Implication of surface oxidation of nanoscale molybdenum carbide on electrocatalytic activity

Transition metal carbides, such as molybdenum carbides, are promising substitutes for noble metals as low-cost, durable electrocatalysts. Under ambient conditions, however, these carbides are subject to oxidation due to their oxophilic nature. The partially oxidized surface may possess both oxygen-m...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 12; no. 25; pp. 15163 - 15176
Main Authors Yu, Siying, Gautam, Ankit Kumar, Gao, Di, Kuhn, Andrew N, He, Haozhen, Mironenko, Alexander V, Yang, Hong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 25.06.2024
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
DOI10.1039/d4ta01746c

Cover

Loading…
Abstract Transition metal carbides, such as molybdenum carbides, are promising substitutes for noble metals as low-cost, durable electrocatalysts. Under ambient conditions, however, these carbides are subject to oxidation due to their oxophilic nature. The partially oxidized surface may possess both oxygen-modulated metallic-like hydrogen adsorption sites and Brønsted-acidic hydroxyl sites. However, the impact of surface oxidation on electrochemical processes such as the hydrogen evolution reaction (HER) has rarely been studied. Here, we synthesized β-Mo 2 C catalysts and oxidized their surfaces electrochemically to varying extents to study the effects of surface oxidation on HER activity. The degree of surface oxidation was controlled by applying different potential windows to metal carbide catalysts. The samples with varying degrees of surface oxidation were tested for their HER activity. Experimental data indicate that the Tafel slope for the HER and double-layer capacitance were negatively affected by surface oxidation, particularly due to the loss of carbon and the formation of electrochemically less active surface oxides. The surface oxidation was studied experimentally by X-ray photoelectron spectroscopy and simulated using density functional theory (DFT), ab initio thermodynamics, and charge transfer estimates. Our DFT calculation results suggest that the model β-Mo 2 C (011) surface favors the adsorption of O* from water during the electrochemical oxidation, giving rise to the anodic current. Oxygen atoms preferentially interact with surface C sites, forming stable -C&z.dbd;O species and oxycarbide-like surfaces. Highly oxidized surfaces become kinetically unstable and undergo a deeper, substitutional oxidation through -C&z.dbd;O replacement by O*, forming a thermodynamically stable Mo( iv ) surface oxide, where each Mo atom coordinates with up to six O atoms. The rate-limiting step switches from CO desorption, occuring within the potential window from 0.28 to 0.51 V, to water dissociation above 0.51 V. The computational results agree well with experimental observations, such as the onset potential (0.6 V) for rapid surface oxidation. This work helps to unravel the details of evolution of surface sites during an oxidation process of molybdenum carbides along with their effects on catalytic properties and lays the foundation for their practical use in various applications. The surface oxidation of molybdenum carbide nanoparticles was controlled by the electrochemical method. The impact of surface oxidation on catalytic properties was studied by both spectroscopic and computational methods.
AbstractList Transition metal carbides, such as molybdenum carbides, are promising substitutes for noble metals as low-cost, durable electrocatalysts. Under ambient conditions, however, these carbides are subject to oxidation due to their oxophilic nature. The partially oxidized surface may possess both oxygen-modulated metallic-like hydrogen adsorption sites and Brønsted-acidic hydroxyl sites. However, the impact of surface oxidation on electrochemical processes such as the hydrogen evolution reaction (HER) has rarely been studied. Here, we synthesized β-Mo 2 C catalysts and oxidized their surfaces electrochemically to varying extents to study the effects of surface oxidation on HER activity. The degree of surface oxidation was controlled by applying different potential windows to metal carbide catalysts. The samples with varying degrees of surface oxidation were tested for their HER activity. Experimental data indicate that the Tafel slope for the HER and double-layer capacitance were negatively affected by surface oxidation, particularly due to the loss of carbon and the formation of electrochemically less active surface oxides. The surface oxidation was studied experimentally by X-ray photoelectron spectroscopy and simulated using density functional theory (DFT), ab initio thermodynamics, and charge transfer estimates. Our DFT calculation results suggest that the model β-Mo 2 C (011) surface favors the adsorption of O* from water during the electrochemical oxidation, giving rise to the anodic current. Oxygen atoms preferentially interact with surface C sites, forming stable -C&z.dbd;O species and oxycarbide-like surfaces. Highly oxidized surfaces become kinetically unstable and undergo a deeper, substitutional oxidation through -C&z.dbd;O replacement by O*, forming a thermodynamically stable Mo( iv ) surface oxide, where each Mo atom coordinates with up to six O atoms. The rate-limiting step switches from CO desorption, occuring within the potential window from 0.28 to 0.51 V, to water dissociation above 0.51 V. The computational results agree well with experimental observations, such as the onset potential (0.6 V) for rapid surface oxidation. This work helps to unravel the details of evolution of surface sites during an oxidation process of molybdenum carbides along with their effects on catalytic properties and lays the foundation for their practical use in various applications. The surface oxidation of molybdenum carbide nanoparticles was controlled by the electrochemical method. The impact of surface oxidation on catalytic properties was studied by both spectroscopic and computational methods.
Transition metal carbides, such as molybdenum carbides, are promising substitutes for noble metals as low-cost, durable electrocatalysts. Under ambient conditions, however, these carbides are subject to oxidation due to their oxophilic nature. The partially oxidized surface may possess both oxygen-modulated metallic-like hydrogen adsorption sites and Brønsted-acidic hydroxyl sites. However, the impact of surface oxidation on electrochemical processes such as the hydrogen evolution reaction (HER) has rarely been studied. Here, we synthesized β-Mo2C catalysts and oxidized their surfaces electrochemically to varying extents to study the effects of surface oxidation on HER activity. The degree of surface oxidation was controlled by applying different potential windows to metal carbide catalysts. The samples with varying degrees of surface oxidation were tested for their HER activity. Experimental data indicate that the Tafel slope for the HER and double-layer capacitance were negatively affected by surface oxidation, particularly due to the loss of carbon and the formation of electrochemically less active surface oxides. The surface oxidation was studied experimentally by X-ray photoelectron spectroscopy and simulated using density functional theory (DFT), ab initio thermodynamics, and charge transfer estimates. Our DFT calculation results suggest that the model β-Mo2C (011) surface favors the adsorption of O* from water during the electrochemical oxidation, giving rise to the anodic current. Oxygen atoms preferentially interact with surface C sites, forming stable –C=O species and oxycarbide-like surfaces. Highly oxidized surfaces become kinetically unstable and undergo a deeper, substitutional oxidation through –C=O replacement by O*, forming a thermodynamically stable Mo(iv) surface oxide, where each Mo atom coordinates with up to six O atoms. The rate-limiting step switches from CO desorption, occuring within the potential window from 0.28 to 0.51 V, to water dissociation above 0.51 V. The computational results agree well with experimental observations, such as the onset potential (0.6 V) for rapid surface oxidation. This work helps to unravel the details of evolution of surface sites during an oxidation process of molybdenum carbides along with their effects on catalytic properties and lays the foundation for their practical use in various applications.
Transition metal carbides, such as molybdenum carbides, are promising substitutes for noble metals as low-cost, durable electrocatalysts. Under ambient conditions, however, these carbides are subject to oxidation due to their oxophilic nature. The partially oxidized surface may possess both oxygen-modulated metallic-like hydrogen adsorption sites and Brønsted-acidic hydroxyl sites. However, the impact of surface oxidation on electrochemical processes such as the hydrogen evolution reaction (HER) has rarely been studied. Here, we synthesized β-Mo 2 C catalysts and oxidized their surfaces electrochemically to varying extents to study the effects of surface oxidation on HER activity. The degree of surface oxidation was controlled by applying different potential windows to metal carbide catalysts. The samples with varying degrees of surface oxidation were tested for their HER activity. Experimental data indicate that the Tafel slope for the HER and double-layer capacitance were negatively affected by surface oxidation, particularly due to the loss of carbon and the formation of electrochemically less active surface oxides. The surface oxidation was studied experimentally by X-ray photoelectron spectroscopy and simulated using density functional theory (DFT), ab initio thermodynamics, and charge transfer estimates. Our DFT calculation results suggest that the model β-Mo 2 C (011) surface favors the adsorption of O* from water during the electrochemical oxidation, giving rise to the anodic current. Oxygen atoms preferentially interact with surface C sites, forming stable –CO species and oxycarbide-like surfaces. Highly oxidized surfaces become kinetically unstable and undergo a deeper, substitutional oxidation through –CO replacement by O*, forming a thermodynamically stable Mo( iv ) surface oxide, where each Mo atom coordinates with up to six O atoms. The rate-limiting step switches from CO desorption, occuring within the potential window from 0.28 to 0.51 V, to water dissociation above 0.51 V. The computational results agree well with experimental observations, such as the onset potential (0.6 V) for rapid surface oxidation. This work helps to unravel the details of evolution of surface sites during an oxidation process of molybdenum carbides along with their effects on catalytic properties and lays the foundation for their practical use in various applications.
Author Yang, Hong
Kuhn, Andrew N
Yu, Siying
Mironenko, Alexander V
He, Haozhen
Gautam, Ankit Kumar
Gao, Di
AuthorAffiliation University of Illinois Urbana-Champaign
Department of Chemical and Biomolecular Engineering
AuthorAffiliation_xml – sequence: 0
  name: Department of Chemical and Biomolecular Engineering
– sequence: 0
  name: University of Illinois Urbana-Champaign
Author_xml – sequence: 1
  givenname: Siying
  surname: Yu
  fullname: Yu, Siying
– sequence: 2
  givenname: Ankit Kumar
  surname: Gautam
  fullname: Gautam, Ankit Kumar
– sequence: 3
  givenname: Di
  surname: Gao
  fullname: Gao, Di
– sequence: 4
  givenname: Andrew N
  surname: Kuhn
  fullname: Kuhn, Andrew N
– sequence: 5
  givenname: Haozhen
  surname: He
  fullname: He, Haozhen
– sequence: 6
  givenname: Alexander V
  surname: Mironenko
  fullname: Mironenko, Alexander V
– sequence: 7
  givenname: Hong
  surname: Yang
  fullname: Yang, Hong
BookMark eNptkc9LwzAUx4NMcM5dvAsFb0I1adomPY75azDwMo9S0pcEMtpmJqnY_964yQQxOeTx-Hy_j_fNOZr0tlcIXRJ8SzCt7mQeBCYsL-EETTNc4JTlVTk51pyfobn3WxwPx7isqil6W3W71oAIxvaJ1YkfnBagEvtp5LHZi956EK1KOtuOjVT90CUgXGNkJPtEtQqCs9FFtGMwkAgI5sOE8QKdatF6Nf95Z-j18WGzfE7XL0-r5WKdQsZJSJnOikZr0fC4B8lLoURW5QVgRRXlDZRQ4aaRRakYE5JUvIiXS8a1LAogGZ2h64Pvztn3QflQb-3g-jiyppgRzmnJaKRuDhQ4671Tut450wk31gTX3wnW9_lmsU9wGWH8BwYT9okEJ0z7v-TqIHEejta_n0K_APk4gDA
CitedBy_id crossref_primary_10_53941_mi_2024_100006
crossref_primary_10_1016_j_seppur_2025_132496
crossref_primary_10_21105_joss_07169
Cites_doi 10.1063/1.3553716
10.1016/j.fuel.2022.127084
10.1021/jp047349j
10.1021/acs.jpcc.9b04461
10.1039/D0TA07039D
10.1016/j.jpowsour.2015.08.024
10.1016/j.nanoen.2022.107232
10.1016/j.jcat.2015.03.011
10.1021/acscatal.5b01930
10.1021/ac50153a061
10.1039/D1NJ01088C
10.1016/j.surfcoat.2023.129816
10.1038/nature21672
10.1016/j.jcat.2017.11.004
10.1016/j.cej.2022.138977
10.1016/j.nanoen.2020.105056
10.1016/j.commatsci.2005.04.010
10.1016/j.apcatb.2019.05.034
10.1038/ncomms13216
10.1016/j.coche.2018.02.010
10.1063/1.2404663
10.1039/C6SC00077K
10.1038/s41598-017-03197-8
10.1021/acs.jpcc.7b11110
10.1002/smll.201703798
10.1016/j.commatsci.2012.10.028
10.26599/CF.2024.9200011
10.1016/j.jpowsour.2009.04.020
10.1021/ie00031a003
10.1103/PhysRevB.50.17953
10.1002/anie.201402998
10.1016/0927-0256(96)00008-0
10.1016/j.ces.2018.12.027
10.1038/s41929-019-0234-6
10.1039/C8CP04474K
10.1016/j.susc.2013.05.016
10.1002/aenm.201600528
10.1016/j.cattod.2005.04.008
10.1002/adma.201803694
10.1021/jp205508z
10.1063/1.480097
10.1103/PhysRevB.49.14251
10.1063/1.5132354
10.1021/jacs.6b02871
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.65.035406
10.1016/j.cej.2022.140072
10.1103/PhysRevLett.77.3865
10.1021/acscatal.2c04491
10.1103/PhysRevB.13.5188
10.1038/s41586-020-03130-6
10.1016/j.jechem.2022.05.014
10.3390/su151914556
10.1103/PhysRevB.47.558
10.1021/acsami.9b09007
10.1016/j.apcatb.2019.01.086
10.1021/acsami.2c19911
10.1021/acs.nanolett.9b01381
10.1063/1.3382344
10.1039/C9TA04374H
10.1126/science.aah4321
10.1016/j.jcat.2015.07.023
10.1103/PhysRevB.59.1758
10.1063/1.4865107
10.1038/s41929-018-0171-9
10.1039/C4TA00577E
10.1016/j.jcat.2016.09.012
10.1021/jacs.9b08897
10.1021/acs.chemmater.1c01120
10.1063/1.1329672
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
DOI 10.1039/d4ta01746c
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 15176
ExternalDocumentID 10_1039_D4TA01746C
d4ta01746c
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
ID FETCH-LOGICAL-c281t-7f25bffab8103146aea2945c0e3e38bc6c90bbd56e77ad19858588d78fd55c123
ISSN 2050-7488
IngestDate Mon Jun 30 12:00:39 EDT 2025
Tue Jul 01 03:28:16 EDT 2025
Thu Apr 24 23:03:44 EDT 2025
Tue Dec 17 20:58:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-7f25bffab8103146aea2945c0e3e38bc6c90bbd56e77ad19858588d78fd55c123
Notes ab initio
Electronic supplementary information (ESI) available: Micrographs, cyclic voltammetry curves, polarization curves, capacitance measurement, XPS data and analysis, and notes for DFT and
thermodynamics calculations. See DOI
https://doi.org/10.1039/d4ta01746c
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4180-2072
0000-0003-3459-4516
0009-0000-1616-5828
0000-0001-7490-5038
PQID 3071883673
PQPubID 2047523
PageCount 14
ParticipantIDs proquest_journals_3071883673
crossref_primary_10_1039_D4TA01746C
rsc_primary_d4ta01746c
crossref_citationtrail_10_1039_D4TA01746C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-25
PublicationDateYYYYMMDD 2024-06-25
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kresse (D4TA01746C/cit41/1) 1996; 6
Sun (D4TA01746C/cit2/1) 2023; 335
Monkhorst (D4TA01746C/cit51/1) 1976; 13
Li (D4TA01746C/cit36/1) 2018; 20
Zhang (D4TA01746C/cit15/1) 2019; 247
Gong (D4TA01746C/cit9/1) 2016; 7
Hjorth Larsen (D4TA01746C/cit57/1) 2017; 29
Kresse (D4TA01746C/cit42/1) 1996; 54
Reuter (D4TA01746C/cit66/1) 2001; 65
Kresse (D4TA01746C/cit44/1) 1993; 47
Shrestha (D4TA01746C/cit52/1) 2021; 33
Mironenko (D4TA01746C/cit77/1) 2016; 138
Lin (D4TA01746C/cit14/1) 2016; 7
Ong (D4TA01746C/cit54/1) 2013; 68
Hernández-Maya (D4TA01746C/cit10/1) 2023; 469
Schaidle (D4TA01746C/cit33/1) 2016; 6
Blöchl (D4TA01746C/cit46/1) 1994; 50
Li (D4TA01746C/cit20/1) 2019; 19
(D4TA01746C/cit67/1) 2004
Zhang (D4TA01746C/cit6/1) 2023; 454
Wyvratt (D4TA01746C/cit69/1) 2015; 330
Henkelman (D4TA01746C/cit58/1) 2000; 113
Zhang (D4TA01746C/cit1/1) 2018; 20
Zhao (D4TA01746C/cit23/1) 2020; 77
Kuhn (D4TA01746C/cit32/1) 2024; 1
Kresse (D4TA01746C/cit45/1) 1999; 59
Jian (D4TA01746C/cit75/1) 2018; 14
Yu (D4TA01746C/cit64/1) 2011; 134
Weigert (D4TA01746C/cit39/1) 2009; 193
Luo (D4TA01746C/cit74/1) 2016; 6
Wan (D4TA01746C/cit12/1) 2014; 53
Yang (D4TA01746C/cit24/1) 2023; 451
Kitchin (D4TA01746C/cit8/1) 2005; 105
Nørskov (D4TA01746C/cit68/1) 2004; 108
Kresse (D4TA01746C/cit43/1) 1994; 49
Blekkan (D4TA01746C/cit30/1) 1994; 33
Mathew (D4TA01746C/cit60/1) 2019; 151
Yu (D4TA01746C/cit22/1) 2019; 123
Fries (D4TA01746C/cit53/1) 1960; 32
Henkelman (D4TA01746C/cit59/1) 1999; 111
Sullivan (D4TA01746C/cit27/1) 2015; 326
Ribeiro (D4TA01746C/cit56/1) 2011; 115
Tang (D4TA01746C/cit63/1) 2009; 21
Zhang (D4TA01746C/cit19/1) 2021; 589
Henkelman (D4TA01746C/cit65/1) 2006; 36
Moulder (D4TA01746C/cit40/1) 1992
Zhao (D4TA01746C/cit5/1) 2023; 15
Zhang (D4TA01746C/cit34/1) 2020; 8
Izelaar (D4TA01746C/cit4/1) 2023; 13
Mir (D4TA01746C/cit71/1) 2017; 7
Likith (D4TA01746C/cit70/1) 2018; 122
Chen (D4TA01746C/cit72/1) 2011; 2
Zhou (D4TA01746C/cit3/1) 2023; 15
Pang (D4TA01746C/cit7/1) 2019; 254
Kuznetsov (D4TA01746C/cit21/1) 2019; 141
Goulas (D4TA01746C/cit76/1) 2019; 2
Perdew (D4TA01746C/cit47/1) 1996; 77
Grimme (D4TA01746C/cit48/1) 2010; 132
Sullivan (D4TA01746C/cit26/1) 2016; 344
Sullivan (D4TA01746C/cit28/1) 2018; 357
Sun (D4TA01746C/cit55/1) 2013; 617
Xu (D4TA01746C/cit11/1) 2015; 297
Yang (D4TA01746C/cit25/1) 2022; 98
Yin (D4TA01746C/cit16/1) 2021; 45
Qu (D4TA01746C/cit37/1) 2019; 11
Yao (D4TA01746C/cit18/1) 2017; 357
Lin (D4TA01746C/cit17/1) 2017; 544
Murugappan (D4TA01746C/cit31/1) 2018; 1
Krukau (D4TA01746C/cit49/1) 2006; 125
Cheng (D4TA01746C/cit35/1) 2018; 30
Alhajri (D4TA01746C/cit73/1) 2014; 2
Kumar (D4TA01746C/cit29/1) 2019; 197
Tang (D4TA01746C/cit13/1) 2019; 7
Mathew (D4TA01746C/cit61/1) 2014; 140
Du (D4TA01746C/cit38/1) 2022; 73
References_xml – publication-title: The D3 Dispersion Model
  doi: Github
– issn: 1992
  publication-title: Handbook of X-Ray Photoelectron Spectroscopy
  doi: Moulder Stickle Sobol Bomben
– issn: 2004
  end-page: p 6-8
  publication-title: CRC Handbook of Chemistry and Physics
– publication-title: VASPsol: VASPsol Solvation Module, V1.0,10.5281
  doi: Mathew Hennig Bértoli
– volume: 134
  start-page: 064111
  year: 2011
  ident: D4TA01746C/cit64/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553716
– volume: 335
  start-page: 127084
  year: 2023
  ident: D4TA01746C/cit2/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.127084
– volume: 108
  start-page: 17886
  year: 2004
  ident: D4TA01746C/cit68/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 123
  start-page: 21878
  year: 2019
  ident: D4TA01746C/cit22/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b04461
– volume: 8
  start-page: 23947
  year: 2020
  ident: D4TA01746C/cit34/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07039D
– volume: 297
  start-page: 359
  year: 2015
  ident: D4TA01746C/cit11/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.08.024
– volume: 98
  start-page: 107232
  year: 2022
  ident: D4TA01746C/cit25/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107232
– volume: 326
  start-page: 82
  year: 2015
  ident: D4TA01746C/cit27/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.03.011
– volume: 6
  start-page: 1181
  year: 2016
  ident: D4TA01746C/cit33/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01930
– volume: 32
  start-page: 1898
  year: 1960
  ident: D4TA01746C/cit53/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac50153a061
– volume: 45
  start-page: 10396
  year: 2021
  ident: D4TA01746C/cit16/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ01088C
– volume: 469
  start-page: 129816
  year: 2023
  ident: D4TA01746C/cit10/1
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2023.129816
– volume: 544
  start-page: 80
  year: 2017
  ident: D4TA01746C/cit17/1
  publication-title: Nature
  doi: 10.1038/nature21672
– volume: 357
  start-page: 195
  year: 2018
  ident: D4TA01746C/cit28/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2017.11.004
– volume: 451
  start-page: 138977
  year: 2023
  ident: D4TA01746C/cit24/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138977
– volume: 77
  start-page: 105056
  year: 2020
  ident: D4TA01746C/cit23/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105056
– volume: 36
  start-page: 354
  year: 2006
  ident: D4TA01746C/cit65/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 254
  start-page: 510
  year: 2019
  ident: D4TA01746C/cit7/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.05.034
– volume: 7
  start-page: 13216
  year: 2016
  ident: D4TA01746C/cit9/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13216
– volume: 20
  start-page: 68
  year: 2018
  ident: D4TA01746C/cit1/1
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2018.02.010
– volume: 125
  start-page: 224106
  year: 2006
  ident: D4TA01746C/cit49/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
– volume: 7
  start-page: 3399
  year: 2016
  ident: D4TA01746C/cit14/1
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00077K
– volume-title: Handbook of X-Ray Photoelectron Spectroscopy
  year: 1992
  ident: D4TA01746C/cit40/1
– volume: 29
  start-page: 273002
  year: 2017
  ident: D4TA01746C/cit57/1
  publication-title: J. Phys.: Condens.Matter
– volume: 7
  start-page: 3518
  year: 2017
  ident: D4TA01746C/cit71/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03197-8
– volume: 122
  start-page: 1223
  year: 2018
  ident: D4TA01746C/cit70/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b11110
– volume: 14
  start-page: 1703798
  year: 2018
  ident: D4TA01746C/cit75/1
  publication-title: Small
  doi: 10.1002/smll.201703798
– volume: 68
  start-page: 314
  year: 2013
  ident: D4TA01746C/cit54/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.028
– volume: 1
  start-page: 9200011
  year: 2024
  ident: D4TA01746C/cit32/1
  publication-title: Carbon Future
  doi: 10.26599/CF.2024.9200011
– volume: 193
  start-page: 501
  year: 2009
  ident: D4TA01746C/cit39/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.04.020
– volume: 33
  start-page: 1657
  year: 1994
  ident: D4TA01746C/cit30/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00031a003
– volume: 50
  start-page: 17953
  year: 1994
  ident: D4TA01746C/cit46/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 53
  start-page: 6407
  year: 2014
  ident: D4TA01746C/cit12/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402998
– volume: 6
  start-page: 15
  year: 1996
  ident: D4TA01746C/cit41/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 197
  start-page: 371
  year: 2019
  ident: D4TA01746C/cit29/1
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.12.027
– volume: 2
  start-page: 269
  year: 2019
  ident: D4TA01746C/cit76/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0234-6
– volume: 20
  start-page: 23338
  year: 2018
  ident: D4TA01746C/cit36/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP04474K
– volume: 617
  start-page: 53
  year: 2013
  ident: D4TA01746C/cit55/1
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2013.05.016
– volume: 6
  start-page: 1600528
  year: 2016
  ident: D4TA01746C/cit74/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600528
– volume: 21
  start-page: 084204
  year: 2009
  ident: D4TA01746C/cit63/1
  publication-title: J. Phys.: Condens.Matter
– volume: 105
  start-page: 66
  year: 2005
  ident: D4TA01746C/cit8/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2005.04.008
– volume: 30
  start-page: 1803694
  year: 2018
  ident: D4TA01746C/cit35/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803694
– volume: 115
  start-page: 14556
  year: 2011
  ident: D4TA01746C/cit56/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp205508z
– volume: 111
  start-page: 7010
  year: 1999
  ident: D4TA01746C/cit59/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480097
– volume: 49
  start-page: 14251
  year: 1994
  ident: D4TA01746C/cit43/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.49.14251
– volume: 151
  start-page: 234101
  year: 2019
  ident: D4TA01746C/cit60/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5132354
– volume: 138
  start-page: 8104
  year: 2016
  ident: D4TA01746C/cit77/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02871
– volume: 54
  start-page: 11169
  year: 1996
  ident: D4TA01746C/cit42/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 65
  start-page: 035406
  year: 2001
  ident: D4TA01746C/cit66/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.65.035406
– start-page: 6
  volume-title: CRC Handbook of Chemistry and Physics
  year: 2004
  ident: D4TA01746C/cit67/1
– volume: 454
  start-page: 140072
  year: 2023
  ident: D4TA01746C/cit6/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140072
– volume: 77
  start-page: 3865
  year: 1996
  ident: D4TA01746C/cit47/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 13
  start-page: 1649
  year: 2023
  ident: D4TA01746C/cit4/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c04491
– volume: 13
  start-page: 5188
  year: 1976
  ident: D4TA01746C/cit51/1
  publication-title: Phys. Rev. B: Solid State
  doi: 10.1103/PhysRevB.13.5188
– volume: 589
  start-page: 396
  year: 2021
  ident: D4TA01746C/cit19/1
  publication-title: Nature
  doi: 10.1038/s41586-020-03130-6
– volume: 73
  start-page: 68
  year: 2022
  ident: D4TA01746C/cit38/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.05.014
– volume: 15
  start-page: 14556
  year: 2023
  ident: D4TA01746C/cit3/1
  publication-title: Sustainability
  doi: 10.3390/su151914556
– volume: 47
  start-page: 558
  year: 1993
  ident: D4TA01746C/cit44/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.47.558
– volume: 11
  start-page: 31869
  year: 2019
  ident: D4TA01746C/cit37/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09007
– volume: 247
  start-page: 78
  year: 2019
  ident: D4TA01746C/cit15/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.01.086
– volume: 15
  start-page: 6797
  year: 2023
  ident: D4TA01746C/cit5/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c19911
– volume: 19
  start-page: 5102
  year: 2019
  ident: D4TA01746C/cit20/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01381
– volume: 132
  start-page: 154104
  year: 2010
  ident: D4TA01746C/cit48/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 2
  start-page: 1313
  year: 2011
  ident: D4TA01746C/cit72/1
  publication-title: Mater. Sci. Appl.
– volume: 7
  start-page: 18030
  year: 2019
  ident: D4TA01746C/cit13/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04374H
– volume: 357
  start-page: 389
  year: 2017
  ident: D4TA01746C/cit18/1
  publication-title: Science
  doi: 10.1126/science.aah4321
– volume: 330
  start-page: 280
  year: 2015
  ident: D4TA01746C/cit69/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2015.07.023
– volume: 59
  start-page: 1758
  year: 1999
  ident: D4TA01746C/cit45/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 140
  start-page: 084106
  year: 2014
  ident: D4TA01746C/cit61/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 1
  start-page: 960
  year: 2018
  ident: D4TA01746C/cit31/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0171-9
– volume: 2
  start-page: 10548
  year: 2014
  ident: D4TA01746C/cit73/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00577E
– volume: 344
  start-page: 53
  year: 2016
  ident: D4TA01746C/cit26/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.09.012
– volume: 141
  start-page: 17809
  year: 2019
  ident: D4TA01746C/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08897
– volume: 33
  start-page: 4606
  year: 2021
  ident: D4TA01746C/cit52/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.1c01120
– volume: 113
  start-page: 9901
  year: 2000
  ident: D4TA01746C/cit58/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
SSID ssj0000800699
Score 2.4354353
Snippet Transition metal carbides, such as molybdenum carbides, are promising substitutes for noble metals as low-cost, durable electrocatalysts. Under ambient...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15163
SubjectTerms Acidic oxides
Adsorption
Anodizing
Capacitance
Catalysts
Charge transfer
Chemical synthesis
Density functional theory
Electrocatalysts
Electrochemical oxidation
Electrochemistry
Heavy metals
Hydrogen evolution reactions
Metal carbides
Molybdenum
Molybdenum carbide
Noble metals
Oxidation
Oxidation process
Oxycarbides
Oxygen atoms
Photoelectron spectroscopy
Photoelectrons
Transition metals
X ray photoelectron spectroscopy
Title Implication of surface oxidation of nanoscale molybdenum carbide on electrocatalytic activity
URI https://www.proquest.com/docview/3071883673
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l6QUOiFdFoCBLcEGRi7N-rY9Wm6pFUbk4Ujgga18WVouNElsi_DR-Hfv0GigIuFjJeu04O9_Ojme_mQHgVUh5FcWI-VG8QH6Es4WfkYr7lENGYo5oTBXb4iq5WEdvN_FmMvk2Yi31HTmhX2-NK_kfqYo2IVcZJfsPkh1uKhrEZyFfcRQSFse_kvGlo4NLo2_Xbyss5mn7pWZDY4ObdicEweef2ps9YYr6TvGW1IzLnQJTB0e5cfYqeyvVBSV-Y7YKC1f_tTm1teJO5rkO-7FnVBpxHVSo_PI2SEvycAcX_vteeV7rvV08JQsI951GaN5c191cEcDdSeXWPavd9tPHxpEyzaaS8WDASDKtdLSzoT5JP4klqSoSinl8pwthEAcy7alW1XzcpgviDsocjkBrfkSrZmHaGFXK7XddeeaXRSQIZQ5WFnVYqKsooW6ptPSAq3fl-Xq1KovlpjgAh1C8osApOMyXxeVq8PBJWzxRBUyHp7f5ccPsjbv9jxaRe8052NoaNMrWKe6De0baXq4R9wBMePMQ3B2lrnwEPoyw57WVZ7DnDdiTjQP2PIc9z2DPE11-xp5nsfcYrM-XxemFb0p1-BSiReenFYxJVWGCZNmQKMEcwywS85yHPESEJjQLCGFxwtMUs0Umd6MRYimqWBxTYT0dgWnTNvwJ8EhAQhLAlAVM5mZMM55UNGFhRoMKBgjPwGs7XCU1eexlOZWbUvEpwqw8i4pcDe3pDLwc-n7W2Vtu7XVsR700s3tXirVvgVCYpOEMHAlJDNc7wT3983XPwB2H9mMw7bY9fy4s2I68MFD5Dq_uo1c
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implication+of+surface+oxidation+of+nanoscale+molybdenum+carbide+on+electrocatalytic+activity&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Yu%2C+Siying&rft.au=Gautam%2C+Ankit+Kumar&rft.au=Gao%2C+Di&rft.au=Kuhn%2C+Andrew+N&rft.date=2024-06-25&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=12&rft.issue=25&rft.spage=15163&rft.epage=15176&rft_id=info:doi/10.1039%2Fd4ta01746c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon