Advanced design strategies for Fe-based metal-organic framework-derived electrocatalysts toward high-performance Zn-air batteries
Zinc-air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density characteristics. Nevertheless, the kinetics of oxygen reaction at the air electrode of ZABs are slow, resulting in poor energy efficiency and cycling pro...
Saved in:
Published in | Energy & environmental science Vol. 17; no. 5; pp. 1725 - 1755 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
05.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc-air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density characteristics. Nevertheless, the kinetics of oxygen reaction at the air electrode of ZABs are slow, resulting in poor energy efficiency and cycling properties of ZABs. How to improve the overall performance and long-term cycling stability of ZABs is the key to their development. So far, precious metals and their alloys have been considered the most ideal oxygen reduction reaction/oxygen evolution reaction catalysts. Nevertheless, the high cost and low storage capacity of these precious metals limit their application. Transition metal catalysts have received widespread attention because of their high electrocatalytic activity, structural stability, abundant reserves, and low prices. Among them, Fe-based catalysts are regarded as one of the most hopeful candidates due to their lowest price and ease of performance improvement. Metal-organic frameworks (MOFs) have advantages such as structural diversity, high specific surface area (SSA), and porosity. Especially as precursors of transition metal catalysts, organic ligands in MOFs are combined with bridged metal nodes to provide the necessary metals, carbon, and heteroatoms for electrocatalysts. However, MOFs may experience structural collapse, atomic aggregation, and reduced active sites during pyrolysis, which limits their commercial applications. Therefore, nano-design is extremely significant in improving catalytic capability. This review summarizes the morphology, composition, and structural control strategies of Fe-based MOF-derived electrocatalysts. In addition, the active sites, catalytic mechanism, and corresponding characteristics of electrocatalysts are introduced. Finally, the challenges and development prospects of optimized oxygen electrocatalysts in ZABs are discussed. This review provides insights into the targeted optimization of Fe-based MOF derived oxygen electrocatalysts and is expected to promote the future development of high-performance ZABs.
This article summarizes the regulation strategies of Fe-based MOFs-derived electrocatalysts for ZABs, and provides a prospect for their future development. |
---|---|
AbstractList | Zinc-air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density characteristics. Nevertheless, the kinetics of oxygen reaction at the air electrode of ZABs are slow, resulting in poor energy efficiency and cycling properties of ZABs. How to improve the overall performance and long-term cycling stability of ZABs is the key to their development. So far, precious metals and their alloys have been considered the most ideal oxygen reduction reaction/oxygen evolution reaction catalysts. Nevertheless, the high cost and low storage capacity of these precious metals limit their application. Transition metal catalysts have received widespread attention because of their high electrocatalytic activity, structural stability, abundant reserves, and low prices. Among them, Fe-based catalysts are regarded as one of the most hopeful candidates due to their lowest price and ease of performance improvement. Metal-organic frameworks (MOFs) have advantages such as structural diversity, high specific surface area (SSA), and porosity. Especially as precursors of transition metal catalysts, organic ligands in MOFs are combined with bridged metal nodes to provide the necessary metals, carbon, and heteroatoms for electrocatalysts. However, MOFs may experience structural collapse, atomic aggregation, and reduced active sites during pyrolysis, which limits their commercial applications. Therefore, nano-design is extremely significant in improving catalytic capability. This review summarizes the morphology, composition, and structural control strategies of Fe-based MOF-derived electrocatalysts. In addition, the active sites, catalytic mechanism, and corresponding characteristics of electrocatalysts are introduced. Finally, the challenges and development prospects of optimized oxygen electrocatalysts in ZABs are discussed. This review provides insights into the targeted optimization of Fe-based MOF derived oxygen electrocatalysts and is expected to promote the future development of high-performance ZABs.
This article summarizes the regulation strategies of Fe-based MOFs-derived electrocatalysts for ZABs, and provides a prospect for their future development. Zinc–air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density characteristics. Nevertheless, the kinetics of oxygen reaction at the air electrode of ZABs are slow, resulting in poor energy efficiency and cycling properties of ZABs. How to improve the overall performance and long-term cycling stability of ZABs is the key to their development. So far, precious metals and their alloys have been considered the most ideal oxygen reduction reaction/oxygen evolution reaction catalysts. Nevertheless, the high cost and low storage capacity of these precious metals limit their application. Transition metal catalysts have received widespread attention because of their high electrocatalytic activity, structural stability, abundant reserves, and low prices. Among them, Fe-based catalysts are regarded as one of the most hopeful candidates due to their lowest price and ease of performance improvement. Metal–organic frameworks (MOFs) have advantages such as structural diversity, high specific surface area (SSA), and porosity. Especially as precursors of transition metal catalysts, organic ligands in MOFs are combined with bridged metal nodes to provide the necessary metals, carbon, and heteroatoms for electrocatalysts. However, MOFs may experience structural collapse, atomic aggregation, and reduced active sites during pyrolysis, which limits their commercial applications. Therefore, nano-design is extremely significant in improving catalytic capability. This review summarizes the morphology, composition, and structural control strategies of Fe-based MOF-derived electrocatalysts. In addition, the active sites, catalytic mechanism, and corresponding characteristics of electrocatalysts are introduced. Finally, the challenges and development prospects of optimized oxygen electrocatalysts in ZABs are discussed. This review provides insights into the targeted optimization of Fe-based MOF derived oxygen electrocatalysts and is expected to promote the future development of high-performance ZABs. |
Author | Zhang, Jun-Hong Yi, Ting-Feng Zhao, Shan Zhang, Nan Wang, Peng-Fei Liu, Zong-Lin Xie, Ying Guo, Ya-Fei |
AuthorAffiliation | Ministry of Education School of Resources and Materials School of Materials Science and Engineering Key Laboratory of Functional Inorganic Material Chemistry School of Chemistry and Materials Science Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology College of Chemistry and Chemical Engineering Heilongjiang University Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province Northeastern University Liaocheng University Northeastern University at Qinhuangdao |
AuthorAffiliation_xml | – sequence: 0 name: Liaocheng University – sequence: 0 name: Key Laboratory of Functional Inorganic Material Chemistry – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: College of Chemistry and Chemical Engineering – sequence: 0 name: Northeastern University at Qinhuangdao – sequence: 0 name: Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province – sequence: 0 name: Ministry of Education – sequence: 0 name: Northeastern University – sequence: 0 name: School of Resources and Materials – sequence: 0 name: School of Chemistry and Materials Science – sequence: 0 name: Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology – sequence: 0 name: Heilongjiang University |
Author_xml | – sequence: 1 givenname: Ya-Fei surname: Guo fullname: Guo, Ya-Fei – sequence: 2 givenname: Shan surname: Zhao fullname: Zhao, Shan – sequence: 3 givenname: Nan surname: Zhang fullname: Zhang, Nan – sequence: 4 givenname: Zong-Lin surname: Liu fullname: Liu, Zong-Lin – sequence: 5 givenname: Peng-Fei surname: Wang fullname: Wang, Peng-Fei – sequence: 6 givenname: Jun-Hong surname: Zhang fullname: Zhang, Jun-Hong – sequence: 7 givenname: Ying surname: Xie fullname: Xie, Ying – sequence: 8 givenname: Ting-Feng surname: Yi fullname: Yi, Ting-Feng |
BookMark | eNptkb1LBDEQxYMo-NnYCwE7IZpssptNKXqngmCjjc0Sk9kzerc5J_HE0v_c6PkBYjUD83tvmDebZHWIAxCyK_ih4NIceQnAlRK8XyEbQteK1Zo3q999Y6p1spnSA-dNxbXZIG_HfmEHB556SGEy0JTRZpgESLSPSMfA7mwq4xlkO2URJ3YIjvZoZ_AS8ZF5wLAoc5iCyxidLdhryonm-GLR0_swuWdzwGI2-1hEbwdmA9I7m3ORQtoma72dJtj5qlvkZjy6Pjlnl1dnFyfHl8xVrchMa-eUaqvaOa6VEV47aLVpeWVluat1vdZG8YYbrbyTEmpoeiVqq7ypasPlFtlf-s4xPj1Dyt1DfMahrOwqI3WlBTd1ofiSchhTQug7F7LNIQ4llzDtBO8-gu5O5Wj0GfS4SA7-SOYYZhZf_4f3ljAm98P9fk2-A5sCizg |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_03_159 crossref_primary_10_1021_acs_jcim_4c01298 crossref_primary_10_1016_j_jechem_2024_09_029 crossref_primary_10_1002_anie_202412025 crossref_primary_10_1016_j_ensm_2025_104047 crossref_primary_10_1016_j_ensm_2024_103556 crossref_primary_10_1016_j_ensm_2024_103897 crossref_primary_10_1039_D4GC04687K crossref_primary_10_1002_batt_202400402 crossref_primary_10_1016_j_cej_2024_155373 crossref_primary_10_1016_j_electacta_2024_144711 crossref_primary_10_1021_acsanm_4c06196 crossref_primary_10_1002_adma_202401926 crossref_primary_10_1002_ange_202425196 crossref_primary_10_1002_ajoc_202400492 crossref_primary_10_1002_cjoc_202400332 crossref_primary_10_1016_j_microc_2025_112743 crossref_primary_10_1039_D4CC06447J crossref_primary_10_1016_j_est_2024_113463 crossref_primary_10_1016_j_jpowsour_2024_235103 crossref_primary_10_3390_gels11030154 crossref_primary_10_1002_ange_202412025 crossref_primary_10_1016_j_jallcom_2024_178435 crossref_primary_10_1016_j_apcatb_2024_124485 crossref_primary_10_1039_D4TA05503A crossref_primary_10_1016_j_jallcom_2025_179961 crossref_primary_10_1016_j_jcis_2024_11_100 crossref_primary_10_1016_j_diamond_2024_111621 crossref_primary_10_26599_EMD_2024_9370047 crossref_primary_10_1016_j_ensm_2024_103985 crossref_primary_10_1021_acsaenm_4c00305 crossref_primary_10_1002_anie_202425196 crossref_primary_10_1002_smll_202406776 crossref_primary_10_1002_sus2_251 crossref_primary_10_1016_j_jece_2024_112702 crossref_primary_10_1021_acs_iecr_4c03089 crossref_primary_10_1016_j_est_2024_113139 crossref_primary_10_1016_j_mser_2025_100942 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1016_j_est_2024_114740 crossref_primary_10_1002_smll_202404294 crossref_primary_10_1021_acsomega_4c06571 crossref_primary_10_1016_j_jcis_2024_09_237 crossref_primary_10_1039_D4NJ01886A crossref_primary_10_1016_j_cclet_2024_110144 crossref_primary_10_1007_s42452_024_06118_3 crossref_primary_10_1039_D5EE00074B |
Cites_doi | 10.1016/j.apcatb.2019.117893 10.1016/j.apcatb.2021.120752 10.1016/j.ensm.2023.01.030 10.1016/j.nanoen.2020.104547 10.1016/j.ensm.2023.03.033 10.1016/j.apsusc.2022.153891 10.1039/C4CS90059F 10.1039/D3EE02467A 10.1002/anie.202110243 10.1016/j.ensm.2023.102790 10.1002/cey2.337 10.1016/j.mtnano.2018.11.005 10.1039/D1EE01244D 10.1016/j.electacta.2023.142800 10.1039/D2TA07962C 10.1002/adfm.202300579 10.1002/ente.202100142 10.1002/chem.202200789 10.1016/j.apcatb.2021.120448 10.1021/acs.energyfuels.0c02512 10.1021/acsami.2c07373 10.1016/j.jphotochem.2023.115333 10.1016/j.carbon.2023.118365 10.1016/j.jallcom.2022.166128 10.1016/j.carbon.2023.01.034 10.1007/s40843-023-2464-8 10.1039/D3EE02213G 10.1016/j.ccr.2022.214839 10.1002/advs.202004572 10.1038/s41467-020-19599-8 10.1039/C8RA05102J 10.1002/anie.202016888 10.1016/j.jechem.2023.02.035 10.1016/j.cclet.2022.107807 10.1002/smll.202207342 10.1039/C8MH01397G 10.1016/j.seppur.2023.124184 10.1016/j.carbon.2015.06.022 10.1021/acsami.9b22577 10.1016/j.jcat.2020.10.030 10.1002/cvde.201106921 10.1039/D0TA00962H 10.1002/smll.202104125 10.1016/j.apsusc.2021.151030 10.1016/j.nanoen.2021.106488 10.1021/ja9061344 10.1016/j.apsusc.2023.158266 10.1039/C9CS00906J 10.1002/adma.202105410 10.1016/j.cclet.2023.108142 10.1039/D3TA02434B 10.1002/anie.202107053 10.1002/smll.202106260 10.1038/46248 10.1016/j.apsusc.2022.154590 10.1016/j.coelec.2023.101264 10.1016/j.cej.2021.134460 10.1002/aenm.202100514 10.1016/j.mtadv.2022.100334 10.1039/C8TA12178H 10.1002/anie.202115219 10.1039/D2NR04741A 10.1002/bte2.20230019 10.1021/acs.chemrev.7b00488 10.1002/adma.202209644 10.1021/acsenergylett.0c02484 10.1016/j.ccr.2015.08.004 10.1016/j.jcis.2023.03.206 10.1016/j.mtener.2022.101138 10.1016/j.jcis.2022.07.158 10.1021/acsnano.2c03565 10.1038/ncomms3331 10.1016/j.jmst.2021.04.033 10.1007/s42765-023-00287-3 10.1038/s41570-020-00226-5 10.1021/acscatal.6b03291 10.1039/D0SC04684A 10.1002/adfm.202100833 10.1002/adfm.202103558 10.1016/j.ijhydene.2019.03.195 10.1016/j.coelec.2023.101229 10.1021/acsnano.9b09912 10.1016/j.mattod.2023.08.007 10.1002/smtd.201600006 10.26599/EMD.2023.9370007 10.1016/j.envint.2023.107928 10.1016/j.ijhydene.2020.08.105 10.1016/0013-4686(73)80011-8 10.1002/adma.202303243 10.1021/ja5129132 10.1038/nnano.2012.72 10.1016/j.ccr.2022.214777 10.1016/j.jpowsour.2021.230430 10.1039/C9NR10109H 10.1016/j.jechem.2023.03.054 10.1021/jacs.9b09352 10.1039/C7CP06187K 10.1007/s40843-023-2527-7 10.1002/adma.202210166 10.1016/j.ensm.2022.12.007 10.1002/adma.201606534 10.1021/acsanm.1c02829 10.1016/j.jechem.2020.11.009 10.1016/j.pmatsci.2020.100671 10.1016/j.jallcom.2022.166665 10.1021/acscatal.6b02966 10.1038/2011212a0 10.1016/j.matchemphys.2019.122046 10.1016/j.jallcom.2023.172518 10.1016/j.comptc.2022.113765 10.1016/j.apcatb.2022.122356 10.1039/D2EE03257K 10.1002/smtd.201800550 10.1016/j.ensm.2023.102772 10.1016/j.mattod.2022.02.011 10.1039/D1TA09925F 10.1021/acs.cgd.0c01500 10.1016/j.apcatb.2022.121206 10.1021/jacs.1c10963 10.1002/celc.202200946 10.1002/tcr.202200212 10.1039/D3QM00565H 10.1002/smll.202202725 10.1016/j.ccr.2023.215383 10.1007/s10853-023-08690-2 10.1016/j.mtadv.2020.100116 10.1039/c0cs00163e 10.1016/j.jpowsour.2021.229665 10.26599/EMD.2023.9370002 10.1016/j.est.2023.106926 10.1016/j.est.2023.108743 10.1039/D0QM00878H 10.1016/j.micromeso.2014.09.034 10.1021/acs.chemrev.1c00243 10.1002/er.6834 10.1002/smll.202102425 10.1016/j.ensm.2023.103106 10.1002/adma.202103346 10.1021/acsnano.7b01409 10.1016/j.cclet.2020.08.029 10.1007/s11467-022-1208-8 10.1016/j.cej.2021.130460 10.1039/D2MH01067D 10.1039/D2SE00319H 10.1002/celc.201801859 10.1016/j.cclet.2022.107815 10.1021/acs.nanolett.2c02159 10.1007/s12598-020-01694-w 10.1039/C7NR06844A 10.1002/slct.202201503 10.1039/D0TA11859A 10.1016/j.ijhydene.2022.03.229 10.1002/adfm.201901301 10.1002/smll.202207474 10.1016/j.cej.2020.126492 10.1016/j.cej.2019.122658 10.1002/bkcs.12287 10.1021/cr5002589 10.1016/j.ccr.2018.08.010 10.1021/acs.langmuir.2c01882 10.1002/adma.202101038 10.1016/j.ccr.2022.214925 10.1016/j.micromeso.2021.111639 10.1021/jacs.7b07234 10.1002/advs.202301656 10.1016/j.apcatb.2023.122469 10.1002/anie.202013257 10.1007/s12274-022-4154-4 10.1039/D1QM00885D 10.1039/D2NR03370D 10.1016/j.jcis.2022.06.035 10.1016/j.jpcs.2023.111668 10.1002/adma.202102595 10.1039/D2EE02440C 10.1016/j.cis.2023.102891 10.1038/378703a0 10.26599/EMD.2023.9370008 10.1002/wene.472 10.1016/j.carbon.2023.118333 10.1016/j.jelechem.2023.117381 10.1002/adma.202300905 10.1016/j.jallcom.2023.170828 10.1021/acssuschemeng.2c01005 10.1007/s12274-020-3127-8 10.1007/BF01039385 10.1016/j.jechem.2021.11.013 10.1039/C8EE02679C 10.1126/science.1168049 10.1002/anie.202209350 10.1021/acs.chemrev.3c00248 10.1002/adma.202107421 10.1016/j.mattod.2023.02.004 10.1016/j.cej.2021.129973 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d3ee04410f |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1755 |
ExternalDocumentID | 10_1039_D3EE04410F d3ee04410f |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ AAYXX AFRZK AKMSF CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c281t-77cc44825cc07491d7ce879802a35698cf7794060974dc33e5e6f415a4d925903 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:57:05 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Tue Jul 01 01:45:57 EDT 2025 Tue Dec 17 20:58:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-77cc44825cc07491d7ce879802a35698cf7794060974dc33e5e6f415a4d925903 |
Notes | Prof. Ting-Feng Yi is currently a full professor at the School of Materials Science and Engineering, Northeastern University, Shenyang, China. He received his MSc degree in Applied Chemistry in 2004 and PhD degree in Chemical Engineering and Technology from the Harbin Institute of Technology in 2007. His research interests include the synthesis of functional materials and their application in batteries and supercapacitors. Nan Zhang is currently a master's student at the School of Materials Science and Engineering of Northeastern University. Her main research interests are energy storage and conversion devices, especially Zn-air batteries and solid-state batteries. Dr Zonglin Liu is currently a lecturer at the School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, China. She received her BSc and MSc from Northeast Forestry University and Ocean University of China, respectively. Then, she obtained her PhD degree in 2023 from Harbin Institute of Technology. Her research focuses on catalysts for electrocatalytic reactions, mainly for hydrogen evolution reaction, oxygen evolution reaction, water splitting, and zinc-air batteries. Ya-Fei Guo is currently a master's student at the School of Materials Science and Engineering of Northeastern University. Her current research focuses on aqueous zinc metal-based batteries. Dr Peng-Fei Wang is currently a lecturer at Northeastern University at Qinhuangdao, China. He received his PhD degree from Nanjing University in 2021. His major research interests focus on Li-sulfur battery, solid-state battery and photothermal battery. Prof. Junhong Zhang is currently a professor at the College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, China. She received her BSc and MSc from Liaocheng University. Then, she obtained her PhD degree in 2011 from the Ocean University of China. Her research focuses on electrochemistry. Shan Zhao is currently a master's student at the School of Materials Science and Engineering of Northeastern University. Her main research interests are metal-air batteries and water electrolysis. Prof. Ying Xie is currently a full professor at the School of Chemistry and Materials Science, Heilongjiang University, Harbin, China. He received his MSc degree in Applied Chemistry in 2004 and PhD degree in Chemical Engineering and Technology from the Harbin Institute of Technology in 2008. His research interests mainly focus on the applications of theoretical methods to explore the structure-property relationships of some energy storage and conversion materials. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5305-8167 0000-0003-0152-0609 0000-0002-4228-6874 |
PQID | 2937271095 |
PQPubID | 2047494 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2937271095 crossref_citationtrail_10_1039_D3EE04410F crossref_primary_10_1039_D3EE04410F rsc_primary_d3ee04410f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-05 |
PublicationDateYYYYMMDD | 2024-03-05 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Le (D3EE04410F/cit45/1) 2021; 404 Li (D3EE04410F/cit58/1) 2023; 35 Li (D3EE04410F/cit27/1) 2021; 40 Wang (D3EE04410F/cit80/1) 2023; 19 Xiong (D3EE04410F/cit24/1) 2023; 58 Batool (D3EE04410F/cit42/1) 2021; 4 Chang (D3EE04410F/cit47/1) 2023; 327 Liang (D3EE04410F/cit102/1) 2019; 6 Kulkarni (D3EE04410F/cit188/1) 2018; 118 Zhang (D3EE04410F/cit38/1) 2022; 6 Zhang (D3EE04410F/cit5/1) 2023; 35 Fang (D3EE04410F/cit148/1) 2022; 604 Niu (D3EE04410F/cit89/1) 2021; 31 Zhao (D3EE04410F/cit139/1) 2023; 642 Roy (D3EE04410F/cit3/1) 2021; 34 Xu (D3EE04410F/cit99/1) 2023; 320 Li (D3EE04410F/cit29/1) 2020; 11 Chen (D3EE04410F/cit72/1) 2023; 34 Haruna (D3EE04410F/cit8/1) 2023; 39 Chang (D3EE04410F/cit18/1) 2022; 473 Yang (D3EE04410F/cit114/1) 2015; 137 Tharani (D3EE04410F/cit154/1) 2023; 12 Chang (D3EE04410F/cit167/1) 2023; 10 Li (D3EE04410F/cit119/1) 2019; 29 Xue (D3EE04410F/cit36/1) 2019; 7 Zhang (D3EE04410F/cit76/1) 2015; 93 Li (D3EE04410F/cit62/1) 1999; 402 Hong (D3EE04410F/cit83/1) 2021; 394 Khan (D3EE04410F/cit185/1) 2021; 90 Gu (D3EE04410F/cit130/1) 2022; 47 Gao (D3EE04410F/cit97/1) 2022; 433 Zhang (D3EE04410F/cit180/1) 2019; 141 Iqbal (D3EE04410F/cit67/1) 2023; 62 Mane (D3EE04410F/cit126/1) 2023; 2 Wannakao (D3EE04410F/cit190/1) 2017; 19 Xu (D3EE04410F/cit17/1) 2023; 66 Shen (D3EE04410F/cit98/1) 2023; 59 Chen (D3EE04410F/cit160/1) 2022; 14 Hou (D3EE04410F/cit34/1) 2020; 113 Yu (D3EE04410F/cit109/1) 2020; 45 Chen (D3EE04410F/cit163/1) 2022; 14 Xu (D3EE04410F/cit122/1) 2019; 256 Cai (D3EE04410F/cit93/1) 2021; 121 Yang (D3EE04410F/cit81/1) 2023; 23 Zong (D3EE04410F/cit110/1) 2021; 32 Mohan (D3EE04410F/cit21/1) 2023; 175 Arafat (D3EE04410F/cit46/1) 2021; 11 Yang (D3EE04410F/cit123/1) 2023; 5 Jafari (D3EE04410F/cit28/1) 2021; 45 Tang (D3EE04410F/cit151/1) 2022; 14 Hao (D3EE04410F/cit74/1) 2021; 8 Majimel (D3EE04410F/cit112/1) 2011; 17 Gong (D3EE04410F/cit78/1) 2009; 323 Long (D3EE04410F/cit133/1) 2022; 625 Ryu (D3EE04410F/cit113/1) 2023; 55 Zhang (D3EE04410F/cit164/1) 2022; 18 Feng (D3EE04410F/cit30/1) 2023; 1 Zhang (D3EE04410F/cit187/1) 2021; 9 Gupta (D3EE04410F/cit70/1) 1989; 19 Cai (D3EE04410F/cit13/1) 2023; 66 Zhang (D3EE04410F/cit79/1) 2023; 63 De Villenoisy (D3EE04410F/cit57/1) 2023; 35 Akmalia (D3EE04410F/cit105/1) 2023; 72 Liang (D3EE04410F/cit165/1) 2020; 60 Zhang (D3EE04410F/cit107/1) 2023; 34 He (D3EE04410F/cit191/1) 2023; 19 Wang (D3EE04410F/cit182/1) 2022; 598 Gu (D3EE04410F/cit183/1) 2019; 3 Zhu (D3EE04410F/cit73/1) 2022; 1214 Zeng (D3EE04410F/cit101/1) 2018; 3 Burtch (D3EE04410F/cit56/1) 2014; 114 Lei (D3EE04410F/cit96/1) 2021; 14 An (D3EE04410F/cit124/1) 2023; 11 Xu (D3EE04410F/cit52/1) 2020; 382 Wang (D3EE04410F/cit88/1) 2020; 239 Yang (D3EE04410F/cit49/1) 2020; 34 Lin (D3EE04410F/cit95/1) 2021; 9 Cui (D3EE04410F/cit143/1) 2022; 61 Lei (D3EE04410F/cit50/1) 2022; 68 Huang (D3EE04410F/cit23/1) 2023; 69 Wu (D3EE04410F/cit150/1) 2023; 325 Song (D3EE04410F/cit48/1) 2023; 17 Guo (D3EE04410F/cit59/1) 2022; 331 Liu (D3EE04410F/cit171/1) 2021; 17 Khan (D3EE04410F/cit51/1) 2024; 448 Zhang (D3EE04410F/cit75/1) 2022; 10 Xiao (D3EE04410F/cit115/1) 2022; 472 Lin (D3EE04410F/cit1/1) 2023; 16 Shao (D3EE04410F/cit177/1) 2021; 31 Wei (D3EE04410F/cit131/1) 2021; 33 Liu (D3EE04410F/cit140/1) 2023; 33 Chen (D3EE04410F/cit6/1) 2022; 15 Kumar (D3EE04410F/cit7/1) 2023; 960 Sun (D3EE04410F/cit44/1) 2021; 424 Anand (D3EE04410F/cit156/1) 2023; 58 Yuan (D3EE04410F/cit184/1) 2021; 60 Liu (D3EE04410F/cit9/1) 2022; 15 Xing (D3EE04410F/cit166/1) 2021; 60 Chen (D3EE04410F/cit178/1) 2021; 60 Zhao (D3EE04410F/cit149/1) 2024; 184 Bhattacharyya (D3EE04410F/cit25/1) 2018; 8 Pei (D3EE04410F/cit10/1) 2021; 14 Jasinski (D3EE04410F/cit68/1) 1964; 201 Tan (D3EE04410F/cit14/1) 2023; 640 Savy (D3EE04410F/cit69/1) 1973; 18 Ramakrishnan (D3EE04410F/cit159/1) 2022; 300 Tang (D3EE04410F/cit84/1) 2017; 9 Wang (D3EE04410F/cit179/1) 2021; 6 Li (D3EE04410F/cit22/1) 2023; 1 Kumar (D3EE04410F/cit12/1) 2023; 38 Meng (D3EE04410F/cit15/1) 2023; 81 Hu (D3EE04410F/cit157/1) 2022; 18 Campos (D3EE04410F/cit144/1) 2020; 4 Zhang (D3EE04410F/cit4/1) 2023; 462 Zeng (D3EE04410F/cit82/1) 2022; 9 Guo (D3EE04410F/cit85/1) 2023; 495 Song (D3EE04410F/cit120/1) 2022; 54 Yao (D3EE04410F/cit103/1) 2023; 5 Lai (D3EE04410F/cit71/1) 2017; 7 Zhao (D3EE04410F/cit128/1) 2017; 11 Yuan (D3EE04410F/cit94/1) 2023; 34 Yang (D3EE04410F/cit172/1) 2021; 34 Zhou (D3EE04410F/cit175/1) 2020; 11 Bu (D3EE04410F/cit141/1) 2023; 214 Shahzad (D3EE04410F/cit100/1) 2023; 477 Li (D3EE04410F/cit169/1) 2023; 56 Li (D3EE04410F/cit170/1) 2022; 628 Fu (D3EE04410F/cit162/1) 2023; 1 Sun (D3EE04410F/cit158/1) 2022; 921 Bolmatov (D3EE04410F/cit111/1) 2013; 4 Liu (D3EE04410F/cit142/1) 2022; 34 Zhang (D3EE04410F/cit20/1) 2023; 7 Wang (D3EE04410F/cit155/1) 2023; 214 Chen (D3EE04410F/cit186/1) 2021; 59 Kundu (D3EE04410F/cit33/1) 2023; 10 Zhang (D3EE04410F/cit129/1) 2022; 18 Dou (D3EE04410F/cit53/1) 2017; 139 Liu (D3EE04410F/cit19/1) 2022; 10 Zhang (D3EE04410F/cit116/1) 2020; 8 Chen (D3EE04410F/cit176/1) 2022; 308 Ren (D3EE04410F/cit87/1) 2024; 17 Li (D3EE04410F/cit60/1) 2023; 123 Liu (D3EE04410F/cit117/1) 2016; 1 Low (D3EE04410F/cit64/1) 2009; 131 Ren (D3EE04410F/cit138/1) 2021; 569 Zheng (D3EE04410F/cit145/1) 2024; 65 Xue (D3EE04410F/cit146/1) 2020; 12 Pan (D3EE04410F/cit118/1) 2023; 11 Tan (D3EE04410F/cit135/1) 2022; 29 Huang (D3EE04410F/cit121/1) 2021; 421 Zheng (D3EE04410F/cit125/1) 2020; 12 Shi (D3EE04410F/cit26/1) 2019; 6 Xu (D3EE04410F/cit35/1) 2018; 376 Shinde (D3EE04410F/cit54/1) 2019; 12 Ahn (D3EE04410F/cit86/1) 2017; 29 Ma (D3EE04410F/cit104/1) 2023; 83 Lei (D3EE04410F/cit127/1) 2021; 5 Farahani (D3EE04410F/cit152/1) 2022; 144 Wang (D3EE04410F/cit40/1) 2021; 512 Wang (D3EE04410F/cit106/1) 2022; 28 de Souza Dias (D3EE04410F/cit11/1) 2023; 315 Zhou (D3EE04410F/cit193/1) 2023; 59 Li (D3EE04410F/cit77/1) 2012; 7 Xue (D3EE04410F/cit153/1) 2023; 205 Aguilera-Sigalat (D3EE04410F/cit92/1) 2016; 307 Zhang (D3EE04410F/cit168/1) 2022; 7 Kang (D3EE04410F/cit181/1) 2021; 493 Lonkar (D3EE04410F/cit90/1) 2020; 45 Sun (D3EE04410F/cit161/1) 2022; 38 Wang (D3EE04410F/cit32/1) 2020; 49 Zhou (D3EE04410F/cit39/1) 2014; 43 Yaghi (D3EE04410F/cit61/1) 1995; 378 Tan (D3EE04410F/cit65/1) 2011; 40 Zhou (D3EE04410F/cit37/1) 2022; 96 Zhang (D3EE04410F/cit63/1) 2021; 21 Gu (D3EE04410F/cit137/1) 2021; 17 Razmjooei (D3EE04410F/cit189/1) 2017; 7 Kim (D3EE04410F/cit43/1) 2021; 42 Meng (D3EE04410F/cit31/1) 2021; 5 Jiao (D3EE04410F/cit91/1) 2022; 22 Worku (D3EE04410F/cit16/1) 2021; 9 Du (D3EE04410F/cit147/1) 2022; 61 Xie (D3EE04410F/cit108/1) 2021; 33 Wua (D3EE04410F/cit55/1) 2024; 970 Liu (D3EE04410F/cit136/1) 2022; 925 Qadir (D3EE04410F/cit66/1) 2015; 201 Liu (D3EE04410F/cit2/1) 2023; 16 Sheng (D3EE04410F/cit173/1) 2022; 16 Jiang (D3EE04410F/cit132/1) 2020; 14 Li (D3EE04410F/cit192/1) 2022; 35 Zhang (D3EE04410F/cit134/1) 2020; 71 Guo (D3EE04410F/cit41/1) 2023; 936 Sun (D3EE04410F/cit174/1) 2021; 297 |
References_xml | – volume: 256 start-page: 117893 year: 2019 ident: D3EE04410F/cit122/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117893 – volume: 300 start-page: 120752 year: 2022 ident: D3EE04410F/cit159/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120752 – volume: 56 start-page: 394 year: 2023 ident: D3EE04410F/cit169/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.01.030 – volume: 71 start-page: 104547 year: 2020 ident: D3EE04410F/cit134/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104547 – volume: 58 start-page: 362 year: 2023 ident: D3EE04410F/cit156/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.03.033 – volume: 598 start-page: 153891 year: 2022 ident: D3EE04410F/cit182/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153891 – volume: 43 start-page: 5415 year: 2014 ident: D3EE04410F/cit39/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS90059F – volume: 17 start-page: 49 year: 2024 ident: D3EE04410F/cit87/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02467A – volume: 60 start-page: 25404 year: 2021 ident: D3EE04410F/cit178/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202110243 – volume: 59 start-page: 102790 year: 2023 ident: D3EE04410F/cit98/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.102790 – volume: 5 start-page: e337 year: 2023 ident: D3EE04410F/cit123/1 publication-title: Carbon Energy doi: 10.1002/cey2.337 – volume: 3 start-page: 54 year: 2018 ident: D3EE04410F/cit101/1 publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2018.11.005 – volume: 14 start-page: 4926 year: 2021 ident: D3EE04410F/cit10/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01244D – volume: 462 start-page: 142800 year: 2023 ident: D3EE04410F/cit4/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142800 – volume: 11 start-page: 118 year: 2023 ident: D3EE04410F/cit124/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA07962C – volume: 33 start-page: 2300579 year: 2023 ident: D3EE04410F/cit140/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300579 – volume: 9 start-page: 2100142 year: 2021 ident: D3EE04410F/cit95/1 publication-title: Energy Technol. doi: 10.1002/ente.202100142 – volume: 28 start-page: e202200789 year: 2022 ident: D3EE04410F/cit106/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.202200789 – volume: 297 start-page: 120448 year: 2021 ident: D3EE04410F/cit174/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2021.120448 – volume: 34 start-page: 11620 year: 2020 ident: D3EE04410F/cit49/1 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c02512 – volume: 14 start-page: 38677 year: 2022 ident: D3EE04410F/cit160/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c07373 – volume: 448 start-page: 115333 year: 2024 ident: D3EE04410F/cit51/1 publication-title: J. Photochem. Photobiol., AA doi: 10.1016/j.jphotochem.2023.115333 – volume: 214 start-page: 118365 year: 2023 ident: D3EE04410F/cit141/1 publication-title: Carbon doi: 10.1016/j.carbon.2023.118365 – volume: 921 start-page: 166128 year: 2022 ident: D3EE04410F/cit158/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166128 – volume: 205 start-page: 422 year: 2023 ident: D3EE04410F/cit153/1 publication-title: Carbon doi: 10.1016/j.carbon.2023.01.034 – volume: 66 start-page: 2953 year: 2023 ident: D3EE04410F/cit17/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-023-2464-8 – volume: 16 start-page: 4834 year: 2023 ident: D3EE04410F/cit2/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02213G – volume: 473 start-page: 214839 year: 2022 ident: D3EE04410F/cit18/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214839 – volume: 8 start-page: 2004572 year: 2021 ident: D3EE04410F/cit74/1 publication-title: Adv. Sci. doi: 10.1002/advs.202004572 – volume: 11 start-page: 5892 year: 2020 ident: D3EE04410F/cit175/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19599-8 – volume: 8 start-page: 26728 year: 2018 ident: D3EE04410F/cit25/1 publication-title: RSC Adv. doi: 10.1039/C8RA05102J – volume: 60 start-page: 8889 year: 2021 ident: D3EE04410F/cit166/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202016888 – volume: 81 start-page: 633 year: 2023 ident: D3EE04410F/cit15/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.02.035 – volume: 34 start-page: 107807 year: 2023 ident: D3EE04410F/cit94/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.107807 – volume: 19 start-page: 2207342 year: 2023 ident: D3EE04410F/cit80/1 publication-title: Small doi: 10.1002/smll.202207342 – volume: 6 start-page: 684 year: 2019 ident: D3EE04410F/cit26/1 publication-title: Mater. Horiz. doi: 10.1039/C8MH01397G – volume: 320 start-page: 124184 year: 2023 ident: D3EE04410F/cit99/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.124184 – volume: 93 start-page: 1050 year: 2015 ident: D3EE04410F/cit76/1 publication-title: Carbon doi: 10.1016/j.carbon.2015.06.022 – volume: 12 start-page: 13878 year: 2020 ident: D3EE04410F/cit125/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22577 – volume: 394 start-page: 366 year: 2021 ident: D3EE04410F/cit83/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2020.10.030 – volume: 17 start-page: 342 year: 2011 ident: D3EE04410F/cit112/1 publication-title: Chem. Vap. Deposition doi: 10.1002/cvde.201106921 – volume: 8 start-page: 9536 year: 2020 ident: D3EE04410F/cit116/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA00962H – volume: 17 start-page: 2104125 year: 2021 ident: D3EE04410F/cit137/1 publication-title: Small doi: 10.1002/smll.202104125 – volume: 569 start-page: 151030 year: 2021 ident: D3EE04410F/cit138/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151030 – volume: 90 start-page: 106488 year: 2021 ident: D3EE04410F/cit185/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106488 – volume: 131 start-page: 15834 year: 2009 ident: D3EE04410F/cit64/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9061344 – volume: 640 start-page: 158266 year: 2023 ident: D3EE04410F/cit14/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.158266 – volume: 49 start-page: 1414 year: 2020 ident: D3EE04410F/cit32/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00906J – volume: 34 start-page: 2105410 year: 2021 ident: D3EE04410F/cit172/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105410 – volume: 34 start-page: 108142 year: 2023 ident: D3EE04410F/cit107/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2023.108142 – volume: 11 start-page: 15006 year: 2023 ident: D3EE04410F/cit118/1 publication-title: J. Mater. Chem. A doi: 10.1039/D3TA02434B – volume: 60 start-page: 21685 year: 2021 ident: D3EE04410F/cit184/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202107053 – volume: 18 start-page: 2106260 year: 2022 ident: D3EE04410F/cit157/1 publication-title: Small doi: 10.1002/smll.202106260 – volume: 402 start-page: 276 year: 1999 ident: D3EE04410F/cit62/1 publication-title: Nature doi: 10.1038/46248 – volume: 604 start-page: 154590 year: 2022 ident: D3EE04410F/cit148/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154590 – volume: 39 start-page: 101264 year: 2023 ident: D3EE04410F/cit8/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2023.101264 – volume: 433 start-page: 134460 year: 2022 ident: D3EE04410F/cit97/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134460 – volume: 11 start-page: 2100514 year: 2021 ident: D3EE04410F/cit46/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100514 – volume: 17 start-page: 100334 year: 2023 ident: D3EE04410F/cit48/1 publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2022.100334 – volume: 7 start-page: 7301 year: 2019 ident: D3EE04410F/cit36/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA12178H – volume: 61 start-page: e202115219 year: 2022 ident: D3EE04410F/cit143/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202115219 – volume: 14 start-page: 17447 year: 2022 ident: D3EE04410F/cit151/1 publication-title: Nanoscale doi: 10.1039/D2NR04741A – volume: 2 start-page: 20230019 year: 2023 ident: D3EE04410F/cit126/1 publication-title: Battery Energy doi: 10.1002/bte2.20230019 – volume: 118 start-page: 2302 year: 2018 ident: D3EE04410F/cit188/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00488 – volume: 35 start-page: 2209644 year: 2022 ident: D3EE04410F/cit192/1 publication-title: Adv. Mater. doi: 10.1002/adma.202209644 – volume: 6 start-page: 379 year: 2021 ident: D3EE04410F/cit179/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02484 – volume: 307 start-page: 267 year: 2016 ident: D3EE04410F/cit92/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.08.004 – volume: 642 start-page: 800 year: 2023 ident: D3EE04410F/cit139/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.03.206 – volume: 29 start-page: 101138 year: 2022 ident: D3EE04410F/cit135/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2022.101138 – volume: 628 start-page: 331 year: 2022 ident: D3EE04410F/cit170/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.07.158 – volume: 16 start-page: 15994 year: 2022 ident: D3EE04410F/cit173/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c03565 – volume: 4 start-page: 2331 year: 2013 ident: D3EE04410F/cit111/1 publication-title: Nat. Commun. doi: 10.1038/ncomms3331 – volume: 96 start-page: 262 year: 2022 ident: D3EE04410F/cit37/1 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.04.033 – volume: 5 start-page: 1592 year: 2023 ident: D3EE04410F/cit103/1 publication-title: Adv. Fiber Mater. doi: 10.1007/s42765-023-00287-3 – volume: 4 start-page: 696 year: 2020 ident: D3EE04410F/cit144/1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-00226-5 – volume: 7 start-page: 2381 year: 2017 ident: D3EE04410F/cit189/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03291 – volume: 11 start-page: 11646 year: 2020 ident: D3EE04410F/cit29/1 publication-title: Chem. Sci. doi: 10.1039/D0SC04684A – volume: 31 start-page: 2100833 year: 2021 ident: D3EE04410F/cit177/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100833 – volume: 31 start-page: 2103558 year: 2021 ident: D3EE04410F/cit89/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103558 – volume: 45 start-page: 10475 year: 2020 ident: D3EE04410F/cit90/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.03.195 – volume: 38 start-page: 101229 year: 2023 ident: D3EE04410F/cit12/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2023.101229 – volume: 14 start-page: 2436 year: 2020 ident: D3EE04410F/cit132/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b09912 – volume: 69 start-page: 66 year: 2023 ident: D3EE04410F/cit23/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2023.08.007 – volume: 1 start-page: 1600006 year: 2016 ident: D3EE04410F/cit117/1 publication-title: Small Methods doi: 10.1002/smtd.201600006 – volume: 1 start-page: 9370007 year: 2023 ident: D3EE04410F/cit22/1 publication-title: Energy Mater. Devices doi: 10.26599/EMD.2023.9370007 – volume: 175 start-page: 107928 year: 2023 ident: D3EE04410F/cit21/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2023.107928 – volume: 45 start-page: 30583 year: 2020 ident: D3EE04410F/cit109/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.105 – volume: 18 start-page: 191 year: 1973 ident: D3EE04410F/cit69/1 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(73)80011-8 – volume: 35 start-page: 2303243 year: 2023 ident: D3EE04410F/cit5/1 publication-title: Adv. Mater. doi: 10.1002/adma.202303243 – volume: 137 start-page: 1436 year: 2015 ident: D3EE04410F/cit114/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5129132 – volume: 7 start-page: 394 year: 2012 ident: D3EE04410F/cit77/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.72 – volume: 472 start-page: 214777 year: 2022 ident: D3EE04410F/cit115/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214777 – volume: 512 start-page: 230430 year: 2021 ident: D3EE04410F/cit40/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.230430 – volume: 12 start-page: 4816 year: 2020 ident: D3EE04410F/cit146/1 publication-title: Nanoscale doi: 10.1039/C9NR10109H – volume: 83 start-page: 138 year: 2023 ident: D3EE04410F/cit104/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.03.054 – volume: 141 start-page: 20118 year: 2019 ident: D3EE04410F/cit180/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09352 – volume: 19 start-page: 29540 year: 2017 ident: D3EE04410F/cit190/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP06187K – volume: 66 start-page: 3381 year: 2023 ident: D3EE04410F/cit13/1 publication-title: Sci. China Mater. doi: 10.1007/s40843-023-2527-7 – volume: 35 start-page: 2210166 year: 2023 ident: D3EE04410F/cit57/1 publication-title: Adv. Mater. doi: 10.1002/adma.202210166 – volume: 55 start-page: 397 year: 2023 ident: D3EE04410F/cit113/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.12.007 – volume: 29 start-page: 1606534 year: 2017 ident: D3EE04410F/cit86/1 publication-title: Adv. Mater. doi: 10.1002/adma.201606534 – volume: 4 start-page: 12365 year: 2021 ident: D3EE04410F/cit42/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c02829 – volume: 59 start-page: 47 year: 2021 ident: D3EE04410F/cit186/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.11.009 – volume: 113 start-page: 100671 year: 2020 ident: D3EE04410F/cit34/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100671 – volume: 925 start-page: 166665 year: 2022 ident: D3EE04410F/cit136/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.166665 – volume: 7 start-page: 1655 year: 2017 ident: D3EE04410F/cit71/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02966 – volume: 201 start-page: 1212 year: 1964 ident: D3EE04410F/cit68/1 publication-title: Nature doi: 10.1038/2011212a0 – volume: 239 start-page: 122046 year: 2020 ident: D3EE04410F/cit88/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122046 – volume: 970 start-page: 172518 year: 2024 ident: D3EE04410F/cit55/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.172518 – volume: 1214 start-page: 113765 year: 2022 ident: D3EE04410F/cit73/1 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2022.113765 – volume: 325 start-page: 122356 year: 2023 ident: D3EE04410F/cit150/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.122356 – volume: 16 start-page: 745 year: 2023 ident: D3EE04410F/cit1/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03257K – volume: 3 start-page: 1800550 year: 2019 ident: D3EE04410F/cit183/1 publication-title: Small Methods doi: 10.1002/smtd.201800550 – volume: 59 start-page: 102772 year: 2023 ident: D3EE04410F/cit193/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.102772 – volume: 54 start-page: 42 year: 2022 ident: D3EE04410F/cit120/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2022.02.011 – volume: 10 start-page: 1617 year: 2022 ident: D3EE04410F/cit19/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA09925F – volume: 21 start-page: 3100 year: 2021 ident: D3EE04410F/cit63/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01500 – volume: 308 start-page: 121206 year: 2022 ident: D3EE04410F/cit176/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121206 – volume: 144 start-page: 3411 year: 2022 ident: D3EE04410F/cit152/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10963 – volume: 9 start-page: e202200946 year: 2022 ident: D3EE04410F/cit82/1 publication-title: ChemElectroChem doi: 10.1002/celc.202200946 – volume: 23 start-page: e202200212 year: 2023 ident: D3EE04410F/cit81/1 publication-title: Chem. Rec. doi: 10.1002/tcr.202200212 – volume: 7 start-page: 4782 year: 2023 ident: D3EE04410F/cit20/1 publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00565H – volume: 18 start-page: 2202725 year: 2022 ident: D3EE04410F/cit164/1 publication-title: Small doi: 10.1002/smll.202202725 – volume: 495 start-page: 215383 year: 2023 ident: D3EE04410F/cit85/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215383 – volume: 58 start-page: 2041 year: 2023 ident: D3EE04410F/cit24/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-023-08690-2 – volume: 9 start-page: 100116 year: 2021 ident: D3EE04410F/cit16/1 publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2020.100116 – volume: 40 start-page: 1059 year: 2011 ident: D3EE04410F/cit65/1 publication-title: Chem. Soc. Rev. doi: 10.1039/c0cs00163e – volume: 493 start-page: 229665 year: 2021 ident: D3EE04410F/cit181/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229665 – volume: 1 start-page: 9370002 year: 2023 ident: D3EE04410F/cit162/1 publication-title: Energy Mater. Devices doi: 10.26599/EMD.2023.9370002 – volume: 62 start-page: 106926 year: 2023 ident: D3EE04410F/cit67/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2023.106926 – volume: 72 start-page: 108743 year: 2023 ident: D3EE04410F/cit105/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108743 – volume: 5 start-page: 2649 year: 2021 ident: D3EE04410F/cit31/1 publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00878H – volume: 201 start-page: 61 year: 2015 ident: D3EE04410F/cit66/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2014.09.034 – volume: 121 start-page: 12278 year: 2021 ident: D3EE04410F/cit93/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00243 – volume: 45 start-page: 15676 year: 2021 ident: D3EE04410F/cit28/1 publication-title: Int. J. Energy Res. doi: 10.1002/er.6834 – volume: 17 start-page: 2102425 year: 2021 ident: D3EE04410F/cit171/1 publication-title: Small doi: 10.1002/smll.202102425 – volume: 65 start-page: 103106 year: 2024 ident: D3EE04410F/cit145/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.103106 – volume: 34 start-page: 2103346 year: 2021 ident: D3EE04410F/cit3/1 publication-title: Adv. Mater. doi: 10.1002/adma.202103346 – volume: 11 start-page: 5800 year: 2017 ident: D3EE04410F/cit128/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b01409 – volume: 32 start-page: 1121 year: 2021 ident: D3EE04410F/cit110/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.08.029 – volume: 18 start-page: 13603 year: 2022 ident: D3EE04410F/cit129/1 publication-title: Front. Phys. doi: 10.1007/s11467-022-1208-8 – volume: 424 start-page: 130460 year: 2021 ident: D3EE04410F/cit44/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130460 – volume: 10 start-page: 745 year: 2023 ident: D3EE04410F/cit33/1 publication-title: Mater. Horiz. doi: 10.1039/D2MH01067D – volume: 6 start-page: 2665 year: 2022 ident: D3EE04410F/cit38/1 publication-title: Sustainable Energy Fuels doi: 10.1039/D2SE00319H – volume: 6 start-page: 2600 year: 2019 ident: D3EE04410F/cit102/1 publication-title: ChemElectroChem doi: 10.1002/celc.201801859 – volume: 34 start-page: 107815 year: 2023 ident: D3EE04410F/cit72/1 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.107815 – volume: 22 start-page: 7386 year: 2022 ident: D3EE04410F/cit91/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c02159 – volume: 40 start-page: 2657 year: 2021 ident: D3EE04410F/cit27/1 publication-title: Rare Met. doi: 10.1007/s12598-020-01694-w – volume: 9 start-page: 17364 year: 2017 ident: D3EE04410F/cit84/1 publication-title: Nanoscale doi: 10.1039/C7NR06844A – volume: 7 start-page: e202201503 year: 2022 ident: D3EE04410F/cit168/1 publication-title: ChemistrySelect doi: 10.1002/slct.202201503 – volume: 9 start-page: 5556 year: 2021 ident: D3EE04410F/cit187/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11859A – volume: 47 start-page: 17224 year: 2022 ident: D3EE04410F/cit130/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.229 – volume: 29 start-page: 1901301 year: 2019 ident: D3EE04410F/cit119/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901301 – volume: 19 start-page: 2207474 year: 2023 ident: D3EE04410F/cit191/1 publication-title: Small doi: 10.1002/smll.202207474 – volume: 404 start-page: 126492 year: 2021 ident: D3EE04410F/cit45/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126492 – volume: 382 start-page: 122658 year: 2020 ident: D3EE04410F/cit52/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122658 – volume: 42 start-page: 919 year: 2021 ident: D3EE04410F/cit43/1 publication-title: Bull. Korean Chem. Soc. doi: 10.1002/bkcs.12287 – volume: 114 start-page: 10575 year: 2014 ident: D3EE04410F/cit56/1 publication-title: Chem. Rev. doi: 10.1021/cr5002589 – volume: 376 start-page: 292 year: 2018 ident: D3EE04410F/cit35/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.08.010 – volume: 38 start-page: 11753 year: 2022 ident: D3EE04410F/cit161/1 publication-title: Langmuir doi: 10.1021/acs.langmuir.2c01882 – volume: 33 start-page: 2101038 year: 2021 ident: D3EE04410F/cit108/1 publication-title: Adv. Mater. doi: 10.1002/adma.202101038 – volume: 477 start-page: 214925 year: 2023 ident: D3EE04410F/cit100/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214925 – volume: 331 start-page: 111639 year: 2022 ident: D3EE04410F/cit59/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111639 – volume: 139 start-page: 13608 year: 2017 ident: D3EE04410F/cit53/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07234 – volume: 10 start-page: 2301656 year: 2023 ident: D3EE04410F/cit167/1 publication-title: Adv. Sci. doi: 10.1002/advs.202301656 – volume: 327 start-page: 122469 year: 2023 ident: D3EE04410F/cit47/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2023.122469 – volume: 60 start-page: 2120 year: 2020 ident: D3EE04410F/cit165/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202013257 – volume: 15 start-page: 5038 year: 2022 ident: D3EE04410F/cit6/1 publication-title: Nano Res. doi: 10.1007/s12274-022-4154-4 – volume: 5 start-page: 7315 year: 2021 ident: D3EE04410F/cit127/1 publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00885D – volume: 14 start-page: 12431 year: 2022 ident: D3EE04410F/cit163/1 publication-title: Nanoscale doi: 10.1039/D2NR03370D – volume: 625 start-page: 555 year: 2022 ident: D3EE04410F/cit133/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.06.035 – volume: 184 start-page: 111668 year: 2024 ident: D3EE04410F/cit149/1 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2023.111668 – volume: 33 start-page: 2102595 year: 2021 ident: D3EE04410F/cit131/1 publication-title: Adv. Mater. doi: 10.1002/adma.202102595 – volume: 15 start-page: 4542 year: 2022 ident: D3EE04410F/cit9/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02440C – volume: 315 start-page: 102891 year: 2023 ident: D3EE04410F/cit11/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2023.102891 – volume: 378 start-page: 703 year: 1995 ident: D3EE04410F/cit61/1 publication-title: Nature doi: 10.1038/378703a0 – volume: 1 start-page: 9370008 year: 2023 ident: D3EE04410F/cit30/1 publication-title: Energy Mater. Devices doi: 10.26599/EMD.2023.9370008 – volume: 12 start-page: e472 year: 2023 ident: D3EE04410F/cit154/1 publication-title: Wires Energy Environ. doi: 10.1002/wene.472 – volume: 214 start-page: 118333 year: 2023 ident: D3EE04410F/cit155/1 publication-title: Carbon doi: 10.1016/j.carbon.2023.118333 – volume: 936 start-page: 117381 year: 2023 ident: D3EE04410F/cit41/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2023.117381 – volume: 35 start-page: 2300905 year: 2023 ident: D3EE04410F/cit58/1 publication-title: Adv. Mater. doi: 10.1002/adma.202300905 – volume: 960 start-page: 170828 year: 2023 ident: D3EE04410F/cit7/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.170828 – volume: 10 start-page: 9303 year: 2022 ident: D3EE04410F/cit75/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.2c01005 – volume: 14 start-page: 868 year: 2021 ident: D3EE04410F/cit96/1 publication-title: Nano Res. doi: 10.1007/s12274-020-3127-8 – volume: 19 start-page: 19 year: 1989 ident: D3EE04410F/cit70/1 publication-title: J. Appl. Electrochem. doi: 10.1007/BF01039385 – volume: 68 start-page: 78 year: 2022 ident: D3EE04410F/cit50/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.11.013 – volume: 12 start-page: 727 year: 2019 ident: D3EE04410F/cit54/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02679C – volume: 323 start-page: 760 year: 2009 ident: D3EE04410F/cit78/1 publication-title: Science doi: 10.1126/science.1168049 – volume: 61 start-page: e202209350 year: 2022 ident: D3EE04410F/cit147/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202209350 – volume: 123 start-page: 10432 year: 2023 ident: D3EE04410F/cit60/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00248 – volume: 34 start-page: 2107421 year: 2022 ident: D3EE04410F/cit142/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107421 – volume: 63 start-page: 339 year: 2023 ident: D3EE04410F/cit79/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2023.02.004 – volume: 421 start-page: 129973 year: 2021 ident: D3EE04410F/cit121/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129973 |
SSID | ssj0062079 |
Score | 2.648073 |
SecondaryResourceType | review_article |
Snippet | Zinc-air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density... Zinc–air batteries (ZABs) are considered as one of the most promising energy systems due to their environmentally friendly and high energy density... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1725 |
SubjectTerms | Catalysts Chemical reduction Cycles Electrocatalysts Energy efficiency Heavy metals Iron Metal air batteries Metal-organic frameworks Metals Noble metals Oxygen Oxygen evolution reactions Oxygen reduction reactions Porosity Precious metals Pyrolysis Storage capacity Structural stability Transition metals Zinc-oxygen batteries |
Title | Advanced design strategies for Fe-based metal-organic framework-derived electrocatalysts toward high-performance Zn-air batteries |
URI | https://www.proquest.com/docview/2937271095 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa6uxc4IP5WFBZkCS6o8uLEdn6OBRpWUMqBVpS9RI7jQqVVumpTJDhx4Ql4Fx6IJ2HixIl3qRBwiSrLsaLMF3tm-s03CD3iVAeSSU04F5xwxgXJpKZEepnioQy4MhIbryfByYy_nIt5r_fDYS1ty-xYfdlZV_I_VoUxsGtVJfsPlm0XhQH4DfaFK1gYrn9l46H9Az83PIzBprTCD4Y9mGhSHVJ51SZanllaA6sbOanBwvKySA4P-wnmNT1xTErn86asxB8qUu2g0jQm506JwWnRriaX60FmRDotHdHm-euqwgpaTjWdrcHsAPVekkQvAasrJ4ltErhvP3bQbRPbE2dsVXwg41oEYbzcugkMnxsGl2ghV6dJLEfVcFCaTnfOthwCkERQd8071s5YSIMLe3noYFY4GzP4acI55OFmsfMAoazSX82Z1hQcRbrojklLDZi8SZPZeJxOR_PpHjrwITyB_fVg-Orpi3fWBwh8alQe2-e2wrgsftKtfdEV6uKbvbVtPmOcnOl1dK2JTvCwhtoN1NPFTXTV0ay8hb5Z0OEadLgDHQZ8YAs6bED38-v3Bm74N7jhy3DDNdzwZbjh0wLWAaDhFmi30SwZTZ-dkKaXB1F-5JUQxCnFeeQLpcBpjb08VDoK44j6ksELitQihJOBBhTi21wxpoUOFuBcSp7HEKFTdoj2i1Wh7yAcw-aSQRQMnpTHpfRlHEUqYhFVuipcy_vosX2tqWqE7qt-K2epIVywOH3ORiNjgqSPHrZzz2t5l52zjqx10ubz36TgJ4Pv70GI0keHYLH2_s7Ad_983z10pfsejtB-ud7q--DiltmDBk-_AErWrQs |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+design+strategies+for+Fe-based+metal%E2%80%93organic+framework-derived+electrocatalysts+toward+high-performance+Zn%E2%80%93air+batteries&rft.jtitle=Energy+%26+environmental+science&rft.au=Ya-Fei+Guo&rft.au=Zhao%2C+Shan&rft.au=Zhang%2C+Nan&rft.au=Zong-Lin%2C+Liu&rft.date=2024-03-05&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=17&rft.issue=5&rft.spage=1725&rft.epage=1755&rft_id=info:doi/10.1039%2Fd3ee04410f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |