link.rule.ids 230,315,783,787,867,888,4031,27935,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Attractive+Interactions+in+Granular+Materials+through+Vibration-Induced+Densification&rft.jtitle=KONA+Powder+and+Particle+Journal&rft.au=Cares-Pacheco%2C+Maria-Graciela&rft.au=Falk%2C+V%C3%A9ronique&rft.date=2024&rft.pub=Hosokawa+Powder+Technology+Foundation&rft.issn=0288-4534&rft.eissn=2187-5537&rft.spage=2025018&rft_id=info:doi/10.14356%2Fkona.2025018&rft.externalDocID=article_kona_advpub_0_advpub_2025018_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-4534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-4534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-4534&client=summon