The supramolecular frameworks and electrocatalytic properties of two new structurally diverse tertiary phosphane-appended nickel() and copper() thiosquarates

In this study, two new heteroleptic complexes with compositions [Ni(mtsq) 1.85 Cl 0.15 (dppe)](CH 2 Cl 2 ) 0.06 (CH 3 OH) 0.09 ( Ni-mtsq ) and [Cu(mtsq)(PPh 3 ) 2 ] ( Cu-mtsq ) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh 3 = triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 25; no. 48; pp. 6822 - 6836
Main Authors Srivastava, Devyani, Kushwaha, Aparna, Kociok-Köhn, Gabriele, Gosavi, Suresh W, Chauhan, Ratna, Kumar, Abhinav, Muddassir, Mohd
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 11.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, two new heteroleptic complexes with compositions [Ni(mtsq) 1.85 Cl 0.15 (dppe)](CH 2 Cl 2 ) 0.06 (CH 3 OH) 0.09 ( Ni-mtsq ) and [Cu(mtsq)(PPh 3 ) 2 ] ( Cu-mtsq ) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh 3 = triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized by spectroscopy analyses as well as by single crystal X-ray diffraction technique. X-ray analyses reveal square planar geometry around Ni( ii ) in Ni-mtsq , where Ni( ii ) coordinates with two sulfur centres of two mtsq ligands with monodentate coordination and two phosphorus centres of the dppe ligand in chelating mode. Unlike Ni-mtsq , Cu( i ) in Cu-mtsq adopts a tetrahedral geometry, which is satisfied by sulfur and oxygen centres of one mtsq ligand with a bidentate coordination mode and two phosphorus centres of two PPh 3 ligands. The supramolecular architecture of both Ni-mtsq and Cu-mtsq is sustained by intermolecular C-H π and O H interactions. Also, Ni-mtsq exhibits intriguing intramolecular semicoordination Ni O and π π non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis, density functional theory and quantum theory of atoms in molecules (QTAIM) analyses and has been visualized with the help of non-covalent interactions reduced density gradient (NCI-RDG). Further, the emissive nature of Cu-mtsq in a solution and solid phase suggests aggregation-induced emission with a bathochromic shift in the solid phase as compared to the solution phase. Both complexes have been used as electrocatalysts for oxygen and hydrogen evolution reactions, which suggests that Cu-mtsq offers better catalysis due to the presence of a redox active, less hindered Cu( i ) centre with an η 10 of 600 mV and a Tafel slope of 228 mV dec −1 in the OER, while in HER too, Cu-mtsq exhibited the best onset potential of −0.36 V with an η 10 of 647 mV. Also, homogeneous electrocatalysis for the HER for both complexes was investigated using trifluoroacetic acid as the hydrogen source, which suggests a better electrocatalytic performance of Cu-mtsq . Structurally diverse tertiary phosphane-appended Cu( i ) and Ni( ii ) 3-ethoxycyclobutenedione-4-thiolates as molecular electrocatalysts for the OER and HER.
AbstractList In this study, two new heteroleptic complexes with compositions [Ni(mtsq) 1.85 Cl 0.15 (dppe)](CH 2 Cl 2 ) 0.06 (CH 3 OH) 0.09 ( Ni-mtsq ) and [Cu(mtsq)(PPh 3 ) 2 ] ( Cu-mtsq ) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh 3 = triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized by spectroscopy analyses as well as by single crystal X-ray diffraction technique. X-ray analyses reveal square planar geometry around Ni( ii ) in Ni-mtsq , where Ni( ii ) coordinates with two sulfur centres of two mtsq ligands with monodentate coordination and two phosphorus centres of the dppe ligand in chelating mode. Unlike Ni-mtsq , Cu( i ) in Cu-mtsq adopts a tetrahedral geometry, which is satisfied by sulfur and oxygen centres of one mtsq ligand with a bidentate coordination mode and two phosphorus centres of two PPh 3 ligands. The supramolecular architecture of both Ni-mtsq and Cu-mtsq is sustained by intermolecular C–H⋯π and O⋯H interactions. Also, Ni-mtsq exhibits intriguing intramolecular semicoordination Ni⋯O and π⋯π non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis, density functional theory and quantum theory of atoms in molecules (QTAIM) analyses and has been visualized with the help of non-covalent interactions reduced density gradient (NCI-RDG). Further, the emissive nature of Cu-mtsq in a solution and solid phase suggests aggregation-induced emission with a bathochromic shift in the solid phase as compared to the solution phase. Both complexes have been used as electrocatalysts for oxygen and hydrogen evolution reactions, which suggests that Cu-mtsq offers better catalysis due to the presence of a redox active, less hindered Cu( i ) centre with an η 10 of 600 mV and a Tafel slope of 228 mV dec −1 in the OER, while in HER too, Cu-mtsq exhibited the best onset potential of −0.36 V with an η 10 of 647 mV. Also, homogeneous electrocatalysis for the HER for both complexes was investigated using trifluoroacetic acid as the hydrogen source, which suggests a better electrocatalytic performance of Cu-mtsq .
In this study, two new heteroleptic complexes with compositions [Ni(mtsq) 1.85 Cl 0.15 (dppe)](CH 2 Cl 2 ) 0.06 (CH 3 OH) 0.09 ( Ni-mtsq ) and [Cu(mtsq)(PPh 3 ) 2 ] ( Cu-mtsq ) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh 3 = triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized by spectroscopy analyses as well as by single crystal X-ray diffraction technique. X-ray analyses reveal square planar geometry around Ni( ii ) in Ni-mtsq , where Ni( ii ) coordinates with two sulfur centres of two mtsq ligands with monodentate coordination and two phosphorus centres of the dppe ligand in chelating mode. Unlike Ni-mtsq , Cu( i ) in Cu-mtsq adopts a tetrahedral geometry, which is satisfied by sulfur and oxygen centres of one mtsq ligand with a bidentate coordination mode and two phosphorus centres of two PPh 3 ligands. The supramolecular architecture of both Ni-mtsq and Cu-mtsq is sustained by intermolecular C-H π and O H interactions. Also, Ni-mtsq exhibits intriguing intramolecular semicoordination Ni O and π π non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis, density functional theory and quantum theory of atoms in molecules (QTAIM) analyses and has been visualized with the help of non-covalent interactions reduced density gradient (NCI-RDG). Further, the emissive nature of Cu-mtsq in a solution and solid phase suggests aggregation-induced emission with a bathochromic shift in the solid phase as compared to the solution phase. Both complexes have been used as electrocatalysts for oxygen and hydrogen evolution reactions, which suggests that Cu-mtsq offers better catalysis due to the presence of a redox active, less hindered Cu( i ) centre with an η 10 of 600 mV and a Tafel slope of 228 mV dec −1 in the OER, while in HER too, Cu-mtsq exhibited the best onset potential of −0.36 V with an η 10 of 647 mV. Also, homogeneous electrocatalysis for the HER for both complexes was investigated using trifluoroacetic acid as the hydrogen source, which suggests a better electrocatalytic performance of Cu-mtsq . Structurally diverse tertiary phosphane-appended Cu( i ) and Ni( ii ) 3-ethoxycyclobutenedione-4-thiolates as molecular electrocatalysts for the OER and HER.
In this study, two new heteroleptic complexes with compositions [Ni(mtsq)1.85Cl0.15(dppe)](CH2Cl2)0.06(CH3OH)0.09 (Ni-mtsq) and [Cu(mtsq)(PPh3)2] (Cu-mtsq) (dppe = 1,2-bis-(diphenylphosphino)ethane; PPh3 = triphenylphosphane and mtsq = 3-ethoxycyclobutenedione-4-thiolate) have been synthesized and characterized by spectroscopy analyses as well as by single crystal X-ray diffraction technique. X-ray analyses reveal square planar geometry around Ni(ii) in Ni-mtsq, where Ni(ii) coordinates with two sulfur centres of two mtsq ligands with monodentate coordination and two phosphorus centres of the dppe ligand in chelating mode. Unlike Ni-mtsq, Cu(i) in Cu-mtsq adopts a tetrahedral geometry, which is satisfied by sulfur and oxygen centres of one mtsq ligand with a bidentate coordination mode and two phosphorus centres of two PPh3 ligands. The supramolecular architecture of both Ni-mtsq and Cu-mtsq is sustained by intermolecular C–H⋯π and O⋯H interactions. Also, Ni-mtsq exhibits intriguing intramolecular semicoordination Ni⋯O and π⋯π non-covalent interactions. The nature of these interactions has been addressed with the aid of Hirshfeld surface analysis, density functional theory and quantum theory of atoms in molecules (QTAIM) analyses and has been visualized with the help of non-covalent interactions reduced density gradient (NCI-RDG). Further, the emissive nature of Cu-mtsq in a solution and solid phase suggests aggregation-induced emission with a bathochromic shift in the solid phase as compared to the solution phase. Both complexes have been used as electrocatalysts for oxygen and hydrogen evolution reactions, which suggests that Cu-mtsq offers better catalysis due to the presence of a redox active, less hindered Cu(i) centre with an η10 of 600 mV and a Tafel slope of 228 mV dec−1 in the OER, while in HER too, Cu-mtsq exhibited the best onset potential of −0.36 V with an η10 of 647 mV. Also, homogeneous electrocatalysis for the HER for both complexes was investigated using trifluoroacetic acid as the hydrogen source, which suggests a better electrocatalytic performance of Cu-mtsq.
Author Srivastava, Devyani
Kociok-Köhn, Gabriele
Kushwaha, Aparna
Muddassir, Mohd
Kumar, Abhinav
Chauhan, Ratna
Gosavi, Suresh W
AuthorAffiliation Department of Chemistry
2
University of Lucknow
Department of Environmental Science
University of Bath
)
Faculty of Science
King Saud University
Savitribai Phule Pune University
College of Sciences
Materials and Chemical Characterisation Facility (MC
Department of Physics
AuthorAffiliation_xml – sequence: 0
  name: )
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Department of Physics
– sequence: 0
  name: University of Bath
– sequence: 0
  name: Materials and Chemical Characterisation Facility (MC
– sequence: 0
  name: University of Lucknow
– sequence: 0
  name: King Saud University
– sequence: 0
  name: Department of Environmental Science
– sequence: 0
  name: Faculty of Science
– sequence: 0
  name: Savitribai Phule Pune University
– sequence: 0
  name: College of Sciences
– sequence: 0
  name: 2
Author_xml – sequence: 1
  givenname: Devyani
  surname: Srivastava
  fullname: Srivastava, Devyani
– sequence: 2
  givenname: Aparna
  surname: Kushwaha
  fullname: Kushwaha, Aparna
– sequence: 3
  givenname: Gabriele
  surname: Kociok-Köhn
  fullname: Kociok-Köhn, Gabriele
– sequence: 4
  givenname: Suresh W
  surname: Gosavi
  fullname: Gosavi, Suresh W
– sequence: 5
  givenname: Ratna
  surname: Chauhan
  fullname: Chauhan, Ratna
– sequence: 6
  givenname: Abhinav
  surname: Kumar
  fullname: Kumar, Abhinav
– sequence: 7
  givenname: Mohd
  surname: Muddassir
  fullname: Muddassir, Mohd
BookMark eNptkU1P3DAQhq0KpLLApfdKlnopSIHxOskmx2rLl4TEBc6R7UxYs1k7O3a62h_Df8WwFVQVp_nQ886rmZmwPecdMvZNwJkAWZ-30iBAJWaPX9iByMsyq0DKvX_yr2wSwhOAyIWAA_Z8v0AexoHUyvdoxl4R71KBG0_LwJVrOaZ-JG9UVP02WsMH8gNStBi473jceO5ww0Ok0cSRVN9veWv_IAXk8ZVTtOXDwodhoRxmahjQtdhyZ80S-58nbybGpzalIi6sD-tRkYoYjth-p_qAx3_jIXu4vLifX2e3d1c381-3mZlWImZlVZQaZlrLFrXRXQ3TWtRGYF2ZPMdCKt3Oik7m7Swvykp2ItfGaNBCCYAO5SH7sZubVluPGGLz5EdyybKZ1gBSFLIqEnW6owz5EAi7ZiC7Sts1AprX8ze_5fzi7fxXCYb_YGOjita7SMr2n0u-7yQUzPvoj4_KF4a6mC0
CitedBy_id crossref_primary_10_1039_D4DT00151F
crossref_primary_10_1039_D4NJ03502J
crossref_primary_10_1039_D5DT00025D
crossref_primary_10_1016_j_fuel_2025_135095
crossref_primary_10_1039_D4NJ00247D
crossref_primary_10_1039_D4NJ02358G
crossref_primary_10_1016_j_ica_2024_122513
crossref_primary_10_1016_j_mtchem_2025_102582
crossref_primary_10_1016_j_ica_2024_122284
crossref_primary_10_1039_D4NJ04282D
crossref_primary_10_1016_j_microc_2025_113112
crossref_primary_10_1039_D4CE01268B
Cites_doi 10.1021/ic020438v
10.1002/ejic.200900013
10.1039/D1NR02592A
10.1016/j.ica.2023.121471
10.1002/aoc.6725
10.1039/dt9960001935
10.1016/j.poly.2004.11.023
10.1016/0263-7855(96)00018-5
10.1002/ange.201700927
10.1021/ic502792q
10.1039/D2NJ01177H
10.1016/S0009-2614(98)00036-0
10.1016/0022-1902(75)80834-7
10.1016/j.poly.2014.04.068
10.1016/j.poly.2013.09.041
10.1016/j.poly.2018.06.029
10.1039/b704177b
10.1002/0471725587.ch1
10.1039/B305363F
10.1039/C9DT04923A
10.1016/j.ica.2009.11.037
10.1021/jacs.8b04569
10.1002/zaac.200400143
10.1039/dt9750002182
10.1039/b504372g
10.1039/C9CE01917K
10.1021/ic00200a026
10.1039/D2CE00536K
10.3390/cryst13020343
10.1002/0471725560.ch3
10.1016/j.inoche.2011.02.002
10.1016/0010-8545(60)80003-3
10.1016/j.molstruc.2007.07.001
10.1002/anie.201803944
10.1002/aoc.1441
10.1016/j.ica.2015.03.007
10.1021/ja00816a064
10.1023/B:JOCC.0000047637.06637.bb
10.1039/dt9930003767
10.1107/S2053229614024218
10.1021/ic9906611
10.1039/dt9720001460
10.1039/b618088d
10.1093/oso/9780198551683.001.0001
10.1039/D2RA07901A
10.1080/00958972.2015.1115485
10.1021/ic00186a032
10.1080/00268977000101561
10.1021/acs.accounts.8b00002
10.1107/S0108768104020300
10.1021/ic50153a013
10.1002/anie.199504781
10.1039/D2NJ04736E
10.1021/ic000082s
10.1002/aoc.1265
10.1039/c0dt01426e
10.1039/b823058g
10.1016/j.ccr.2013.02.007
10.1016/j.jelechem.2016.12.011
10.1016/j.ica.2014.02.038
10.1002/9783527610709
10.1039/B203191B
10.3390/molecules23102571
10.1039/c1cc11173f
10.1063/1.464913
10.1515/znb-1990-0414
10.1021/ic9904384
10.1007/s12678-015-0251-4
10.1021/cr9601167
10.1016/0262-8856(92)90076-F
10.1002/9780470132500.ch19
10.1039/C5CE01526J
10.1007/s10853-018-2968-y
10.1039/c1nj20586b
10.1021/ic951393j
10.1002/0471725587.ch2
10.17344/acsi.2014.1065
10.1021/acs.inorgchem.5b02000
10.1016/j.poly.2018.08.050
10.1016/j.ica.2017.08.062
10.1016/j.jssc.2022.123517
10.1039/C8NJ03992E
10.1039/D2DT01971J
10.1021/cg8005212
10.1021/jo00886a027
10.1002/celc.202000515
10.1007/s10853-016-9906-7
10.1007/s11051-016-3538-3
10.1039/C5RA18737K
10.1021/acs.chemrev.0c01183
10.1021/ja029418i
10.1039/D0NJ05709F
10.1002/chem.200204626
10.1016/j.ica.2016.05.028
10.1021/ic1003098
10.1016/j.ica.2017.11.016
10.1016/j.molstruc.2021.131728
10.1016/j.molstruc.2020.128376
10.1021/acs.cgd.0c00999
10.1021/ja00106a066
10.1002/aoc.5879
10.1073/pnas.1120757109
10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G
10.1016/S0020-1693(03)00221-4
10.1039/D1NJ02644E
10.1107/S2053273314026370
10.1016/j.jscs.2019.12.003
10.1021/ja5019755
10.1002/ejic.201200307
10.1016/S0022-2860(02)00566-5
10.1021/jo00863a005
10.1002/jcc.22885
10.1016/j.ijhydene.2018.02.043
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d3ce00817g
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 6836
ExternalDocumentID 10_1039_D3CE00817G
d3ce00817g
GroupedDBID -JG
0-7
0R~
29F
5GY
6J9
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
CITATION
R56
7U5
8FD
L7M
ID FETCH-LOGICAL-c281t-6856b07bb3debcbf902919c1e98c44e53abd75f34d745683f14bccb0b1a100fe3
ISSN 1466-8033
IngestDate Mon Jun 30 03:46:52 EDT 2025
Tue Jul 01 02:07:39 EDT 2025
Thu Apr 24 23:07:44 EDT 2025
Tue Dec 17 20:58:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-6856b07bb3debcbf902919c1e98c44e53abd75f34d745683f14bccb0b1a100fe3
Notes Electronic supplementary information (ESI) available. CCDC
For ESI and crystallographic data in CIF or other electronic format see DOI
https://doi.org/10.1039/d3ce00817g
and
2261637
2261636
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7069-2557
0000-0001-8441-7521
0000-0003-4590-118X
0000-0003-3399-4745
0000-0002-7186-1399
PQID 2900315385
PQPubID 2047491
PageCount 15
ParticipantIDs crossref_primary_10_1039_D3CE00817G
rsc_primary_d3ce00817g
crossref_citationtrail_10_1039_D3CE00817G
proquest_journals_2900315385
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-11
PublicationDateYYYYMMDD 2023-12-11
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-11
  day: 11
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Coucouvanis (D3CE00817G/cit1b/1) 1970; 11
Maalej (D3CE00817G/cit10a/1) 2022; 1250
Busby (D3CE00817G/cit34b/1) 1993
Kumar (D3CE00817G/cit24c/1) 2018; 471
Lu (D3CE00817G/cit40b/1) 2012; 33
Mondal (D3CE00817G/cit15c/1) 2016; 18
Krause (D3CE00817G/cit7d/1) 1990; 45
Lee (D3CE00817G/cit37b/1) 1998; 37
Spackman (D3CE00817G/cit42a/1) 2002; 4
Singh (D3CE00817G/cit9b/1) 2020; 34
Zarkadoulas (D3CE00817G/cit14b/1) 2016; 55
Srivastava (D3CE00817G/cit25c/1) 2023; 47
Li (D3CE00817G/cit33b/1) 2014; 67
Pan (D3CE00817G/cit41c/1) 2015
Coucouvanis (D3CE00817G/cit34a/1) 1975; 14
Pal (D3CE00817G/cit41a/1) 2022; 51
Singh (D3CE00817G/cit9a/1) 2022; 315
Sarkar (D3CE00817G/cit2f/1) 2021; 121
Clemenson (D3CE00817G/cit1g/1) 1990; 106
Armstrong (D3CE00817G/cit13a/1) 1995; 34
Coucouvanis (D3CE00817G/cit8b/1) 1974; 96
Lazarou (D3CE00817G/cit19/1) 2010; 363
Tiekink (D3CE00817G/cit12c/1) 2011; 47
Rohl (D3CE00817G/cit45/1) 2008; 8
Singh (D3CE00817G/cit24b/1) 2020; 22
Ali (D3CE00817G/cit5c/1) 2005; 24
Bolligarla (D3CE00817G/cit11b/1) 2011; 14
Hogarth (D3CE00817G/cit1c/1) 2005; 53
Gupta (D3CE00817G/cit31b/1) 2014; 79
Matta (D3CE00817G/cit29a/1) 2007
Chauhan (D3CE00817G/cit2d/1) 2014; 415
Reineke (D3CE00817G/cit33a/1) 2015; 54
Khrizanforova (D3CE00817G/cit33c/1) 2015; 6
Cunningham (D3CE00817G/cit32b/1) 2000; 39
Yadav (D3CE00817G/cit24a/1) 2015; 17
Srivastava (D3CE00817G/cit27a/1) 2023; 551
Spackman (D3CE00817G/cit42b/1) 1997
Kunkely (D3CE00817G/cit30b/1) 1995; 117
Eggerdling (D3CE00817G/cit6b/1) 1976; 41
Li (D3CE00817G/cit41e/1) 2021; 13
Yadav (D3CE00817G/cit12a/1) 2015; 17
Semeniuc (D3CE00817G/cit22a/1) 2018; 475
McKinnon (D3CE00817G/cit44/1) 2004; 60
Tenorio (D3CE00817G/cit1i/1) 1996
Nath (D3CE00817G/cit5d/1) 2011; 40
Afzal (D3CE00817G/cit2a/1) 2011; 35
Goncalves (D3CE00817G/cit16a/1) 2002; 645
Shakban (D3CE00817G/cit4c/1) 2016; 51
Singh (D3CE00817G/cit5b/1) 2016; 69
Hendrickson (D3CE00817G/cit21/1) 1975
Samanta (D3CE00817G/cit5e/1) 2003; 42
Shakban (D3CE00817G/cit4d/1) 2019; 54
Kayed (D3CE00817G/cit5a/1) 2020; 24
Cookson (D3CE00817G/cit1d/1) 2007
Deng (D3CE00817G/cit14d/1) 2018; 155
Wenzel (D3CE00817G/cit7e/1) 2004; 630
Humphrey (D3CE00817G/cit40c/1) 1996; 14
McKinnon (D3CE00817G/cit43/1) 1998; 4
Chen (D3CE00817G/cit11a/1) 2018; 140
Desiraju (D3CE00817G/cit12b/1) 2005
Singh (D3CE00817G/cit14a/1) 2018; 43
Parkin (D3CE00817G/cit46/1) 2007; 9
Zarkadoulas (D3CE00817G/cit14h/1) 2018; 152
Srivastava (D3CE00817G/cit27b/1) 2023; 13
Li (D3CE00817G/cit23/1) 2005; 8
You (D3CE00817G/cit41d/1) 2018; 51
Koshiba (D3CE00817G/cit14e/1) 2017; 129
Singh (D3CE00817G/cit4a/1) 2022; 24
Kumar (D3CE00817G/cit26b/1) 2021; 45
Cunningham (D3CE00817G/cit32a/1) 1999; 38
Chen (D3CE00817G/cit33d/1) 2022; 36
Singh (D3CE00817G/cit25a/1) 2022; 24
Sabir (D3CE00817G/cit41f/1) 2023; 13
Espinosa (D3CE00817G/cit29c/1) 1998; 285
Letko (D3CE00817G/cit14i/1) 2014; 136
Williams (D3CE00817G/cit40d/1) 1986–1993, 1998, 2004, 2007–2022
Coucouvanis (D3CE00817G/cit8a/1) 1975; 14
Yadav (D3CE00817G/cit24d/1) 2016; 450
Lai (D3CE00817G/cit10b/1) 2003; 5
Chauhan (D3CE00817G/cit2b/1) 2015; 430
Singh (D3CE00817G/cit25b/1) 2020; 22
Bader (D3CE00817G/cit28/1) 1990
Gupta (D3CE00817G/cit22c/1) 2014; 79
(D3CE00817G/cit35/1) 2022
Newman (D3CE00817G/cit13b/1) 1972
Drake (D3CE00817G/cit4e/1) 2007; 21
Zelenkov (D3CE00817G/cit29d/1) 2020; 20
Jin (D3CE00817G/cit22b/1) 2004; 34
Eggerding (D3CE00817G/cit16b/1) 1976; 41
McNillin (D3CE00817G/cit32c/1) 1998; 98
Adeyemi (D3CE00817G/cit4b/1) 2018; 23
Koenderink (D3CE00817G/cit48/1) 1992; 10
Power (D3CE00817G/cit3c/1) 1991; 30
Jiang (D3CE00817G/cit15a/1) 2018; 57
Okubo (D3CE00817G/cit1f/1) 2010; 49
Wolff (D3CE00817G/cit47/1) 2012
Boys (D3CE00817G/cit38/1) 1970; 19
Tiekink (D3CE00817G/cit1e/1) 2005; 54
Calatayud (D3CE00817G/cit7c/1) 2008; 876
Singh (D3CE00817G/cit2e/1) 2022; 46
McNamara (D3CE00817G/cit14g/1) 2012; 109
Sheldrick (D3CE00817G/cit36a/1) 2015; 71
Kumar (D3CE00817G/cit18/1) 2009
Caffery (D3CE00817G/cit20/1) 1975; 37
Sheldrick (D3CE00817G/cit36b/1) 2015; 71
Anantharaj (D3CE00817G/cit41b/1) 2020; 7
Heard (D3CE00817G/cit1a/1) 2005; 53
Becke (D3CE00817G/cit37a/1) 1993; 98
Chiteri (D3CE00817G/cit26a/1) 2020; 1217
Lin (D3CE00817G/cit14f/1) 2017; 785
Tiekink (D3CE00817G/cit1h/1) 2008; 22
Bianchini (D3CE00817G/cit2c/1) 1985; 24
Kaiser (D3CE00817G/cit12d/1) 2009; 11
Zastrow (D3CE00817G/cit3a/1) 2013; 257
Calatayud (D3CE00817G/cit6a/1) 1996; 35
Anamika (D3CE00817G/cit14c/1) 2020; 49
Segers (D3CE00817G/cit30a/1) 1984; 23
Strauch (D3CE00817G/cit7b/1) 2015; 62
Singh (D3CE00817G/cit15b/1) 2018; 42
Castro (D3CE00817G/cit7a/1) 1999; 36
Gysling (D3CE00817G/cit34c/1) 1979; 19
Smith (D3CE00817G/cit3b/1) 2003; 125
Calatayud (D3CE00817G/cit17/1) 2003; 353
Matta (D3CE00817G/cit29b/1) 2003; 9
Rajput (D3CE00817G/cit31a/1) 2012; 24
Singh (D3CE00817G/cit14j/1) 2021; 45
References_xml – issn: 1990
  publication-title: Atoms in Molecules: A Quantum Theory
  doi: Bader
– issn: 2009
  publication-title: Gaussian 09 revision B.01
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Montgomery Vreven Jr. Kudin Burant Millam Iyengar Tomasi Barone Mennucci Cossi Scalmani Rega Petersson Nakatsuji Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Klene Li Knox Hratchian Cross Bakken Adamo Jaramillo Gomperts Stratmann Yazyev Austin Cammi Pomelli Ochterski Ayala Morokuma Voth Salvador Dannenberg Zakrzewski Dapprich Daniels Strain Farkas Malick Rabuck Raghavachari Foresman Ortiz Cui Baboul Clifford Cioslowski Stefanov Liu Liashenko Piskorz Komaromi Martin Fox Keith Al-Laham Peng Nanayakkara Challacombe Gill Johnson Chen Wong Gonzalez Pople
– publication-title: Gristmill Software
  doi: Keith
– issn: 2012
  publication-title: Crystal Explorer 3.1
  doi: Wolff Greenwood McKinnon Jayatilaka Spackman
– issn: 2007
  publication-title: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design
  doi: Matta Boyd
– issn: 1986-1993, 1998, 2004, 2007-2022
  doi: Williams Kelley
– issn: 2022
– volume: 42
  start-page: 1508
  issue: 5
  year: 2003
  ident: D3CE00817G/cit5e/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic020438v
– start-page: 2720
  year: 2009
  ident: D3CE00817G/cit18/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.200900013
– volume: 13
  start-page: 12788
  year: 2021
  ident: D3CE00817G/cit41e/1
  publication-title: Nanoscale
  doi: 10.1039/D1NR02592A
– volume: 551
  start-page: 121471
  year: 2023
  ident: D3CE00817G/cit27a/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2023.121471
– volume: 36
  start-page: e6725
  issue: 7
  year: 2022
  ident: D3CE00817G/cit33d/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.6725
– start-page: 1935
  year: 1996
  ident: D3CE00817G/cit1i/1
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9960001935
– volume: 24
  start-page: 383
  issue: 3
  year: 2005
  ident: D3CE00817G/cit5c/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2004.11.023
– volume: 14
  start-page: 33
  issue: 1
  year: 1996
  ident: D3CE00817G/cit40c/1
  publication-title: J. Mol. Graphics
  doi: 10.1016/0263-7855(96)00018-5
– volume: 129
  start-page: 1
  year: 2017
  ident: D3CE00817G/cit14e/1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201700927
– volume: 54
  start-page: 3211
  year: 2015
  ident: D3CE00817G/cit33a/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic502792q
– volume: 46
  start-page: 10246
  year: 2022
  ident: D3CE00817G/cit2e/1
  publication-title: New J. Chem.
  doi: 10.1039/D2NJ01177H
– volume: 285
  start-page: 170
  year: 1998
  ident: D3CE00817G/cit29c/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00036-0
– volume: 37
  start-page: 2081
  year: 1975
  ident: D3CE00817G/cit20/1
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(75)80834-7
– volume: 79
  start-page: 324
  year: 2014
  ident: D3CE00817G/cit22c/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2014.04.068
– volume: 67
  start-page: 490
  year: 2014
  ident: D3CE00817G/cit33b/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2013.09.041
– volume: 152
  start-page: 138
  year: 2018
  ident: D3CE00817G/cit14h/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2018.06.029
– volume: 9
  start-page: 648
  year: 2007
  ident: D3CE00817G/cit46/1
  publication-title: CrystEngComm
  doi: 10.1039/b704177b
– volume: 53
  start-page: 1
  year: 2005
  ident: D3CE00817G/cit1a/1
  publication-title: Prog. Inorg. Chem.
  doi: 10.1002/0471725587.ch1
– volume: 5
  start-page: 253
  issue: 44
  year: 2003
  ident: D3CE00817G/cit10b/1
  publication-title: CrystEngComm
  doi: 10.1039/B305363F
– volume: 49
  start-page: 3592
  year: 2020
  ident: D3CE00817G/cit14c/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT04923A
– volume: 363
  start-page: 763
  year: 2010
  ident: D3CE00817G/cit19/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2009.11.037
– volume: 140
  start-page: 7079
  year: 2018
  ident: D3CE00817G/cit11a/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04569
– volume: 630
  start-page: 1469
  year: 2004
  ident: D3CE00817G/cit7e/1
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.200400143
– start-page: 2182
  year: 1975
  ident: D3CE00817G/cit21/1
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9750002182
– start-page: 2995
  year: 2005
  ident: D3CE00817G/cit12b/1
  publication-title: Chem. Commun.
  doi: 10.1039/b504372g
– year: 1986–1993, 1998, 2004, 2007–2022
  ident: D3CE00817G/cit40d/1
– volume: 22
  start-page: 2049
  year: 2020
  ident: D3CE00817G/cit24b/1
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01917K
– volume: 24
  start-page: 932
  year: 1985
  ident: D3CE00817G/cit2c/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00200a026
– volume: 24
  start-page: 4274
  year: 2022
  ident: D3CE00817G/cit25a/1
  publication-title: CrystEngComm
  doi: 10.1039/D2CE00536K
– volume: 13
  start-page: 343
  year: 2023
  ident: D3CE00817G/cit27b/1
  publication-title: Crystals
  doi: 10.3390/cryst13020343
– volume: 54
  start-page: 127
  year: 2005
  ident: D3CE00817G/cit1e/1
  publication-title: Prog. Inorg. Chem.
  doi: 10.1002/0471725560.ch3
– volume: 14
  start-page: 809
  year: 2011
  ident: D3CE00817G/cit11b/1
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2011.02.002
– volume: 106
  start-page: 171
  year: 1990
  ident: D3CE00817G/cit1g/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/0010-8545(60)80003-3
– volume: 876
  start-page: 328
  year: 2008
  ident: D3CE00817G/cit7c/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2007.07.001
– volume: 79
  start-page: 324
  year: 2014
  ident: D3CE00817G/cit31b/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2014.04.068
– start-page: 267
  year: 1997
  ident: D3CE00817G/cit42b/1
  publication-title: Chem. Phys. Lett.
– volume: 57
  start-page: 7850
  year: 2018
  ident: D3CE00817G/cit15a/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803944
– volume: 22
  start-page: 533
  year: 2008
  ident: D3CE00817G/cit1h/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.1441
– volume: 430
  start-page: 168
  year: 2015
  ident: D3CE00817G/cit2b/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2015.03.007
– volume: 96
  start-page: 3006
  year: 1974
  ident: D3CE00817G/cit8b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00816a064
– volume: 34
  start-page: 653
  year: 2004
  ident: D3CE00817G/cit22b/1
  publication-title: J. Chem. Crystallogr.
  doi: 10.1023/B:JOCC.0000047637.06637.bb
– start-page: 3767
  year: 1993
  ident: D3CE00817G/cit34b/1
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9930003767
– volume: 71
  start-page: 3
  year: 2015
  ident: D3CE00817G/cit36a/1
  publication-title: Acta Crystallogr., Sect. C: Struct. Chem.
  doi: 10.1107/S2053229614024218
– volume: 38
  start-page: 4388
  year: 1999
  ident: D3CE00817G/cit32a/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic9906611
– start-page: 1460
  year: 1972
  ident: D3CE00817G/cit13b/1
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/dt9720001460
– start-page: 1459
  year: 2007
  ident: D3CE00817G/cit1d/1
  publication-title: Dalton Trans.
  doi: 10.1039/b618088d
– volume-title: Atoms in Molecules: A Quantum Theory
  year: 1990
  ident: D3CE00817G/cit28/1
  doi: 10.1093/oso/9780198551683.001.0001
– volume: 13
  start-page: 4963
  year: 2023
  ident: D3CE00817G/cit41f/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA07901A
– volume: 69
  start-page: 343
  issue: 2
  year: 2016
  ident: D3CE00817G/cit5b/1
  publication-title: J. Coord. Chem.
  doi: 10.1080/00958972.2015.1115485
– volume: 23
  start-page: 2874
  year: 1984
  ident: D3CE00817G/cit30a/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00186a032
– volume: 19
  start-page: 553
  year: 1970
  ident: D3CE00817G/cit38/1
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000101561
– volume: 51
  start-page: 1571
  issue: 7
  year: 2018
  ident: D3CE00817G/cit41d/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00002
– volume: 60
  start-page: 627
  year: 2004
  ident: D3CE00817G/cit44/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768104020300
– volume: 14
  start-page: 11
  year: 1975
  ident: D3CE00817G/cit34a/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50153a013
– volume: 34
  start-page: 478
  year: 1995
  ident: D3CE00817G/cit13a/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199504781
– volume: 47
  start-page: 6420
  year: 2023
  ident: D3CE00817G/cit25c/1
  publication-title: New J. Chem.
  doi: 10.1039/D2NJ04736E
– volume: 39
  start-page: 3638
  year: 2000
  ident: D3CE00817G/cit32b/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic000082s
– volume: 22
  start-page: 2049
  year: 2020
  ident: D3CE00817G/cit25b/1
  publication-title: CrystEngComm
  doi: 10.1039/C9CE01917K
– volume: 21
  start-page: 539
  issue: 7
  year: 2007
  ident: D3CE00817G/cit4e/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.1265
– volume: 40
  start-page: 7077
  year: 2011
  ident: D3CE00817G/cit5d/1
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt01426e
– volume: 11
  start-page: 1133
  year: 2009
  ident: D3CE00817G/cit12d/1
  publication-title: CrystEngComm
  doi: 10.1039/b823058g
– volume: 257
  start-page: 2565
  year: 2013
  ident: D3CE00817G/cit3a/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2013.02.007
– volume: 785
  start-page: 58
  year: 2017
  ident: D3CE00817G/cit14f/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2016.12.011
– volume: 415
  start-page: 69
  year: 2014
  ident: D3CE00817G/cit2d/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2014.02.038
– volume-title: The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design
  year: 2007
  ident: D3CE00817G/cit29a/1
  doi: 10.1002/9783527610709
– volume: 4
  start-page: 378
  year: 2002
  ident: D3CE00817G/cit42a/1
  publication-title: CrystEngComm
  doi: 10.1039/B203191B
– volume: 23
  start-page: 2571
  year: 2018
  ident: D3CE00817G/cit4b/1
  publication-title: Molecules
  doi: 10.3390/molecules23102571
– volume: 47
  start-page: 6623
  year: 2011
  ident: D3CE00817G/cit12c/1
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc11173f
– volume: 98
  start-page: 5648
  year: 1993
  ident: D3CE00817G/cit37a/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 45
  start-page: 490
  year: 1990
  ident: D3CE00817G/cit7d/1
  publication-title: Z. Naturforsch., B: J. Chem. Sci.
  doi: 10.1515/znb-1990-0414
– volume: 37
  start-page: 1133
  year: 1998
  ident: D3CE00817G/cit37b/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 36
  start-page: 4680
  year: 1999
  ident: D3CE00817G/cit7a/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic9904384
– volume: 6
  start-page: 357
  year: 2015
  ident: D3CE00817G/cit33c/1
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-015-0251-4
– volume: 98
  start-page: 1201
  year: 1998
  ident: D3CE00817G/cit32c/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr9601167
– volume: 10
  start-page: 557
  year: 1992
  ident: D3CE00817G/cit48/1
  publication-title: Image Vis. Comput.
  doi: 10.1016/0262-8856(92)90076-F
– volume: 19
  start-page: 92
  year: 1979
  ident: D3CE00817G/cit34c/1
  publication-title: Inorg. Synth.
  doi: 10.1002/9780470132500.ch19
– volume: 17
  start-page: 9175
  year: 2015
  ident: D3CE00817G/cit12a/1
  publication-title: CrystEngComm
  doi: 10.1039/C5CE01526J
– volume: 54
  start-page: 2315
  year: 2019
  ident: D3CE00817G/cit4d/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2968-y
– volume: 35
  start-page: 2773
  year: 2011
  ident: D3CE00817G/cit2a/1
  publication-title: New J. Chem.
  doi: 10.1039/c1nj20586b
– volume: 35
  start-page: 2858
  year: 1996
  ident: D3CE00817G/cit6a/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic951393j
– volume: 53
  start-page: 71
  year: 2005
  ident: D3CE00817G/cit1c/1
  publication-title: Prog. Inorg. Chem.
  doi: 10.1002/0471725587.ch2
– volume: 8
  start-page: 939
  year: 2005
  ident: D3CE00817G/cit23/1
  publication-title: Inorg. Chim. Acta
– volume: 62
  start-page: 288
  year: 2015
  ident: D3CE00817G/cit7b/1
  publication-title: Acta Chim. Slov.
  doi: 10.17344/acsi.2014.1065
– volume: 55
  start-page: 432
  year: 2016
  ident: D3CE00817G/cit14b/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02000
– volume: 30
  start-page: 3302332
  year: 1991
  ident: D3CE00817G/cit3c/1
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 155
  start-page: 407
  year: 2018
  ident: D3CE00817G/cit14d/1
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2018.08.050
– volume: 475
  start-page: 161
  year: 2018
  ident: D3CE00817G/cit22a/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2017.08.062
– volume: 315
  start-page: 123517
  year: 2022
  ident: D3CE00817G/cit9a/1
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2022.123517
– volume: 42
  start-page: 18759
  year: 2018
  ident: D3CE00817G/cit15b/1
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ03992E
– volume: 51
  start-page: 13003
  year: 2022
  ident: D3CE00817G/cit41a/1
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT01971J
– volume: 8
  start-page: 4517
  year: 2008
  ident: D3CE00817G/cit45/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg8005212
– volume: 41
  start-page: 24
  year: 1976
  ident: D3CE00817G/cit16b/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00886a027
– volume: 7
  start-page: 2297
  year: 2020
  ident: D3CE00817G/cit41b/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000515
– volume: 51
  start-page: 6166
  year: 2016
  ident: D3CE00817G/cit4c/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-9906-7
– volume: 18
  start-page: 311
  year: 2016
  ident: D3CE00817G/cit15c/1
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-016-3538-3
– year: 2022
  ident: D3CE00817G/cit35/1
– start-page: 104740
  year: 2015
  ident: D3CE00817G/cit41c/1
  publication-title: RSC Adv.
  doi: 10.1039/C5RA18737K
– volume: 14
  start-page: 2657
  year: 1975
  ident: D3CE00817G/cit8a/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50153a013
– volume: 121
  start-page: 6057
  year: 2021
  ident: D3CE00817G/cit2f/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01183
– volume: 125
  start-page: 868
  issue: 4
  year: 2003
  ident: D3CE00817G/cit3b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja029418i
– volume: 45
  start-page: 2249
  year: 2021
  ident: D3CE00817G/cit26b/1
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ05709F
– volume: 9
  start-page: 1940
  year: 2003
  ident: D3CE00817G/cit29b/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200204626
– volume: 450
  start-page: 57
  year: 2016
  ident: D3CE00817G/cit24d/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2016.05.028
– volume: 49
  start-page: 3700
  year: 2010
  ident: D3CE00817G/cit1f/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic1003098
– volume: 471
  start-page: 234
  year: 2018
  ident: D3CE00817G/cit24c/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/j.ica.2017.11.016
– volume: 1250
  start-page: 131728
  year: 2022
  ident: D3CE00817G/cit10a/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2021.131728
– volume: 1217
  start-page: 128376
  year: 2020
  ident: D3CE00817G/cit26a/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2020.128376
– volume: 20
  start-page: 6956
  year: 2020
  ident: D3CE00817G/cit29d/1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.0c00999
– volume: 117
  start-page: 540
  year: 1995
  ident: D3CE00817G/cit30b/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00106a066
– volume: 34
  start-page: e5879
  year: 2020
  ident: D3CE00817G/cit9b/1
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.5879
– volume: 109
  start-page: 15594
  year: 2012
  ident: D3CE00817G/cit14g/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1120757109
– volume: 24
  start-page: 4274
  year: 2022
  ident: D3CE00817G/cit4a/1
  publication-title: CrystEngComm
  doi: 10.1039/D2CE00536K
– volume: 4
  start-page: 2136
  year: 1998
  ident: D3CE00817G/cit43/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G
– volume: 353
  start-page: 159
  year: 2003
  ident: D3CE00817G/cit17/1
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(03)00221-4
– volume: 45
  start-page: 16264
  year: 2021
  ident: D3CE00817G/cit14j/1
  publication-title: New J. Chem.
  doi: 10.1039/D1NJ02644E
– volume: 71
  start-page: 3
  year: 2015
  ident: D3CE00817G/cit36b/1
  publication-title: Acta Crystallogr., Sect. A: Found. Adv.
  doi: 10.1107/S2053273314026370
– volume: 24
  start-page: 236
  issue: 2
  year: 2020
  ident: D3CE00817G/cit5a/1
  publication-title: J. Saudi Chem. Soc.
  doi: 10.1016/j.jscs.2019.12.003
– volume: 136
  start-page: 9364
  year: 2014
  ident: D3CE00817G/cit14i/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5019755
– volume: 24
  start-page: 3885
  year: 2012
  ident: D3CE00817G/cit31a/1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201200307
– volume: 645
  start-page: 185
  year: 2002
  ident: D3CE00817G/cit16a/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/S0022-2860(02)00566-5
– volume: 11
  start-page: 301
  year: 1970
  ident: D3CE00817G/cit1b/1
  publication-title: Prog. Inorg. Chem.
– volume: 41
  start-page: 24
  year: 1976
  ident: D3CE00817G/cit6b/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00863a005
– volume-title: Crystal Explorer 3.1
  year: 2012
  ident: D3CE00817G/cit47/1
– volume: 33
  start-page: 580
  year: 2012
  ident: D3CE00817G/cit40b/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 17
  start-page: 9175
  year: 2015
  ident: D3CE00817G/cit24a/1
  publication-title: CrystEngComm
  doi: 10.1039/C5CE01526J
– volume: 43
  start-page: 5985
  year: 2018
  ident: D3CE00817G/cit14a/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.02.043
SSID ssj0014110
Score 2.4971337
Snippet In this study, two new heteroleptic complexes with compositions [Ni(mtsq) 1.85 Cl 0.15 (dppe)](CH 2 Cl 2 ) 0.06 (CH 3 OH) 0.09 ( Ni-mtsq ) and [Cu(mtsq)(PPh 3...
In this study, two new heteroleptic complexes with compositions [Ni(mtsq)1.85Cl0.15(dppe)](CH2Cl2)0.06(CH3OH)0.09 (Ni-mtsq) and [Cu(mtsq)(PPh3)2] (Cu-mtsq)...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6822
SubjectTerms Chelation
Coordination
Copper
Density functional theory
Dichloromethane
Electrocatalysts
Electrons
Ethane
Hydrogen evolution reactions
Ligands
Nickel
Oxygen
Phosphorus
Quantum theory
Single crystals
Solid phases
Sulfur
Supramolecular frameworks
Surface analysis (chemical)
Title The supramolecular frameworks and electrocatalytic properties of two new structurally diverse tertiary phosphane-appended nickel() and copper() thiosquarates
URI https://www.proquest.com/docview/2900315385
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NctMwENak6QUODH8dAoXRDBzoeFxsy3HsYyihhQKndOgtI8lS7WlwjJ2kE56H5-JZWFmynTQ5FC6eZG05E-9n7Uq7-y1Cb2TgRXGfS3sgpGP7sUtt8OOoTWTMglg4UkaqwPnrt-Dswv982b_sdP6sZS0t5uyY_9pZV_I_WgUZ6FVVyf6DZpubggA-g37hCBqG4511XC7ygv6om9xask620tzLpstNtUmzUtysudp8LxSLapUdcDNTPcUtzSKrGDimKyuuUjWEpbIFUpVUlyezMk9oJmyaVy1zYytL4e2fgndqpamldhZ0eRycLiphJZsn6az8uVDk4iZTsaZEKFblfJRdqeqUZounSJcUXNWlDkCJ5YpmaRtoKpMbqmNTw5wWWWNMzlXBzbV9rgL-74OkmkNPKStU3XyTWzQr6TLVOUiFKBPr-_H6ZodHVOKImYz1_OwHij9Zc2ccix0yM6nramoDXs3laaboINSF0MbcB6EmYNkyJQ5RTKwfyMlIuU2D09Zg1kkCt-xok91YxfVJNGnH7qF9D5YxXhftD0fjT1-aOJfvar6M-i_UBLoketeO3nSZ2nXQXlE3qamcofFD9MCsYvBQQ_IR6ojsMbq_xm35BP0GcOJNcOIWnBjwgm-DE7fgxDOJAZwYwInXwYkNOHENTrwNTqzB-RanKT6qfkgDEwTwfQOUT9HFx9H45Mw2LUFs7oXu3A7CfsCcAWMkFowzGTle5EbcFVHIfV_0CWXxoC-JHw9gZRAS6fqMc-Ywl7qOIwU5QN1slolnCDMeDrjjg0kDj9qRHuWCBKqkWPgRj9y4h47qpz7hhi9ftW2ZTrb120Ovm2tzzRKz86rDWnkTM4uUE0-FEpTb0e-hA1BoMz4mXFTjrp7f6e4v0L32jTlEXdCNeAkO85y9Mqj7C6-Vx54
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+supramolecular+frameworks+and+electrocatalytic+properties+of+two+new+structurally+diverse+tertiary+phosphane-appended+nickel%28+ii+%29+and+copper%28+i+%29+thiosquarates&rft.jtitle=CrystEngComm&rft.au=Srivastava%2C+Devyani&rft.au=Kushwaha%2C+Aparna&rft.au=Kociok-K%C3%B6hn%2C+Gabriele&rft.au=Gosavi%2C+Suresh+W.&rft.date=2023-12-11&rft.issn=1466-8033&rft.eissn=1466-8033&rft.volume=25&rft.issue=48&rft.spage=6822&rft.epage=6836&rft_id=info:doi/10.1039%2FD3CE00817G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CE00817G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon