The supramolecular frameworks and electrocatalytic properties of two new structurally diverse tertiary phosphane-appended nickel() and copper() thiosquarates
In this study, two new heteroleptic complexes with compositions [Ni(mtsq) 1.85 Cl 0.15 (dppe)](CH 2 Cl 2 ) 0.06 (CH 3 OH) 0.09 ( Ni-mtsq ) and [Cu(mtsq)(PPh 3 ) 2 ] ( Cu-mtsq ) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh 3 = triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have...
Saved in:
Published in | CrystEngComm Vol. 25; no. 48; pp. 6822 - 6836 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
11.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, two new heteroleptic complexes with compositions [Ni(mtsq)
1.85
Cl
0.15
(dppe)](CH
2
Cl
2
)
0.06
(CH
3
OH)
0.09
(
Ni-mtsq
) and [Cu(mtsq)(PPh
3
)
2
] (
Cu-mtsq
) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh
3
= triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized by spectroscopy analyses as well as by single crystal X-ray diffraction technique. X-ray analyses reveal square planar geometry around Ni(
ii
) in
Ni-mtsq
, where Ni(
ii
) coordinates with two sulfur centres of two mtsq ligands with monodentate coordination and two phosphorus centres of the dppe ligand in chelating mode. Unlike
Ni-mtsq
, Cu(
i
) in
Cu-mtsq
adopts a tetrahedral geometry, which is satisfied by sulfur and oxygen centres of one mtsq ligand with a bidentate coordination mode and two phosphorus centres of two PPh
3
ligands. The supramolecular architecture of both
Ni-mtsq
and
Cu-mtsq
is sustained by intermolecular C-H π and O H interactions. Also,
Ni-mtsq
exhibits intriguing intramolecular semicoordination Ni O and π π non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis, density functional theory and quantum theory of atoms in molecules (QTAIM) analyses and has been visualized with the help of non-covalent interactions reduced density gradient (NCI-RDG). Further, the emissive nature of
Cu-mtsq
in a solution and solid phase suggests aggregation-induced emission with a bathochromic shift in the solid phase as compared to the solution phase. Both complexes have been used as electrocatalysts for oxygen and hydrogen evolution reactions, which suggests that
Cu-mtsq
offers better catalysis due to the presence of a redox active, less hindered Cu(
i
) centre with an
η
10
of 600 mV and a Tafel slope of 228 mV dec
−1
in the OER, while in HER too,
Cu-mtsq
exhibited the best onset potential of −0.36 V with an
η
10
of 647 mV. Also, homogeneous electrocatalysis for the HER for both complexes was investigated using trifluoroacetic acid as the hydrogen source, which suggests a better electrocatalytic performance of
Cu-mtsq
.
Structurally diverse tertiary phosphane-appended Cu(
i
) and Ni(
ii
) 3-ethoxycyclobutenedione-4-thiolates as molecular electrocatalysts for the OER and HER. |
---|---|
AbstractList | In this study, two new heteroleptic complexes with compositions [Ni(mtsq)
1.85
Cl
0.15
(dppe)](CH
2
Cl
2
)
0.06
(CH
3
OH)
0.09
(
Ni-mtsq
) and [Cu(mtsq)(PPh
3
)
2
] (
Cu-mtsq
) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh
3
= triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized by spectroscopy analyses as well as by single crystal X-ray diffraction technique. X-ray analyses reveal square planar geometry around Ni(
ii
) in
Ni-mtsq
, where Ni(
ii
) coordinates with two sulfur centres of two mtsq ligands with monodentate coordination and two phosphorus centres of the dppe ligand in chelating mode. Unlike
Ni-mtsq
, Cu(
i
) in
Cu-mtsq
adopts a tetrahedral geometry, which is satisfied by sulfur and oxygen centres of one mtsq ligand with a bidentate coordination mode and two phosphorus centres of two PPh
3
ligands. The supramolecular architecture of both
Ni-mtsq
and
Cu-mtsq
is sustained by intermolecular C–H⋯π and O⋯H interactions. Also,
Ni-mtsq
exhibits intriguing intramolecular semicoordination Ni⋯O and π⋯π non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis, density functional theory and quantum theory of atoms in molecules (QTAIM) analyses and has been visualized with the help of non-covalent interactions reduced density gradient (NCI-RDG). Further, the emissive nature of
Cu-mtsq
in a solution and solid phase suggests aggregation-induced emission with a bathochromic shift in the solid phase as compared to the solution phase. Both complexes have been used as electrocatalysts for oxygen and hydrogen evolution reactions, which suggests that
Cu-mtsq
offers better catalysis due to the presence of a redox active, less hindered Cu(
i
) centre with an
η
10
of 600 mV and a Tafel slope of 228 mV dec
−1
in the OER, while in HER too,
Cu-mtsq
exhibited the best onset potential of −0.36 V with an
η
10
of 647 mV. Also, homogeneous electrocatalysis for the HER for both complexes was investigated using trifluoroacetic acid as the hydrogen source, which suggests a better electrocatalytic performance of
Cu-mtsq
. In this study, two new heteroleptic complexes with compositions [Ni(mtsq) 1.85 Cl 0.15 (dppe)](CH 2 Cl 2 ) 0.06 (CH 3 OH) 0.09 ( Ni-mtsq ) and [Cu(mtsq)(PPh 3 ) 2 ] ( Cu-mtsq ) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh 3 = triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized by spectroscopy analyses as well as by single crystal X-ray diffraction technique. X-ray analyses reveal square planar geometry around Ni( ii ) in Ni-mtsq , where Ni( ii ) coordinates with two sulfur centres of two mtsq ligands with monodentate coordination and two phosphorus centres of the dppe ligand in chelating mode. Unlike Ni-mtsq , Cu( i ) in Cu-mtsq adopts a tetrahedral geometry, which is satisfied by sulfur and oxygen centres of one mtsq ligand with a bidentate coordination mode and two phosphorus centres of two PPh 3 ligands. The supramolecular architecture of both Ni-mtsq and Cu-mtsq is sustained by intermolecular C-H π and O H interactions. Also, Ni-mtsq exhibits intriguing intramolecular semicoordination Ni O and π π non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis, density functional theory and quantum theory of atoms in molecules (QTAIM) analyses and has been visualized with the help of non-covalent interactions reduced density gradient (NCI-RDG). Further, the emissive nature of Cu-mtsq in a solution and solid phase suggests aggregation-induced emission with a bathochromic shift in the solid phase as compared to the solution phase. Both complexes have been used as electrocatalysts for oxygen and hydrogen evolution reactions, which suggests that Cu-mtsq offers better catalysis due to the presence of a redox active, less hindered Cu( i ) centre with an η 10 of 600 mV and a Tafel slope of 228 mV dec −1 in the OER, while in HER too, Cu-mtsq exhibited the best onset potential of −0.36 V with an η 10 of 647 mV. Also, homogeneous electrocatalysis for the HER for both complexes was investigated using trifluoroacetic acid as the hydrogen source, which suggests a better electrocatalytic performance of Cu-mtsq . Structurally diverse tertiary phosphane-appended Cu( i ) and Ni( ii ) 3-ethoxycyclobutenedione-4-thiolates as molecular electrocatalysts for the OER and HER. In this study, two new heteroleptic complexes with compositions [Ni(mtsq)1.85Cl0.15(dppe)](CH2Cl2)0.06(CH3OH)0.09 (Ni-mtsq) and [Cu(mtsq)(PPh3)2] (Cu-mtsq) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh3 = triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized by spectroscopy analyses as well as by single crystal X-ray diffraction technique. X-ray analyses reveal square planar geometry around Ni(ii) in Ni-mtsq, where Ni(ii) coordinates with two sulfur centres of two mtsq ligands with monodentate coordination and two phosphorus centres of the dppe ligand in chelating mode. Unlike Ni-mtsq, Cu(i) in Cu-mtsq adopts a tetrahedral geometry, which is satisfied by sulfur and oxygen centres of one mtsq ligand with a bidentate coordination mode and two phosphorus centres of two PPh3 ligands. The supramolecular architecture of both Ni-mtsq and Cu-mtsq is sustained by intermolecular C–H⋯π and O⋯H interactions. Also, Ni-mtsq exhibits intriguing intramolecular semicoordination Ni⋯O and π⋯π non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis, density functional theory and quantum theory of atoms in molecules (QTAIM) analyses and has been visualized with the help of non-covalent interactions reduced density gradient (NCI-RDG). Further, the emissive nature of Cu-mtsq in a solution and solid phase suggests aggregation-induced emission with a bathochromic shift in the solid phase as compared to the solution phase. Both complexes have been used as electrocatalysts for oxygen and hydrogen evolution reactions, which suggests that Cu-mtsq offers better catalysis due to the presence of a redox active, less hindered Cu(i) centre with an η10 of 600 mV and a Tafel slope of 228 mV dec−1 in the OER, while in HER too, Cu-mtsq exhibited the best onset potential of −0.36 V with an η10 of 647 mV. Also, homogeneous electrocatalysis for the HER for both complexes was investigated using trifluoroacetic acid as the hydrogen source, which suggests a better electrocatalytic performance of Cu-mtsq. |
Author | Srivastava, Devyani Kociok-Köhn, Gabriele Kushwaha, Aparna Muddassir, Mohd Kumar, Abhinav Chauhan, Ratna Gosavi, Suresh W |
AuthorAffiliation | Department of Chemistry 2 University of Lucknow Department of Environmental Science University of Bath ) Faculty of Science King Saud University Savitribai Phule Pune University College of Sciences Materials and Chemical Characterisation Facility (MC Department of Physics |
AuthorAffiliation_xml | – sequence: 0 name: ) – sequence: 0 name: Department of Chemistry – sequence: 0 name: Department of Physics – sequence: 0 name: University of Bath – sequence: 0 name: Materials and Chemical Characterisation Facility (MC – sequence: 0 name: University of Lucknow – sequence: 0 name: King Saud University – sequence: 0 name: Department of Environmental Science – sequence: 0 name: Faculty of Science – sequence: 0 name: Savitribai Phule Pune University – sequence: 0 name: College of Sciences – sequence: 0 name: 2 |
Author_xml | – sequence: 1 givenname: Devyani surname: Srivastava fullname: Srivastava, Devyani – sequence: 2 givenname: Aparna surname: Kushwaha fullname: Kushwaha, Aparna – sequence: 3 givenname: Gabriele surname: Kociok-Köhn fullname: Kociok-Köhn, Gabriele – sequence: 4 givenname: Suresh W surname: Gosavi fullname: Gosavi, Suresh W – sequence: 5 givenname: Ratna surname: Chauhan fullname: Chauhan, Ratna – sequence: 6 givenname: Abhinav surname: Kumar fullname: Kumar, Abhinav – sequence: 7 givenname: Mohd surname: Muddassir fullname: Muddassir, Mohd |
BookMark | eNptkU1P3DAQhq0KpLLApfdKlnopSIHxOskmx2rLl4TEBc6R7UxYs1k7O3a62h_Df8WwFVQVp_nQ886rmZmwPecdMvZNwJkAWZ-30iBAJWaPX9iByMsyq0DKvX_yr2wSwhOAyIWAA_Z8v0AexoHUyvdoxl4R71KBG0_LwJVrOaZ-JG9UVP02WsMH8gNStBi473jceO5ww0Ok0cSRVN9veWv_IAXk8ZVTtOXDwodhoRxmahjQtdhyZ80S-58nbybGpzalIi6sD-tRkYoYjth-p_qAx3_jIXu4vLifX2e3d1c381-3mZlWImZlVZQaZlrLFrXRXQ3TWtRGYF2ZPMdCKt3Oik7m7Swvykp2ItfGaNBCCYAO5SH7sZubVluPGGLz5EdyybKZ1gBSFLIqEnW6owz5EAi7ZiC7Sts1AprX8ze_5fzi7fxXCYb_YGOjita7SMr2n0u-7yQUzPvoj4_KF4a6mC0 |
CitedBy_id | crossref_primary_10_1039_D4DT00151F crossref_primary_10_1039_D4NJ03502J crossref_primary_10_1039_D5DT00025D crossref_primary_10_1016_j_fuel_2025_135095 crossref_primary_10_1039_D4NJ00247D crossref_primary_10_1039_D4NJ02358G crossref_primary_10_1016_j_ica_2024_122513 crossref_primary_10_1016_j_mtchem_2025_102582 crossref_primary_10_1016_j_ica_2024_122284 crossref_primary_10_1039_D4NJ04282D crossref_primary_10_1016_j_microc_2025_113112 crossref_primary_10_1039_D4CE01268B |
Cites_doi | 10.1021/ic020438v 10.1002/ejic.200900013 10.1039/D1NR02592A 10.1016/j.ica.2023.121471 10.1002/aoc.6725 10.1039/dt9960001935 10.1016/j.poly.2004.11.023 10.1016/0263-7855(96)00018-5 10.1002/ange.201700927 10.1021/ic502792q 10.1039/D2NJ01177H 10.1016/S0009-2614(98)00036-0 10.1016/0022-1902(75)80834-7 10.1016/j.poly.2014.04.068 10.1016/j.poly.2013.09.041 10.1016/j.poly.2018.06.029 10.1039/b704177b 10.1002/0471725587.ch1 10.1039/B305363F 10.1039/C9DT04923A 10.1016/j.ica.2009.11.037 10.1021/jacs.8b04569 10.1002/zaac.200400143 10.1039/dt9750002182 10.1039/b504372g 10.1039/C9CE01917K 10.1021/ic00200a026 10.1039/D2CE00536K 10.3390/cryst13020343 10.1002/0471725560.ch3 10.1016/j.inoche.2011.02.002 10.1016/0010-8545(60)80003-3 10.1016/j.molstruc.2007.07.001 10.1002/anie.201803944 10.1002/aoc.1441 10.1016/j.ica.2015.03.007 10.1021/ja00816a064 10.1023/B:JOCC.0000047637.06637.bb 10.1039/dt9930003767 10.1107/S2053229614024218 10.1021/ic9906611 10.1039/dt9720001460 10.1039/b618088d 10.1093/oso/9780198551683.001.0001 10.1039/D2RA07901A 10.1080/00958972.2015.1115485 10.1021/ic00186a032 10.1080/00268977000101561 10.1021/acs.accounts.8b00002 10.1107/S0108768104020300 10.1021/ic50153a013 10.1002/anie.199504781 10.1039/D2NJ04736E 10.1021/ic000082s 10.1002/aoc.1265 10.1039/c0dt01426e 10.1039/b823058g 10.1016/j.ccr.2013.02.007 10.1016/j.jelechem.2016.12.011 10.1016/j.ica.2014.02.038 10.1002/9783527610709 10.1039/B203191B 10.3390/molecules23102571 10.1039/c1cc11173f 10.1063/1.464913 10.1515/znb-1990-0414 10.1021/ic9904384 10.1007/s12678-015-0251-4 10.1021/cr9601167 10.1016/0262-8856(92)90076-F 10.1002/9780470132500.ch19 10.1039/C5CE01526J 10.1007/s10853-018-2968-y 10.1039/c1nj20586b 10.1021/ic951393j 10.1002/0471725587.ch2 10.17344/acsi.2014.1065 10.1021/acs.inorgchem.5b02000 10.1016/j.poly.2018.08.050 10.1016/j.ica.2017.08.062 10.1016/j.jssc.2022.123517 10.1039/C8NJ03992E 10.1039/D2DT01971J 10.1021/cg8005212 10.1021/jo00886a027 10.1002/celc.202000515 10.1007/s10853-016-9906-7 10.1007/s11051-016-3538-3 10.1039/C5RA18737K 10.1021/acs.chemrev.0c01183 10.1021/ja029418i 10.1039/D0NJ05709F 10.1002/chem.200204626 10.1016/j.ica.2016.05.028 10.1021/ic1003098 10.1016/j.ica.2017.11.016 10.1016/j.molstruc.2021.131728 10.1016/j.molstruc.2020.128376 10.1021/acs.cgd.0c00999 10.1021/ja00106a066 10.1002/aoc.5879 10.1073/pnas.1120757109 10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G 10.1016/S0020-1693(03)00221-4 10.1039/D1NJ02644E 10.1107/S2053273314026370 10.1016/j.jscs.2019.12.003 10.1021/ja5019755 10.1002/ejic.201200307 10.1016/S0022-2860(02)00566-5 10.1021/jo00863a005 10.1002/jcc.22885 10.1016/j.ijhydene.2018.02.043 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d3ce00817g |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 6836 |
ExternalDocumentID | 10_1039_D3CE00817G d3ce00817g |
GroupedDBID | -JG 0-7 0R~ 29F 5GY 6J9 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N IDZ J3I N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF CITATION R56 7U5 8FD L7M |
ID | FETCH-LOGICAL-c281t-6856b07bb3debcbf902919c1e98c44e53abd75f34d745683f14bccb0b1a100fe3 |
ISSN | 1466-8033 |
IngestDate | Mon Jun 30 03:46:52 EDT 2025 Tue Jul 01 02:07:39 EDT 2025 Thu Apr 24 23:07:44 EDT 2025 Tue Dec 17 20:58:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-6856b07bb3debcbf902919c1e98c44e53abd75f34d745683f14bccb0b1a100fe3 |
Notes | Electronic supplementary information (ESI) available. CCDC For ESI and crystallographic data in CIF or other electronic format see DOI https://doi.org/10.1039/d3ce00817g and 2261637 2261636 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7069-2557 0000-0001-8441-7521 0000-0003-4590-118X 0000-0003-3399-4745 0000-0002-7186-1399 |
PQID | 2900315385 |
PQPubID | 2047491 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1039_D3CE00817G rsc_primary_d3ce00817g crossref_citationtrail_10_1039_D3CE00817G proquest_journals_2900315385 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-11 |
PublicationDateYYYYMMDD | 2023-12-11 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Coucouvanis (D3CE00817G/cit1b/1) 1970; 11 Maalej (D3CE00817G/cit10a/1) 2022; 1250 Busby (D3CE00817G/cit34b/1) 1993 Kumar (D3CE00817G/cit24c/1) 2018; 471 Lu (D3CE00817G/cit40b/1) 2012; 33 Mondal (D3CE00817G/cit15c/1) 2016; 18 Krause (D3CE00817G/cit7d/1) 1990; 45 Lee (D3CE00817G/cit37b/1) 1998; 37 Spackman (D3CE00817G/cit42a/1) 2002; 4 Singh (D3CE00817G/cit9b/1) 2020; 34 Zarkadoulas (D3CE00817G/cit14b/1) 2016; 55 Srivastava (D3CE00817G/cit25c/1) 2023; 47 Li (D3CE00817G/cit33b/1) 2014; 67 Pan (D3CE00817G/cit41c/1) 2015 Coucouvanis (D3CE00817G/cit34a/1) 1975; 14 Pal (D3CE00817G/cit41a/1) 2022; 51 Singh (D3CE00817G/cit9a/1) 2022; 315 Sarkar (D3CE00817G/cit2f/1) 2021; 121 Clemenson (D3CE00817G/cit1g/1) 1990; 106 Armstrong (D3CE00817G/cit13a/1) 1995; 34 Coucouvanis (D3CE00817G/cit8b/1) 1974; 96 Lazarou (D3CE00817G/cit19/1) 2010; 363 Tiekink (D3CE00817G/cit12c/1) 2011; 47 Rohl (D3CE00817G/cit45/1) 2008; 8 Singh (D3CE00817G/cit24b/1) 2020; 22 Ali (D3CE00817G/cit5c/1) 2005; 24 Bolligarla (D3CE00817G/cit11b/1) 2011; 14 Hogarth (D3CE00817G/cit1c/1) 2005; 53 Gupta (D3CE00817G/cit31b/1) 2014; 79 Matta (D3CE00817G/cit29a/1) 2007 Chauhan (D3CE00817G/cit2d/1) 2014; 415 Reineke (D3CE00817G/cit33a/1) 2015; 54 Khrizanforova (D3CE00817G/cit33c/1) 2015; 6 Cunningham (D3CE00817G/cit32b/1) 2000; 39 Yadav (D3CE00817G/cit24a/1) 2015; 17 Srivastava (D3CE00817G/cit27a/1) 2023; 551 Spackman (D3CE00817G/cit42b/1) 1997 Kunkely (D3CE00817G/cit30b/1) 1995; 117 Eggerdling (D3CE00817G/cit6b/1) 1976; 41 Li (D3CE00817G/cit41e/1) 2021; 13 Yadav (D3CE00817G/cit12a/1) 2015; 17 Semeniuc (D3CE00817G/cit22a/1) 2018; 475 McKinnon (D3CE00817G/cit44/1) 2004; 60 Tenorio (D3CE00817G/cit1i/1) 1996 Nath (D3CE00817G/cit5d/1) 2011; 40 Afzal (D3CE00817G/cit2a/1) 2011; 35 Goncalves (D3CE00817G/cit16a/1) 2002; 645 Shakban (D3CE00817G/cit4c/1) 2016; 51 Singh (D3CE00817G/cit5b/1) 2016; 69 Hendrickson (D3CE00817G/cit21/1) 1975 Samanta (D3CE00817G/cit5e/1) 2003; 42 Shakban (D3CE00817G/cit4d/1) 2019; 54 Kayed (D3CE00817G/cit5a/1) 2020; 24 Cookson (D3CE00817G/cit1d/1) 2007 Deng (D3CE00817G/cit14d/1) 2018; 155 Wenzel (D3CE00817G/cit7e/1) 2004; 630 Humphrey (D3CE00817G/cit40c/1) 1996; 14 McKinnon (D3CE00817G/cit43/1) 1998; 4 Chen (D3CE00817G/cit11a/1) 2018; 140 Desiraju (D3CE00817G/cit12b/1) 2005 Singh (D3CE00817G/cit14a/1) 2018; 43 Parkin (D3CE00817G/cit46/1) 2007; 9 Zarkadoulas (D3CE00817G/cit14h/1) 2018; 152 Srivastava (D3CE00817G/cit27b/1) 2023; 13 Li (D3CE00817G/cit23/1) 2005; 8 You (D3CE00817G/cit41d/1) 2018; 51 Koshiba (D3CE00817G/cit14e/1) 2017; 129 Singh (D3CE00817G/cit4a/1) 2022; 24 Kumar (D3CE00817G/cit26b/1) 2021; 45 Cunningham (D3CE00817G/cit32a/1) 1999; 38 Chen (D3CE00817G/cit33d/1) 2022; 36 Singh (D3CE00817G/cit25a/1) 2022; 24 Sabir (D3CE00817G/cit41f/1) 2023; 13 Espinosa (D3CE00817G/cit29c/1) 1998; 285 Letko (D3CE00817G/cit14i/1) 2014; 136 Williams (D3CE00817G/cit40d/1) 1986–1993, 1998, 2004, 2007–2022 Coucouvanis (D3CE00817G/cit8a/1) 1975; 14 Yadav (D3CE00817G/cit24d/1) 2016; 450 Lai (D3CE00817G/cit10b/1) 2003; 5 Chauhan (D3CE00817G/cit2b/1) 2015; 430 Singh (D3CE00817G/cit25b/1) 2020; 22 Bader (D3CE00817G/cit28/1) 1990 Gupta (D3CE00817G/cit22c/1) 2014; 79 (D3CE00817G/cit35/1) 2022 Newman (D3CE00817G/cit13b/1) 1972 Drake (D3CE00817G/cit4e/1) 2007; 21 Zelenkov (D3CE00817G/cit29d/1) 2020; 20 Jin (D3CE00817G/cit22b/1) 2004; 34 Eggerding (D3CE00817G/cit16b/1) 1976; 41 McNillin (D3CE00817G/cit32c/1) 1998; 98 Adeyemi (D3CE00817G/cit4b/1) 2018; 23 Koenderink (D3CE00817G/cit48/1) 1992; 10 Power (D3CE00817G/cit3c/1) 1991; 30 Jiang (D3CE00817G/cit15a/1) 2018; 57 Okubo (D3CE00817G/cit1f/1) 2010; 49 Wolff (D3CE00817G/cit47/1) 2012 Boys (D3CE00817G/cit38/1) 1970; 19 Tiekink (D3CE00817G/cit1e/1) 2005; 54 Calatayud (D3CE00817G/cit7c/1) 2008; 876 Singh (D3CE00817G/cit2e/1) 2022; 46 McNamara (D3CE00817G/cit14g/1) 2012; 109 Sheldrick (D3CE00817G/cit36a/1) 2015; 71 Kumar (D3CE00817G/cit18/1) 2009 Caffery (D3CE00817G/cit20/1) 1975; 37 Sheldrick (D3CE00817G/cit36b/1) 2015; 71 Anantharaj (D3CE00817G/cit41b/1) 2020; 7 Heard (D3CE00817G/cit1a/1) 2005; 53 Becke (D3CE00817G/cit37a/1) 1993; 98 Chiteri (D3CE00817G/cit26a/1) 2020; 1217 Lin (D3CE00817G/cit14f/1) 2017; 785 Tiekink (D3CE00817G/cit1h/1) 2008; 22 Bianchini (D3CE00817G/cit2c/1) 1985; 24 Kaiser (D3CE00817G/cit12d/1) 2009; 11 Zastrow (D3CE00817G/cit3a/1) 2013; 257 Calatayud (D3CE00817G/cit6a/1) 1996; 35 Anamika (D3CE00817G/cit14c/1) 2020; 49 Segers (D3CE00817G/cit30a/1) 1984; 23 Strauch (D3CE00817G/cit7b/1) 2015; 62 Singh (D3CE00817G/cit15b/1) 2018; 42 Castro (D3CE00817G/cit7a/1) 1999; 36 Gysling (D3CE00817G/cit34c/1) 1979; 19 Smith (D3CE00817G/cit3b/1) 2003; 125 Calatayud (D3CE00817G/cit17/1) 2003; 353 Matta (D3CE00817G/cit29b/1) 2003; 9 Rajput (D3CE00817G/cit31a/1) 2012; 24 Singh (D3CE00817G/cit14j/1) 2021; 45 |
References_xml | – issn: 1990 publication-title: Atoms in Molecules: A Quantum Theory doi: Bader – issn: 2009 publication-title: Gaussian 09 revision B.01 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Montgomery Vreven Jr. Kudin Burant Millam Iyengar Tomasi Barone Mennucci Cossi Scalmani Rega Petersson Nakatsuji Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Klene Li Knox Hratchian Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Ayala Morokuma Voth Salvador Dannenberg Zakrzewski Dapprich Daniels Strain Farkas Malick Rabuck Raghavachari Foresman Ortiz Cui Baboul Clifford Cioslowski Stefanov Liu Liashenko Piskorz Komaromi Martin Fox Keith Al-Laham Peng Nanayakkara Challacombe Gill Johnson Chen Wong Gonzalez Pople – publication-title: Gristmill Software doi: Keith – issn: 2012 publication-title: Crystal Explorer 3.1 doi: Wolff Greenwood McKinnon Jayatilaka Spackman – issn: 2007 publication-title: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design doi: Matta Boyd – issn: 1986-1993, 1998, 2004, 2007-2022 doi: Williams Kelley – issn: 2022 – volume: 42 start-page: 1508 issue: 5 year: 2003 ident: D3CE00817G/cit5e/1 publication-title: Inorg. Chem. doi: 10.1021/ic020438v – start-page: 2720 year: 2009 ident: D3CE00817G/cit18/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.200900013 – volume: 13 start-page: 12788 year: 2021 ident: D3CE00817G/cit41e/1 publication-title: Nanoscale doi: 10.1039/D1NR02592A – volume: 551 start-page: 121471 year: 2023 ident: D3CE00817G/cit27a/1 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2023.121471 – volume: 36 start-page: e6725 issue: 7 year: 2022 ident: D3CE00817G/cit33d/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.6725 – start-page: 1935 year: 1996 ident: D3CE00817G/cit1i/1 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9960001935 – volume: 24 start-page: 383 issue: 3 year: 2005 ident: D3CE00817G/cit5c/1 publication-title: Polyhedron doi: 10.1016/j.poly.2004.11.023 – volume: 14 start-page: 33 issue: 1 year: 1996 ident: D3CE00817G/cit40c/1 publication-title: J. Mol. Graphics doi: 10.1016/0263-7855(96)00018-5 – volume: 129 start-page: 1 year: 2017 ident: D3CE00817G/cit14e/1 publication-title: Angew. Chem. doi: 10.1002/ange.201700927 – volume: 54 start-page: 3211 year: 2015 ident: D3CE00817G/cit33a/1 publication-title: Inorg. Chem. doi: 10.1021/ic502792q – volume: 46 start-page: 10246 year: 2022 ident: D3CE00817G/cit2e/1 publication-title: New J. Chem. doi: 10.1039/D2NJ01177H – volume: 285 start-page: 170 year: 1998 ident: D3CE00817G/cit29c/1 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)00036-0 – volume: 37 start-page: 2081 year: 1975 ident: D3CE00817G/cit20/1 publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(75)80834-7 – volume: 79 start-page: 324 year: 2014 ident: D3CE00817G/cit22c/1 publication-title: Polyhedron doi: 10.1016/j.poly.2014.04.068 – volume: 67 start-page: 490 year: 2014 ident: D3CE00817G/cit33b/1 publication-title: Polyhedron doi: 10.1016/j.poly.2013.09.041 – volume: 152 start-page: 138 year: 2018 ident: D3CE00817G/cit14h/1 publication-title: Polyhedron doi: 10.1016/j.poly.2018.06.029 – volume: 9 start-page: 648 year: 2007 ident: D3CE00817G/cit46/1 publication-title: CrystEngComm doi: 10.1039/b704177b – volume: 53 start-page: 1 year: 2005 ident: D3CE00817G/cit1a/1 publication-title: Prog. Inorg. Chem. doi: 10.1002/0471725587.ch1 – volume: 5 start-page: 253 issue: 44 year: 2003 ident: D3CE00817G/cit10b/1 publication-title: CrystEngComm doi: 10.1039/B305363F – volume: 49 start-page: 3592 year: 2020 ident: D3CE00817G/cit14c/1 publication-title: Dalton Trans. doi: 10.1039/C9DT04923A – volume: 363 start-page: 763 year: 2010 ident: D3CE00817G/cit19/1 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2009.11.037 – volume: 140 start-page: 7079 year: 2018 ident: D3CE00817G/cit11a/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04569 – volume: 630 start-page: 1469 year: 2004 ident: D3CE00817G/cit7e/1 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.200400143 – start-page: 2182 year: 1975 ident: D3CE00817G/cit21/1 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9750002182 – start-page: 2995 year: 2005 ident: D3CE00817G/cit12b/1 publication-title: Chem. Commun. doi: 10.1039/b504372g – year: 1986–1993, 1998, 2004, 2007–2022 ident: D3CE00817G/cit40d/1 – volume: 22 start-page: 2049 year: 2020 ident: D3CE00817G/cit24b/1 publication-title: CrystEngComm doi: 10.1039/C9CE01917K – volume: 24 start-page: 932 year: 1985 ident: D3CE00817G/cit2c/1 publication-title: Inorg. Chem. doi: 10.1021/ic00200a026 – volume: 24 start-page: 4274 year: 2022 ident: D3CE00817G/cit25a/1 publication-title: CrystEngComm doi: 10.1039/D2CE00536K – volume: 13 start-page: 343 year: 2023 ident: D3CE00817G/cit27b/1 publication-title: Crystals doi: 10.3390/cryst13020343 – volume: 54 start-page: 127 year: 2005 ident: D3CE00817G/cit1e/1 publication-title: Prog. Inorg. Chem. doi: 10.1002/0471725560.ch3 – volume: 14 start-page: 809 year: 2011 ident: D3CE00817G/cit11b/1 publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2011.02.002 – volume: 106 start-page: 171 year: 1990 ident: D3CE00817G/cit1g/1 publication-title: Coord. Chem. Rev. doi: 10.1016/0010-8545(60)80003-3 – volume: 876 start-page: 328 year: 2008 ident: D3CE00817G/cit7c/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2007.07.001 – volume: 79 start-page: 324 year: 2014 ident: D3CE00817G/cit31b/1 publication-title: Polyhedron doi: 10.1016/j.poly.2014.04.068 – start-page: 267 year: 1997 ident: D3CE00817G/cit42b/1 publication-title: Chem. Phys. Lett. – volume: 57 start-page: 7850 year: 2018 ident: D3CE00817G/cit15a/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803944 – volume: 22 start-page: 533 year: 2008 ident: D3CE00817G/cit1h/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.1441 – volume: 430 start-page: 168 year: 2015 ident: D3CE00817G/cit2b/1 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2015.03.007 – volume: 96 start-page: 3006 year: 1974 ident: D3CE00817G/cit8b/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00816a064 – volume: 34 start-page: 653 year: 2004 ident: D3CE00817G/cit22b/1 publication-title: J. Chem. Crystallogr. doi: 10.1023/B:JOCC.0000047637.06637.bb – start-page: 3767 year: 1993 ident: D3CE00817G/cit34b/1 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9930003767 – volume: 71 start-page: 3 year: 2015 ident: D3CE00817G/cit36a/1 publication-title: Acta Crystallogr., Sect. C: Struct. Chem. doi: 10.1107/S2053229614024218 – volume: 38 start-page: 4388 year: 1999 ident: D3CE00817G/cit32a/1 publication-title: Inorg. Chem. doi: 10.1021/ic9906611 – start-page: 1460 year: 1972 ident: D3CE00817G/cit13b/1 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/dt9720001460 – start-page: 1459 year: 2007 ident: D3CE00817G/cit1d/1 publication-title: Dalton Trans. doi: 10.1039/b618088d – volume-title: Atoms in Molecules: A Quantum Theory year: 1990 ident: D3CE00817G/cit28/1 doi: 10.1093/oso/9780198551683.001.0001 – volume: 13 start-page: 4963 year: 2023 ident: D3CE00817G/cit41f/1 publication-title: RSC Adv. doi: 10.1039/D2RA07901A – volume: 69 start-page: 343 issue: 2 year: 2016 ident: D3CE00817G/cit5b/1 publication-title: J. Coord. Chem. doi: 10.1080/00958972.2015.1115485 – volume: 23 start-page: 2874 year: 1984 ident: D3CE00817G/cit30a/1 publication-title: Inorg. Chem. doi: 10.1021/ic00186a032 – volume: 19 start-page: 553 year: 1970 ident: D3CE00817G/cit38/1 publication-title: Mol. Phys. doi: 10.1080/00268977000101561 – volume: 51 start-page: 1571 issue: 7 year: 2018 ident: D3CE00817G/cit41d/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00002 – volume: 60 start-page: 627 year: 2004 ident: D3CE00817G/cit44/1 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768104020300 – volume: 14 start-page: 11 year: 1975 ident: D3CE00817G/cit34a/1 publication-title: Inorg. Chem. doi: 10.1021/ic50153a013 – volume: 34 start-page: 478 year: 1995 ident: D3CE00817G/cit13a/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199504781 – volume: 47 start-page: 6420 year: 2023 ident: D3CE00817G/cit25c/1 publication-title: New J. Chem. doi: 10.1039/D2NJ04736E – volume: 39 start-page: 3638 year: 2000 ident: D3CE00817G/cit32b/1 publication-title: Inorg. Chem. doi: 10.1021/ic000082s – volume: 22 start-page: 2049 year: 2020 ident: D3CE00817G/cit25b/1 publication-title: CrystEngComm doi: 10.1039/C9CE01917K – volume: 21 start-page: 539 issue: 7 year: 2007 ident: D3CE00817G/cit4e/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.1265 – volume: 40 start-page: 7077 year: 2011 ident: D3CE00817G/cit5d/1 publication-title: Dalton Trans. doi: 10.1039/c0dt01426e – volume: 11 start-page: 1133 year: 2009 ident: D3CE00817G/cit12d/1 publication-title: CrystEngComm doi: 10.1039/b823058g – volume: 257 start-page: 2565 year: 2013 ident: D3CE00817G/cit3a/1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2013.02.007 – volume: 785 start-page: 58 year: 2017 ident: D3CE00817G/cit14f/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2016.12.011 – volume: 415 start-page: 69 year: 2014 ident: D3CE00817G/cit2d/1 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2014.02.038 – volume-title: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design year: 2007 ident: D3CE00817G/cit29a/1 doi: 10.1002/9783527610709 – volume: 4 start-page: 378 year: 2002 ident: D3CE00817G/cit42a/1 publication-title: CrystEngComm doi: 10.1039/B203191B – volume: 23 start-page: 2571 year: 2018 ident: D3CE00817G/cit4b/1 publication-title: Molecules doi: 10.3390/molecules23102571 – volume: 47 start-page: 6623 year: 2011 ident: D3CE00817G/cit12c/1 publication-title: Chem. Commun. doi: 10.1039/c1cc11173f – volume: 98 start-page: 5648 year: 1993 ident: D3CE00817G/cit37a/1 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 45 start-page: 490 year: 1990 ident: D3CE00817G/cit7d/1 publication-title: Z. Naturforsch., B: J. Chem. Sci. doi: 10.1515/znb-1990-0414 – volume: 37 start-page: 1133 year: 1998 ident: D3CE00817G/cit37b/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 36 start-page: 4680 year: 1999 ident: D3CE00817G/cit7a/1 publication-title: Inorg. Chem. doi: 10.1021/ic9904384 – volume: 6 start-page: 357 year: 2015 ident: D3CE00817G/cit33c/1 publication-title: Electrocatalysis doi: 10.1007/s12678-015-0251-4 – volume: 98 start-page: 1201 year: 1998 ident: D3CE00817G/cit32c/1 publication-title: Chem. Rev. doi: 10.1021/cr9601167 – volume: 10 start-page: 557 year: 1992 ident: D3CE00817G/cit48/1 publication-title: Image Vis. Comput. doi: 10.1016/0262-8856(92)90076-F – volume: 19 start-page: 92 year: 1979 ident: D3CE00817G/cit34c/1 publication-title: Inorg. Synth. doi: 10.1002/9780470132500.ch19 – volume: 17 start-page: 9175 year: 2015 ident: D3CE00817G/cit12a/1 publication-title: CrystEngComm doi: 10.1039/C5CE01526J – volume: 54 start-page: 2315 year: 2019 ident: D3CE00817G/cit4d/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2968-y – volume: 35 start-page: 2773 year: 2011 ident: D3CE00817G/cit2a/1 publication-title: New J. Chem. doi: 10.1039/c1nj20586b – volume: 35 start-page: 2858 year: 1996 ident: D3CE00817G/cit6a/1 publication-title: Inorg. Chem. doi: 10.1021/ic951393j – volume: 53 start-page: 71 year: 2005 ident: D3CE00817G/cit1c/1 publication-title: Prog. Inorg. Chem. doi: 10.1002/0471725587.ch2 – volume: 8 start-page: 939 year: 2005 ident: D3CE00817G/cit23/1 publication-title: Inorg. Chim. Acta – volume: 62 start-page: 288 year: 2015 ident: D3CE00817G/cit7b/1 publication-title: Acta Chim. Slov. doi: 10.17344/acsi.2014.1065 – volume: 55 start-page: 432 year: 2016 ident: D3CE00817G/cit14b/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02000 – volume: 30 start-page: 3302332 year: 1991 ident: D3CE00817G/cit3c/1 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 155 start-page: 407 year: 2018 ident: D3CE00817G/cit14d/1 publication-title: Polyhedron doi: 10.1016/j.poly.2018.08.050 – volume: 475 start-page: 161 year: 2018 ident: D3CE00817G/cit22a/1 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2017.08.062 – volume: 315 start-page: 123517 year: 2022 ident: D3CE00817G/cit9a/1 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2022.123517 – volume: 42 start-page: 18759 year: 2018 ident: D3CE00817G/cit15b/1 publication-title: New J. Chem. doi: 10.1039/C8NJ03992E – volume: 51 start-page: 13003 year: 2022 ident: D3CE00817G/cit41a/1 publication-title: Dalton Trans. doi: 10.1039/D2DT01971J – volume: 8 start-page: 4517 year: 2008 ident: D3CE00817G/cit45/1 publication-title: Cryst. Growth Des. doi: 10.1021/cg8005212 – volume: 41 start-page: 24 year: 1976 ident: D3CE00817G/cit16b/1 publication-title: J. Org. Chem. doi: 10.1021/jo00886a027 – volume: 7 start-page: 2297 year: 2020 ident: D3CE00817G/cit41b/1 publication-title: ChemElectroChem doi: 10.1002/celc.202000515 – volume: 51 start-page: 6166 year: 2016 ident: D3CE00817G/cit4c/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-9906-7 – volume: 18 start-page: 311 year: 2016 ident: D3CE00817G/cit15c/1 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-016-3538-3 – year: 2022 ident: D3CE00817G/cit35/1 – start-page: 104740 year: 2015 ident: D3CE00817G/cit41c/1 publication-title: RSC Adv. doi: 10.1039/C5RA18737K – volume: 14 start-page: 2657 year: 1975 ident: D3CE00817G/cit8a/1 publication-title: Inorg. Chem. doi: 10.1021/ic50153a013 – volume: 121 start-page: 6057 year: 2021 ident: D3CE00817G/cit2f/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01183 – volume: 125 start-page: 868 issue: 4 year: 2003 ident: D3CE00817G/cit3b/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029418i – volume: 45 start-page: 2249 year: 2021 ident: D3CE00817G/cit26b/1 publication-title: New J. Chem. doi: 10.1039/D0NJ05709F – volume: 9 start-page: 1940 year: 2003 ident: D3CE00817G/cit29b/1 publication-title: Chem. – Eur. J. doi: 10.1002/chem.200204626 – volume: 450 start-page: 57 year: 2016 ident: D3CE00817G/cit24d/1 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2016.05.028 – volume: 49 start-page: 3700 year: 2010 ident: D3CE00817G/cit1f/1 publication-title: Inorg. Chem. doi: 10.1021/ic1003098 – volume: 471 start-page: 234 year: 2018 ident: D3CE00817G/cit24c/1 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2017.11.016 – volume: 1250 start-page: 131728 year: 2022 ident: D3CE00817G/cit10a/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2021.131728 – volume: 1217 start-page: 128376 year: 2020 ident: D3CE00817G/cit26a/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2020.128376 – volume: 20 start-page: 6956 year: 2020 ident: D3CE00817G/cit29d/1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c00999 – volume: 117 start-page: 540 year: 1995 ident: D3CE00817G/cit30b/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00106a066 – volume: 34 start-page: e5879 year: 2020 ident: D3CE00817G/cit9b/1 publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.5879 – volume: 109 start-page: 15594 year: 2012 ident: D3CE00817G/cit14g/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1120757109 – volume: 24 start-page: 4274 year: 2022 ident: D3CE00817G/cit4a/1 publication-title: CrystEngComm doi: 10.1039/D2CE00536K – volume: 4 start-page: 2136 year: 1998 ident: D3CE00817G/cit43/1 publication-title: Chem. – Eur. J. doi: 10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G – volume: 353 start-page: 159 year: 2003 ident: D3CE00817G/cit17/1 publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(03)00221-4 – volume: 45 start-page: 16264 year: 2021 ident: D3CE00817G/cit14j/1 publication-title: New J. Chem. doi: 10.1039/D1NJ02644E – volume: 71 start-page: 3 year: 2015 ident: D3CE00817G/cit36b/1 publication-title: Acta Crystallogr., Sect. A: Found. Adv. doi: 10.1107/S2053273314026370 – volume: 24 start-page: 236 issue: 2 year: 2020 ident: D3CE00817G/cit5a/1 publication-title: J. Saudi Chem. Soc. doi: 10.1016/j.jscs.2019.12.003 – volume: 136 start-page: 9364 year: 2014 ident: D3CE00817G/cit14i/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5019755 – volume: 24 start-page: 3885 year: 2012 ident: D3CE00817G/cit31a/1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201200307 – volume: 645 start-page: 185 year: 2002 ident: D3CE00817G/cit16a/1 publication-title: J. Mol. Struct. doi: 10.1016/S0022-2860(02)00566-5 – volume: 11 start-page: 301 year: 1970 ident: D3CE00817G/cit1b/1 publication-title: Prog. Inorg. Chem. – volume: 41 start-page: 24 year: 1976 ident: D3CE00817G/cit6b/1 publication-title: J. Org. Chem. doi: 10.1021/jo00863a005 – volume-title: Crystal Explorer 3.1 year: 2012 ident: D3CE00817G/cit47/1 – volume: 33 start-page: 580 year: 2012 ident: D3CE00817G/cit40b/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 17 start-page: 9175 year: 2015 ident: D3CE00817G/cit24a/1 publication-title: CrystEngComm doi: 10.1039/C5CE01526J – volume: 43 start-page: 5985 year: 2018 ident: D3CE00817G/cit14a/1 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.043 |
SSID | ssj0014110 |
Score | 2.4971337 |
Snippet | In this study, two new heteroleptic complexes with compositions [Ni(mtsq)
1.85
Cl
0.15
(dppe)](CH
2
Cl
2
)
0.06
(CH
3
OH)
0.09
(
Ni-mtsq
) and [Cu(mtsq)(PPh
3... In this study, two new heteroleptic complexes with compositions [Ni(mtsq)1.85Cl0.15(dppe)](CH2Cl2)0.06(CH3OH)0.09 (Ni-mtsq) and [Cu(mtsq)(PPh3)2] (Cu-mtsq)... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6822 |
SubjectTerms | Chelation Coordination Copper Density functional theory Dichloromethane Electrocatalysts Electrons Ethane Hydrogen evolution reactions Ligands Nickel Oxygen Phosphorus Quantum theory Single crystals Solid phases Sulfur Supramolecular frameworks Surface analysis (chemical) |
Title | The supramolecular frameworks and electrocatalytic properties of two new structurally diverse tertiary phosphane-appended nickel() and copper() thiosquarates |
URI | https://www.proquest.com/docview/2900315385 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NctMwENak6QUODH8dAoXRDBzoeFxsy3HsYyihhQKndOgtI8lS7WlwjJ2kE56H5-JZWFmynTQ5FC6eZG05E-9n7Uq7-y1Cb2TgRXGfS3sgpGP7sUtt8OOoTWTMglg4UkaqwPnrt-Dswv982b_sdP6sZS0t5uyY_9pZV_I_WgUZ6FVVyf6DZpubggA-g37hCBqG4511XC7ygv6om9xask620tzLpstNtUmzUtysudp8LxSLapUdcDNTPcUtzSKrGDimKyuuUjWEpbIFUpVUlyezMk9oJmyaVy1zYytL4e2fgndqpamldhZ0eRycLiphJZsn6az8uVDk4iZTsaZEKFblfJRdqeqUZounSJcUXNWlDkCJ5YpmaRtoKpMbqmNTw5wWWWNMzlXBzbV9rgL-74OkmkNPKStU3XyTWzQr6TLVOUiFKBPr-_H6ZodHVOKImYz1_OwHij9Zc2ccix0yM6nramoDXs3laaboINSF0MbcB6EmYNkyJQ5RTKwfyMlIuU2D09Zg1kkCt-xok91YxfVJNGnH7qF9D5YxXhftD0fjT1-aOJfvar6M-i_UBLoketeO3nSZ2nXQXlE3qamcofFD9MCsYvBQQ_IR6ojsMbq_xm35BP0GcOJNcOIWnBjwgm-DE7fgxDOJAZwYwInXwYkNOHENTrwNTqzB-RanKT6qfkgDEwTwfQOUT9HFx9H45Mw2LUFs7oXu3A7CfsCcAWMkFowzGTle5EbcFVHIfV_0CWXxoC-JHw9gZRAS6fqMc-Ywl7qOIwU5QN1slolnCDMeDrjjg0kDj9qRHuWCBKqkWPgRj9y4h47qpz7hhi9ftW2ZTrb120Ovm2tzzRKz86rDWnkTM4uUE0-FEpTb0e-hA1BoMz4mXFTjrp7f6e4v0L32jTlEXdCNeAkO85y9Mqj7C6-Vx54 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+supramolecular+frameworks+and+electrocatalytic+properties+of+two+new+structurally+diverse+tertiary+phosphane-appended+nickel%28+ii+%29+and+copper%28+i+%29+thiosquarates&rft.jtitle=CrystEngComm&rft.au=Srivastava%2C+Devyani&rft.au=Kushwaha%2C+Aparna&rft.au=Kociok-K%C3%B6hn%2C+Gabriele&rft.au=Gosavi%2C+Suresh+W.&rft.date=2023-12-11&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=25&rft.issue=48&rft.spage=6822&rft.epage=6836&rft_id=info:doi/10.1039%2FD3CE00817G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CE00817G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |