Effect of mechanical ball milling on the electrical and powder bed properties of gas-atomized Ti–48Al–2Cr–2Nb and elucidation of the smoke mechanism in the powder bed fusion electron beam melting process

•Smoke tendency of gas-atomized and ball-milled Ti–48Al–2Cr–2Nb powders was examined in powder bed fusion electron beam melting process.•Smoke of ball-milled powder was further suppressed as increasing coordination number owing to the increased possible charge transfer path.•Capacitive response of G...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science & technology Vol. 137; pp. 36 - 55
Main Authors Yim, Seungkyun, Aoyagi, Kenta, Yanagihara, Keiji, Bian, Huakang, Chiba, Akihiko
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 20.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Smoke tendency of gas-atomized and ball-milled Ti–48Al–2Cr–2Nb powders was examined in powder bed fusion electron beam melting process.•Smoke of ball-milled powder was further suppressed as increasing coordination number owing to the increased possible charge transfer path.•Capacitive response of GA powder disappeared in Al-60 and WC-30 via metal–insulator transition of oxide film caused by strain and defect accumulation.•Smoke of Al-60 and WC-30 powders was further prevented owing to the formation of a percolation cluster with metal-like electrical conductivity. Smoke is unexpected powder-splashing caused by electrostatic force and is one of the main problems hindering the process stability and applicability of the powder bed fusion electron beam (PBF-EB) technology. In this study, mechanical stimulation was suggested to suppress smoke of gas-atomized (GA) Ti–48Al–2Cr–2Nb powder using Al2O3 and WC ball milling. The deformation mechanism of the GA powder depending on the ball milling media was discussed based on the developed particle morphology distribution map and contact mechanics simulation. It was revealed that the rapid decrement of flowability and packing density after WC ball milling owing to the formation of angular fragments by the brittle fracture. The variation of surface and electrical properties by mechanical stimulation was investigated via XPS, TEM, and Impedance analysis. The electrical resistivity of the ball-milled powders gradually decreased with increasing milling duration, despite the increased oxide film thickness, and the capacitive response disappeared in Al-60 and WC-30 via metal–insulator transition. This could be due to the accumulation of strain and defects on the oxide film via mechanical stimulation. The smoke mechanism of ball-milled powders was discussed based on the percolation theory. In the smoke experiment, smoke was more suppressed for WC-10 and WC-20 than that for Al-40 and Al-50, respectively, despite the longer charge dissipation time. This could be due to the high probability of contact with conductive particles. For the Al-60 and WC-30 powders, smoke was further restricted by the formation of a percolation cluster with metal-like electrical conductivity. We believe that this study will contribute to a better understanding of the smoke mechanism and process optimization of the PBF-EB.
AbstractList •Smoke tendency of gas-atomized and ball-milled Ti–48Al–2Cr–2Nb powders was examined in powder bed fusion electron beam melting process.•Smoke of ball-milled powder was further suppressed as increasing coordination number owing to the increased possible charge transfer path.•Capacitive response of GA powder disappeared in Al-60 and WC-30 via metal–insulator transition of oxide film caused by strain and defect accumulation.•Smoke of Al-60 and WC-30 powders was further prevented owing to the formation of a percolation cluster with metal-like electrical conductivity. Smoke is unexpected powder-splashing caused by electrostatic force and is one of the main problems hindering the process stability and applicability of the powder bed fusion electron beam (PBF-EB) technology. In this study, mechanical stimulation was suggested to suppress smoke of gas-atomized (GA) Ti–48Al–2Cr–2Nb powder using Al2O3 and WC ball milling. The deformation mechanism of the GA powder depending on the ball milling media was discussed based on the developed particle morphology distribution map and contact mechanics simulation. It was revealed that the rapid decrement of flowability and packing density after WC ball milling owing to the formation of angular fragments by the brittle fracture. The variation of surface and electrical properties by mechanical stimulation was investigated via XPS, TEM, and Impedance analysis. The electrical resistivity of the ball-milled powders gradually decreased with increasing milling duration, despite the increased oxide film thickness, and the capacitive response disappeared in Al-60 and WC-30 via metal–insulator transition. This could be due to the accumulation of strain and defects on the oxide film via mechanical stimulation. The smoke mechanism of ball-milled powders was discussed based on the percolation theory. In the smoke experiment, smoke was more suppressed for WC-10 and WC-20 than that for Al-40 and Al-50, respectively, despite the longer charge dissipation time. This could be due to the high probability of contact with conductive particles. For the Al-60 and WC-30 powders, smoke was further restricted by the formation of a percolation cluster with metal-like electrical conductivity. We believe that this study will contribute to a better understanding of the smoke mechanism and process optimization of the PBF-EB.
Author Yim, Seungkyun
Yanagihara, Keiji
Aoyagi, Kenta
Chiba, Akihiko
Bian, Huakang
Author_xml – sequence: 1
  givenname: Seungkyun
  orcidid: 0000-0001-7577-9926
  surname: Yim
  fullname: Yim, Seungkyun
– sequence: 2
  givenname: Kenta
  surname: Aoyagi
  fullname: Aoyagi, Kenta
  email: kenta.aoyagi.e7@tohoku.ac.jp
– sequence: 3
  givenname: Keiji
  surname: Yanagihara
  fullname: Yanagihara, Keiji
– sequence: 4
  givenname: Huakang
  orcidid: 0000-0002-9814-4613
  surname: Bian
  fullname: Bian, Huakang
  email: huakang.bian.d5@tohoku.ac.jp
– sequence: 5
  givenname: Akihiko
  surname: Chiba
  fullname: Chiba, Akihiko
BookMark eNp9kU1OHDEQha2ISAGSC2TlC3Rju6fbbikbNCIECcGGrC3_lMETd3tkm0Sw4g45Wa6Qk-CeCRLKgo2rpKqv6rneETqY4wwIfaakpYQOJ5t2M-XSMsJYS3hL2OodOqTjijaUDuyg5oT0DekI-4COct4Q0vFeiEP058w5MAVHhycwd2r2RgWsVQh48iH4-RbHGZc7wBBqX9qV1WzxNv6ykLCGmqa4hVQ85GXMrcqNKnHyj7V04_8-_V6J01ADW6flvdI7HsK98VYVX8dXatmQp_gDXmTkCfv94leb3H1e-vdSaqJBTRUIZdFZZRjI-SN671TI8OlfPEbfv57drL81l9fnF-vTy8YwQUvDGdfc9Z1mzjArNBWWjYyybjROcNsPvdaD7cRAONOOaz0yA8SAUs7ZUfHuGLH9XJNizgmc3CY_qfQgKZGLKXIjF1PkYookXFZTKiT-g4wvuyOUpHx4G_2yR6F-6qeHJLPxMBuwPtVzSBv9W_gzsQ6ybg
CitedBy_id crossref_primary_10_1016_j_jallcom_2025_179662
crossref_primary_10_1016_j_powtec_2024_119759
crossref_primary_10_1016_j_powtec_2022_117996
crossref_primary_10_1016_j_addma_2023_103612
crossref_primary_10_2497_jjspm_24_00039
crossref_primary_10_1002_adem_202200846
crossref_primary_10_1002_adem_202201672
crossref_primary_10_1007_s40964_023_00499_4
crossref_primary_10_3390_jmmp8030103
crossref_primary_10_1016_j_jallcom_2024_177748
crossref_primary_10_2497_jjspm_14D_T20_02
crossref_primary_10_2497_jjspm_23_00017
crossref_primary_10_1016_j_jmst_2025_03_004
crossref_primary_10_1016_j_powtec_2025_120614
crossref_primary_10_1007_s00170_024_13966_1
crossref_primary_10_1016_j_jmapro_2023_06_013
crossref_primary_10_1016_j_addma_2023_103823
crossref_primary_10_1016_j_jmapro_2024_07_141
crossref_primary_10_1016_j_addma_2025_104738
crossref_primary_10_1016_j_jallcom_2022_168099
crossref_primary_10_3390_ma16103845
crossref_primary_10_1016_j_jmatprotec_2023_118104
crossref_primary_10_1016_j_powtec_2023_118292
crossref_primary_10_1016_j_addma_2023_103434
crossref_primary_10_1016_j_seppur_2023_123546
crossref_primary_10_1016_j_addma_2024_104441
Cites_doi 10.3390/ma14164662
10.1038/s41598-018-37186-2
10.1086/624298
10.1351/pac198052010065
10.1002/sia.740200208
10.1166/jcsmd.2018.1172
10.3390/met11030418
10.1007/BF00357799
10.1243/09544054JEM438
10.1088/0957-4484/19/26/265302
10.1021/acs.jpcc.9b00892
10.1016/j.powtec.2018.02.003
10.1016/j.jpowsour.2009.02.051
10.1039/C7MH00441A
10.1016/j.actamat.2016.11.012
10.1016/j.ceramint.2018.05.001
10.1016/j.powtec.2021.08.006
10.3390/coatings10090898
10.1016/j.powtec.2016.11.002
10.1016/j.jmsy.2019.08.005
10.1016/j.jphotochem.2009.07.015
10.1016/0032-5910(93)02789-D
10.1080/00268976.2015.1046528
10.1007/s10035-011-0307-y
10.1111/j.1365-2818.1992.tb03258.x
10.1016/j.msea.2021.141321
10.1016/j.powtec.2010.08.067
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.jmst.2022.07.024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-1162
EndPage 55
ExternalDocumentID 10_1016_j_jmst_2022_07_024
S1005030222006338
GroupedDBID --K
--M
-02
-0B
-S~
.~1
0R~
1B1
1~.
4.4
457
5GY
5VR
5VS
5XA
5XC
5XL
8P~
92M
9D9
9DB
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
CW9
DU5
EBS
EFJIC
EFLBG
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
J1W
JUIAU
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q--
Q38
R-B
ROL
RT2
S..
SDF
SES
SPC
SPCBC
SSM
SSZ
T5K
T8R
U1F
U1G
U5B
U5L
~G-
-SB
92H
92I
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFUIB
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
EJD
HZ~
RIG
SSH
TCJ
TGT
ID FETCH-LOGICAL-c281t-727b7f53b2fc2d8b18d2921239cf87d565bb6d386072bf7bb92ce0ceaaffd9a73
IEDL.DBID .~1
ISSN 1005-0302
IngestDate Tue Jul 01 02:20:08 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Fri Feb 23 02:42:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Smoke mechanism
Percolation theory
Flowability
Metal–insulator transition
Electron beam melting additive manufacturing
Packing density
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-727b7f53b2fc2d8b18d2921239cf87d565bb6d386072bf7bb92ce0ceaaffd9a73
ORCID 0000-0001-7577-9926
0000-0002-9814-4613
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_jmst_2022_07_024
crossref_citationtrail_10_1016_j_jmst_2022_07_024
elsevier_sciencedirect_doi_10_1016_j_jmst_2022_07_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-20
PublicationDateYYYYMMDD 2023-02-20
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of materials science & technology
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gisario, Kazarian, Martina, Mehrpouya (bib0001) 2019; 53
Bor, Jargalsaikhan, Lee, Choi (bib0012) 2020; 10
Zhao, Cui, Hasebe, Bian, Yamanaka, Aoyagi, Hagisawa, Chiba (bib0026) 2021; 393
Zhai, Gan (bib0042) 2019; 6
Kim, Oh, Cho, Chang, Jang, Lim (bib0006) 2020; 534
Shao, Li, Li, Wang, Zhang, Kaner (bib0022) 2017; 4
Takase, Ishimoto, Suganuma, Nakano (bib0004) 2021; 47
Zhang, Huang, Liu, Shen, Li, Cao, Ren, Jian (bib0013) 2019; 12
Lei, Aoyagi, Aota, Kuwabara, Chiba (bib0002) 2021; 208
Råback, Malinen (bib0016) 2016
Haeri, Wang, Ghita, Sun (bib0031) 2017; 306
Yim, Bian, Aoyagi, Chiba (bib0030) 2021; 816
Yim, Bian, Aoyagi, Yanagihara, Kitamura, Manabe, Daino, Hayasaka, Yamanaka, Chiba (bib0011) 2022; 51
Vlachos, Chang (bib0027) 2011; 205
Qi, Yan, Lin, He, Zhang (bib0008) 2006; 220
Eschey, Lutzmann, Zaeh (bib0010) 2009
Smilauer, Catalano, Chareyre (bib0018) 2015
Blackburn (bib0020) 1970
Chen, Lin, Zhu, Kee (bib0043) 2009; 191
Mott (bib0038) 1980; 52
Bourbatache, Guessasma, Bellenger, Bourny, Tekaya (bib0040) 2012; 14
Baoqiang, Sohn, Lan (bib0035) 2016; 9
Wang, Zhu (bib0017) 2013
Amade, Heitjans, Indris, Finger, Haeger, Hesse (bib0034) 2009; 207
Sigl, Lutzmann, Zaeh (bib0009) 2006
Juechter, Franke, Merenda, Stich, Körner, Singer (bib0003) 2018; 22
Cordero, Meyer, Nandwana, Dehoff (bib0007) 2017; 124
LUX (bib0041) 1993; 28
Beard, Sandusky, Glancy, Elban (bib0037) 1993; 20
Wadell (bib0015) 1935; 43
Nolan, Kavanagh (bib0032) 1994; 78
Haferkamp, Haudenschild, Spierings, Wegener, Riener, Ziegelmeier, Leichtfried (bib0028) 2021; 11
Chiba, Daino, Aoyagi, Yamanaka (bib0005) 2021; 14
Von Hauff (bib0023) 2019; 123
Zheng, Chen, Yang, Gong (bib0036) 2019; 99
Yim, Bian, Aoyagi, Yamanaka, Chiba (bib0014) 2022; 49
Beakawi Al-Hashemi, Baghabra Al-Amoudi (bib0029) 2018; 330
Benson, Ha, Gregg, van de Lagemaat, Neale (bib0039) 2019; 9
Jennings, Ramsay, Hudson, Harrowell (bib0044) 2015; 113
Moulder, Chastain (bib0021) 1992
Yim, Park, Park (bib0033) 2018; 44
Gusev, Kurlov (bib0019) 2008; 19
Cordova, Bor, de Smit, Campos, Tinga (bib0025) 2020; 32
Gauvin, L'Espérance (bib0024) 1992; 168
Amade (10.1016/j.jmst.2022.07.024_bib0034) 2009; 207
Blackburn (10.1016/j.jmst.2022.07.024_bib0020) 1970
Shao (10.1016/j.jmst.2022.07.024_bib0022) 2017; 4
Yim (10.1016/j.jmst.2022.07.024_bib0011) 2022; 51
Smilauer (10.1016/j.jmst.2022.07.024_bib0018) 2015
LUX (10.1016/j.jmst.2022.07.024_bib0041) 1993; 28
Juechter (10.1016/j.jmst.2022.07.024_bib0003) 2018; 22
Beakawi Al-Hashemi (10.1016/j.jmst.2022.07.024_bib0029) 2018; 330
Yim (10.1016/j.jmst.2022.07.024_bib0033) 2018; 44
Nolan (10.1016/j.jmst.2022.07.024_bib0032) 1994; 78
Yim (10.1016/j.jmst.2022.07.024_bib0014) 2022; 49
Råback (10.1016/j.jmst.2022.07.024_bib0016) 2016
Vlachos (10.1016/j.jmst.2022.07.024_bib0027) 2011; 205
Gisario (10.1016/j.jmst.2022.07.024_bib0001) 2019; 53
Wadell (10.1016/j.jmst.2022.07.024_bib0015) 1935; 43
Wang (10.1016/j.jmst.2022.07.024_bib0017) 2013
Zhao (10.1016/j.jmst.2022.07.024_bib0026) 2021; 393
Bourbatache (10.1016/j.jmst.2022.07.024_bib0040) 2012; 14
Cordova (10.1016/j.jmst.2022.07.024_bib0025) 2020; 32
Yim (10.1016/j.jmst.2022.07.024_bib0030) 2021; 816
Jennings (10.1016/j.jmst.2022.07.024_bib0044) 2015; 113
Benson (10.1016/j.jmst.2022.07.024_bib0039) 2019; 9
Baoqiang (10.1016/j.jmst.2022.07.024_bib0035) 2016; 9
Takase (10.1016/j.jmst.2022.07.024_bib0004) 2021; 47
Mott (10.1016/j.jmst.2022.07.024_bib0038) 1980; 52
Moulder (10.1016/j.jmst.2022.07.024_bib0021) 1992
Gauvin (10.1016/j.jmst.2022.07.024_bib0024) 1992; 168
Kim (10.1016/j.jmst.2022.07.024_bib0006) 2020; 534
Qi (10.1016/j.jmst.2022.07.024_bib0008) 2006; 220
Lei (10.1016/j.jmst.2022.07.024_bib0002) 2021; 208
Bor (10.1016/j.jmst.2022.07.024_bib0012) 2020; 10
Gusev (10.1016/j.jmst.2022.07.024_bib0019) 2008; 19
Sigl (10.1016/j.jmst.2022.07.024_bib0009) 2006
Haferkamp (10.1016/j.jmst.2022.07.024_bib0028) 2021; 11
Eschey (10.1016/j.jmst.2022.07.024_bib0010) 2009
Chiba (10.1016/j.jmst.2022.07.024_bib0005) 2021; 14
Von Hauff (10.1016/j.jmst.2022.07.024_bib0023) 2019; 123
Chen (10.1016/j.jmst.2022.07.024_bib0043) 2009; 191
Cordero (10.1016/j.jmst.2022.07.024_bib0007) 2017; 124
Haeri (10.1016/j.jmst.2022.07.024_bib0031) 2017; 306
Beard (10.1016/j.jmst.2022.07.024_bib0037) 1993; 20
Zhai (10.1016/j.jmst.2022.07.024_bib0042) 2019; 6
Zhang (10.1016/j.jmst.2022.07.024_bib0013) 2019; 12
Zheng (10.1016/j.jmst.2022.07.024_bib0036) 2019; 99
References_xml – volume: 124
  start-page: 437
  year: 2017
  end-page: 445
  ident: bib0007
  publication-title: Acta Mater. J.
– volume: 205
  start-page: 71
  year: 2011
  end-page: 80
  ident: bib0027
  publication-title: Powder Technol.
– volume: 14
  start-page: 1
  year: 2012
  end-page: 10
  ident: bib0040
  publication-title: Granul. Matter.
– volume: 534
  year: 2020
  ident: bib0006
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib0039
  publication-title: D. Svedruzic, Sci. Rep.
– volume: 393
  start-page: 482
  year: 2021
  end-page: 493
  ident: bib0026
  publication-title: Powder Technol.
– volume: 44
  start-page: 14044
  year: 2018
  end-page: 14052
  ident: bib0033
  publication-title: Ceram. Int.
– volume: 32
  year: 2020
  ident: bib0025
  publication-title: Addit. Manuf.
– start-page: 464
  year: 2006
  end-page: 477
  ident: bib0009
  publication-title: 17th Solid Free. Fabr. Symp. SFF 2006
– volume: 20
  start-page: 140
  year: 1993
  end-page: 148
  ident: bib0037
  publication-title: Surf. Interface Anal.
– volume: 306
  start-page: 45
  year: 2017
  end-page: 54
  ident: bib0031
  publication-title: Powder Technol.
– volume: 28
  start-page: 285
  year: 1993
  end-page: 301
  ident: bib0041
  publication-title: J. Mater. Sci.
– volume: 51
  year: 2022
  ident: bib0011
  publication-title: Addit. Manuf.
– volume: 78
  start-page: 231
  year: 1994
  end-page: 238
  ident: bib0032
  publication-title: Powder Technol.
– volume: 9
  start-page: 79706
  year: 2016
  end-page: 79722
  ident: bib0035
  publication-title: RSC Adv.
– volume: 19
  year: 2008
  ident: bib0019
  publication-title: Nanotechnology
– year: 2015
  ident: bib0018
  article-title: Yade Documentation 2nd Ed, The Yade Project
– volume: 207
  start-page: 231
  year: 2009
  end-page: 235
  ident: bib0034
  publication-title: J. Photochem. Photobiol. A
– volume: 816
  year: 2021
  ident: bib0030
  publication-title: Mater. Sci. Eng. A
– volume: 6
  start-page: 310
  year: 2019
  end-page: 316
  ident: bib0042
  publication-title: J. Coupled Syst. Multiscale Dyn.
– volume: 47
  year: 2021
  ident: bib0004
  publication-title: Addit. Manuf.
– volume: 14
  start-page: 4662
  year: 2021
  ident: bib0005
  publication-title: Materials
– volume: 43
  start-page: 250
  year: 1935
  end-page: 280
  ident: bib0015
  publication-title: J. Geol.
– volume: 168
  start-page: 153
  year: 1992
  end-page: 167
  ident: bib0024
  publication-title: J. Microsc.
– volume: 123
  start-page: 11329
  year: 2019
  end-page: 11346
  ident: bib0023
  publication-title: J. Phys. Chem. C
– year: 1992
  ident: bib0021
  article-title: Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
– start-page: 308
  year: 2009
  end-page: 319
  ident: bib0010
  publication-title: 20th Annu. Int. Solid Free. Fabr. Symp. SFF 2009
– volume: 113
  start-page: 2755
  year: 2015
  end-page: 2769
  ident: bib0044
  publication-title: Mol. Phys.
– volume: 12
  start-page: 1
  year: 2019
  end-page: 17
  ident: bib0013
  publication-title: Materials
– volume: 52
  start-page: 65
  year: 1980
  end-page: 72
  ident: bib0038
  publication-title: Pure Appl. Chem.
– volume: 220
  start-page: 1845
  year: 2006
  end-page: 1853
  ident: bib0008
  publication-title: Proc. Inst. Mech. Eng. Part
– volume: 99
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib0036
  publication-title: Phys. Rev. B
– volume: 208
  year: 2021
  ident: bib0002
  publication-title: Acta Mater.
– volume: 330
  start-page: 397
  year: 2018
  end-page: 417
  ident: bib0029
  publication-title: Powder Technol.
– volume: 49
  year: 2022
  ident: bib0014
  publication-title: Addit. Manuf.
– volume: 191
  start-page: 240
  year: 2009
  end-page: 252
  ident: bib0043
  publication-title: J. Power Sources
– start-page: 1654
  year: 2013
  end-page: 1662
  ident: bib0017
  publication-title: Hertz Theory: Contact of Spherical Surfaces, Encycl. Tribol
– volume: 10
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib0012
  publication-title: Coatings
– start-page: 1
  year: 2016
  end-page: 10
  ident: bib0016
  publication-title: CSC-IT Cent. Sci.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib0028
  publication-title: Metals
– start-page: 633
  year: 1970
  end-page: 643
  ident: bib0020
  article-title: Technology and Application of Titanium
– volume: 53
  start-page: 124
  year: 2019
  end-page: 149
  ident: bib0001
  publication-title: J. Manuf. Syst.
– volume: 22
  start-page: 118
  year: 2018
  end-page: 126
  ident: bib0003
  publication-title: Addit. Manuf.
– volume: 4
  start-page: 1145
  year: 2017
  end-page: 1150
  ident: bib0022
  publication-title: Mater. Horizons
– volume: 14
  start-page: 4662
  year: 2021
  ident: 10.1016/j.jmst.2022.07.024_bib0005
  publication-title: Materials
  doi: 10.3390/ma14164662
– start-page: 464
  year: 2006
  ident: 10.1016/j.jmst.2022.07.024_bib0009
– volume: 49
  year: 2022
  ident: 10.1016/j.jmst.2022.07.024_bib0014
  publication-title: Addit. Manuf.
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.jmst.2022.07.024_bib0039
  publication-title: D. Svedruzic, Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– volume: 43
  start-page: 250
  year: 1935
  ident: 10.1016/j.jmst.2022.07.024_bib0015
  publication-title: J. Geol.
  doi: 10.1086/624298
– volume: 32
  year: 2020
  ident: 10.1016/j.jmst.2022.07.024_bib0025
  publication-title: Addit. Manuf.
– volume: 52
  start-page: 65
  year: 1980
  ident: 10.1016/j.jmst.2022.07.024_bib0038
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac198052010065
– volume: 20
  start-page: 140
  year: 1993
  ident: 10.1016/j.jmst.2022.07.024_bib0037
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.740200208
– volume: 12
  start-page: 1
  year: 2019
  ident: 10.1016/j.jmst.2022.07.024_bib0013
  publication-title: Materials
– volume: 6
  start-page: 310
  year: 2019
  ident: 10.1016/j.jmst.2022.07.024_bib0042
  publication-title: J. Coupled Syst. Multiscale Dyn.
  doi: 10.1166/jcsmd.2018.1172
– volume: 22
  start-page: 118
  year: 2018
  ident: 10.1016/j.jmst.2022.07.024_bib0003
  publication-title: Addit. Manuf.
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.jmst.2022.07.024_bib0028
  publication-title: Metals
  doi: 10.3390/met11030418
– year: 2015
  ident: 10.1016/j.jmst.2022.07.024_bib0018
– volume: 28
  start-page: 285
  year: 1993
  ident: 10.1016/j.jmst.2022.07.024_bib0041
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00357799
– volume: 220
  start-page: 1845
  year: 2006
  ident: 10.1016/j.jmst.2022.07.024_bib0008
  publication-title: Proc. Inst. Mech. Eng. Part
  doi: 10.1243/09544054JEM438
– start-page: 633
  year: 1970
  ident: 10.1016/j.jmst.2022.07.024_bib0020
– volume: 19
  year: 2008
  ident: 10.1016/j.jmst.2022.07.024_bib0019
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/26/265302
– volume: 9
  start-page: 79706
  year: 2016
  ident: 10.1016/j.jmst.2022.07.024_bib0035
  publication-title: RSC Adv.
– volume: 123
  start-page: 11329
  year: 2019
  ident: 10.1016/j.jmst.2022.07.024_bib0023
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b00892
– volume: 47
  year: 2021
  ident: 10.1016/j.jmst.2022.07.024_bib0004
  publication-title: Addit. Manuf.
– volume: 330
  start-page: 397
  year: 2018
  ident: 10.1016/j.jmst.2022.07.024_bib0029
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.02.003
– start-page: 1654
  year: 2013
  ident: 10.1016/j.jmst.2022.07.024_bib0017
– volume: 99
  start-page: 1
  year: 2019
  ident: 10.1016/j.jmst.2022.07.024_bib0036
  publication-title: Phys. Rev. B
– volume: 191
  start-page: 240
  year: 2009
  ident: 10.1016/j.jmst.2022.07.024_bib0043
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.02.051
– start-page: 308
  year: 2009
  ident: 10.1016/j.jmst.2022.07.024_bib0010
– volume: 4
  start-page: 1145
  year: 2017
  ident: 10.1016/j.jmst.2022.07.024_bib0022
  publication-title: Mater. Horizons
  doi: 10.1039/C7MH00441A
– volume: 124
  start-page: 437
  year: 2017
  ident: 10.1016/j.jmst.2022.07.024_bib0007
  publication-title: Acta Mater. J.
  doi: 10.1016/j.actamat.2016.11.012
– volume: 44
  start-page: 14044
  year: 2018
  ident: 10.1016/j.jmst.2022.07.024_bib0033
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.05.001
– volume: 393
  start-page: 482
  year: 2021
  ident: 10.1016/j.jmst.2022.07.024_bib0026
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.08.006
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.jmst.2022.07.024_bib0012
  publication-title: Coatings
  doi: 10.3390/coatings10090898
– start-page: 1
  year: 2016
  ident: 10.1016/j.jmst.2022.07.024_bib0016
  publication-title: CSC-IT Cent. Sci.
– volume: 306
  start-page: 45
  year: 2017
  ident: 10.1016/j.jmst.2022.07.024_bib0031
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.11.002
– volume: 53
  start-page: 124
  year: 2019
  ident: 10.1016/j.jmst.2022.07.024_bib0001
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2019.08.005
– volume: 208
  year: 2021
  ident: 10.1016/j.jmst.2022.07.024_bib0002
  publication-title: Acta Mater.
– volume: 207
  start-page: 231
  year: 2009
  ident: 10.1016/j.jmst.2022.07.024_bib0034
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/j.jphotochem.2009.07.015
– volume: 534
  year: 2020
  ident: 10.1016/j.jmst.2022.07.024_bib0006
  publication-title: Appl. Surf. Sci.
– volume: 78
  start-page: 231
  year: 1994
  ident: 10.1016/j.jmst.2022.07.024_bib0032
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(93)02789-D
– volume: 113
  start-page: 2755
  year: 2015
  ident: 10.1016/j.jmst.2022.07.024_bib0044
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2015.1046528
– volume: 14
  start-page: 1
  year: 2012
  ident: 10.1016/j.jmst.2022.07.024_bib0040
  publication-title: Granul. Matter.
  doi: 10.1007/s10035-011-0307-y
– volume: 168
  start-page: 153
  year: 1992
  ident: 10.1016/j.jmst.2022.07.024_bib0024
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1992.tb03258.x
– volume: 816
  year: 2021
  ident: 10.1016/j.jmst.2022.07.024_bib0030
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.141321
– volume: 205
  start-page: 71
  year: 2011
  ident: 10.1016/j.jmst.2022.07.024_bib0027
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.08.067
– volume: 51
  year: 2022
  ident: 10.1016/j.jmst.2022.07.024_bib0011
  publication-title: Addit. Manuf.
– year: 1992
  ident: 10.1016/j.jmst.2022.07.024_bib0021
SSID ssj0037588
Score 2.456369
Snippet •Smoke tendency of gas-atomized and ball-milled Ti–48Al–2Cr–2Nb powders was examined in powder bed fusion electron beam melting process.•Smoke of ball-milled...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms Electron beam melting additive manufacturing
Flowability
Metal–insulator transition
Packing density
Percolation theory
Smoke mechanism
Title Effect of mechanical ball milling on the electrical and powder bed properties of gas-atomized Ti–48Al–2Cr–2Nb and elucidation of the smoke mechanism in the powder bed fusion electron beam melting process
URI https://dx.doi.org/10.1016/j.jmst.2022.07.024
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhubSH0vRBk7ZBh96Ku7Ykr-zjsjRsWrqXJpCb0ehRnPqx7INADiH_Ib-sfyG_JBrLTrZQcujFNpLGEppBMyO-mSHkkzOJyo0QEQMBkRCWR5BKHXHImJBKihzwauDHfDw7E9_O0_MdMh1iYRBW2Z_94UzvTuu-ZdTv5mhRlqOfSZfLBB0W1LMcA36FkCjlX64fYB7c28MhHA5BahzRPIePGK-LeoV4Ssa6BJ5M_Fs5bSmc45fkRW8p0klYzD7Zsc0r8nwrf-Br8ifkHqato7XFEF7ccQqqqihWE_JjaNtQb-LRUO2m61aNoYv20tglBes_8TZ-iWlV8Te_1CrybnhdXvmu0_Lu5lZkk8q_2HSJzzl09Lba6DJUY0IqnGFVt7_tsIxVTcsw8dZMboM3c3QovOPbVO0JKgRe00UIWHhDzo6_nk5nUV-jIdIsS9aRN39AupQDc5qZDJLMsBzVYa5dJo03FwHGhmfjWDJwEiBn2sbaKuWcyZXkb8lu0zb2HaESYptqpWLHtRca9NwgTxR4C1MqIcQBSQbmFLpPYI51NKpiQKpdFMjQAhlaxLLwDD0gnx9oFiF9x5Oj04HnxV9CWHj98gTd4X_SvSfPsHp9FyEffyC76-XGfvQ2zhqOOiE-InuTk--z-T1WeAKo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFO0vHyAEwqb2M46OXCoCtWWtnthK_UWPI5TpeSx2uyqggPiP_BT-CX8BX4JM3mURUI9IPWSRHbGTjLOPKxvZhh7kaWBiVOlPAEKPKWc9CDU1pMQCaWNVjHQ1sDRdDw5Vu9PwpMN9mOIhSFYZS_7O5neSuu-ZdR_zdE8z0cfgjaXCTkspGdl1CMrD9znc_Tbmjf7b5HJL4XYezfbnXh9aQHPiihYeqi1QWehBJFZkUYQRKmISYrHNot0ilYOwDiV0djXAjINEAvrfOuMybI0NlriuNfYdYXigsomvP56gSuRaIB38XeEipMEH9r-Ayo7KxsCcArRZgwV6t_acE3D7d1ht3vTlO90b3-XbbjqHru1lrDwPvvZJTvmdcZLRzHDxGIOpig4lS_Ce3hdcbQpeVdep-02Vcrn9XnqFhwcXtL2_4LyuNIwp6bx0O8v8y_YNct_ffuuop0CT2J3QccptPSuWNm8K_9EVDRDU9af3PAYTcnzbuK1mbIVbQXyodIPtpkSCQpCevN5FyHxgB1fCecess2qrtwjxjX4LrTG-Jm0uErJVYQ4MIAmrTZKqS0WDMxJbJ8xnQp3FMkAjTtLiKEJMTTxdYIM3WKvLmjmXb6QS-8OB54nf636BBXaJXTb_0n3nN2YzI4Ok8P96cFjdhN7ZBue7z9hm8vFyj1FA2sJz9oFzdnHq_6DfgO7cD-m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+mechanical+ball+milling+on+the+electrical+and+powder+bed+properties+of+gas-atomized+Ti%E2%80%9348Al%E2%80%932Cr%E2%80%932Nb+and+elucidation+of+the+smoke+mechanism+in+the+powder+bed+fusion+electron+beam+melting+process&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Yim%2C+Seungkyun&rft.au=Aoyagi%2C+Kenta&rft.au=Yanagihara%2C+Keiji&rft.au=Bian%2C+Huakang&rft.date=2023-02-20&rft.issn=1005-0302&rft.volume=137&rft.spage=36&rft.epage=55&rft_id=info:doi/10.1016%2Fj.jmst.2022.07.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmst_2022_07_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-0302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-0302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-0302&client=summon