GNPy model of the physical layer for open and disaggregated optical networking [Invited]
Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and...
Saved in:
Published in | Journal of optical communications and networking Vol. 14; no. 6; pp. C92 - C104 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Piscataway
Optica Publishing Group
01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1943-0620 1943-0639 |
DOI | 10.1364/JOCN.452868 |
Cover
Loading…
Abstract | Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and programmable systems according to the software-defined networking (SDN) paradigm. Wavelength-division multiplexed (WDM) optical transmission and networking is expanding as physical layer technology from core and metro networks to 5G x-hauling and inter- and intra-data-center connections requiring the application of the SDN paradigm at the optical layer based on the WDM optical data transport virtualization. We present the fundamental principles of the open-source project Gaussian Noise in Python (GNPy) for the optical transport virtualization in modeling the WDM optical transmission for open and disaggregated networking. GNPy approximates transparent lightpaths as additive white and Gaussian noise channels and can be used as a vendor-agnostic digital twin for open network planning and management. The quality-of-transmission degradation of each network element is independently modeled to allow disaggregated network management. We describe the GNPy models for fiber propagation, optical amplifiers, and reconfigurable add/drop multiplexers together with modeling of coherent transceivers from the back-to-back characterization. We address the use of GNPy as a vendor-agnostic design and planning tool and as physical layer virtualization in software-defined optical networking. |
---|---|
AbstractList | Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and programmable systems according to the software-defined networking (SDN) paradigm. Wavelength-division multiplexed (WDM) optical transmission and networking is expanding as physical layer technology from core and metro networks to 5G x-hauling and inter- and intra-data-center connections requiring the application of the SDN paradigm at the optical layer based on the WDM optical data transport virtualization. We present the fundamental principles of the open-source project Gaussian Noise in Python (GNPy) for the optical transport virtualization in modeling the WDM optical transmission for open and disaggregated networking. GNPy approximates transparent lightpaths as additive white and Gaussian noise channels and can be used as a vendor-agnostic digital twin for open network planning and management. The quality-of-transmission degradation of each network element is independently modeled to allow disaggregated network management. We describe the GNPy models for fiber propagation, optical amplifiers, and reconfigurable add/drop multiplexers together with modeling of coherent transceivers from the back-to-back characterization. We address the use of GNPy as a vendor-agnostic design and planning tool and as physical layer virtualization in software-defined optical networking. Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and inclusive society, with a dramatic speed-up caused by the COVID-19 emergency. Such evolution needs the development of networks into disaggregated and programmable systems according to the software-defined networking (SDN) paradigm. Wavelength-division multiplexed (WDM) optical transmission and networking is expanding as physical layer technology from core and metro networks to 5G x -hauling and inter- and intra-data-center connections requiring the application of the SDN paradigm at the optical layer based on the WDM optical data transport virtualization. We present the fundamental principles of the open-source project Gaussian Noise in Python (GNPy) for the optical transport virtualization in modeling the WDM optical transmission for open and disaggregated networking. GNPy approximates transparent lightpaths as additive white and Gaussian noise channels and can be used as a vendor-agnostic digital twin for open network planning and management. The quality-of-transmission degradation of each network element is independently modeled to allow disaggregated network management. We describe the GNPy models for fiber propagation, optical amplifiers, and reconfigurable add/drop multiplexers together with modeling of coherent transceivers from the back-to-back characterization. We address the use of GNPy as a vendor-agnostic design and planning tool and as physical layer virtualization in software-defined optical networking. |
Author | Curri, Vittorio |
Author_xml | – sequence: 1 givenname: Vittorio orcidid: 0000-0003-0691-0067 surname: Curri fullname: Curri, Vittorio organization: DET - Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, Italy (curri@polito.it) |
BookMark | eNp1kM9LwzAUx4NMcJuePHoJeJTOpGnT9ChD52RsHhQEkZKlr11ml8w0U_rf21nZQfD0Hu99vu_Hd4B6xhpA6JySEWU8un5YjOejKA4FF0eoT9OIBYSztHfIQ3KCBnW9JoQnlMZ99DKZPzZ4Y3OosC2wXwHerppaK1nhSjbgcGEdtlswWJoc57qWZemglB7ytux_QAP-y7p3bUr8OjWfuu29naLjQlY1nP3GIXq-u30a3wezxWQ6vpkFKhTUBzxOmFy2B0OaqILlMRckzVUkRVEAU4IJoqhSwCIIgaZyySRwGRccRM4jodgQXXZzt85-7KD22drunGlXZiHnhPL206ilaEcpZ-vaQZEp7aXX1ngndZVRku0NzPYGZp2Brebqj2br9Ea65h_6oqM1ABzINOFCJJR9A6RTfLY |
CODEN | JOCNBB |
CitedBy_id | crossref_primary_10_1364_JOCN_505729 crossref_primary_10_3390_s24248054 crossref_primary_10_1109_JLT_2024_3498342 crossref_primary_10_3390_s25061948 crossref_primary_10_1109_TNSM_2023_3288823 crossref_primary_10_1364_JOCN_503265 crossref_primary_10_1364_JOCN_536592 crossref_primary_10_1364_JOCN_507128 crossref_primary_10_1007_s12596_024_02060_0 crossref_primary_10_1109_ACCESS_2024_3485999 crossref_primary_10_1109_JLT_2024_3487862 crossref_primary_10_1109_JLT_2023_3271860 crossref_primary_10_1109_LPT_2023_3338482 crossref_primary_10_1364_JOCN_477341 crossref_primary_10_1109_JLT_2023_3327760 crossref_primary_10_1364_JOCN_475460 crossref_primary_10_1109_JLT_2024_3366557 crossref_primary_10_1109_JLT_2024_3386107 crossref_primary_10_1364_JOCN_496720 crossref_primary_10_1364_JOCN_505936 crossref_primary_10_1109_JLT_2024_3405587 crossref_primary_10_1364_JOCN_483600 crossref_primary_10_1364_JOCN_486713 crossref_primary_10_1109_JPHOT_2023_3333420 crossref_primary_10_1109_MCOM_006_2200567 crossref_primary_10_1364_JOCN_512049 crossref_primary_10_1109_JLT_2023_3328765 |
Cites_doi | 10.1109/50.97630 10.1109/50.661358 10.1109/68.669330 10.1364/OE.21.025685 10.1364/JOCN.403205 10.1109/OJCOMS.2021.3066913 10.1109/JLT.1986.1074874 10.23919/ONDM48393.2020.9133012 10.1109/JLT.2021.3097163 10.1109/JLT.2015.2447151 10.1109/JLT.2018.2814840 10.1109/50.622902 10.1109/MCOM.2016.7452271 10.1109/JLT.2018.2815266 10.1364/JOCN.380723 10.1364/OE.21.032254 10.1109/JLT.2015.2477599 10.1109/ECOC52684.2021.9606087 10.1109/JLT.2018.2830973 10.1364/JOCN.417584 10.1109/JLT.2019.2906620 10.1109/ICTON51198.2020.9203450 10.1109/ECOC52684.2021.9606000 10.1364/JOCN.442208 10.1109/LPT.2013.2290745 10.1109/OJCOMS.2021.3085678 10.1364/JOCN.424021 10.1080/10580530.2020.1814461 10.1109/ECOC48923.2020.9333280 10.1109/JLT.2003.822828 10.1109/ECOC48923.2020.9333315 10.1364/OE.22.014199 10.1364/OE.22.016335 10.1109/JLT.2004.832424 10.1364/JOCN.402187 10.1109/MITP.2017.9 10.1109/JLT.2012.2190582 10.1109/EMR.2020.3013206 10.1364/JOCN.382906 10.1109/GLOBECOM42002.2020.9322068 10.1109/COMST.2016.2586999 10.1109/COMST.2014.2330903 10.1109/MCOM.2010.5496877 10.1056/NEJMp2005835 10.1109/JLT.2018.2818406 10.1145/3419394.3423621 10.1364/OFC.2018.W1G.4 10.1109/JLT.2003.814386 10.1109/JLT.2013.2295208 10.1049/cp.2013.1458 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1364/JOCN.452868 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1943-0639 |
EndPage | C104 |
ExternalDocumentID | 10_1364_JOCN_452868 9768871 |
Genre | tutorial |
GroupedDBID | 0R~ 29L 29N 4.4 5VS 6IK 8SL 97E AAJGR AARMG AASAJ AAWJZ AAWTH ABAZT ABQJQ ABVLG ACIWK AEDJG AENEX AETIX AGQYO AGSQL AHBIQ AKGWG AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATHME ATWAV AYPRP AZSQR AZYMN BEFXN BFFAM BGNUA BKEBE BPEOZ DSZJF DU5 EBS EJD ESBDL HZ~ IES IFIPE IPLJI JAVBF M43 O9- OCL ODPQJ OFLFD OPJBK RIA RIE RNS ROL ROS TR6 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c281t-6573ab286e97cf3d56809dc4a8ffe3c8380c1cce34e2e19ab3ae6a5f6e8d648c3 |
IEDL.DBID | RIE |
ISSN | 1943-0620 |
IngestDate | Mon Jun 30 06:00:45 EDT 2025 Thu Apr 24 23:00:23 EDT 2025 Tue Jul 01 01:09:31 EDT 2025 Wed Aug 27 02:07:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c281t-6573ab286e97cf3d56809dc4a8ffe3c8380c1cce34e2e19ab3ae6a5f6e8d648c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0691-0067 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9768871 |
PQID | 2660160674 |
PQPubID | 85498 |
ParticipantIDs | ieee_primary_9768871 proquest_journals_2660160674 crossref_citationtrail_10_1364_JOCN_452868 crossref_primary_10_1364_JOCN_452868 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | Journal of optical communications and networking |
PublicationTitleAbbrev | jocn |
PublicationYear | 2022 |
Publisher | Optica Publishing Group The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: Optica Publishing Group – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Bulow (jocn-14-6-C92-R25) 1998; 10 Manso (jocn-14-6-C92-R15) 2021; 13 Welch (jocn-14-6-C92-R52) 2021; 39 Kundrát (jocn-14-6-C92-R16) 2019; 37 Pastorelli (jocn-14-6-C92-R58) 2013 Borraccini (jocn-14-6-C92-R59) 2020 Le Rouzic (jocn-14-6-C92-R12) 2021 Soto-Acosta (jocn-14-6-C92-R1) 2020; 37 Birk (jocn-14-6-C92-R17) 2020; 12 Kundrát (jocn-14-6-C92-R60) 2021 Al-Falahy (jocn-14-6-C92-R5) 2017; 19 Carena (jocn-14-6-C92-R33) 2014; 22 Mecozzi (jocn-14-6-C92-R31) 2012; 30 Curri (jocn-14-6-C92-R46) 2016; 34 Pilipetskii (jocn-14-6-C92-R9) 2019 D’Amico (jocn-14-6-C92-R51) 2022 Bononi (jocn-14-6-C92-R36) 2013; 21 Walker (jocn-14-6-C92-R26) 1986; 4 Mecozzi (jocn-14-6-C92-R45) 2004; 22 Dar (jocn-14-6-C92-R34) 2014; 22 Foschini (jocn-14-6-C92-R23) 1991; 9 Ferrari (jocn-14-6-C92-R21) 2020; 12 Marcuse (jocn-14-6-C92-R19) 1997; 15 Curri (jocn-14-6-C92-R28) 2015; 33 Dar (jocn-14-6-C92-R32) 2013; 21 Semrau (jocn-14-6-C92-R42) 2018; 36 Cantono (jocn-14-6-C92-R41) 2018; 36 Poggiolini (jocn-14-6-C92-R35) 2014; 32 Böttger (jocn-14-6-C92-R2) 2020 Keesara (jocn-14-6-C92-R4) 2020; 382 Riccardi (jocn-14-6-C92-R14) 2018; 36 D’Amico (jocn-14-6-C92-R48) 2022; 14 Auge (jocn-14-6-C92-R54) 2019 Nishizawa (jocn-14-6-C92-R18) 2021; 13 Khan (jocn-14-6-C92-R49) 2021; 2 Thyagaturu (jocn-14-6-C92-R7) 2016; 18 Correia (jocn-14-6-C92-R56) 2020 Desurvire (jocn-14-6-C92-R27) 2002 Rottwitt (jocn-14-6-C92-R39) 2003; 21 Curri (jocn-14-6-C92-R22) 2020 Bromage (jocn-14-6-C92-R40) 2004; 22 Yu (jocn-14-6-C92-R29) 2021; 13 Cantono (jocn-14-6-C92-R38) 2018 D’Amico (jocn-14-6-C92-R43) 2020 El Amari (jocn-14-6-C92-R24) 1998; 16 Ferrari (jocn-14-6-C92-R50) 2020 D’Amico (jocn-14-6-C92-R30) 2021; 2 Agrawal (jocn-14-6-C92-R37) 2013 Gringeri (jocn-14-6-C92-R13) 2010; 48 Zhong (jocn-14-6-C92-R57) 2021 Curri (jocn-14-6-C92-R10) 2021 Borraccini (jocn-14-6-C92-R53) 2021; 13 Filer (jocn-14-6-C92-R20) 2018; 36 Almeida (jocn-14-6-C92-R3) 2020; 48 Xia (jocn-14-6-C92-R11) 2015; 17 Abdelwahab (jocn-14-6-C92-R6) 2016; 54 Rahman (jocn-14-6-C92-R47) 2014; 26 |
References_xml | – volume: 9 start-page: 1439 year: 1991 ident: jocn-14-6-C92-R23 publication-title: J. Lightwave Technol. doi: 10.1109/50.97630 – volume: 16 start-page: 332 year: 1998 ident: jocn-14-6-C92-R24 publication-title: J. Lightwave Technol. doi: 10.1109/50.661358 – volume: 10 start-page: 696 year: 1998 ident: jocn-14-6-C92-R25 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/68.669330 – volume: 21 start-page: 25685 year: 2013 ident: jocn-14-6-C92-R32 publication-title: Opt. Express doi: 10.1364/OE.21.025685 – volume: 13 start-page: A78 year: 2021 ident: jocn-14-6-C92-R18 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.403205 – volume: 2 start-page: 564 year: 2021 ident: jocn-14-6-C92-R30 publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2021.3066913 – volume: 4 start-page: 1125 year: 1986 ident: jocn-14-6-C92-R26 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.1986.1074874 – volume-title: International Conference on Optical Network Design and Modeling (ONDM) year: 2020 ident: jocn-14-6-C92-R43 article-title: Quality of transmission estimation for planning of disaggregated optical networks doi: 10.23919/ONDM48393.2020.9133012 – volume: 39 start-page: 5232 year: 2021 ident: jocn-14-6-C92-R52 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2021.3097163 – volume: 33 start-page: 3921 year: 2015 ident: jocn-14-6-C92-R28 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2447151 – volume: 36 start-page: 3131 year: 2018 ident: jocn-14-6-C92-R41 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2814840 – volume: 15 start-page: 1735 year: 1997 ident: jocn-14-6-C92-R19 publication-title: J. Lightwave Technol. doi: 10.1109/50.622902 – volume: 54 start-page: 84 year: 2016 ident: jocn-14-6-C92-R6 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2016.7452271 – volume: 36 start-page: 3062 year: 2018 ident: jocn-14-6-C92-R14 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2815266 – start-page: M1 volume-title: Optical Fiber Communication Conference (OFC) year: 2021 ident: jocn-14-6-C92-R60 article-title: GNPy & YANG: open APIs for end-to-end service provisioning in optical networks – volume: 12 start-page: C58 year: 2020 ident: jocn-14-6-C92-R17 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.380723 – volume: 21 start-page: 32254 year: 2013 ident: jocn-14-6-C92-R36 publication-title: Opt. Express doi: 10.1364/OE.21.032254 – volume: 34 start-page: 554 year: 2016 ident: jocn-14-6-C92-R46 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2477599 – volume-title: European Conference on Optical Communication (ECOC) year: 2021 ident: jocn-14-6-C92-R10 article-title: GNPy model for design of open and disaggregated optical networks doi: 10.1109/ECOC52684.2021.9606087 – volume: 36 start-page: 3046 year: 2018 ident: jocn-14-6-C92-R42 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2830973 – start-page: F3 volume-title: Optical Fiber Communication Conference (OFC) year: 2021 ident: jocn-14-6-C92-R57 article-title: BOW: first real-world demonstration of a Bayesian optimization system for wavelength reconfiguration – volume: 13 start-page: B83 year: 2021 ident: jocn-14-6-C92-R29 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.417584 – volume: 37 start-page: 4041 year: 2019 ident: jocn-14-6-C92-R16 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2019.2906620 – volume-title: Nonlinear Fiber Optics year: 2013 ident: jocn-14-6-C92-R37 – volume-title: 22nd International Conference on Transparent Optical Networks year: 2020 ident: jocn-14-6-C92-R22 article-title: Software-defined WDM optical transport in disaggregated open optical networks doi: 10.1109/ICTON51198.2020.9203450 – volume-title: European Conference on Optical Communication (ECOC) year: 2021 ident: jocn-14-6-C92-R12 article-title: Automation journey in core and metro networks: an operator view doi: 10.1109/ECOC52684.2021.9606000 – volume: 14 start-page: 79 year: 2022 ident: jocn-14-6-C92-R48 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.442208 – volume: 26 start-page: 154 year: 2014 ident: jocn-14-6-C92-R47 publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2013.2290745 – volume: 2 start-page: 1358 year: 2021 ident: jocn-14-6-C92-R49 publication-title: IEEE Open J. Commun. Soc. doi: 10.1109/OJCOMS.2021.3085678 – volume: 13 start-page: E23 year: 2021 ident: jocn-14-6-C92-R53 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.424021 – volume: 37 start-page: 260 year: 2020 ident: jocn-14-6-C92-R1 publication-title: Inf. Syst. Manag. doi: 10.1080/10580530.2020.1814461 – start-page: M3 volume-title: Optical Fiber Communication Conference (OFC) year: 2019 ident: jocn-14-6-C92-R54 article-title: Open optical network planning demonstration – volume-title: European Conference on Optical Communications (ECOC) year: 2020 ident: jocn-14-6-C92-R50 article-title: Softwarized optical transport QoT in production optical network: a brownfield validation doi: 10.1109/ECOC48923.2020.9333280 – volume: 22 start-page: 79 year: 2004 ident: jocn-14-6-C92-R40 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.822828 – volume-title: European Conference on Optical Communications (ECOC) year: 2020 ident: jocn-14-6-C92-R59 article-title: Using QoT-E for open line controlling and modulation format deployment: an experimental proof of concept doi: 10.1109/ECOC48923.2020.9333315 – volume: 22 start-page: 14199 year: 2014 ident: jocn-14-6-C92-R34 publication-title: Opt. Express doi: 10.1364/OE.22.014199 – volume: 22 start-page: 16335 year: 2014 ident: jocn-14-6-C92-R33 publication-title: Opt. Express doi: 10.1364/OE.22.016335 – volume-title: Erbium-Doped Fiber Amplifiers: Principles and Applications year: 2002 ident: jocn-14-6-C92-R27 – volume: 22 start-page: 1856 year: 2004 ident: jocn-14-6-C92-R45 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2004.832424 – volume: 13 start-page: A21 year: 2021 ident: jocn-14-6-C92-R15 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.402187 – volume: 19 start-page: 12 year: 2017 ident: jocn-14-6-C92-R5 publication-title: IT Prof. doi: 10.1109/MITP.2017.9 – volume: 30 start-page: 2011 year: 2012 ident: jocn-14-6-C92-R31 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2012.2190582 – volume: 48 start-page: 97 year: 2020 ident: jocn-14-6-C92-R3 publication-title: IEEE Eng. Manag. Rev. doi: 10.1109/EMR.2020.3013206 – volume: 12 start-page: C31 year: 2020 ident: jocn-14-6-C92-R21 publication-title: J. Opt. Commun. Netw. doi: 10.1364/JOCN.382906 – start-page: M4 volume-title: Optical Fiber Communication Conference (OFC) year: 2022 ident: jocn-14-6-C92-R51 article-title: GNPy experimental validation for Nyquist subcarriers flexible transmission up to 800 G – volume-title: IEEE Global Communications Conference (GLOBECOM) year: 2020 ident: jocn-14-6-C92-R56 article-title: Networking performance of power optimized C $+$ + L $+$ + S multiband transmission doi: 10.1109/GLOBECOM42002.2020.9322068 – volume: 18 start-page: 2738 year: 2016 ident: jocn-14-6-C92-R7 publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2016.2586999 – volume: 17 start-page: 27 year: 2015 ident: jocn-14-6-C92-R11 publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2014.2330903 – volume: 48 start-page: 40 year: 2010 ident: jocn-14-6-C92-R13 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2010.5496877 – volume: 382 start-page: e82 year: 2020 ident: jocn-14-6-C92-R4 publication-title: New England J. Med. doi: 10.1056/NEJMp2005835 – volume-title: Proceedings of SubOptic year: 2019 ident: jocn-14-6-C92-R9 article-title: The subsea fiber as a Shannon channel – volume: 36 start-page: 3073 year: 2018 ident: jocn-14-6-C92-R20 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2018.2818406 – volume-title: ACM Internet Measurement Conference year: 2020 ident: jocn-14-6-C92-R2 article-title: How the Internet reacted to Covid-19: a perspective from Facebook’s edge network doi: 10.1145/3419394.3423621 – start-page: W1 volume-title: Optical Fiber Communication Conference (OFC) year: 2018 ident: jocn-14-6-C92-R38 article-title: Observing the interaction of PMD with generation of NLI in uncompensated amplified optical links doi: 10.1364/OFC.2018.W1G.4 – volume: 21 start-page: 1652 year: 2003 ident: jocn-14-6-C92-R39 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2003.814386 – volume: 32 start-page: 694 year: 2014 ident: jocn-14-6-C92-R35 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2013.2295208 – volume-title: 39th European Conference and Exhibition on Optical Communication (ECOC) year: 2013 ident: jocn-14-6-C92-R58 article-title: Optical control plane based on an analytical model of non-linear transmission effects in a self-optimized network doi: 10.1049/cp.2013.1458 |
SSID | ssj0067115 |
Score | 2.4982958 |
Snippet | Networking technologies are fast evolving to support the request for ubiquitous Internet access that is becoming a fundamental need for the modern and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | C92 |
SubjectTerms | Computer networks Data transmission Hauling Modelling Multiplexers Nonlinear optics Optical communication Optical network units Optical noise Optical polarization Optical propagation Optical signal processing Random noise Software Software-defined networking Wavelength division multiplexing |
Title | GNPy model of the physical layer for open and disaggregated optical networking [Invited] |
URI | https://ieeexplore.ieee.org/document/9768871 https://www.proquest.com/docview/2660160674 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5zT_rgrylOp-RhT2K3NknT9lGGcw6cPjgYiJQ0uYg4uuE2Qf96k7QbQ_fgWylpCXeX5LvL3X0INUPCqHHYfC8LlXFQAia9jDLqaSII1TLIAuG6fQ54b8j6o3BUQVerWhgAcMln0LKP7i5fTeTChsra5ug0a8L4OlvGzIpareWuy6PAsRUYn9yyFRC_rMWjnLX7D51Bi4Uktv1U104fR6fyZw92B0t3D90vp1Tkk7y3FvOsJb9_dWv875z30W6JMPF1YRIHqAL5IdpZ6ztYQ6PbweMXdiQ4eKKxwYB4WuoLj4UB4dhAWWyJtbDIFVZvM_Fq_HIbcVPmtQt_47xIIDc_xM93-aeFri9HaNi9eer0vJJiwZMkDuY28YWKzEgGkkhqqkIe-4mSTMRaA5UxjX0ZSAmUAYEgERkVwEWoOcSKs1jSY1TNJzmcIKwjohlRACTxmVBRxhIfSCikEkKLQNbR5VL0qSz7j1sajHHqLtU4S62e0kJPddRcDZ4WbTc2D6tZia-GlMKuo8ZSp2m5JGepQSK2mx6P2Onmr87QNrG1DS7E0kDV-ccCzg3imGcXztR-AKE-1Wk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5ED-rBt7i6ag6exK5tkqbtURZ1fa0eFBZESppMRFy6oruC_nqTtLuIevBWSlrCTJL5ZjLzDcBeTDmzDlsYFLG2DkrEVVAwzgJDJWVGRUUkPdtnV3Tu-Hkv7k3BwaQWBhF98hm23KO_y9cDNXKhskNrOu2esL7OjLX7PK6qtcbnrkgi36_AeuWuXwEN62o8Jvjh-XW72-IxTR2j6jf74xuq_DqFvWk5WYSr8aSqjJLn1mhYtNTnD77G_856CRZqjEmOqkWxDFNYrsD8N-bBVeiddm8-iG-DQwaGWBRIXmqNkb60MJxYMEtcay0iS03005t8tJ65i7lp-9oHwElZpZDbH5L7s_LdgdeHNbg7Ob5td4K6yUKgaBoNXeoLk4WVDGaJMkzHIg0zrbhMjUGmUpaGKlIKGUeKUSYLJlHI2AhMteCpYuswXQ5K3ABiEmo41Yg0C7nUScGzEGkslZbSyEg1YH8s-lzVDOSuEUY_99dqgudOT3mlpwbsTQa_VMQbfw9bdRKfDKmF3YDmWKd5vSnfcotFHJ-eSPjm31_twmzn9uoyvzzrXmzBHHWVDj7g0oTp4esIty3-GBY7ftl9AfO12LY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GNPy+model+of+the+physical+layer+for+open+and+disaggregated+optical+networking+%5BInvited%5D&rft.jtitle=Journal+of+optical+communications+and+networking&rft.au=Curri%2C+Vittorio&rft.date=2022-06-01&rft.pub=Optica+Publishing+Group&rft.issn=1943-0620&rft.volume=14&rft.issue=6&rft.spage=C92&rft.epage=C104&rft_id=info:doi/10.1364%2FJOCN.452868&rft.externalDocID=9768871 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0620&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0620&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0620&client=summon |