Noncontact capacitive coupling ECG-Derived respiratory signals using the conformer based time–frequency domain generative adversarial network
Respiratory monitoring and analysis is a key method for detecting sleep-related diseases. This paper presents a novel approach for respiratory monitoring that utilizes noncontact capacitive coupling electrocardiograms-derived respiration (cEDR) method. We propose a Time-Frequency Domain Generative A...
Saved in:
Published in | Expert systems with applications Vol. 289; p. 128360 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 |
DOI | 10.1016/j.eswa.2025.128360 |
Cover
Loading…
Abstract | Respiratory monitoring and analysis is a key method for detecting sleep-related diseases. This paper presents a novel approach for respiratory monitoring that utilizes noncontact capacitive coupling electrocardiograms-derived respiration (cEDR) method. We propose a Time-Frequency Domain Generative Adversarial Network (TF-GAN) method for generating respiratory signals, and successfully apply it to capacitive coupling electrocardiograms(cECG). First, we analyze the mechanism of respiratory coupling with cECG and verify the feasibility of the theory. Then, using the developed device, we collect cECG data from 16 subjects during the night and simultaneously collect respiratory signals as a reference, to validate the feasibility of our approach. Next, we convert the collected cECG data into time–frequency domain features using Short-Time Fourier Transform (STFT) and input these features into a Convolution-augmented transformer (Conformer) based Generative Adversarial Network(GAN) to generate the cEDR. The network architecture integrates self-attention mechanisms and time–frequency domain enhancement mechanisms to effectively extract the respiratory energy components. Finally, we compare the generated respiratory signals with the reference signals. The experimental results show that the generated respiratory signals exhibit a high correlation with the reference signals. Specifically, 86.3 % of the signals have a absolute waveform correlation coefficient greater than 0.5, indicating good reproduction of real breathing waveforms. Our proposed model demonstrates superior performance in respiratory signal extraction, achieving a low Root Mean Square Error (RMSE) of 0.96 ± 0.12 bpm and a high agreement rate of 94.83 % ± 0.30 % within the Bland–Altman limits. Additionally, the model maintains an effective respiratory segment ratio of 67.56 % ± 8.89 %, even under poor cECG signal conditions, showcasing its robustness and reliability. |
---|---|
AbstractList | Respiratory monitoring and analysis is a key method for detecting sleep-related diseases. This paper presents a novel approach for respiratory monitoring that utilizes noncontact capacitive coupling electrocardiograms-derived respiration (cEDR) method. We propose a Time-Frequency Domain Generative Adversarial Network (TF-GAN) method for generating respiratory signals, and successfully apply it to capacitive coupling electrocardiograms(cECG). First, we analyze the mechanism of respiratory coupling with cECG and verify the feasibility of the theory. Then, using the developed device, we collect cECG data from 16 subjects during the night and simultaneously collect respiratory signals as a reference, to validate the feasibility of our approach. Next, we convert the collected cECG data into time–frequency domain features using Short-Time Fourier Transform (STFT) and input these features into a Convolution-augmented transformer (Conformer) based Generative Adversarial Network(GAN) to generate the cEDR. The network architecture integrates self-attention mechanisms and time–frequency domain enhancement mechanisms to effectively extract the respiratory energy components. Finally, we compare the generated respiratory signals with the reference signals. The experimental results show that the generated respiratory signals exhibit a high correlation with the reference signals. Specifically, 86.3 % of the signals have a absolute waveform correlation coefficient greater than 0.5, indicating good reproduction of real breathing waveforms. Our proposed model demonstrates superior performance in respiratory signal extraction, achieving a low Root Mean Square Error (RMSE) of 0.96 ± 0.12 bpm and a high agreement rate of 94.83 % ± 0.30 % within the Bland–Altman limits. Additionally, the model maintains an effective respiratory segment ratio of 67.56 % ± 8.89 %, even under poor cECG signal conditions, showcasing its robustness and reliability. |
ArticleNumber | 128360 |
Author | Xiao, Zhijun Chatzichristos, Christos Dong, Kejun Zhang, Yuwei Jiang, Yunyi Wang, Zhongyu Li, Jianqing Liu, Chengyu Vos, Maarten De Ding, Fei Yang, Chenxi |
Author_xml | – sequence: 1 givenname: Zhijun orcidid: 0000-0002-9090-047X surname: Xiao fullname: Xiao, Zhijun organization: The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing China – sequence: 2 givenname: Maarten De surname: Vos fullname: Vos, Maarten De organization: The Department of Electrical Engineering, KU Leuven, Belgium – sequence: 3 givenname: Christos surname: Chatzichristos fullname: Chatzichristos, Christos organization: The Department of Electrical Engineering, KU Leuven, Belgium – sequence: 4 givenname: Kejun orcidid: 0000-0003-2098-1953 surname: Dong fullname: Dong, Kejun organization: Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States – sequence: 5 givenname: Yunyi orcidid: 0009-0003-1252-9825 surname: Jiang fullname: Jiang, Yunyi organization: The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing China – sequence: 6 givenname: Zhongyu surname: Wang fullname: Wang, Zhongyu organization: The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing China – sequence: 7 givenname: Yuwei surname: Zhang fullname: Zhang, Yuwei organization: the School of Computer Science, Jiangsu University of Science and Technology, Zhenjiang, China – sequence: 8 givenname: Fei orcidid: 0000-0003-2850-7148 surname: Ding fullname: Ding, Fei organization: The college of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 9 givenname: Chenxi surname: Yang fullname: Yang, Chenxi organization: The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing China – sequence: 10 givenname: Jianqing orcidid: 0000-0002-2472-5060 surname: Li fullname: Li, Jianqing organization: The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing China – sequence: 11 givenname: Chengyu orcidid: 0000-0003-1965-3020 surname: Liu fullname: Liu, Chengyu email: chengyu@seu.edu.cn organization: The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing China |
BookMark | eNp9kEFOwzAQRb0oEm3hAqx8gQTbSetEYoNKKUgVbGBtOfakuDR2sd1W3XEDFtyQk-CorFmNNPrvz_w_QgPrLCB0RUlOCZ1er3MIB5kzwiY5ZVUxJQM0JPWEZyXl5TkahbAmhHJC-BB9PTmrnI1SRazkVioTzR6wcrvtxtgVns8W2R34tNPYQ9gaL6PzRxzMyspNwLvQq-Jbj9jW-Q48bmRI6mg6-Pn8bj187MCqI9auk8biFVhIJv0Vqffgg_RGbrCFeHD-_QKdtckXLv_mGL3ez19mD9nyefE4u11milU0ZpzRMoWlklcF5YrXDW900Raa1U1ZVbWqeUUnrISC8Qag5rwsaklIozXRFamKMWInX-VdCB5asfWmk_4oKBF9jWIt-hpFX6M41ZigmxME6bO9AS-CMikbaONBRaGd-Q__BYu8g_4 |
Cites_doi | 10.1088/2057-1976/aafc80 10.1016/j.jelectrocard.2014.07.020 10.1109/TIM.2020.2971336 10.1109/IEMBS.2002.1134420 10.1109/TIM.2023.3273648 10.1109/TASLP.2024.3393718 10.3390/s22197142 10.1016/j.sna.2012.10.021 10.1109/TBME.2017.2778265 10.3357/ASEM.3744.2014 10.1007/s10877-006-9010-7 10.4103/ijoy.IJOY_27_17 10.1109/TIM.2022.3145401 10.1088/0967-3334/37/4/610 10.1109/TBME.2022.3209325 10.1038/srep37212 10.1109/JBHI.2023.3304299 10.1109/TBCAS.2016.2613097 10.1109/TBME.2022.3204764 10.1093/sleep/28.9.1151 10.1016/j.bspc.2012.06.001 10.1371/journal.pone.0086427 10.1016/j.compbiomed.2021.104593 10.3390/diagnostics13132146 10.1016/j.measurement.2024.114978 10.1109/JSEN.2020.2986723 10.21437/Interspeech.2020-3015 10.1007/s10439-014-1073-x 10.1109/TASLP.2021.3110649 10.1088/1361-6439/aa8ae0 10.1007/BF02457833 10.1109/ICASSP40776.2020.9054536 10.1021/acssensors.2c00824 10.1016/j.trf.2019.09.015 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2025.128360 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2025_128360 S0957417425019797 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET WUQ XPP ZMT |
ID | FETCH-LOGICAL-c281t-72141011a78317c79b7bd3f3d29b4889c9781524e327bee977439a00bdd0d8083 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Aug 14 00:19:48 EDT 2025 Sat Aug 30 17:13:16 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Capacitive coupling electrocardiogram Time-Frequency Domain Enhancement Bedside Respiratory Monitoring Generative Adversarial Network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c281t-72141011a78317c79b7bd3f3d29b4889c9781524e327bee977439a00bdd0d8083 |
ORCID | 0000-0002-2472-5060 0000-0002-9090-047X 0000-0003-2098-1953 0000-0003-2850-7148 0000-0003-1965-3020 0009-0003-1252-9825 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_128360 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128360 |
PublicationCentury | 2000 |
PublicationDate | 2025-09-15 |
PublicationDateYYYYMMDD | 2025-09-15 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lindberg, Ugnell, Öberg (b0100) 1992; 30 Gazi, Jung, Kimball, Inan (b0185) Jul 2022; 2022 vol. 47, no. 6, pp. 819-825, Nov-Dec, 2014. A. Pandey, and D. Wang, “Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain.” pp. 6629-6633. Jin, Tao, Dong, Qin, Yu, Luo, Deen (b0010) Nov 2017; 27 Orphanidou, Fleming, Shah, Tarassenko (b0070) Jan 2013; 8 P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” Wang, Zhang, Lin (b0065) 2020; 20 Quintana, Elstad, Kaufmann, Brandt, Haatveit, Haram, Nerhus, Westlye, Andreassen (b0145) 2016; 6 Lázaro, Alcaine, Romero, Gil, Laguna, Pueyo, Bailón (b0115) 2014; 42 vol. 70, no. 3, pp. 888-898, Sep 7, 2022. Chan, Chin (b0160) 2021; 29 L. Jin, Z. K. Liu, M. Altintas, Y. Zheng, Z. C. Liu, S. R. Yao, Y. Y. Fan, and Y. Li, “Wearable Piezoelectric Airflow Transducers for Human Respiratory and Metabolic Monitoring,” Xiao, Xing, Li, Yang, Li, Liu (b0215) 2022; 71 Fleming, Tarassenko (b0125) 2007; 2 Dong, Zhao, Cai, Li, Li, Liu (b0040) Aug 2021; 135 Song, Wang, Zhao, Zhang, Zhang (b0030) Aug 2024; 236 Birrenkott, Pimentel, Watkinson, Clifton (b0180) 2017; 65 2017. Bailón, Sörnmo, Laguna (b0075) 2006; 1 Charlton, Bonnici, Tarassenko, Clifton, Beale, Watkinson (b0205) Apr 2016; 37 W. Do, R. Russell, C. Wheeler, M. Lockwood, M. De Vos, I. Pavord, and M. Bafadhel, “Performance of Contactless Respiratory Rate Monitoring by Albus Home(TM), an Automated System for Nocturnal Monitoring at Home: A Validation Study,” Wang, Yao, Lin, Cheng, Xu, Xu (b0055) Mar 2023; 70 Li, Zheng, Zhang, Li (b0175) 2021 vol. 22, no. 19, Sep 21, 2022. A. Gulati, J. Qin, C. C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, and Y. Wu, “Conformer: Convolution-augmented Transformer for Speech Recognition,” Tyagi, Agrawal (b0090) Feb 2023; 80 Garbino, Blue, Pattarini, Law, Clark (b0035) Feb 2014; 85 Hu, Liu, Yang, Wang, Li, Liu (b0095) 2023 Uguz, Tufan, Uzun, Leonhardt, Hoog Antink (b0120) 2020; 69 pp. 12, 2022 Jul, 2022. Shelley, Awad, Stout, Silverman (b0130) 2006; 20 Sarkar, Bhattacherjee, Pal (b0200) 2016 E. Helfenbein, R. Firoozabadi, S. Chien, E. Carlson, and S. Babaeizadeh, “Development of three methods for extracting respiration from the surface ECG: A review,” Uguz, Canbaz, Antink, Luken, Leonhardt (b0050) 2022; 71 Thomas, Mietus, Peng, Goldberger (b0045) Sep 2005; 28 W. Yi, and K. Park, “Derivation of respiration from ECG measured without subject's awareness using wavelet transform.” pp. 130-131. Xie, Fonseca, Van Dijk, Long, Overeem (b0085) Jul 2023; 13 Sadr, de Chazal (b0110) Feb 2019; 5 Abdulatif, Cao, Yang (b0150) 2024; 32 Gent, Farah, Nes, Arem (b0195) 2019; 66 2020. Garde, Karlen, Ansermino, Dumont (b0135) 2014; 9 R. Soni, and M. Muniyandi, “Breath Rate Variability: A Novel Measure to Study the Meditation Effects,” Xiao, Ma, Xing, Yang, Hao, Li, Liu (b0140) 2023; 72 Khodadad, Nordebo, Muller, Waldman, Yerworth, Becher, Frerichs, Sophocleos, Kaam, Miedema (b0190) 2018; 99 Chiu, Lin, Wang, Huang, Wu (b0020) 2013; 189 vol. 12, 2019. K. Dong, L. Zhao, C. Zou, Z. Cai, C. Yan, Y. Li, J. Li, and C. Liu, “A Novel ECG-Derived Respiration Method Combining Frequency-Domain Feature and Interacting Multiple Model Smoother,” Leicht, Eilebrecht, Weyer, Leonhardt, Teichmann (b0060) Apr 2017; 11 Li (10.1016/j.eswa.2025.128360_b0175) 2021 Lázaro (10.1016/j.eswa.2025.128360_b0115) 2014; 42 Xiao (10.1016/j.eswa.2025.128360_b0215) 2022; 71 Chan (10.1016/j.eswa.2025.128360_b0160) 2021; 29 Gazi (10.1016/j.eswa.2025.128360_b0185) 2022; 2022 10.1016/j.eswa.2025.128360_b0015 Xie (10.1016/j.eswa.2025.128360_b0085) 2023; 13 10.1016/j.eswa.2025.128360_b0155 10.1016/j.eswa.2025.128360_b0210 Abdulatif (10.1016/j.eswa.2025.128360_b0150) 2024; 32 Bailón (10.1016/j.eswa.2025.128360_b0075) 2006; 1 Uguz (10.1016/j.eswa.2025.128360_b0050) 2022; 71 Tyagi (10.1016/j.eswa.2025.128360_b0090) 2023; 80 Charlton (10.1016/j.eswa.2025.128360_b0205) 2016; 37 10.1016/j.eswa.2025.128360_b0170 Quintana (10.1016/j.eswa.2025.128360_b0145) 2016; 6 Thomas (10.1016/j.eswa.2025.128360_b0045) 2005; 28 Jin (10.1016/j.eswa.2025.128360_b0010) 2017; 27 Leicht (10.1016/j.eswa.2025.128360_b0060) 2017; 11 Khodadad (10.1016/j.eswa.2025.128360_b0190) 2018; 99 Garde (10.1016/j.eswa.2025.128360_b0135) 2014; 9 Hu (10.1016/j.eswa.2025.128360_b0095) 2023 Xiao (10.1016/j.eswa.2025.128360_b0140) 2023; 72 10.1016/j.eswa.2025.128360_b0105 10.1016/j.eswa.2025.128360_b0005 Garbino (10.1016/j.eswa.2025.128360_b0035) 2014; 85 10.1016/j.eswa.2025.128360_b0025 Chiu (10.1016/j.eswa.2025.128360_b0020) 2013; 189 Wang (10.1016/j.eswa.2025.128360_b0065) 2020; 20 Orphanidou (10.1016/j.eswa.2025.128360_b0070) 2013; 8 Fleming (10.1016/j.eswa.2025.128360_b0125) 2007; 2 10.1016/j.eswa.2025.128360_b0165 Sarkar (10.1016/j.eswa.2025.128360_b0200) 2016 Shelley (10.1016/j.eswa.2025.128360_b0130) 2006; 20 Gent (10.1016/j.eswa.2025.128360_b0195) 2019; 66 Song (10.1016/j.eswa.2025.128360_b0030) 2024; 236 Birrenkott (10.1016/j.eswa.2025.128360_b0180) 2017; 65 Dong (10.1016/j.eswa.2025.128360_b0040) 2021; 135 Uguz (10.1016/j.eswa.2025.128360_b0120) 2020; 69 Wang (10.1016/j.eswa.2025.128360_b0055) 2023; 70 10.1016/j.eswa.2025.128360_b0080 Lindberg (10.1016/j.eswa.2025.128360_b0100) 1992; 30 Sadr (10.1016/j.eswa.2025.128360_b0110) 2019; 5 |
References_xml | – volume: 1 start-page: 215 year: 2006 end-page: 244 ident: b0075 article-title: ECG-derived respiratory frequency estimation – reference: A. Gulati, J. Qin, C. C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, and Y. Wu, “Conformer: Convolution-augmented Transformer for Speech Recognition,” – volume: 72 start-page: 11 year: 2023 ident: b0140 article-title: Atrial Fibrillation Monitoring Based on Noncontact Capacitive ECG Using an Integrated Microhumidity Fabric Electrode-Sheet Sensing Scheme – volume: 28 start-page: 1151 year: Sep 2005 end-page: 1161 ident: b0045 article-title: An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep – volume: 30 start-page: 533 year: 1992 end-page: 537 ident: b0100 article-title: Monitoring of respiratory and heart rates using a fibre-optic sensor – volume: 2022 start-page: 3249 year: Jul 2022 end-page: 3252 ident: b0185 article-title: Improving Respiratory Timing Estimation Using Quality Indexing and Electrocardiogram-Derived Respiration – volume: 85 start-page: 177 year: Feb 2014 end-page: 182 ident: b0035 article-title: Physiological Monitoring and Analysis of a Manned Stratospheric Balloon Test Program – volume: 69 start-page: 3297 year: 2020 end-page: 3307 ident: b0120 article-title: Physiological Motion Artifacts in Capacitive ECG: Ballistocardiographic Impedance Distortions – volume: 29 start-page: 2972 year: 2021 end-page: 2985 ident: b0160 article-title: Multi-Branch Convolutional Macaron net for Sound Event Detection – year: 2021 ident: b0175 article-title: “Glance and Gaze publication-title: A Collaborative Learning Framework for Single-channel Speech Enhancement,” – volume: 71 start-page: 1 year: 2022 end-page: 12 ident: b0215 article-title: Effect of Cotton Fabric Moisture Regain and Thickness on Signal Quality of Noncontact Capacitive Coupling ECG – reference: , 2020. – volume: 70 start-page: 1086 year: Mar 2023 end-page: 1094 ident: b0055 article-title: A Capacitive Electrocardiography System With Dedicated Noise-Cancellation Algorithms for Morphological Analysis – volume: 20 start-page: 9265 year: 2020 end-page: 9273 ident: b0065 article-title: Influence of Capacitive Coupling on High-Fidelity Non-Contact ECG Measurement – volume: 27 start-page: 7 year: Nov 2017 ident: b0010 article-title: Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome – reference: W. Do, R. Russell, C. Wheeler, M. Lockwood, M. De Vos, I. Pavord, and M. Bafadhel, “Performance of Contactless Respiratory Rate Monitoring by Albus Home(TM), an Automated System for Nocturnal Monitoring at Home: A Validation Study,” – volume: 236 start-page: 11 year: Aug 2024 ident: b0030 article-title: A novel method for chronic obstructive pulmonary disease detection using comprehensive respiratory impedance and electrocardiogram-derived respiration – volume: 71 start-page: 1 year: 2022 end-page: 10 ident: b0050 article-title: A Novel Sensor Design for Amplitude Modulated Measurement of Capacitive ECG – reference: A. Pandey, and D. Wang, “Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain.” pp. 6629-6633. – reference: vol. 12, 2019. – volume: 37 start-page: 610 year: Apr 2016 end-page: 626 ident: b0205 article-title: An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram – reference: R. Soni, and M. Muniyandi, “Breath Rate Variability: A Novel Measure to Study the Meditation Effects,” – reference: vol. 47, no. 6, pp. 819-825, Nov-Dec, 2014. – volume: 11 start-page: 300 year: Apr 2017 end-page: 313 ident: b0060 article-title: Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements – volume: 189 start-page: 328 year: 2013 end-page: 334 ident: b0020 article-title: Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring – volume: 5 start-page: 15 year: Feb 2019 ident: b0110 article-title: A comparison of three ECG-derived respiration methods for sleep apnoea detection – volume: 2 start-page: 232 year: 2007 end-page: 236 ident: b0125 article-title: A comparison of signal processing techniques for the extraction of breathing rate from the photoplethysmogram – reference: P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” – reference: E. Helfenbein, R. Firoozabadi, S. Chien, E. Carlson, and S. Babaeizadeh, “Development of three methods for extracting respiration from the surface ECG: A review,” – volume: 6 start-page: 37212 year: 2016 ident: b0145 article-title: Resting-state high-frequency heart rate variability is related to respiratory frequency in individuals with severe mental illness but not healthy controls – volume: 135 year: Aug 2021 ident: b0040 article-title: An integrated framework for evaluation on typical ECG-derived respiration waveform extraction and respiration – reference: , 2017. – volume: 80 start-page: 8 year: Feb 2023 ident: b0090 article-title: Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model – reference: vol. 22, no. 19, Sep 21, 2022. – volume: 66 start-page: 368 year: 2019 end-page: 378 ident: b0195 article-title: HeartPy: A novel heart rate algorithm for the analysis of noisy signals – reference: , pp. 12, 2022 Jul, 2022. – year: 2016 ident: b0200 article-title: Extraction of respiration signal from ECG for respiratory rate estimation – volume: 20 start-page: 81 year: 2006 end-page: 87 ident: b0130 article-title: The use of joint time frequency analysis to quantify the effect of ventilation on the pulse oximeter waveform – reference: K. Dong, L. Zhao, C. Zou, Z. Cai, C. Yan, Y. Li, J. Li, and C. Liu, “A Novel ECG-Derived Respiration Method Combining Frequency-Domain Feature and Interacting Multiple Model Smoother,” – volume: 32 start-page: 2477 year: 2024 end-page: 2493 ident: b0150 article-title: CMGAN: Conformer-Based Metric-GAN for Monaural Speech Enhancement – reference: W. Yi, and K. Park, “Derivation of respiration from ECG measured without subject's awareness using wavelet transform.” pp. 130-131. – volume: 42 start-page: 2072 year: 2014 end-page: 2083 ident: b0115 article-title: Electrocardiogram derived respiratory rate from QRS slopes and R-wave angle – volume: 9 start-page: 1 year: 2014 end-page: 11 ident: b0135 article-title: Estimating respiratory and heart rates from the correntropy spectral density of the photoplethysmogram – volume: 99 start-page: 460 year: 2018 end-page: 467 ident: b0190 article-title: “Optimized breath detection algorithm in Electrical Impedance Tomography,” publication-title: PP – reference: L. Jin, Z. K. Liu, M. Altintas, Y. Zheng, Z. C. Liu, S. R. Yao, Y. Y. Fan, and Y. Li, “Wearable Piezoelectric Airflow Transducers for Human Respiratory and Metabolic Monitoring,” – year: 2023 ident: b0095 article-title: Semi-supervised learning for low-cost personalized obstructive sleep apnea detection using unsupervised deep learning and single-lead electrocardiogram – reference: vol. 70, no. 3, pp. 888-898, Sep 7, 2022. – volume: 13 start-page: 15 year: Jul 2023 ident: b0085 article-title: The Use of Respiratory Effort Improves an ECG-Based Deep Learning Algorithm to Assess Sleep-Disordered Breathing – volume: 8 start-page: 98 year: Jan 2013 end-page: 105 ident: b0070 article-title: Data fusion for estimating respiratory rate from a single-lead ECG – volume: 65 start-page: 2033 year: 2017 end-page: 2041 ident: b0180 article-title: A robust fusion model for estimating respiratory rate from photoplethysmography and electrocardiography – volume: 5 start-page: 15 issue: 2 year: 2019 ident: 10.1016/j.eswa.2025.128360_b0110 article-title: A comparison of three ECG-derived respiration methods for sleep apnoea detection publication-title: Biomedical Physics & Engineering Express doi: 10.1088/2057-1976/aafc80 – ident: 10.1016/j.eswa.2025.128360_b0080 doi: 10.1016/j.jelectrocard.2014.07.020 – volume: 69 start-page: 3297 issue: 6 year: 2020 ident: 10.1016/j.eswa.2025.128360_b0120 article-title: Physiological Motion Artifacts in Capacitive ECG: Ballistocardiographic Impedance Distortions publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2020.2971336 – ident: 10.1016/j.eswa.2025.128360_b0105 doi: 10.1109/IEMBS.2002.1134420 – volume: 72 start-page: 11 year: 2023 ident: 10.1016/j.eswa.2025.128360_b0140 article-title: Atrial Fibrillation Monitoring Based on Noncontact Capacitive ECG Using an Integrated Microhumidity Fabric Electrode-Sheet Sensing Scheme publication-title: Ieee Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2023.3273648 – volume: 32 start-page: 2477 year: 2024 ident: 10.1016/j.eswa.2025.128360_b0150 article-title: CMGAN: Conformer-Based Metric-GAN for Monaural Speech Enhancement publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2024.3393718 – volume: 1 start-page: 215 year: 2006 ident: 10.1016/j.eswa.2025.128360_b0075 article-title: ECG-derived respiratory frequency estimation publication-title: Advanced methods and tools for ECG data analysis – ident: 10.1016/j.eswa.2025.128360_b0015 doi: 10.3390/s22197142 – volume: 189 start-page: 328 year: 2013 ident: 10.1016/j.eswa.2025.128360_b0020 article-title: Development of a piezoelectric polyvinylidene fluoride (PVDF) polymer-based sensor patch for simultaneous heartbeat and respiration monitoring publication-title: Sensors and Actuators A: Physical doi: 10.1016/j.sna.2012.10.021 – volume: 65 start-page: 2033 issue: 9 year: 2017 ident: 10.1016/j.eswa.2025.128360_b0180 article-title: A robust fusion model for estimating respiratory rate from photoplethysmography and electrocardiography publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2017.2778265 – volume: 85 start-page: 177 issue: 2 year: 2014 ident: 10.1016/j.eswa.2025.128360_b0035 article-title: Physiological Monitoring and Analysis of a Manned Stratospheric Balloon Test Program publication-title: Aviation Space and Environmental Medicine doi: 10.3357/ASEM.3744.2014 – volume: 20 start-page: 81 year: 2006 ident: 10.1016/j.eswa.2025.128360_b0130 article-title: The use of joint time frequency analysis to quantify the effect of ventilation on the pulse oximeter waveform publication-title: Journal of clinical monitoring and computing doi: 10.1007/s10877-006-9010-7 – ident: 10.1016/j.eswa.2025.128360_b0210 doi: 10.4103/ijoy.IJOY_27_17 – year: 2021 ident: 10.1016/j.eswa.2025.128360_b0175 article-title: “Glance and Gaze publication-title: A Collaborative Learning Framework for Single-channel Speech Enhancement,” – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.eswa.2025.128360_b0050 article-title: A Novel Sensor Design for Amplitude Modulated Measurement of Capacitive ECG publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2022.3145401 – volume: 37 start-page: 610 issue: 4 year: 2016 ident: 10.1016/j.eswa.2025.128360_b0205 article-title: An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram publication-title: Physiological Measurement doi: 10.1088/0967-3334/37/4/610 – volume: 70 start-page: 1086 issue: 3 year: 2023 ident: 10.1016/j.eswa.2025.128360_b0055 article-title: A Capacitive Electrocardiography System With Dedicated Noise-Cancellation Algorithms for Morphological Analysis publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2022.3209325 – volume: 6 start-page: 37212 issue: 1 year: 2016 ident: 10.1016/j.eswa.2025.128360_b0145 article-title: Resting-state high-frequency heart rate variability is related to respiratory frequency in individuals with severe mental illness but not healthy controls publication-title: Scientific Reports doi: 10.1038/srep37212 – year: 2016 ident: 10.1016/j.eswa.2025.128360_b0200 article-title: Extraction of respiration signal from ECG for respiratory rate estimation publication-title: Michael Faraday Iet International Summit – year: 2023 ident: 10.1016/j.eswa.2025.128360_b0095 article-title: Semi-supervised learning for low-cost personalized obstructive sleep apnea detection using unsupervised deep learning and single-lead electrocardiogram publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2023.3304299 – volume: 11 start-page: 300 issue: 2 year: 2017 ident: 10.1016/j.eswa.2025.128360_b0060 article-title: Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/TBCAS.2016.2613097 – volume: 2022 start-page: 3249 year: 2022 ident: 10.1016/j.eswa.2025.128360_b0185 article-title: Improving Respiratory Timing Estimation Using Quality Indexing and Electrocardiogram-Derived Respiration publication-title: Annu Int Conf IEEE Eng Med Biol Soc – ident: 10.1016/j.eswa.2025.128360_b0005 doi: 10.1109/TBME.2022.3204764 – volume: 2 start-page: 232 issue: 4 year: 2007 ident: 10.1016/j.eswa.2025.128360_b0125 article-title: A comparison of signal processing techniques for the extraction of breathing rate from the photoplethysmogram publication-title: Int. J. Biol. Med. Sci – volume: 28 start-page: 1151 issue: 9 year: 2005 ident: 10.1016/j.eswa.2025.128360_b0045 article-title: An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep publication-title: Sleep doi: 10.1093/sleep/28.9.1151 – volume: 8 start-page: 98 issue: 1 year: 2013 ident: 10.1016/j.eswa.2025.128360_b0070 article-title: Data fusion for estimating respiratory rate from a single-lead ECG publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2012.06.001 – volume: 9 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.eswa.2025.128360_b0135 article-title: Estimating respiratory and heart rates from the correntropy spectral density of the photoplethysmogram publication-title: PloS one doi: 10.1371/journal.pone.0086427 – volume: 135 year: 2021 ident: 10.1016/j.eswa.2025.128360_b0040 article-title: An integrated framework for evaluation on typical ECG-derived respiration waveform extraction and respiration publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104593 – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.eswa.2025.128360_b0215 article-title: Effect of Cotton Fabric Moisture Regain and Thickness on Signal Quality of Noncontact Capacitive Coupling ECG publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 13 start-page: 15 issue: 13 year: 2023 ident: 10.1016/j.eswa.2025.128360_b0085 article-title: The Use of Respiratory Effort Improves an ECG-Based Deep Learning Algorithm to Assess Sleep-Disordered Breathing publication-title: Diagnostics doi: 10.3390/diagnostics13132146 – ident: 10.1016/j.eswa.2025.128360_b0170 – volume: 236 start-page: 11 year: 2024 ident: 10.1016/j.eswa.2025.128360_b0030 article-title: A novel method for chronic obstructive pulmonary disease detection using comprehensive respiratory impedance and electrocardiogram-derived respiration publication-title: Measurement doi: 10.1016/j.measurement.2024.114978 – volume: 20 start-page: 9265 issue: 16 year: 2020 ident: 10.1016/j.eswa.2025.128360_b0065 article-title: Influence of Capacitive Coupling on High-Fidelity Non-Contact ECG Measurement publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.2986723 – ident: 10.1016/j.eswa.2025.128360_b0165 doi: 10.21437/Interspeech.2020-3015 – volume: 42 start-page: 2072 year: 2014 ident: 10.1016/j.eswa.2025.128360_b0115 article-title: Electrocardiogram derived respiratory rate from QRS slopes and R-wave angle publication-title: Annals of biomedical engineering doi: 10.1007/s10439-014-1073-x – volume: 29 start-page: 2972 year: 2021 ident: 10.1016/j.eswa.2025.128360_b0160 article-title: Multi-Branch Convolutional Macaron net for Sound Event Detection publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing doi: 10.1109/TASLP.2021.3110649 – volume: 27 start-page: 7 issue: 11 year: 2017 ident: 10.1016/j.eswa.2025.128360_b0010 article-title: Flexible surface acoustic wave respiration sensor for monitoring obstructive sleep apnea syndrome publication-title: Journal of Micromechanics and Microengineering doi: 10.1088/1361-6439/aa8ae0 – volume: 30 start-page: 533 year: 1992 ident: 10.1016/j.eswa.2025.128360_b0100 article-title: Monitoring of respiratory and heart rates using a fibre-optic sensor publication-title: Medical and Biological Engineering and Computing doi: 10.1007/BF02457833 – ident: 10.1016/j.eswa.2025.128360_b0155 doi: 10.1109/ICASSP40776.2020.9054536 – ident: 10.1016/j.eswa.2025.128360_b0025 doi: 10.1021/acssensors.2c00824 – volume: 66 start-page: 368 year: 2019 ident: 10.1016/j.eswa.2025.128360_b0195 article-title: HeartPy: A novel heart rate algorithm for the analysis of noisy signals publication-title: Transportation Research Part F: Traffic Psychology and Behaviour doi: 10.1016/j.trf.2019.09.015 – volume: 99 start-page: 460 year: 2018 ident: 10.1016/j.eswa.2025.128360_b0190 article-title: “Optimized breath detection algorithm in Electrical Impedance Tomography,” IEEE Transactions on Biomedical Engineering, vol publication-title: PP – volume: 80 start-page: 8 year: 2023 ident: 10.1016/j.eswa.2025.128360_b0090 article-title: Automatic detection of sleep apnea from single-lead ECG signal using enhanced-deep belief network model publication-title: Biomedical Signal Processing and Control |
SSID | ssj0017007 |
Score | 2.470002 |
Snippet | Respiratory monitoring and analysis is a key method for detecting sleep-related diseases. This paper presents a novel approach for respiratory monitoring that... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 128360 |
SubjectTerms | Bedside Respiratory Monitoring Capacitive coupling electrocardiogram Generative Adversarial Network Time-Frequency Domain Enhancement |
Title | Noncontact capacitive coupling ECG-Derived respiratory signals using the conformer based time–frequency domain generative adversarial network |
URI | https://dx.doi.org/10.1016/j.eswa.2025.128360 |
Volume | 289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sCG0jaxXSdjVVoKiC5QqVuU2G5VJJKqTUEsiH_AwD_kl3DnJDwkxMCYKHaiu8vdd8l3d4ScGBbEnEntKM2Fw2PRdCL7RWysDReuDrgd03k9aPWH_HIkRhXSKWthkFZZ-P7cp1tvXZxpFNJszKbTxg2AAwiHkNoJgCkywIpyziVaef35k-aB7edk3m9POnh1UTiTc7zM4hF7D3miDm6a2TaVvwSnbwGnt0nWC6RI2_nDbJGKSbbJRjmFgRYv5Q55HaQJEs4jlVEFoU9ZNhBV6RKLbSe02zl3zsDOHoym868f6xSZG2B7FJnvEwo4EJbY2iTYHGObpjh3_v3lbTzP6dZPVKf30TShE9uq2t4lwnnOiwitmCY5o3yXDHvd207fKcYsOMrz3cyBHJCDPNxI-gAmlAxiGWs2ZtoDNfp-oLAtlvC4YZ6MjUHAyAJQaKx1U_sA4fbISpImZp9QwxRKnBkZuFxGkAy1NG9CEhyLCPepktNSvuEs76YRljSzuxC1EaI2wlwbVSJKFYQ_bCIEd__HuoN_rjska3iEbBBXHJGVbL40xwA5srhmbapGVtsXV_3BB6fX2J4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8NADLagHWDhjXhzAxsKbXJ3vWSsSqGFtgsgsUXJ3bUqEmlVWhAb_4CBf8gvwc6Dh4QYWJM4iWzH_i732QY4sjyIBVfG0UZIR8Sy6kTpH7G-sUK6JhDpmM5ur9a6ERe38nYOGkUtDNEq89ifxfQ0WudHKrk2K-PhsHKF4ADTIS7tJMIUFah5KFN3KlmCcr192ep9biaoalY1jdc7JJDXzmQ0L_vwRO2HPHmCkZqnnSp_yU_fcs7ZCizlYJHVs_dZhTmbrMFyMYiB5d_lOrz2RglxziM9ZRqzn04JQUyPZlRvO2DNxrlziq72aA2bfO2tMyJvoPsxIr8PGEJBFEnLk_DmlN4Mo9Hz7y9v_UnGuH5mZnQfDRM2SLtVp0-JaKTzQ0SOzJKMVL4BN2fN60bLySctONrz3amDy0CB-nAj5SOe0CqIVWx4nxsPLen7gabOWNITlnsqtpYwIw_QprExVeMjituEUjJK7BYwyzVpnFsVuEJFuB6qGVHFdXAsI7rPNhwX-g3HWUONsGCa3YVkjZCsEWbW2AZZmCD84RYhRvw_5Hb-KXcIC63rbifstHuXu7BIZ4gc4so9KE0nM7uPCGQaH-Qe9gEZ3NtP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noncontact+capacitive+coupling+ECG-Derived+respiratory+signals+using+the+conformer+based+time%E2%80%93frequency+domain+generative+adversarial+network&rft.jtitle=Expert+systems+with+applications&rft.au=Xiao%2C+Zhijun&rft.au=Vos%2C+Maarten+De&rft.au=Chatzichristos%2C+Christos&rft.au=Dong%2C+Kejun&rft.date=2025-09-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=289&rft_id=info:doi/10.1016%2Fj.eswa.2025.128360&rft.externalDocID=S0957417425019797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |