GNPy model of the physical layer for open and disaggregated optical networking [Invited]

Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and...

Full description

Saved in:
Bibliographic Details
Published inJournal of optical communications and networking Vol. 14; no. 6; pp. C92 - C104
Main Author Curri, Vittorio
Format Journal Article
LanguageEnglish
Published Piscataway Optica Publishing Group 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1943-0620
1943-0639
DOI10.1364/JOCN.452868

Cover

Loading…
Abstract Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and programmable systems according to the software-defined networking (SDN) paradigm. Wavelength-division multiplexed (WDM) optical transmission and networking is expanding as physical layer technology from core and metro networks to 5G x-hauling and inter- and intra-data-center connections requiring the application of the SDN paradigm at the optical layer based on the WDM optical data transport virtualization. We present the fundamental principles of the open-source project Gaussian Noise in Python (GNPy) for the optical transport virtualization in modeling the WDM optical transmission for open and disaggregated networking. GNPy approximates transparent lightpaths as additive white and Gaussian noise channels and can be used as a vendor-agnostic digital twin for open network planning and management. The quality-of-transmission degradation of each network element is independently modeled to allow disaggregated network management. We describe the GNPy models for fiber propagation, optical amplifiers, and reconfigurable add/drop multiplexers together with modeling of coherent transceivers from the back-to-back characterization. We address the use of GNPy as a vendor-agnostic design and planning tool and as physical layer virtualization in software-defined optical networking.
AbstractList Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and programmable systems according to the software-defined networking (SDN) paradigm. Wavelength-division multiplexed (WDM) optical transmission and networking is expanding as physical layer technology from core and metro networks to 5G x-hauling and inter- and intra-data-center connections requiring the application of the SDN paradigm at the optical layer based on the WDM optical data transport virtualization. We present the fundamental principles of the open-source project Gaussian Noise in Python (GNPy) for the optical transport virtualization in modeling the WDM optical transmission for open and disaggregated networking. GNPy approximates transparent lightpaths as additive white and Gaussian noise channels and can be used as a vendor-agnostic digital twin for open network planning and management. The quality-of-transmission degradation of each network element is independently modeled to allow disaggregated network management. We describe the GNPy models for fiber propagation, optical amplifiers, and reconfigurable add/drop multiplexers together with modeling of coherent transceivers from the back-to-back characterization. We address the use of GNPy as a vendor-agnostic design and planning tool and as physical layer virtualization in software-defined optical networking.
Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and programmable systems according to the software-defined networking (SDN) paradigm. Wavelength-division multiplexed (WDM) optical transmission and networking is expanding as physical layer technology from core and metro networks to 5G x -hauling and inter- and intra-data-center connections requiring the application of the SDN paradigm at the optical layer based on the WDM optical data transport virtualization. We present the fundamental principles of the open-source project Gaussian Noise in Python (GNPy) for the optical transport virtualization in modeling the WDM optical transmission for open and disaggregated networking. GNPy approximates transparent lightpaths as additive white and Gaussian noise channels and can be used as a vendor-agnostic digital twin for open network planning and management. The quality-of-transmission degradation of each network element is independently modeled to allow disaggregated network management. We describe the GNPy models for fiber propagation, optical amplifiers, and reconfigurable add/drop multiplexers together with modeling of coherent transceivers from the back-to-back characterization. We address the use of GNPy as a vendor-agnostic design and planning tool and as physical layer virtualization in software-defined optical networking.
Author Curri, Vittorio
Author_xml – sequence: 1
  givenname: Vittorio
  orcidid: 0000-0003-0691-0067
  surname: Curri
  fullname: Curri, Vittorio
  organization: DET - Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy (curri@polito.it)
BookMark eNp1kM9LwzAUx4NMcJuePHoJeJTOpGnT9ChD52RsHhQEkZKlr11ml8w0U_rf21nZQfD0Hu99vu_Hd4B6xhpA6JySEWU8un5YjOejKA4FF0eoT9OIBYSztHfIQ3KCBnW9JoQnlMZ99DKZPzZ4Y3OosC2wXwHerppaK1nhSjbgcGEdtlswWJoc57qWZemglB7ytux_QAP-y7p3bUr8OjWfuu29naLjQlY1nP3GIXq-u30a3wezxWQ6vpkFKhTUBzxOmFy2B0OaqILlMRckzVUkRVEAU4IJoqhSwCIIgaZyySRwGRccRM4jodgQXXZzt85-7KD22drunGlXZiHnhPL206ilaEcpZ-vaQZEp7aXX1ngndZVRku0NzPYGZp2Brebqj2br9Ea65h_6oqM1ABzINOFCJJR9A6RTfLY
CODEN JOCNBB
CitedBy_id crossref_primary_10_1364_JOCN_505729
crossref_primary_10_3390_s24248054
crossref_primary_10_1109_JLT_2024_3498342
crossref_primary_10_3390_s25061948
crossref_primary_10_1109_TNSM_2023_3288823
crossref_primary_10_1364_JOCN_503265
crossref_primary_10_1364_JOCN_536592
crossref_primary_10_1364_JOCN_507128
crossref_primary_10_1007_s12596_024_02060_0
crossref_primary_10_1109_ACCESS_2024_3485999
crossref_primary_10_1109_JLT_2024_3487862
crossref_primary_10_1109_JLT_2023_3271860
crossref_primary_10_1109_LPT_2023_3338482
crossref_primary_10_1364_JOCN_477341
crossref_primary_10_1109_JLT_2023_3327760
crossref_primary_10_1364_JOCN_475460
crossref_primary_10_1109_JLT_2024_3366557
crossref_primary_10_1109_JLT_2024_3386107
crossref_primary_10_1364_JOCN_496720
crossref_primary_10_1364_JOCN_505936
crossref_primary_10_1109_JLT_2024_3405587
crossref_primary_10_1364_JOCN_483600
crossref_primary_10_1364_JOCN_486713
crossref_primary_10_1109_JPHOT_2023_3333420
crossref_primary_10_1109_MCOM_006_2200567
crossref_primary_10_1364_JOCN_512049
crossref_primary_10_1109_JLT_2023_3328765
Cites_doi 10.1109/50.97630
10.1109/50.661358
10.1109/68.669330
10.1364/OE.21.025685
10.1364/JOCN.403205
10.1109/OJCOMS.2021.3066913
10.1109/JLT.1986.1074874
10.23919/ONDM48393.2020.9133012
10.1109/JLT.2021.3097163
10.1109/JLT.2015.2447151
10.1109/JLT.2018.2814840
10.1109/50.622902
10.1109/MCOM.2016.7452271
10.1109/JLT.2018.2815266
10.1364/JOCN.380723
10.1364/OE.21.032254
10.1109/JLT.2015.2477599
10.1109/ECOC52684.2021.9606087
10.1109/JLT.2018.2830973
10.1364/JOCN.417584
10.1109/JLT.2019.2906620
10.1109/ICTON51198.2020.9203450
10.1109/ECOC52684.2021.9606000
10.1364/JOCN.442208
10.1109/LPT.2013.2290745
10.1109/OJCOMS.2021.3085678
10.1364/JOCN.424021
10.1080/10580530.2020.1814461
10.1109/ECOC48923.2020.9333280
10.1109/JLT.2003.822828
10.1109/ECOC48923.2020.9333315
10.1364/OE.22.014199
10.1364/OE.22.016335
10.1109/JLT.2004.832424
10.1364/JOCN.402187
10.1109/MITP.2017.9
10.1109/JLT.2012.2190582
10.1109/EMR.2020.3013206
10.1364/JOCN.382906
10.1109/GLOBECOM42002.2020.9322068
10.1109/COMST.2016.2586999
10.1109/COMST.2014.2330903
10.1109/MCOM.2010.5496877
10.1056/NEJMp2005835
10.1109/JLT.2018.2818406
10.1145/3419394.3423621
10.1364/OFC.2018.W1G.4
10.1109/JLT.2003.814386
10.1109/JLT.2013.2295208
10.1049/cp.2013.1458
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1364/JOCN.452868
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-0639
EndPage C104
ExternalDocumentID 10_1364_JOCN_452868
9768871
Genre tutorial
GroupedDBID 0R~
29L
29N
4.4
5VS
6IK
8SL
97E
AAJGR
AARMG
AASAJ
AAWJZ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AEDJG
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKGWG
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATHME
ATWAV
AYPRP
AZSQR
AZYMN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DSZJF
DU5
EBS
EJD
ESBDL
HZ~
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
ODPQJ
OFLFD
OPJBK
RIA
RIE
RNS
ROL
ROS
TR6
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c281t-6573ab286e97cf3d56809dc4a8ffe3c8380c1cce34e2e19ab3ae6a5f6e8d648c3
IEDL.DBID RIE
ISSN 1943-0620
IngestDate Mon Jun 30 06:00:45 EDT 2025
Thu Apr 24 23:00:23 EDT 2025
Tue Jul 01 01:09:31 EDT 2025
Wed Aug 27 02:07:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c281t-6573ab286e97cf3d56809dc4a8ffe3c8380c1cce34e2e19ab3ae6a5f6e8d648c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0691-0067
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9768871
PQID 2660160674
PQPubID 85498
ParticipantIDs ieee_primary_9768871
proquest_journals_2660160674
crossref_citationtrail_10_1364_JOCN_452868
crossref_primary_10_1364_JOCN_452868
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle Journal of optical communications and networking
PublicationTitleAbbrev jocn
PublicationYear 2022
Publisher Optica Publishing Group
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: Optica Publishing Group
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Bulow (jocn-14-6-C92-R25) 1998; 10
Manso (jocn-14-6-C92-R15) 2021; 13
Welch (jocn-14-6-C92-R52) 2021; 39
Kundrát (jocn-14-6-C92-R16) 2019; 37
Pastorelli (jocn-14-6-C92-R58) 2013
Borraccini (jocn-14-6-C92-R59) 2020
Le Rouzic (jocn-14-6-C92-R12) 2021
Soto-Acosta (jocn-14-6-C92-R1) 2020; 37
Birk (jocn-14-6-C92-R17) 2020; 12
Kundrát (jocn-14-6-C92-R60) 2021
Al-Falahy (jocn-14-6-C92-R5) 2017; 19
Carena (jocn-14-6-C92-R33) 2014; 22
Mecozzi (jocn-14-6-C92-R31) 2012; 30
Curri (jocn-14-6-C92-R46) 2016; 34
Pilipetskii (jocn-14-6-C92-R9) 2019
D’Amico (jocn-14-6-C92-R51) 2022
Bononi (jocn-14-6-C92-R36) 2013; 21
Walker (jocn-14-6-C92-R26) 1986; 4
Mecozzi (jocn-14-6-C92-R45) 2004; 22
Dar (jocn-14-6-C92-R34) 2014; 22
Foschini (jocn-14-6-C92-R23) 1991; 9
Ferrari (jocn-14-6-C92-R21) 2020; 12
Marcuse (jocn-14-6-C92-R19) 1997; 15
Curri (jocn-14-6-C92-R28) 2015; 33
Dar (jocn-14-6-C92-R32) 2013; 21
Semrau (jocn-14-6-C92-R42) 2018; 36
Cantono (jocn-14-6-C92-R41) 2018; 36
Poggiolini (jocn-14-6-C92-R35) 2014; 32
Böttger (jocn-14-6-C92-R2) 2020
Keesara (jocn-14-6-C92-R4) 2020; 382
Riccardi (jocn-14-6-C92-R14) 2018; 36
D’Amico (jocn-14-6-C92-R48) 2022; 14
Auge (jocn-14-6-C92-R54) 2019
Nishizawa (jocn-14-6-C92-R18) 2021; 13
Khan (jocn-14-6-C92-R49) 2021; 2
Thyagaturu (jocn-14-6-C92-R7) 2016; 18
Correia (jocn-14-6-C92-R56) 2020
Desurvire (jocn-14-6-C92-R27) 2002
Rottwitt (jocn-14-6-C92-R39) 2003; 21
Curri (jocn-14-6-C92-R22) 2020
Bromage (jocn-14-6-C92-R40) 2004; 22
Yu (jocn-14-6-C92-R29) 2021; 13
Cantono (jocn-14-6-C92-R38) 2018
D’Amico (jocn-14-6-C92-R43) 2020
El Amari (jocn-14-6-C92-R24) 1998; 16
Ferrari (jocn-14-6-C92-R50) 2020
D’Amico (jocn-14-6-C92-R30) 2021; 2
Agrawal (jocn-14-6-C92-R37) 2013
Gringeri (jocn-14-6-C92-R13) 2010; 48
Zhong (jocn-14-6-C92-R57) 2021
Curri (jocn-14-6-C92-R10) 2021
Borraccini (jocn-14-6-C92-R53) 2021; 13
Filer (jocn-14-6-C92-R20) 2018; 36
Almeida (jocn-14-6-C92-R3) 2020; 48
Xia (jocn-14-6-C92-R11) 2015; 17
Abdelwahab (jocn-14-6-C92-R6) 2016; 54
Rahman (jocn-14-6-C92-R47) 2014; 26
References_xml – volume: 9
  start-page: 1439
  year: 1991
  ident: jocn-14-6-C92-R23
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.97630
– volume: 16
  start-page: 332
  year: 1998
  ident: jocn-14-6-C92-R24
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.661358
– volume: 10
  start-page: 696
  year: 1998
  ident: jocn-14-6-C92-R25
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/68.669330
– volume: 21
  start-page: 25685
  year: 2013
  ident: jocn-14-6-C92-R32
  publication-title: Opt. Express
  doi: 10.1364/OE.21.025685
– volume: 13
  start-page: A78
  year: 2021
  ident: jocn-14-6-C92-R18
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.403205
– volume: 2
  start-page: 564
  year: 2021
  ident: jocn-14-6-C92-R30
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2021.3066913
– volume: 4
  start-page: 1125
  year: 1986
  ident: jocn-14-6-C92-R26
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.1986.1074874
– volume-title: International Conference on Optical Network Design and Modeling (ONDM)
  year: 2020
  ident: jocn-14-6-C92-R43
  article-title: Quality of transmission estimation for planning of disaggregated optical networks
  doi: 10.23919/ONDM48393.2020.9133012
– volume: 39
  start-page: 5232
  year: 2021
  ident: jocn-14-6-C92-R52
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2021.3097163
– volume: 33
  start-page: 3921
  year: 2015
  ident: jocn-14-6-C92-R28
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2447151
– volume: 36
  start-page: 3131
  year: 2018
  ident: jocn-14-6-C92-R41
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2814840
– volume: 15
  start-page: 1735
  year: 1997
  ident: jocn-14-6-C92-R19
  publication-title: J. Lightwave Technol.
  doi: 10.1109/50.622902
– volume: 54
  start-page: 84
  year: 2016
  ident: jocn-14-6-C92-R6
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2016.7452271
– volume: 36
  start-page: 3062
  year: 2018
  ident: jocn-14-6-C92-R14
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2815266
– start-page: M1
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2021
  ident: jocn-14-6-C92-R60
  article-title: GNPy & YANG: open APIs for end-to-end service provisioning in optical networks
– volume: 12
  start-page: C58
  year: 2020
  ident: jocn-14-6-C92-R17
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.380723
– volume: 21
  start-page: 32254
  year: 2013
  ident: jocn-14-6-C92-R36
  publication-title: Opt. Express
  doi: 10.1364/OE.21.032254
– volume: 34
  start-page: 554
  year: 2016
  ident: jocn-14-6-C92-R46
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2477599
– volume-title: European Conference on Optical Communication (ECOC)
  year: 2021
  ident: jocn-14-6-C92-R10
  article-title: GNPy model for design of open and disaggregated optical networks
  doi: 10.1109/ECOC52684.2021.9606087
– volume: 36
  start-page: 3046
  year: 2018
  ident: jocn-14-6-C92-R42
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2830973
– start-page: F3
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2021
  ident: jocn-14-6-C92-R57
  article-title: BOW: first real-world demonstration of a Bayesian optimization system for wavelength reconfiguration
– volume: 13
  start-page: B83
  year: 2021
  ident: jocn-14-6-C92-R29
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.417584
– volume: 37
  start-page: 4041
  year: 2019
  ident: jocn-14-6-C92-R16
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2019.2906620
– volume-title: Nonlinear Fiber Optics
  year: 2013
  ident: jocn-14-6-C92-R37
– volume-title: 22nd International Conference on Transparent Optical Networks
  year: 2020
  ident: jocn-14-6-C92-R22
  article-title: Software-defined WDM optical transport in disaggregated open optical networks
  doi: 10.1109/ICTON51198.2020.9203450
– volume-title: European Conference on Optical Communication (ECOC)
  year: 2021
  ident: jocn-14-6-C92-R12
  article-title: Automation journey in core and metro networks: an operator view
  doi: 10.1109/ECOC52684.2021.9606000
– volume: 14
  start-page: 79
  year: 2022
  ident: jocn-14-6-C92-R48
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.442208
– volume: 26
  start-page: 154
  year: 2014
  ident: jocn-14-6-C92-R47
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2013.2290745
– volume: 2
  start-page: 1358
  year: 2021
  ident: jocn-14-6-C92-R49
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2021.3085678
– volume: 13
  start-page: E23
  year: 2021
  ident: jocn-14-6-C92-R53
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.424021
– volume: 37
  start-page: 260
  year: 2020
  ident: jocn-14-6-C92-R1
  publication-title: Inf. Syst. Manag.
  doi: 10.1080/10580530.2020.1814461
– start-page: M3
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2019
  ident: jocn-14-6-C92-R54
  article-title: Open optical network planning demonstration
– volume-title: European Conference on Optical Communications (ECOC)
  year: 2020
  ident: jocn-14-6-C92-R50
  article-title: Softwarized optical transport QoT in production optical network: a brownfield validation
  doi: 10.1109/ECOC48923.2020.9333280
– volume: 22
  start-page: 79
  year: 2004
  ident: jocn-14-6-C92-R40
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.822828
– volume-title: European Conference on Optical Communications (ECOC)
  year: 2020
  ident: jocn-14-6-C92-R59
  article-title: Using QoT-E for open line controlling and modulation format deployment: an experimental proof of concept
  doi: 10.1109/ECOC48923.2020.9333315
– volume: 22
  start-page: 14199
  year: 2014
  ident: jocn-14-6-C92-R34
  publication-title: Opt. Express
  doi: 10.1364/OE.22.014199
– volume: 22
  start-page: 16335
  year: 2014
  ident: jocn-14-6-C92-R33
  publication-title: Opt. Express
  doi: 10.1364/OE.22.016335
– volume-title: Erbium-Doped Fiber Amplifiers: Principles and Applications
  year: 2002
  ident: jocn-14-6-C92-R27
– volume: 22
  start-page: 1856
  year: 2004
  ident: jocn-14-6-C92-R45
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2004.832424
– volume: 13
  start-page: A21
  year: 2021
  ident: jocn-14-6-C92-R15
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.402187
– volume: 19
  start-page: 12
  year: 2017
  ident: jocn-14-6-C92-R5
  publication-title: IT Prof.
  doi: 10.1109/MITP.2017.9
– volume: 30
  start-page: 2011
  year: 2012
  ident: jocn-14-6-C92-R31
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2012.2190582
– volume: 48
  start-page: 97
  year: 2020
  ident: jocn-14-6-C92-R3
  publication-title: IEEE Eng. Manag. Rev.
  doi: 10.1109/EMR.2020.3013206
– volume: 12
  start-page: C31
  year: 2020
  ident: jocn-14-6-C92-R21
  publication-title: J. Opt. Commun. Netw.
  doi: 10.1364/JOCN.382906
– start-page: M4
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2022
  ident: jocn-14-6-C92-R51
  article-title: GNPy experimental validation for Nyquist subcarriers flexible transmission up to 800 G
– volume-title: IEEE Global Communications Conference (GLOBECOM)
  year: 2020
  ident: jocn-14-6-C92-R56
  article-title: Networking performance of power optimized C $+$ + L $+$ + S multiband transmission
  doi: 10.1109/GLOBECOM42002.2020.9322068
– volume: 18
  start-page: 2738
  year: 2016
  ident: jocn-14-6-C92-R7
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2016.2586999
– volume: 17
  start-page: 27
  year: 2015
  ident: jocn-14-6-C92-R11
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2014.2330903
– volume: 48
  start-page: 40
  year: 2010
  ident: jocn-14-6-C92-R13
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2010.5496877
– volume: 382
  start-page: e82
  year: 2020
  ident: jocn-14-6-C92-R4
  publication-title: New England J. Med.
  doi: 10.1056/NEJMp2005835
– volume-title: Proceedings of SubOptic
  year: 2019
  ident: jocn-14-6-C92-R9
  article-title: The subsea fiber as a Shannon channel
– volume: 36
  start-page: 3073
  year: 2018
  ident: jocn-14-6-C92-R20
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2018.2818406
– volume-title: ACM Internet Measurement Conference
  year: 2020
  ident: jocn-14-6-C92-R2
  article-title: How the Internet reacted to Covid-19: a perspective from Facebook’s edge network
  doi: 10.1145/3419394.3423621
– start-page: W1
  volume-title: Optical Fiber Communication Conference (OFC)
  year: 2018
  ident: jocn-14-6-C92-R38
  article-title: Observing the interaction of PMD with generation of NLI in uncompensated amplified optical links
  doi: 10.1364/OFC.2018.W1G.4
– volume: 21
  start-page: 1652
  year: 2003
  ident: jocn-14-6-C92-R39
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2003.814386
– volume: 32
  start-page: 694
  year: 2014
  ident: jocn-14-6-C92-R35
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2013.2295208
– volume-title: 39th European Conference and Exhibition on Optical Communication (ECOC)
  year: 2013
  ident: jocn-14-6-C92-R58
  article-title: Optical control plane based on an analytical model of non-linear transmission effects in a self-optimized network
  doi: 10.1049/cp.2013.1458
SSID ssj0067115
Score 2.4982958
Snippet Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage C92
SubjectTerms Computer networks
Data transmission
Hauling
Modelling
Multiplexers
Nonlinear optics
Optical communication
Optical network units
Optical noise
Optical polarization
Optical propagation
Optical signal processing
Random noise
Software
Software-defined networking
Wavelength division multiplexing
Title GNPy model of the physical layer for open and disaggregated optical networking [Invited]
URI https://ieeexplore.ieee.org/document/9768871
https://www.proquest.com/docview/2660160674
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5zT_rgrylOp-RhT2K3NknT9lGGcw6cPjgYiJQ0uYg4uuE2Qf96k7QbQ_fgWylpCXeX5LvL3X0INUPCqHHYfC8LlXFQAia9jDLqaSII1TLIAuG6fQ54b8j6o3BUQVerWhgAcMln0LKP7i5fTeTChsra5ug0a8L4OlvGzIpareWuy6PAsRUYn9yyFRC_rMWjnLX7D51Bi4Uktv1U104fR6fyZw92B0t3D90vp1Tkk7y3FvOsJb9_dWv875z30W6JMPF1YRIHqAL5IdpZ6ztYQ6PbweMXdiQ4eKKxwYB4WuoLj4UB4dhAWWyJtbDIFVZvM_Fq_HIbcVPmtQt_47xIIDc_xM93-aeFri9HaNi9eer0vJJiwZMkDuY28YWKzEgGkkhqqkIe-4mSTMRaA5UxjX0ZSAmUAYEgERkVwEWoOcSKs1jSY1TNJzmcIKwjohlRACTxmVBRxhIfSCikEkKLQNbR5VL0qSz7j1sajHHqLtU4S62e0kJPddRcDZ4WbTc2D6tZia-GlMKuo8ZSp2m5JGepQSK2mx6P2Onmr87QNrG1DS7E0kDV-ccCzg3imGcXztR-AKE-1Wk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5ED-rBt7i6ag6exK5tkqbtURZ1fa0eFBZESppMRFy6oruC_nqTtLuIevBWSlrCTJL5ZjLzDcBeTDmzDlsYFLG2DkrEVVAwzgJDJWVGRUUkPdtnV3Tu-Hkv7k3BwaQWBhF98hm23KO_y9cDNXKhskNrOu2esL7OjLX7PK6qtcbnrkgi36_AeuWuXwEN62o8Jvjh-XW72-IxTR2j6jf74xuq_DqFvWk5WYSr8aSqjJLn1mhYtNTnD77G_856CRZqjEmOqkWxDFNYrsD8N-bBVeiddm8-iG-DQwaGWBRIXmqNkb60MJxYMEtcay0iS03005t8tJ65i7lp-9oHwElZpZDbH5L7s_LdgdeHNbg7Ob5td4K6yUKgaBoNXeoLk4WVDGaJMkzHIg0zrbhMjUGmUpaGKlIKGUeKUSYLJlHI2AhMteCpYuswXQ5K3ABiEmo41Yg0C7nUScGzEGkslZbSyEg1YH8s-lzVDOSuEUY_99dqgudOT3mlpwbsTQa_VMQbfw9bdRKfDKmF3YDmWKd5vSnfcotFHJ-eSPjm31_twmzn9uoyvzzrXmzBHHWVDj7g0oTp4esIty3-GBY7ftl9AfO12LY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GNPy+model+of+the+physical+layer+for+open+and+disaggregated+optical+networking+%5BInvited%5D&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Curri%2C+Vittorio&rft.date=2022-06-01&rft.pub=Optica+Publishing+Group&rft.issn=1943-0620&rft.volume=14&rft.issue=6&rft.spage=C92&rft.epage=C104&rft_id=info:doi/10.1364%2FJOCN.452868&rft.externalDocID=9768871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon