Advanced design strategies for Fe-based metal-organic framework-derived electrocatalysts toward high-performance Zn-air batteries

Zinc-air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density characteristics. Nevertheless, the kinetics of oxygen reaction at the air electrode of ZABs are slow, resulting in poor energy efficiency and cycling pro...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 17; no. 5; pp. 1725 - 1755
Main Authors Guo, Ya-Fei, Zhao, Shan, Zhang, Nan, Liu, Zong-Lin, Wang, Peng-Fei, Zhang, Jun-Hong, Xie, Ying, Yi, Ting-Feng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 05.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zinc-air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density characteristics. Nevertheless, the kinetics of oxygen reaction at the air electrode of ZABs are slow, resulting in poor energy efficiency and cycling properties of ZABs. How to improve the overall performance and long-term cycling stability of ZABs is the key to their development. So far, precious metals and their alloys have been considered the most ideal oxygen reduction reaction/oxygen evolution reaction catalysts. Nevertheless, the high cost and low storage capacity of these precious metals limit their application. Transition metal catalysts have received widespread attention because of their high electrocatalytic activity, structural stability, abundant reserves, and low prices. Among them, Fe-based catalysts are regarded as one of the most hopeful candidates due to their lowest price and ease of performance improvement. Metal-organic frameworks (MOFs) have advantages such as structural diversity, high specific surface area (SSA), and porosity. Especially as precursors of transition metal catalysts, organic ligands in MOFs are combined with bridged metal nodes to provide the necessary metals, carbon, and heteroatoms for electrocatalysts. However, MOFs may experience structural collapse, atomic aggregation, and reduced active sites during pyrolysis, which limits their commercial applications. Therefore, nano-design is extremely significant in improving catalytic capability. This review summarizes the morphology, composition, and structural control strategies of Fe-based MOF-derived electrocatalysts. In addition, the active sites, catalytic mechanism, and corresponding characteristics of electrocatalysts are introduced. Finally, the challenges and development prospects of optimized oxygen electrocatalysts in ZABs are discussed. This review provides insights into the targeted optimization of Fe-based MOF derived oxygen electrocatalysts and is expected to promote the future development of high-performance ZABs. This article summarizes the regulation strategies of Fe-based MOFs-derived electrocatalysts for ZABs, and provides a prospect for their future development.
AbstractList Zinc-air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density characteristics. Nevertheless, the kinetics of oxygen reaction at the air electrode of ZABs are slow, resulting in poor energy efficiency and cycling properties of ZABs. How to improve the overall performance and long-term cycling stability of ZABs is the key to their development. So far, precious metals and their alloys have been considered the most ideal oxygen reduction reaction/oxygen evolution reaction catalysts. Nevertheless, the high cost and low storage capacity of these precious metals limit their application. Transition metal catalysts have received widespread attention because of their high electrocatalytic activity, structural stability, abundant reserves, and low prices. Among them, Fe-based catalysts are regarded as one of the most hopeful candidates due to their lowest price and ease of performance improvement. Metal-organic frameworks (MOFs) have advantages such as structural diversity, high specific surface area (SSA), and porosity. Especially as precursors of transition metal catalysts, organic ligands in MOFs are combined with bridged metal nodes to provide the necessary metals, carbon, and heteroatoms for electrocatalysts. However, MOFs may experience structural collapse, atomic aggregation, and reduced active sites during pyrolysis, which limits their commercial applications. Therefore, nano-design is extremely significant in improving catalytic capability. This review summarizes the morphology, composition, and structural control strategies of Fe-based MOF-derived electrocatalysts. In addition, the active sites, catalytic mechanism, and corresponding characteristics of electrocatalysts are introduced. Finally, the challenges and development prospects of optimized oxygen electrocatalysts in ZABs are discussed. This review provides insights into the targeted optimization of Fe-based MOF derived oxygen electrocatalysts and is expected to promote the future development of high-performance ZABs. This article summarizes the regulation strategies of Fe-based MOFs-derived electrocatalysts for ZABs, and provides a prospect for their future development.
Zinc–air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density characteristics. Nevertheless, the kinetics of oxygen reaction at the air electrode of ZABs are slow, resulting in poor energy efficiency and cycling properties of ZABs. How to improve the overall performance and long-term cycling stability of ZABs is the key to their development. So far, precious metals and their alloys have been considered the most ideal oxygen reduction reaction/oxygen evolution reaction catalysts. Nevertheless, the high cost and low storage capacity of these precious metals limit their application. Transition metal catalysts have received widespread attention because of their high electrocatalytic activity, structural stability, abundant reserves, and low prices. Among them, Fe-based catalysts are regarded as one of the most hopeful candidates due to their lowest price and ease of performance improvement. Metal–organic frameworks (MOFs) have advantages such as structural diversity, high specific surface area (SSA), and porosity. Especially as precursors of transition metal catalysts, organic ligands in MOFs are combined with bridged metal nodes to provide the necessary metals, carbon, and heteroatoms for electrocatalysts. However, MOFs may experience structural collapse, atomic aggregation, and reduced active sites during pyrolysis, which limits their commercial applications. Therefore, nano-design is extremely significant in improving catalytic capability. This review summarizes the morphology, composition, and structural control strategies of Fe-based MOF-derived electrocatalysts. In addition, the active sites, catalytic mechanism, and corresponding characteristics of electrocatalysts are introduced. Finally, the challenges and development prospects of optimized oxygen electrocatalysts in ZABs are discussed. This review provides insights into the targeted optimization of Fe-based MOF derived oxygen electrocatalysts and is expected to promote the future development of high-performance ZABs.
Author Zhang, Jun-Hong
Yi, Ting-Feng
Zhao, Shan
Zhang, Nan
Wang, Peng-Fei
Liu, Zong-Lin
Xie, Ying
Guo, Ya-Fei
AuthorAffiliation Ministry of Education
School of Resources and Materials
School of Materials Science and Engineering
Key Laboratory of Functional Inorganic Material Chemistry
School of Chemistry and Materials Science
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
College of Chemistry and Chemical Engineering
Heilongjiang University
Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province
Northeastern University
Liaocheng University
Northeastern University at Qinhuangdao
AuthorAffiliation_xml – sequence: 0
  name: Liaocheng University
– sequence: 0
  name: Key Laboratory of Functional Inorganic Material Chemistry
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: College of Chemistry and Chemical Engineering
– sequence: 0
  name: Northeastern University at Qinhuangdao
– sequence: 0
  name: Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province
– sequence: 0
  name: Ministry of Education
– sequence: 0
  name: Northeastern University
– sequence: 0
  name: School of Resources and Materials
– sequence: 0
  name: School of Chemistry and Materials Science
– sequence: 0
  name: Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology
– sequence: 0
  name: Heilongjiang University
Author_xml – sequence: 1
  givenname: Ya-Fei
  surname: Guo
  fullname: Guo, Ya-Fei
– sequence: 2
  givenname: Shan
  surname: Zhao
  fullname: Zhao, Shan
– sequence: 3
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
– sequence: 4
  givenname: Zong-Lin
  surname: Liu
  fullname: Liu, Zong-Lin
– sequence: 5
  givenname: Peng-Fei
  surname: Wang
  fullname: Wang, Peng-Fei
– sequence: 6
  givenname: Jun-Hong
  surname: Zhang
  fullname: Zhang, Jun-Hong
– sequence: 7
  givenname: Ying
  surname: Xie
  fullname: Xie, Ying
– sequence: 8
  givenname: Ting-Feng
  surname: Yi
  fullname: Yi, Ting-Feng
BookMark eNptkb1LBDEQxYMo-NnYCwE7IZpssptNKXqngmCjjc0Sk9kzerc5J_HE0v_c6PkBYjUD83tvmDebZHWIAxCyK_ih4NIceQnAlRK8XyEbQteK1Zo3q999Y6p1spnSA-dNxbXZIG_HfmEHB556SGEy0JTRZpgESLSPSMfA7mwq4xlkO2URJ3YIjvZoZ_AS8ZF5wLAoc5iCyxidLdhryonm-GLR0_swuWdzwGI2-1hEbwdmA9I7m3ORQtoma72dJtj5qlvkZjy6Pjlnl1dnFyfHl8xVrchMa-eUaqvaOa6VEV47aLVpeWVluat1vdZG8YYbrbyTEmpoeiVqq7ypasPlFtlf-s4xPj1Dyt1DfMahrOwqI3WlBTd1ofiSchhTQug7F7LNIQ4llzDtBO8-gu5O5Wj0GfS4SA7-SOYYZhZf_4f3ljAm98P9fk2-A5sCizg
CitedBy_id crossref_primary_10_1016_j_jcis_2024_03_159
crossref_primary_10_1021_acs_jcim_4c01298
crossref_primary_10_1016_j_jechem_2024_09_029
crossref_primary_10_1002_anie_202412025
crossref_primary_10_1016_j_ensm_2025_104047
crossref_primary_10_1016_j_ensm_2024_103556
crossref_primary_10_1016_j_ensm_2024_103897
crossref_primary_10_1039_D4GC04687K
crossref_primary_10_1002_batt_202400402
crossref_primary_10_1016_j_cej_2024_155373
crossref_primary_10_1016_j_electacta_2024_144711
crossref_primary_10_1021_acsanm_4c06196
crossref_primary_10_1002_adma_202401926
crossref_primary_10_1002_ange_202425196
crossref_primary_10_1002_ajoc_202400492
crossref_primary_10_1002_cjoc_202400332
crossref_primary_10_1016_j_microc_2025_112743
crossref_primary_10_1039_D4CC06447J
crossref_primary_10_1016_j_est_2024_113463
crossref_primary_10_1016_j_jpowsour_2024_235103
crossref_primary_10_3390_gels11030154
crossref_primary_10_1002_ange_202412025
crossref_primary_10_1016_j_jallcom_2024_178435
crossref_primary_10_1016_j_apcatb_2024_124485
crossref_primary_10_1039_D4TA05503A
crossref_primary_10_1016_j_jallcom_2025_179961
crossref_primary_10_1016_j_jcis_2024_11_100
crossref_primary_10_1016_j_diamond_2024_111621
crossref_primary_10_26599_EMD_2024_9370047
crossref_primary_10_1016_j_ensm_2024_103985
crossref_primary_10_1021_acsaenm_4c00305
crossref_primary_10_1002_anie_202425196
crossref_primary_10_1002_smll_202406776
crossref_primary_10_1002_sus2_251
crossref_primary_10_1016_j_jece_2024_112702
crossref_primary_10_1021_acs_iecr_4c03089
crossref_primary_10_1016_j_est_2024_113139
crossref_primary_10_1016_j_mser_2025_100942
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1016_j_est_2024_114740
crossref_primary_10_1002_smll_202404294
crossref_primary_10_1021_acsomega_4c06571
crossref_primary_10_1016_j_jcis_2024_09_237
crossref_primary_10_1039_D4NJ01886A
crossref_primary_10_1016_j_cclet_2024_110144
crossref_primary_10_1007_s42452_024_06118_3
crossref_primary_10_1039_D5EE00074B
Cites_doi 10.1016/j.apcatb.2019.117893
10.1016/j.apcatb.2021.120752
10.1016/j.ensm.2023.01.030
10.1016/j.nanoen.2020.104547
10.1016/j.ensm.2023.03.033
10.1016/j.apsusc.2022.153891
10.1039/C4CS90059F
10.1039/D3EE02467A
10.1002/anie.202110243
10.1016/j.ensm.2023.102790
10.1002/cey2.337
10.1016/j.mtnano.2018.11.005
10.1039/D1EE01244D
10.1016/j.electacta.2023.142800
10.1039/D2TA07962C
10.1002/adfm.202300579
10.1002/ente.202100142
10.1002/chem.202200789
10.1016/j.apcatb.2021.120448
10.1021/acs.energyfuels.0c02512
10.1021/acsami.2c07373
10.1016/j.jphotochem.2023.115333
10.1016/j.carbon.2023.118365
10.1016/j.jallcom.2022.166128
10.1016/j.carbon.2023.01.034
10.1007/s40843-023-2464-8
10.1039/D3EE02213G
10.1016/j.ccr.2022.214839
10.1002/advs.202004572
10.1038/s41467-020-19599-8
10.1039/C8RA05102J
10.1002/anie.202016888
10.1016/j.jechem.2023.02.035
10.1016/j.cclet.2022.107807
10.1002/smll.202207342
10.1039/C8MH01397G
10.1016/j.seppur.2023.124184
10.1016/j.carbon.2015.06.022
10.1021/acsami.9b22577
10.1016/j.jcat.2020.10.030
10.1002/cvde.201106921
10.1039/D0TA00962H
10.1002/smll.202104125
10.1016/j.apsusc.2021.151030
10.1016/j.nanoen.2021.106488
10.1021/ja9061344
10.1016/j.apsusc.2023.158266
10.1039/C9CS00906J
10.1002/adma.202105410
10.1016/j.cclet.2023.108142
10.1039/D3TA02434B
10.1002/anie.202107053
10.1002/smll.202106260
10.1038/46248
10.1016/j.apsusc.2022.154590
10.1016/j.coelec.2023.101264
10.1016/j.cej.2021.134460
10.1002/aenm.202100514
10.1016/j.mtadv.2022.100334
10.1039/C8TA12178H
10.1002/anie.202115219
10.1039/D2NR04741A
10.1002/bte2.20230019
10.1021/acs.chemrev.7b00488
10.1002/adma.202209644
10.1021/acsenergylett.0c02484
10.1016/j.ccr.2015.08.004
10.1016/j.jcis.2023.03.206
10.1016/j.mtener.2022.101138
10.1016/j.jcis.2022.07.158
10.1021/acsnano.2c03565
10.1038/ncomms3331
10.1016/j.jmst.2021.04.033
10.1007/s42765-023-00287-3
10.1038/s41570-020-00226-5
10.1021/acscatal.6b03291
10.1039/D0SC04684A
10.1002/adfm.202100833
10.1002/adfm.202103558
10.1016/j.ijhydene.2019.03.195
10.1016/j.coelec.2023.101229
10.1021/acsnano.9b09912
10.1016/j.mattod.2023.08.007
10.1002/smtd.201600006
10.26599/EMD.2023.9370007
10.1016/j.envint.2023.107928
10.1016/j.ijhydene.2020.08.105
10.1016/0013-4686(73)80011-8
10.1002/adma.202303243
10.1021/ja5129132
10.1038/nnano.2012.72
10.1016/j.ccr.2022.214777
10.1016/j.jpowsour.2021.230430
10.1039/C9NR10109H
10.1016/j.jechem.2023.03.054
10.1021/jacs.9b09352
10.1039/C7CP06187K
10.1007/s40843-023-2527-7
10.1002/adma.202210166
10.1016/j.ensm.2022.12.007
10.1002/adma.201606534
10.1021/acsanm.1c02829
10.1016/j.jechem.2020.11.009
10.1016/j.pmatsci.2020.100671
10.1016/j.jallcom.2022.166665
10.1021/acscatal.6b02966
10.1038/2011212a0
10.1016/j.matchemphys.2019.122046
10.1016/j.jallcom.2023.172518
10.1016/j.comptc.2022.113765
10.1016/j.apcatb.2022.122356
10.1039/D2EE03257K
10.1002/smtd.201800550
10.1016/j.ensm.2023.102772
10.1016/j.mattod.2022.02.011
10.1039/D1TA09925F
10.1021/acs.cgd.0c01500
10.1016/j.apcatb.2022.121206
10.1021/jacs.1c10963
10.1002/celc.202200946
10.1002/tcr.202200212
10.1039/D3QM00565H
10.1002/smll.202202725
10.1016/j.ccr.2023.215383
10.1007/s10853-023-08690-2
10.1016/j.mtadv.2020.100116
10.1039/c0cs00163e
10.1016/j.jpowsour.2021.229665
10.26599/EMD.2023.9370002
10.1016/j.est.2023.106926
10.1016/j.est.2023.108743
10.1039/D0QM00878H
10.1016/j.micromeso.2014.09.034
10.1021/acs.chemrev.1c00243
10.1002/er.6834
10.1002/smll.202102425
10.1016/j.ensm.2023.103106
10.1002/adma.202103346
10.1021/acsnano.7b01409
10.1016/j.cclet.2020.08.029
10.1007/s11467-022-1208-8
10.1016/j.cej.2021.130460
10.1039/D2MH01067D
10.1039/D2SE00319H
10.1002/celc.201801859
10.1016/j.cclet.2022.107815
10.1021/acs.nanolett.2c02159
10.1007/s12598-020-01694-w
10.1039/C7NR06844A
10.1002/slct.202201503
10.1039/D0TA11859A
10.1016/j.ijhydene.2022.03.229
10.1002/adfm.201901301
10.1002/smll.202207474
10.1016/j.cej.2020.126492
10.1016/j.cej.2019.122658
10.1002/bkcs.12287
10.1021/cr5002589
10.1016/j.ccr.2018.08.010
10.1021/acs.langmuir.2c01882
10.1002/adma.202101038
10.1016/j.ccr.2022.214925
10.1016/j.micromeso.2021.111639
10.1021/jacs.7b07234
10.1002/advs.202301656
10.1016/j.apcatb.2023.122469
10.1002/anie.202013257
10.1007/s12274-022-4154-4
10.1039/D1QM00885D
10.1039/D2NR03370D
10.1016/j.jcis.2022.06.035
10.1016/j.jpcs.2023.111668
10.1002/adma.202102595
10.1039/D2EE02440C
10.1016/j.cis.2023.102891
10.1038/378703a0
10.26599/EMD.2023.9370008
10.1002/wene.472
10.1016/j.carbon.2023.118333
10.1016/j.jelechem.2023.117381
10.1002/adma.202300905
10.1016/j.jallcom.2023.170828
10.1021/acssuschemeng.2c01005
10.1007/s12274-020-3127-8
10.1007/BF01039385
10.1016/j.jechem.2021.11.013
10.1039/C8EE02679C
10.1126/science.1168049
10.1002/anie.202209350
10.1021/acs.chemrev.3c00248
10.1002/adma.202107421
10.1016/j.mattod.2023.02.004
10.1016/j.cej.2021.129973
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d3ee04410f
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1755
ExternalDocumentID 10_1039_D3EE04410F
d3ee04410f
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
AAYXX
AFRZK
AKMSF
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c281t-77cc44825cc07491d7ce879802a35698cf7794060974dc33e5e6f415a4d925903
ISSN 1754-5692
IngestDate Mon Jun 30 11:57:05 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Tue Jul 01 01:45:57 EDT 2025
Tue Dec 17 20:58:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-77cc44825cc07491d7ce879802a35698cf7794060974dc33e5e6f415a4d925903
Notes Prof. Ting-Feng Yi is currently a full professor at the School of Materials Science and Engineering, Northeastern University, Shenyang, China. He received his MSc degree in Applied Chemistry in 2004 and PhD degree in Chemical Engineering and Technology from the Harbin Institute of Technology in 2007. His research interests include the synthesis of functional materials and their application in batteries and supercapacitors.
Nan Zhang is currently a master's student at the School of Materials Science and Engineering of Northeastern University. Her main research interests are energy storage and conversion devices, especially Zn-air batteries and solid-state batteries.
Dr Zonglin Liu is currently a lecturer at the School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, China. She received her BSc and MSc from Northeast Forestry University and Ocean University of China, respectively. Then, she obtained her PhD degree in 2023 from Harbin Institute of Technology. Her research focuses on catalysts for electrocatalytic reactions, mainly for hydrogen evolution reaction, oxygen evolution reaction, water splitting, and zinc-air batteries.
Ya-Fei Guo is currently a master's student at the School of Materials Science and Engineering of Northeastern University. Her current research focuses on aqueous zinc metal-based batteries.
Dr Peng-Fei Wang is currently a lecturer at Northeastern University at Qinhuangdao, China. He received his PhD degree from Nanjing University in 2021. His major research interests focus on Li-sulfur battery, solid-state battery and photothermal battery.
Prof. Junhong Zhang is currently a professor at the College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China. She received her BSc and MSc from Liaocheng University. Then, she obtained her PhD degree in 2011 from the Ocean University of China. Her research focuses on electrochemistry.
Shan Zhao is currently a master's student at the School of Materials Science and Engineering of Northeastern University. Her main research interests are metal-air batteries and water electrolysis.
Prof. Ying Xie is currently a full professor at the School of Chemistry and Materials Science, Heilongjiang University, Harbin, China. He received his MSc degree in Applied Chemistry in 2004 and PhD degree in Chemical Engineering and Technology from the Harbin Institute of Technology in 2008. His research interests mainly focus on the applications of theoretical methods to explore the structure-property relationships of some energy storage and conversion materials.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5305-8167
0000-0003-0152-0609
0000-0002-4228-6874
PQID 2937271095
PQPubID 2047494
PageCount 31
ParticipantIDs proquest_journals_2937271095
crossref_citationtrail_10_1039_D3EE04410F
crossref_primary_10_1039_D3EE04410F
rsc_primary_d3ee04410f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-05
PublicationDateYYYYMMDD 2024-03-05
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-05
  day: 05
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Le (D3EE04410F/cit45/1) 2021; 404
Li (D3EE04410F/cit58/1) 2023; 35
Li (D3EE04410F/cit27/1) 2021; 40
Wang (D3EE04410F/cit80/1) 2023; 19
Xiong (D3EE04410F/cit24/1) 2023; 58
Batool (D3EE04410F/cit42/1) 2021; 4
Chang (D3EE04410F/cit47/1) 2023; 327
Liang (D3EE04410F/cit102/1) 2019; 6
Kulkarni (D3EE04410F/cit188/1) 2018; 118
Zhang (D3EE04410F/cit38/1) 2022; 6
Zhang (D3EE04410F/cit5/1) 2023; 35
Fang (D3EE04410F/cit148/1) 2022; 604
Niu (D3EE04410F/cit89/1) 2021; 31
Zhao (D3EE04410F/cit139/1) 2023; 642
Roy (D3EE04410F/cit3/1) 2021; 34
Xu (D3EE04410F/cit99/1) 2023; 320
Li (D3EE04410F/cit29/1) 2020; 11
Chen (D3EE04410F/cit72/1) 2023; 34
Haruna (D3EE04410F/cit8/1) 2023; 39
Chang (D3EE04410F/cit18/1) 2022; 473
Yang (D3EE04410F/cit114/1) 2015; 137
Tharani (D3EE04410F/cit154/1) 2023; 12
Chang (D3EE04410F/cit167/1) 2023; 10
Li (D3EE04410F/cit119/1) 2019; 29
Xue (D3EE04410F/cit36/1) 2019; 7
Zhang (D3EE04410F/cit76/1) 2015; 93
Li (D3EE04410F/cit62/1) 1999; 402
Hong (D3EE04410F/cit83/1) 2021; 394
Khan (D3EE04410F/cit185/1) 2021; 90
Gu (D3EE04410F/cit130/1) 2022; 47
Gao (D3EE04410F/cit97/1) 2022; 433
Zhang (D3EE04410F/cit180/1) 2019; 141
Iqbal (D3EE04410F/cit67/1) 2023; 62
Mane (D3EE04410F/cit126/1) 2023; 2
Wannakao (D3EE04410F/cit190/1) 2017; 19
Xu (D3EE04410F/cit17/1) 2023; 66
Shen (D3EE04410F/cit98/1) 2023; 59
Chen (D3EE04410F/cit160/1) 2022; 14
Hou (D3EE04410F/cit34/1) 2020; 113
Yu (D3EE04410F/cit109/1) 2020; 45
Chen (D3EE04410F/cit163/1) 2022; 14
Xu (D3EE04410F/cit122/1) 2019; 256
Cai (D3EE04410F/cit93/1) 2021; 121
Yang (D3EE04410F/cit81/1) 2023; 23
Zong (D3EE04410F/cit110/1) 2021; 32
Mohan (D3EE04410F/cit21/1) 2023; 175
Arafat (D3EE04410F/cit46/1) 2021; 11
Yang (D3EE04410F/cit123/1) 2023; 5
Jafari (D3EE04410F/cit28/1) 2021; 45
Tang (D3EE04410F/cit151/1) 2022; 14
Hao (D3EE04410F/cit74/1) 2021; 8
Majimel (D3EE04410F/cit112/1) 2011; 17
Gong (D3EE04410F/cit78/1) 2009; 323
Long (D3EE04410F/cit133/1) 2022; 625
Ryu (D3EE04410F/cit113/1) 2023; 55
Zhang (D3EE04410F/cit164/1) 2022; 18
Feng (D3EE04410F/cit30/1) 2023; 1
Zhang (D3EE04410F/cit187/1) 2021; 9
Gupta (D3EE04410F/cit70/1) 1989; 19
Cai (D3EE04410F/cit13/1) 2023; 66
Zhang (D3EE04410F/cit79/1) 2023; 63
De Villenoisy (D3EE04410F/cit57/1) 2023; 35
Akmalia (D3EE04410F/cit105/1) 2023; 72
Liang (D3EE04410F/cit165/1) 2020; 60
Zhang (D3EE04410F/cit107/1) 2023; 34
He (D3EE04410F/cit191/1) 2023; 19
Wang (D3EE04410F/cit182/1) 2022; 598
Gu (D3EE04410F/cit183/1) 2019; 3
Zhu (D3EE04410F/cit73/1) 2022; 1214
Zeng (D3EE04410F/cit101/1) 2018; 3
Burtch (D3EE04410F/cit56/1) 2014; 114
Lei (D3EE04410F/cit96/1) 2021; 14
An (D3EE04410F/cit124/1) 2023; 11
Xu (D3EE04410F/cit52/1) 2020; 382
Wang (D3EE04410F/cit88/1) 2020; 239
Yang (D3EE04410F/cit49/1) 2020; 34
Lin (D3EE04410F/cit95/1) 2021; 9
Cui (D3EE04410F/cit143/1) 2022; 61
Lei (D3EE04410F/cit50/1) 2022; 68
Huang (D3EE04410F/cit23/1) 2023; 69
Wu (D3EE04410F/cit150/1) 2023; 325
Song (D3EE04410F/cit48/1) 2023; 17
Guo (D3EE04410F/cit59/1) 2022; 331
Liu (D3EE04410F/cit171/1) 2021; 17
Khan (D3EE04410F/cit51/1) 2024; 448
Zhang (D3EE04410F/cit75/1) 2022; 10
Xiao (D3EE04410F/cit115/1) 2022; 472
Lin (D3EE04410F/cit1/1) 2023; 16
Shao (D3EE04410F/cit177/1) 2021; 31
Wei (D3EE04410F/cit131/1) 2021; 33
Liu (D3EE04410F/cit140/1) 2023; 33
Chen (D3EE04410F/cit6/1) 2022; 15
Kumar (D3EE04410F/cit7/1) 2023; 960
Sun (D3EE04410F/cit44/1) 2021; 424
Anand (D3EE04410F/cit156/1) 2023; 58
Yuan (D3EE04410F/cit184/1) 2021; 60
Liu (D3EE04410F/cit9/1) 2022; 15
Xing (D3EE04410F/cit166/1) 2021; 60
Chen (D3EE04410F/cit178/1) 2021; 60
Zhao (D3EE04410F/cit149/1) 2024; 184
Bhattacharyya (D3EE04410F/cit25/1) 2018; 8
Pei (D3EE04410F/cit10/1) 2021; 14
Jasinski (D3EE04410F/cit68/1) 1964; 201
Tan (D3EE04410F/cit14/1) 2023; 640
Savy (D3EE04410F/cit69/1) 1973; 18
Ramakrishnan (D3EE04410F/cit159/1) 2022; 300
Tang (D3EE04410F/cit84/1) 2017; 9
Wang (D3EE04410F/cit179/1) 2021; 6
Li (D3EE04410F/cit22/1) 2023; 1
Kumar (D3EE04410F/cit12/1) 2023; 38
Meng (D3EE04410F/cit15/1) 2023; 81
Hu (D3EE04410F/cit157/1) 2022; 18
Campos (D3EE04410F/cit144/1) 2020; 4
Zhang (D3EE04410F/cit4/1) 2023; 462
Zeng (D3EE04410F/cit82/1) 2022; 9
Guo (D3EE04410F/cit85/1) 2023; 495
Song (D3EE04410F/cit120/1) 2022; 54
Yao (D3EE04410F/cit103/1) 2023; 5
Lai (D3EE04410F/cit71/1) 2017; 7
Zhao (D3EE04410F/cit128/1) 2017; 11
Yuan (D3EE04410F/cit94/1) 2023; 34
Yang (D3EE04410F/cit172/1) 2021; 34
Zhou (D3EE04410F/cit175/1) 2020; 11
Bu (D3EE04410F/cit141/1) 2023; 214
Shahzad (D3EE04410F/cit100/1) 2023; 477
Li (D3EE04410F/cit169/1) 2023; 56
Li (D3EE04410F/cit170/1) 2022; 628
Fu (D3EE04410F/cit162/1) 2023; 1
Sun (D3EE04410F/cit158/1) 2022; 921
Bolmatov (D3EE04410F/cit111/1) 2013; 4
Liu (D3EE04410F/cit142/1) 2022; 34
Zhang (D3EE04410F/cit20/1) 2023; 7
Wang (D3EE04410F/cit155/1) 2023; 214
Chen (D3EE04410F/cit186/1) 2021; 59
Kundu (D3EE04410F/cit33/1) 2023; 10
Zhang (D3EE04410F/cit129/1) 2022; 18
Dou (D3EE04410F/cit53/1) 2017; 139
Liu (D3EE04410F/cit19/1) 2022; 10
Zhang (D3EE04410F/cit116/1) 2020; 8
Chen (D3EE04410F/cit176/1) 2022; 308
Ren (D3EE04410F/cit87/1) 2024; 17
Li (D3EE04410F/cit60/1) 2023; 123
Liu (D3EE04410F/cit117/1) 2016; 1
Low (D3EE04410F/cit64/1) 2009; 131
Ren (D3EE04410F/cit138/1) 2021; 569
Zheng (D3EE04410F/cit145/1) 2024; 65
Xue (D3EE04410F/cit146/1) 2020; 12
Pan (D3EE04410F/cit118/1) 2023; 11
Tan (D3EE04410F/cit135/1) 2022; 29
Huang (D3EE04410F/cit121/1) 2021; 421
Zheng (D3EE04410F/cit125/1) 2020; 12
Shi (D3EE04410F/cit26/1) 2019; 6
Xu (D3EE04410F/cit35/1) 2018; 376
Shinde (D3EE04410F/cit54/1) 2019; 12
Ahn (D3EE04410F/cit86/1) 2017; 29
Ma (D3EE04410F/cit104/1) 2023; 83
Lei (D3EE04410F/cit127/1) 2021; 5
Farahani (D3EE04410F/cit152/1) 2022; 144
Wang (D3EE04410F/cit40/1) 2021; 512
Wang (D3EE04410F/cit106/1) 2022; 28
de Souza Dias (D3EE04410F/cit11/1) 2023; 315
Zhou (D3EE04410F/cit193/1) 2023; 59
Li (D3EE04410F/cit77/1) 2012; 7
Xue (D3EE04410F/cit153/1) 2023; 205
Aguilera-Sigalat (D3EE04410F/cit92/1) 2016; 307
Zhang (D3EE04410F/cit168/1) 2022; 7
Kang (D3EE04410F/cit181/1) 2021; 493
Lonkar (D3EE04410F/cit90/1) 2020; 45
Sun (D3EE04410F/cit161/1) 2022; 38
Wang (D3EE04410F/cit32/1) 2020; 49
Zhou (D3EE04410F/cit39/1) 2014; 43
Yaghi (D3EE04410F/cit61/1) 1995; 378
Tan (D3EE04410F/cit65/1) 2011; 40
Zhou (D3EE04410F/cit37/1) 2022; 96
Zhang (D3EE04410F/cit63/1) 2021; 21
Gu (D3EE04410F/cit137/1) 2021; 17
Razmjooei (D3EE04410F/cit189/1) 2017; 7
Kim (D3EE04410F/cit43/1) 2021; 42
Meng (D3EE04410F/cit31/1) 2021; 5
Jiao (D3EE04410F/cit91/1) 2022; 22
Worku (D3EE04410F/cit16/1) 2021; 9
Du (D3EE04410F/cit147/1) 2022; 61
Xie (D3EE04410F/cit108/1) 2021; 33
Wua (D3EE04410F/cit55/1) 2024; 970
Liu (D3EE04410F/cit136/1) 2022; 925
Qadir (D3EE04410F/cit66/1) 2015; 201
Liu (D3EE04410F/cit2/1) 2023; 16
Sheng (D3EE04410F/cit173/1) 2022; 16
Jiang (D3EE04410F/cit132/1) 2020; 14
Li (D3EE04410F/cit192/1) 2022; 35
Zhang (D3EE04410F/cit134/1) 2020; 71
Guo (D3EE04410F/cit41/1) 2023; 936
Sun (D3EE04410F/cit174/1) 2021; 297
References_xml – volume: 256
  start-page: 117893
  year: 2019
  ident: D3EE04410F/cit122/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117893
– volume: 300
  start-page: 120752
  year: 2022
  ident: D3EE04410F/cit159/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120752
– volume: 56
  start-page: 394
  year: 2023
  ident: D3EE04410F/cit169/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.01.030
– volume: 71
  start-page: 104547
  year: 2020
  ident: D3EE04410F/cit134/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104547
– volume: 58
  start-page: 362
  year: 2023
  ident: D3EE04410F/cit156/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.03.033
– volume: 598
  start-page: 153891
  year: 2022
  ident: D3EE04410F/cit182/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153891
– volume: 43
  start-page: 5415
  year: 2014
  ident: D3EE04410F/cit39/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS90059F
– volume: 17
  start-page: 49
  year: 2024
  ident: D3EE04410F/cit87/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02467A
– volume: 60
  start-page: 25404
  year: 2021
  ident: D3EE04410F/cit178/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202110243
– volume: 59
  start-page: 102790
  year: 2023
  ident: D3EE04410F/cit98/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.102790
– volume: 5
  start-page: e337
  year: 2023
  ident: D3EE04410F/cit123/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.337
– volume: 3
  start-page: 54
  year: 2018
  ident: D3EE04410F/cit101/1
  publication-title: Mater. Today Nano
  doi: 10.1016/j.mtnano.2018.11.005
– volume: 14
  start-page: 4926
  year: 2021
  ident: D3EE04410F/cit10/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01244D
– volume: 462
  start-page: 142800
  year: 2023
  ident: D3EE04410F/cit4/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.142800
– volume: 11
  start-page: 118
  year: 2023
  ident: D3EE04410F/cit124/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA07962C
– volume: 33
  start-page: 2300579
  year: 2023
  ident: D3EE04410F/cit140/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300579
– volume: 9
  start-page: 2100142
  year: 2021
  ident: D3EE04410F/cit95/1
  publication-title: Energy Technol.
  doi: 10.1002/ente.202100142
– volume: 28
  start-page: e202200789
  year: 2022
  ident: D3EE04410F/cit106/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202200789
– volume: 297
  start-page: 120448
  year: 2021
  ident: D3EE04410F/cit174/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2021.120448
– volume: 34
  start-page: 11620
  year: 2020
  ident: D3EE04410F/cit49/1
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c02512
– volume: 14
  start-page: 38677
  year: 2022
  ident: D3EE04410F/cit160/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c07373
– volume: 448
  start-page: 115333
  year: 2024
  ident: D3EE04410F/cit51/1
  publication-title: J. Photochem. Photobiol., AA
  doi: 10.1016/j.jphotochem.2023.115333
– volume: 214
  start-page: 118365
  year: 2023
  ident: D3EE04410F/cit141/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118365
– volume: 921
  start-page: 166128
  year: 2022
  ident: D3EE04410F/cit158/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166128
– volume: 205
  start-page: 422
  year: 2023
  ident: D3EE04410F/cit153/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.01.034
– volume: 66
  start-page: 2953
  year: 2023
  ident: D3EE04410F/cit17/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-023-2464-8
– volume: 16
  start-page: 4834
  year: 2023
  ident: D3EE04410F/cit2/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02213G
– volume: 473
  start-page: 214839
  year: 2022
  ident: D3EE04410F/cit18/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214839
– volume: 8
  start-page: 2004572
  year: 2021
  ident: D3EE04410F/cit74/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202004572
– volume: 11
  start-page: 5892
  year: 2020
  ident: D3EE04410F/cit175/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19599-8
– volume: 8
  start-page: 26728
  year: 2018
  ident: D3EE04410F/cit25/1
  publication-title: RSC Adv.
  doi: 10.1039/C8RA05102J
– volume: 60
  start-page: 8889
  year: 2021
  ident: D3EE04410F/cit166/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202016888
– volume: 81
  start-page: 633
  year: 2023
  ident: D3EE04410F/cit15/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.02.035
– volume: 34
  start-page: 107807
  year: 2023
  ident: D3EE04410F/cit94/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.107807
– volume: 19
  start-page: 2207342
  year: 2023
  ident: D3EE04410F/cit80/1
  publication-title: Small
  doi: 10.1002/smll.202207342
– volume: 6
  start-page: 684
  year: 2019
  ident: D3EE04410F/cit26/1
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01397G
– volume: 320
  start-page: 124184
  year: 2023
  ident: D3EE04410F/cit99/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.124184
– volume: 93
  start-page: 1050
  year: 2015
  ident: D3EE04410F/cit76/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.06.022
– volume: 12
  start-page: 13878
  year: 2020
  ident: D3EE04410F/cit125/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b22577
– volume: 394
  start-page: 366
  year: 2021
  ident: D3EE04410F/cit83/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2020.10.030
– volume: 17
  start-page: 342
  year: 2011
  ident: D3EE04410F/cit112/1
  publication-title: Chem. Vap. Deposition
  doi: 10.1002/cvde.201106921
– volume: 8
  start-page: 9536
  year: 2020
  ident: D3EE04410F/cit116/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA00962H
– volume: 17
  start-page: 2104125
  year: 2021
  ident: D3EE04410F/cit137/1
  publication-title: Small
  doi: 10.1002/smll.202104125
– volume: 569
  start-page: 151030
  year: 2021
  ident: D3EE04410F/cit138/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151030
– volume: 90
  start-page: 106488
  year: 2021
  ident: D3EE04410F/cit185/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106488
– volume: 131
  start-page: 15834
  year: 2009
  ident: D3EE04410F/cit64/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9061344
– volume: 640
  start-page: 158266
  year: 2023
  ident: D3EE04410F/cit14/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2023.158266
– volume: 49
  start-page: 1414
  year: 2020
  ident: D3EE04410F/cit32/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00906J
– volume: 34
  start-page: 2105410
  year: 2021
  ident: D3EE04410F/cit172/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105410
– volume: 34
  start-page: 108142
  year: 2023
  ident: D3EE04410F/cit107/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2023.108142
– volume: 11
  start-page: 15006
  year: 2023
  ident: D3EE04410F/cit118/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA02434B
– volume: 60
  start-page: 21685
  year: 2021
  ident: D3EE04410F/cit184/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202107053
– volume: 18
  start-page: 2106260
  year: 2022
  ident: D3EE04410F/cit157/1
  publication-title: Small
  doi: 10.1002/smll.202106260
– volume: 402
  start-page: 276
  year: 1999
  ident: D3EE04410F/cit62/1
  publication-title: Nature
  doi: 10.1038/46248
– volume: 604
  start-page: 154590
  year: 2022
  ident: D3EE04410F/cit148/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154590
– volume: 39
  start-page: 101264
  year: 2023
  ident: D3EE04410F/cit8/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2023.101264
– volume: 433
  start-page: 134460
  year: 2022
  ident: D3EE04410F/cit97/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134460
– volume: 11
  start-page: 2100514
  year: 2021
  ident: D3EE04410F/cit46/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100514
– volume: 17
  start-page: 100334
  year: 2023
  ident: D3EE04410F/cit48/1
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2022.100334
– volume: 7
  start-page: 7301
  year: 2019
  ident: D3EE04410F/cit36/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA12178H
– volume: 61
  start-page: e202115219
  year: 2022
  ident: D3EE04410F/cit143/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202115219
– volume: 14
  start-page: 17447
  year: 2022
  ident: D3EE04410F/cit151/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR04741A
– volume: 2
  start-page: 20230019
  year: 2023
  ident: D3EE04410F/cit126/1
  publication-title: Battery Energy
  doi: 10.1002/bte2.20230019
– volume: 118
  start-page: 2302
  year: 2018
  ident: D3EE04410F/cit188/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00488
– volume: 35
  start-page: 2209644
  year: 2022
  ident: D3EE04410F/cit192/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209644
– volume: 6
  start-page: 379
  year: 2021
  ident: D3EE04410F/cit179/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02484
– volume: 307
  start-page: 267
  year: 2016
  ident: D3EE04410F/cit92/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.08.004
– volume: 642
  start-page: 800
  year: 2023
  ident: D3EE04410F/cit139/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.03.206
– volume: 29
  start-page: 101138
  year: 2022
  ident: D3EE04410F/cit135/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2022.101138
– volume: 628
  start-page: 331
  year: 2022
  ident: D3EE04410F/cit170/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.07.158
– volume: 16
  start-page: 15994
  year: 2022
  ident: D3EE04410F/cit173/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c03565
– volume: 4
  start-page: 2331
  year: 2013
  ident: D3EE04410F/cit111/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3331
– volume: 96
  start-page: 262
  year: 2022
  ident: D3EE04410F/cit37/1
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.04.033
– volume: 5
  start-page: 1592
  year: 2023
  ident: D3EE04410F/cit103/1
  publication-title: Adv. Fiber Mater.
  doi: 10.1007/s42765-023-00287-3
– volume: 4
  start-page: 696
  year: 2020
  ident: D3EE04410F/cit144/1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-020-00226-5
– volume: 7
  start-page: 2381
  year: 2017
  ident: D3EE04410F/cit189/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03291
– volume: 11
  start-page: 11646
  year: 2020
  ident: D3EE04410F/cit29/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC04684A
– volume: 31
  start-page: 2100833
  year: 2021
  ident: D3EE04410F/cit177/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100833
– volume: 31
  start-page: 2103558
  year: 2021
  ident: D3EE04410F/cit89/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103558
– volume: 45
  start-page: 10475
  year: 2020
  ident: D3EE04410F/cit90/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.03.195
– volume: 38
  start-page: 101229
  year: 2023
  ident: D3EE04410F/cit12/1
  publication-title: Curr. Opin. Electrochem.
  doi: 10.1016/j.coelec.2023.101229
– volume: 14
  start-page: 2436
  year: 2020
  ident: D3EE04410F/cit132/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09912
– volume: 69
  start-page: 66
  year: 2023
  ident: D3EE04410F/cit23/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.08.007
– volume: 1
  start-page: 1600006
  year: 2016
  ident: D3EE04410F/cit117/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201600006
– volume: 1
  start-page: 9370007
  year: 2023
  ident: D3EE04410F/cit22/1
  publication-title: Energy Mater. Devices
  doi: 10.26599/EMD.2023.9370007
– volume: 175
  start-page: 107928
  year: 2023
  ident: D3EE04410F/cit21/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2023.107928
– volume: 45
  start-page: 30583
  year: 2020
  ident: D3EE04410F/cit109/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.105
– volume: 18
  start-page: 191
  year: 1973
  ident: D3EE04410F/cit69/1
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(73)80011-8
– volume: 35
  start-page: 2303243
  year: 2023
  ident: D3EE04410F/cit5/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202303243
– volume: 137
  start-page: 1436
  year: 2015
  ident: D3EE04410F/cit114/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5129132
– volume: 7
  start-page: 394
  year: 2012
  ident: D3EE04410F/cit77/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.72
– volume: 472
  start-page: 214777
  year: 2022
  ident: D3EE04410F/cit115/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214777
– volume: 512
  start-page: 230430
  year: 2021
  ident: D3EE04410F/cit40/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230430
– volume: 12
  start-page: 4816
  year: 2020
  ident: D3EE04410F/cit146/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR10109H
– volume: 83
  start-page: 138
  year: 2023
  ident: D3EE04410F/cit104/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.03.054
– volume: 141
  start-page: 20118
  year: 2019
  ident: D3EE04410F/cit180/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09352
– volume: 19
  start-page: 29540
  year: 2017
  ident: D3EE04410F/cit190/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP06187K
– volume: 66
  start-page: 3381
  year: 2023
  ident: D3EE04410F/cit13/1
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-023-2527-7
– volume: 35
  start-page: 2210166
  year: 2023
  ident: D3EE04410F/cit57/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210166
– volume: 55
  start-page: 397
  year: 2023
  ident: D3EE04410F/cit113/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.12.007
– volume: 29
  start-page: 1606534
  year: 2017
  ident: D3EE04410F/cit86/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606534
– volume: 4
  start-page: 12365
  year: 2021
  ident: D3EE04410F/cit42/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.1c02829
– volume: 59
  start-page: 47
  year: 2021
  ident: D3EE04410F/cit186/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.11.009
– volume: 113
  start-page: 100671
  year: 2020
  ident: D3EE04410F/cit34/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100671
– volume: 925
  start-page: 166665
  year: 2022
  ident: D3EE04410F/cit136/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166665
– volume: 7
  start-page: 1655
  year: 2017
  ident: D3EE04410F/cit71/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02966
– volume: 201
  start-page: 1212
  year: 1964
  ident: D3EE04410F/cit68/1
  publication-title: Nature
  doi: 10.1038/2011212a0
– volume: 239
  start-page: 122046
  year: 2020
  ident: D3EE04410F/cit88/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.122046
– volume: 970
  start-page: 172518
  year: 2024
  ident: D3EE04410F/cit55/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.172518
– volume: 1214
  start-page: 113765
  year: 2022
  ident: D3EE04410F/cit73/1
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2022.113765
– volume: 325
  start-page: 122356
  year: 2023
  ident: D3EE04410F/cit150/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.122356
– volume: 16
  start-page: 745
  year: 2023
  ident: D3EE04410F/cit1/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03257K
– volume: 3
  start-page: 1800550
  year: 2019
  ident: D3EE04410F/cit183/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201800550
– volume: 59
  start-page: 102772
  year: 2023
  ident: D3EE04410F/cit193/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.102772
– volume: 54
  start-page: 42
  year: 2022
  ident: D3EE04410F/cit120/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2022.02.011
– volume: 10
  start-page: 1617
  year: 2022
  ident: D3EE04410F/cit19/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA09925F
– volume: 21
  start-page: 3100
  year: 2021
  ident: D3EE04410F/cit63/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c01500
– volume: 308
  start-page: 121206
  year: 2022
  ident: D3EE04410F/cit176/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121206
– volume: 144
  start-page: 3411
  year: 2022
  ident: D3EE04410F/cit152/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10963
– volume: 9
  start-page: e202200946
  year: 2022
  ident: D3EE04410F/cit82/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202200946
– volume: 23
  start-page: e202200212
  year: 2023
  ident: D3EE04410F/cit81/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.202200212
– volume: 7
  start-page: 4782
  year: 2023
  ident: D3EE04410F/cit20/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00565H
– volume: 18
  start-page: 2202725
  year: 2022
  ident: D3EE04410F/cit164/1
  publication-title: Small
  doi: 10.1002/smll.202202725
– volume: 495
  start-page: 215383
  year: 2023
  ident: D3EE04410F/cit85/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215383
– volume: 58
  start-page: 2041
  year: 2023
  ident: D3EE04410F/cit24/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-023-08690-2
– volume: 9
  start-page: 100116
  year: 2021
  ident: D3EE04410F/cit16/1
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2020.100116
– volume: 40
  start-page: 1059
  year: 2011
  ident: D3EE04410F/cit65/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c0cs00163e
– volume: 493
  start-page: 229665
  year: 2021
  ident: D3EE04410F/cit181/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229665
– volume: 1
  start-page: 9370002
  year: 2023
  ident: D3EE04410F/cit162/1
  publication-title: Energy Mater. Devices
  doi: 10.26599/EMD.2023.9370002
– volume: 62
  start-page: 106926
  year: 2023
  ident: D3EE04410F/cit67/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106926
– volume: 72
  start-page: 108743
  year: 2023
  ident: D3EE04410F/cit105/1
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108743
– volume: 5
  start-page: 2649
  year: 2021
  ident: D3EE04410F/cit31/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00878H
– volume: 201
  start-page: 61
  year: 2015
  ident: D3EE04410F/cit66/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2014.09.034
– volume: 121
  start-page: 12278
  year: 2021
  ident: D3EE04410F/cit93/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00243
– volume: 45
  start-page: 15676
  year: 2021
  ident: D3EE04410F/cit28/1
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6834
– volume: 17
  start-page: 2102425
  year: 2021
  ident: D3EE04410F/cit171/1
  publication-title: Small
  doi: 10.1002/smll.202102425
– volume: 65
  start-page: 103106
  year: 2024
  ident: D3EE04410F/cit145/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.103106
– volume: 34
  start-page: 2103346
  year: 2021
  ident: D3EE04410F/cit3/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103346
– volume: 11
  start-page: 5800
  year: 2017
  ident: D3EE04410F/cit128/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01409
– volume: 32
  start-page: 1121
  year: 2021
  ident: D3EE04410F/cit110/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.08.029
– volume: 18
  start-page: 13603
  year: 2022
  ident: D3EE04410F/cit129/1
  publication-title: Front. Phys.
  doi: 10.1007/s11467-022-1208-8
– volume: 424
  start-page: 130460
  year: 2021
  ident: D3EE04410F/cit44/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130460
– volume: 10
  start-page: 745
  year: 2023
  ident: D3EE04410F/cit33/1
  publication-title: Mater. Horiz.
  doi: 10.1039/D2MH01067D
– volume: 6
  start-page: 2665
  year: 2022
  ident: D3EE04410F/cit38/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/D2SE00319H
– volume: 6
  start-page: 2600
  year: 2019
  ident: D3EE04410F/cit102/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801859
– volume: 34
  start-page: 107815
  year: 2023
  ident: D3EE04410F/cit72/1
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.107815
– volume: 22
  start-page: 7386
  year: 2022
  ident: D3EE04410F/cit91/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c02159
– volume: 40
  start-page: 2657
  year: 2021
  ident: D3EE04410F/cit27/1
  publication-title: Rare Met.
  doi: 10.1007/s12598-020-01694-w
– volume: 9
  start-page: 17364
  year: 2017
  ident: D3EE04410F/cit84/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR06844A
– volume: 7
  start-page: e202201503
  year: 2022
  ident: D3EE04410F/cit168/1
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202201503
– volume: 9
  start-page: 5556
  year: 2021
  ident: D3EE04410F/cit187/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11859A
– volume: 47
  start-page: 17224
  year: 2022
  ident: D3EE04410F/cit130/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.03.229
– volume: 29
  start-page: 1901301
  year: 2019
  ident: D3EE04410F/cit119/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901301
– volume: 19
  start-page: 2207474
  year: 2023
  ident: D3EE04410F/cit191/1
  publication-title: Small
  doi: 10.1002/smll.202207474
– volume: 404
  start-page: 126492
  year: 2021
  ident: D3EE04410F/cit45/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126492
– volume: 382
  start-page: 122658
  year: 2020
  ident: D3EE04410F/cit52/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122658
– volume: 42
  start-page: 919
  year: 2021
  ident: D3EE04410F/cit43/1
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.1002/bkcs.12287
– volume: 114
  start-page: 10575
  year: 2014
  ident: D3EE04410F/cit56/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr5002589
– volume: 376
  start-page: 292
  year: 2018
  ident: D3EE04410F/cit35/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.08.010
– volume: 38
  start-page: 11753
  year: 2022
  ident: D3EE04410F/cit161/1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.2c01882
– volume: 33
  start-page: 2101038
  year: 2021
  ident: D3EE04410F/cit108/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101038
– volume: 477
  start-page: 214925
  year: 2023
  ident: D3EE04410F/cit100/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214925
– volume: 331
  start-page: 111639
  year: 2022
  ident: D3EE04410F/cit59/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111639
– volume: 139
  start-page: 13608
  year: 2017
  ident: D3EE04410F/cit53/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07234
– volume: 10
  start-page: 2301656
  year: 2023
  ident: D3EE04410F/cit167/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202301656
– volume: 327
  start-page: 122469
  year: 2023
  ident: D3EE04410F/cit47/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2023.122469
– volume: 60
  start-page: 2120
  year: 2020
  ident: D3EE04410F/cit165/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202013257
– volume: 15
  start-page: 5038
  year: 2022
  ident: D3EE04410F/cit6/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4154-4
– volume: 5
  start-page: 7315
  year: 2021
  ident: D3EE04410F/cit127/1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM00885D
– volume: 14
  start-page: 12431
  year: 2022
  ident: D3EE04410F/cit163/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR03370D
– volume: 625
  start-page: 555
  year: 2022
  ident: D3EE04410F/cit133/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.06.035
– volume: 184
  start-page: 111668
  year: 2024
  ident: D3EE04410F/cit149/1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2023.111668
– volume: 33
  start-page: 2102595
  year: 2021
  ident: D3EE04410F/cit131/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102595
– volume: 15
  start-page: 4542
  year: 2022
  ident: D3EE04410F/cit9/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE02440C
– volume: 315
  start-page: 102891
  year: 2023
  ident: D3EE04410F/cit11/1
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2023.102891
– volume: 378
  start-page: 703
  year: 1995
  ident: D3EE04410F/cit61/1
  publication-title: Nature
  doi: 10.1038/378703a0
– volume: 1
  start-page: 9370008
  year: 2023
  ident: D3EE04410F/cit30/1
  publication-title: Energy Mater. Devices
  doi: 10.26599/EMD.2023.9370008
– volume: 12
  start-page: e472
  year: 2023
  ident: D3EE04410F/cit154/1
  publication-title: Wires Energy Environ.
  doi: 10.1002/wene.472
– volume: 214
  start-page: 118333
  year: 2023
  ident: D3EE04410F/cit155/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118333
– volume: 936
  start-page: 117381
  year: 2023
  ident: D3EE04410F/cit41/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2023.117381
– volume: 35
  start-page: 2300905
  year: 2023
  ident: D3EE04410F/cit58/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300905
– volume: 960
  start-page: 170828
  year: 2023
  ident: D3EE04410F/cit7/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.170828
– volume: 10
  start-page: 9303
  year: 2022
  ident: D3EE04410F/cit75/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.2c01005
– volume: 14
  start-page: 868
  year: 2021
  ident: D3EE04410F/cit96/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3127-8
– volume: 19
  start-page: 19
  year: 1989
  ident: D3EE04410F/cit70/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF01039385
– volume: 68
  start-page: 78
  year: 2022
  ident: D3EE04410F/cit50/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.11.013
– volume: 12
  start-page: 727
  year: 2019
  ident: D3EE04410F/cit54/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02679C
– volume: 323
  start-page: 760
  year: 2009
  ident: D3EE04410F/cit78/1
  publication-title: Science
  doi: 10.1126/science.1168049
– volume: 61
  start-page: e202209350
  year: 2022
  ident: D3EE04410F/cit147/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202209350
– volume: 123
  start-page: 10432
  year: 2023
  ident: D3EE04410F/cit60/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00248
– volume: 34
  start-page: 2107421
  year: 2022
  ident: D3EE04410F/cit142/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107421
– volume: 63
  start-page: 339
  year: 2023
  ident: D3EE04410F/cit79/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.02.004
– volume: 421
  start-page: 129973
  year: 2021
  ident: D3EE04410F/cit121/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129973
SSID ssj0062079
Score 2.648073
SecondaryResourceType review_article
Snippet Zinc-air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density...
Zinc–air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1725
SubjectTerms Catalysts
Chemical reduction
Cycles
Electrocatalysts
Energy efficiency
Heavy metals
Iron
Metal air batteries
Metal-organic frameworks
Metals
Noble metals
Oxygen
Oxygen evolution reactions
Oxygen reduction reactions
Porosity
Precious metals
Pyrolysis
Storage capacity
Structural stability
Transition metals
Zinc-oxygen batteries
Title Advanced design strategies for Fe-based metal-organic framework-derived electrocatalysts toward high-performance Zn-air batteries
URI https://www.proquest.com/docview/2937271095
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uxc4IP5WFBZkCS6o8uLEdn6OBRpWUMqBVpS9RI7jQqVVumpTJDhx4Ql4Fx6IJ2HixIl3qRBwiSrLsaLMF3tm-s03CD3iVAeSSU04F5xwxgXJpKZEepnioQy4MhIbryfByYy_nIt5r_fDYS1ty-xYfdlZV_I_VoUxsGtVJfsPlm0XhQH4DfaFK1gYrn9l46H9Az83PIzBprTCD4Y9mGhSHVJ51SZanllaA6sbOanBwvKySA4P-wnmNT1xTErn86asxB8qUu2g0jQm506JwWnRriaX60FmRDotHdHm-euqwgpaTjWdrcHsAPVekkQvAasrJ4ltErhvP3bQbRPbE2dsVXwg41oEYbzcugkMnxsGl2ghV6dJLEfVcFCaTnfOthwCkERQd8071s5YSIMLe3noYFY4GzP4acI55OFmsfMAoazSX82Z1hQcRbrojklLDZi8SZPZeJxOR_PpHjrwITyB_fVg-Orpi3fWBwh8alQe2-e2wrgsftKtfdEV6uKbvbVtPmOcnOl1dK2JTvCwhtoN1NPFTXTV0ay8hb5Z0OEadLgDHQZ8YAs6bED38-v3Bm74N7jhy3DDNdzwZbjh0wLWAaDhFmi30SwZTZ-dkKaXB1F-5JUQxCnFeeQLpcBpjb08VDoK44j6ksELitQihJOBBhTi21wxpoUOFuBcSp7HEKFTdoj2i1Wh7yAcw-aSQRQMnpTHpfRlHEUqYhFVuipcy_vosX2tqWqE7qt-K2epIVywOH3ORiNjgqSPHrZzz2t5l52zjqx10ubz36TgJ4Pv70GI0keHYLH2_s7Ad_983z10pfsejtB-ud7q--DiltmDBk-_AErWrQs
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+design+strategies+for+Fe-based+metal%E2%80%93organic+framework-derived+electrocatalysts+toward+high-performance+Zn%E2%80%93air+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Ya-Fei+Guo&rft.au=Zhao%2C+Shan&rft.au=Zhang%2C+Nan&rft.au=Zong-Lin%2C+Liu&rft.date=2024-03-05&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=5&rft.spage=1725&rft.epage=1755&rft_id=info:doi/10.1039%2Fd3ee04410f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon