Fabrication of a polyethersulfone/polyethyleneimine porous membrane for sustainable separation of proteins in water media

This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exp...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science water research & technology Vol. 9; no. 9; pp. 2323 - 2337
Main Authors Talukder, Md Eman, Alam, Fariya, Talukder, Md. Romon, Mishu, Mst. Monira Rahman, Pervez, Md. Nahid, Song, Hongchen, Russo, Francesca, Galiaono, Francesco, Jiabao, Lan, Stylios, George K, Figoli, Alberto, Naddeo, Vincenzo
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 24.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and Angelica gigas Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications. This paper aims to establish a new sustainable honeycomb-like structured porous membrane surface with antifouling properties fabricated using a thermally induced phase inversion method coupled with exposure time to vapor.
AbstractList This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and Angelica gigas Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications. This paper aims to establish a new sustainable honeycomb-like structured porous membrane surface with antifouling properties fabricated using a thermally induced phase inversion method coupled with exposure time to vapor.
This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and Angelica gigas Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications.
This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and Angelica gigas Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications.
Author Song, Hongchen
Pervez, Md. Nahid
Russo, Francesca
Talukder, Md Eman
Talukder, Md. Romon
Jiabao, Lan
Naddeo, Vincenzo
Mishu, Mst. Monira Rahman
Alam, Fariya
Galiaono, Francesco
Stylios, George K
Figoli, Alberto
AuthorAffiliation Heriot-Watt University
Chinese Academy of Sciences
Department of Fashion Design & Technology (FDT)
Patuakhali Science and Technology University
University of Salerno
Sanitary Environmental Engineering Division (SEED)
Guangdong Key Lab of Membrane Material and Membrane Separation
Shenzhen Institute of Advanced Technology
Research Institute for Flexible Materials
Guangzhou Institute of Advanced Technology
Department of Chemistry
Faculty of Nutrition and Food Science
BGMEA University of Fashion & Technology
Department of Civil Engineering
Institute on Membrane Technology (CNR-ITM)
School of Textiles and Design
Government Saadat College
AuthorAffiliation_xml – sequence: 0
  name: Institute on Membrane Technology (CNR-ITM)
– sequence: 0
  name: Sanitary Environmental Engineering Division (SEED)
– sequence: 0
  name: Guangdong Key Lab of Membrane Material and Membrane Separation
– sequence: 0
  name: Government Saadat College
– sequence: 0
  name: School of Textiles and Design
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: Department of Fashion Design & Technology (FDT)
– sequence: 0
  name: Shenzhen Institute of Advanced Technology
– sequence: 0
  name: Patuakhali Science and Technology University
– sequence: 0
  name: Guangzhou Institute of Advanced Technology
– sequence: 0
  name: Department of Chemistry
– sequence: 0
  name: Research Institute for Flexible Materials
– sequence: 0
  name: Faculty of Nutrition and Food Science
– sequence: 0
  name: BGMEA University of Fashion & Technology
– sequence: 0
  name: Heriot-Watt University
– sequence: 0
  name: Department of Civil Engineering
– sequence: 0
  name: University of Salerno
Author_xml – sequence: 1
  givenname: Md Eman
  surname: Talukder
  fullname: Talukder, Md Eman
– sequence: 2
  givenname: Fariya
  surname: Alam
  fullname: Alam, Fariya
– sequence: 3
  givenname: Md. Romon
  surname: Talukder
  fullname: Talukder, Md. Romon
– sequence: 4
  givenname: Mst. Monira Rahman
  surname: Mishu
  fullname: Mishu, Mst. Monira Rahman
– sequence: 5
  givenname: Md. Nahid
  surname: Pervez
  fullname: Pervez, Md. Nahid
– sequence: 6
  givenname: Hongchen
  surname: Song
  fullname: Song, Hongchen
– sequence: 7
  givenname: Francesca
  surname: Russo
  fullname: Russo, Francesca
– sequence: 8
  givenname: Francesco
  surname: Galiaono
  fullname: Galiaono, Francesco
– sequence: 9
  givenname: Lan
  surname: Jiabao
  fullname: Jiabao, Lan
– sequence: 10
  givenname: George K
  surname: Stylios
  fullname: Stylios, George K
– sequence: 11
  givenname: Alberto
  surname: Figoli
  fullname: Figoli, Alberto
– sequence: 12
  givenname: Vincenzo
  surname: Naddeo
  fullname: Naddeo, Vincenzo
BookMark eNptkUtLAzEUhYNUsNZu3AsBd8LYPJzXUmqrQsFNweVwJ5NgykwyJhnK_HtjKxXEVZKb75ybe3KJJsYaidA1JfeU8HLRcLknhJJCnKEpIylP6AMtJ6c9IRdo7v2ORCjj8YpP0biG2mkBQVuDrcKAe9uOMnxI54dWxQaLn8LYSiN1p42MiLODx53sagfxrKzDfvABtIG6ldjLHtzJsnc2SG081gbvIUgXhY2GK3SuoPVy_rPO0Ha92i5fks3b8-vycZMIVtCQZCmhVBRQM5E2da7ykpA8YynNaEMU53mcg1JgTZ6LLC8oVRADAOCiyepG8Bm6PdrGZ3wO0odqZwdnYseKFWnGWFryPFJ3R0o4672Tquqd7sCNFSXVd7jVE1-9H8JdRpj8gYUOh3GDA93-L7k5SpwXJ-vf_-JfgQ-KJg
CitedBy_id crossref_primary_10_1021_acs_langmuir_3c03439
crossref_primary_10_3390_membranes14060120
crossref_primary_10_1021_acsestwater_3c00585
Cites_doi 10.1016/j.amjmed.2006.03.011
10.1021/acsapm.1c00457
10.1016/j.memsci.2010.08.046
10.1021/acssuschemeng.9b06496
10.1016/j.scitotenv.2022.152993
10.1016/j.jwpe.2022.102838
10.1080/01694243.2016.1237278
10.1016/j.chemosphere.2021.131756
10.1016/j.memsci.2014.11.021
10.3390/membranes12010009
10.1016/j.memsci.2012.05.028
10.1038/s41598-022-09802-9
10.1038/s41545-020-00090-2
10.1016/j.memsci.2020.118074
10.1016/j.jallcom.2020.154512
10.1016/j.heliyon.2021.e07961
10.1021/acssuschemeng.1c05059
10.1016/j.jeurceramsoc.2020.06.060
10.1016/0376-7388(94)00191-Z
10.1016/j.cis.2008.07.004
10.1016/j.memsci.2008.11.025
10.1007/s13233-020-8156-3
10.1186/s42834-021-00091-x
10.3390/membranes13020241
10.1016/j.apsusc.2022.155468
10.1016/j.carbpol.2018.01.106
10.1007/s10924-016-0889-x
10.1016/j.desal.2007.09.077
10.3390/w13233450
10.1016/j.eti.2022.102719
10.3390/membranes12040413
10.1021/acsami.7b03176
10.1021/acs.est.6b03660
10.1039/D1RA06354E
10.1016/j.desal.2011.12.006
10.1080/20550324.2021.2008209
10.1016/j.desal.2010.11.010
10.1016/j.cjche.2016.11.017
10.1080/09593330.2017.1301570
10.1007/s10853-021-06857-3
10.3390/w14244072
10.3390/polym12122765
10.1016/j.pmatsci.2012.07.002
10.1016/j.envres.2022.114696
10.1080/00914037.2017.1405348
10.1016/j.memsci.2022.121197
10.1016/j.memsci.2011.04.036
10.1007/s10853-021-06123-6
10.3390/membranes12020129
10.1186/s40201-015-0201-3
10.1016/j.jece.2021.106693
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/d3ew00108c
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2053-1419
EndPage 2337
ExternalDocumentID 10_1039_D3EW00108C
d3ew00108c
GroupedDBID 0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRAH
AGEGJ
AGRSR
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
BLAPV
BSQNT
C6K
EBS
ECGLT
GGIMP
H13
HZ~
J3G
J3H
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c281t-65011c8ab2c5db7f79007625161d0f33741911a2d77c67811fa08caa3cd6bdc3
ISSN 2053-1400
IngestDate Mon Jun 30 12:03:27 EDT 2025
Tue Jul 01 02:50:08 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Dec 17 20:58:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-65011c8ab2c5db7f79007625161d0f33741911a2d77c67811fa08caa3cd6bdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3121-8390
0000-0001-5718-4929
0000-0002-3395-3276
0000-0001-6187-5351
0000-0003-0536-552X
PQID 2856225937
PQPubID 2047516
PageCount 15
ParticipantIDs rsc_primary_d3ew00108c
crossref_primary_10_1039_D3EW00108C
crossref_citationtrail_10_1039_D3EW00108C
proquest_journals_2856225937
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-24
PublicationDateYYYYMMDD 2023-08-24
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-24
  day: 24
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science water research & technology
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Pervez (D3EW00108C/cit18/1) 2020; 3
Li (D3EW00108C/cit42/1) 2022; 57
Baig (D3EW00108C/cit53/1) 2021; 3
Alvaredo-Atienza (D3EW00108C/cit36/1) 2020; 12
Wang (D3EW00108C/cit7/1) 2011; 376
Baig (D3EW00108C/cit43/1) 2021; 3
Saxena (D3EW00108C/cit44/1) 2009; 14
Marques (D3EW00108C/cit26/1) 2020; 28
Wang (D3EW00108C/cit37/1) 1995; 98
Mustafa (D3EW00108C/cit35/1) 2022; 8
Qiang (D3EW00108C/cit1/1) 2020; 829
Fan (D3EW00108C/cit12/1) 2022; 286
Jin (D3EW00108C/cit2/1) 2023; 610
Wang (D3EW00108C/cit38/1) 2022; 12
Zoka (D3EW00108C/cit61/1) 2022; 12
Pervez (D3EW00108C/cit8/1) 2022; 47
Fang (D3EW00108C/cit25/1) 2015; 476
Pervez (D3EW00108C/cit23/1) 2022; 12
Basri (D3EW00108C/cit27/1) 2011; 273
Tenover (D3EW00108C/cit46/1) 2006; 119
Jianming (D3EW00108C/cit34/1) 2020; 48
Talukder (D3EW00108C/cit30/1) 2022; 12
Pervez (D3EW00108C/cit4/1) 2022; 817
Sadare (D3EW00108C/cit19/1) 2021; 9
Al Malek (D3EW00108C/cit28/1) 2012; 288
Koloti (D3EW00108C/cit45/1) 2018; 39
Wu (D3EW00108C/cit54/1) 2023; 13
Pervez (D3EW00108C/cit10/1) 2021; 13
Boulkrinat (D3EW00108C/cit51/1) 2020; 40
Talukder (D3EW00108C/cit13/1) 2022; 14
Zaaeri (D3EW00108C/cit47/1) 2018; 67
Pervez (D3EW00108C/cit16/1) 2022; 47
Susanto (D3EW00108C/cit32/1) 2019; 327
He (D3EW00108C/cit49/1) 2017; 9
Hoseinpour (D3EW00108C/cit22/1) 2018; 188
Mizan (D3EW00108C/cit41/1) 2023; 668
Okoro (D3EW00108C/cit21/1) 2021; 7
Vnučec (D3EW00108C/cit39/1) 2017; 31
Russo (D3EW00108C/cit48/1) 2019; 8
Anvari (D3EW00108C/cit57/1) 2017; 25
Purushothaman (D3EW00108C/cit6/1) 2023; 216
Rahimpour (D3EW00108C/cit11/1) 2010; 364
Talukder (D3EW00108C/cit9/1) 2021; 56
Lin (D3EW00108C/cit55/1) 2008; 234
Gebru (D3EW00108C/cit29/1) 2017; 25
Zhao (D3EW00108C/cit58/1) 2017; 3
Pervez (D3EW00108C/cit17/1) 2022; 12
He (D3EW00108C/cit50/1) 2017; 9
Mallya (D3EW00108C/cit31/1) 2022
Chao (D3EW00108C/cit33/1) 2018; 2
Omidvar (D3EW00108C/cit40/1) 2015; 13
Wang (D3EW00108C/cit5/1) 2020; 604
Wu (D3EW00108C/cit14/1) 2019; 5
Talukder (D3EW00108C/cit15/1) 2022; 8
YunFei (D3EW00108C/cit20/1) 2009; 3
Kusumocahyo (D3EW00108C/cit52/1) 2021; 31
Miao (D3EW00108C/cit3/1) 2017; 51
Wen (D3EW00108C/cit60/1) 2022; 12
Talukder (D3EW00108C/cit24/1) 2021; 9
Mahlicli (D3EW00108C/cit56/1) 2012; 415
Zhao (D3EW00108C/cit59/1) 2017; 58
References_xml – volume: 119
  start-page: S3
  year: 2006
  ident: D3EW00108C/cit46/1
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2006.03.011
– volume: 3
  start-page: 3560
  year: 2021
  ident: D3EW00108C/cit53/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.1c00457
– volume: 364
  start-page: 380
  year: 2010
  ident: D3EW00108C/cit11/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.08.046
– volume: 2
  start-page: 1001
  year: 2018
  ident: D3EW00108C/cit33/1
  publication-title: Funct. Mater.
– volume: 8
  start-page: 659
  year: 2019
  ident: D3EW00108C/cit48/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b06496
– volume: 817
  start-page: 152993
  year: 2022
  ident: D3EW00108C/cit4/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.152993
– volume: 47
  start-page: 102838
  year: 2022
  ident: D3EW00108C/cit8/1
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2022.102838
– volume: 31
  start-page: 910
  year: 2017
  ident: D3EW00108C/cit39/1
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1080/01694243.2016.1237278
– volume: 5
  start-page: 2162
  year: 2019
  ident: D3EW00108C/cit14/1
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 286
  start-page: 131756
  year: 2022
  ident: D3EW00108C/cit12/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131756
– volume: 476
  start-page: 216
  year: 2015
  ident: D3EW00108C/cit25/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.11.021
– volume: 48
  start-page: 100
  year: 2020
  ident: D3EW00108C/cit34/1
  publication-title: New J. Chem.
– volume: 12
  start-page: 9
  year: 2022
  ident: D3EW00108C/cit38/1
  publication-title: Membranes
  doi: 10.3390/membranes12010009
– volume: 415
  start-page: 383
  year: 2012
  ident: D3EW00108C/cit56/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.05.028
– volume: 12
  start-page: 5814
  year: 2022
  ident: D3EW00108C/cit30/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09802-9
– volume: 3
  start-page: 43
  year: 2020
  ident: D3EW00108C/cit18/1
  publication-title: npj Clean Water
  doi: 10.1038/s41545-020-00090-2
– volume: 604
  start-page: 118074
  year: 2020
  ident: D3EW00108C/cit5/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118074
– volume: 829
  start-page: 154512
  year: 2020
  ident: D3EW00108C/cit1/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.154512
– volume: 7
  start-page: e07961
  year: 2021
  ident: D3EW00108C/cit21/1
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e07961
– volume: 9
  start-page: 13068
  year: 2021
  ident: D3EW00108C/cit19/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.1c05059
– volume: 40
  start-page: 5967
  year: 2020
  ident: D3EW00108C/cit51/1
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2020.06.060
– volume: 98
  start-page: 233
  year: 1995
  ident: D3EW00108C/cit37/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/0376-7388(94)00191-Z
– volume: 14
  start-page: 1
  year: 2009
  ident: D3EW00108C/cit44/1
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2008.07.004
– volume: 327
  start-page: 125
  year: 2019
  ident: D3EW00108C/cit32/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.11.025
– volume: 28
  start-page: 1091
  year: 2020
  ident: D3EW00108C/cit26/1
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-020-8156-3
– volume: 31
  start-page: 1
  year: 2021
  ident: D3EW00108C/cit52/1
  publication-title: Sustainable Environ. Res.
  doi: 10.1186/s42834-021-00091-x
– volume: 13
  start-page: 241
  year: 2023
  ident: D3EW00108C/cit54/1
  publication-title: Membranes
  doi: 10.3390/membranes13020241
– volume: 610
  start-page: 155468
  year: 2023
  ident: D3EW00108C/cit2/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.155468
– volume: 188
  start-page: 37
  year: 2018
  ident: D3EW00108C/cit22/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.01.106
– volume: 25
  start-page: 1348
  year: 2017
  ident: D3EW00108C/cit57/1
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-016-0889-x
– volume: 3
  start-page: 3560
  year: 2021
  ident: D3EW00108C/cit43/1
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.1c00457
– volume: 234
  start-page: 116
  year: 2008
  ident: D3EW00108C/cit55/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.09.077
– volume: 13
  start-page: 3450
  year: 2021
  ident: D3EW00108C/cit10/1
  publication-title: Water
  doi: 10.3390/w13233450
– start-page: 102719
  year: 2022
  ident: D3EW00108C/cit31/1
  publication-title: Environ. Technol. Innovation
  doi: 10.1016/j.eti.2022.102719
– volume: 8
  start-page: 343
  year: 2022
  ident: D3EW00108C/cit35/1
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 12
  start-page: 413
  year: 2022
  ident: D3EW00108C/cit17/1
  publication-title: Membranes
  doi: 10.3390/membranes12040413
– volume: 9
  start-page: 15962
  year: 2017
  ident: D3EW00108C/cit50/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03176
– volume: 51
  start-page: 167
  year: 2017
  ident: D3EW00108C/cit3/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03660
– volume: 47
  start-page: 102838
  year: 2022
  ident: D3EW00108C/cit16/1
  publication-title: J. Water Process. Eng.
  doi: 10.1016/j.jwpe.2022.102838
– volume: 3
  start-page: 65
  year: 2009
  ident: D3EW00108C/cit20/1
  publication-title: Beijing Huagong Daxue Xuebao, Ziran Kexueban
– volume: 12
  start-page: 1460
  year: 2022
  ident: D3EW00108C/cit60/1
  publication-title: RSC Adv.
  doi: 10.1039/D1RA06354E
– volume: 288
  start-page: 31
  year: 2012
  ident: D3EW00108C/cit28/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.12.006
– volume: 8
  start-page: 12
  year: 2022
  ident: D3EW00108C/cit15/1
  publication-title: Nanocomposites
  doi: 10.1080/20550324.2021.2008209
– volume: 273
  start-page: 72
  year: 2011
  ident: D3EW00108C/cit27/1
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.11.010
– volume: 25
  start-page: 911
  year: 2017
  ident: D3EW00108C/cit29/1
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2016.11.017
– volume: 39
  start-page: 392
  year: 2018
  ident: D3EW00108C/cit45/1
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2017.1301570
– volume: 57
  start-page: 3067
  year: 2022
  ident: D3EW00108C/cit42/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06857-3
– volume: 14
  start-page: 4072
  year: 2022
  ident: D3EW00108C/cit13/1
  publication-title: Water
  doi: 10.3390/w14244072
– volume: 12
  start-page: 2765
  year: 2020
  ident: D3EW00108C/cit36/1
  publication-title: Polymers
  doi: 10.3390/polym12122765
– volume: 58
  start-page: 76
  year: 2017
  ident: D3EW00108C/cit59/1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2012.07.002
– volume: 216
  start-page: 114696
  year: 2023
  ident: D3EW00108C/cit6/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.114696
– volume: 12
  start-page: 413
  year: 2022
  ident: D3EW00108C/cit23/1
  publication-title: Membranes
  doi: 10.3390/membranes12040413
– volume: 67
  start-page: 967
  year: 2018
  ident: D3EW00108C/cit47/1
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2017.1405348
– volume: 9
  start-page: 15962
  issue: 19
  year: 2017
  ident: D3EW00108C/cit49/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03176
– volume: 668
  start-page: 121197
  year: 2023
  ident: D3EW00108C/cit41/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2022.121197
– volume: 376
  start-page: 275
  year: 2011
  ident: D3EW00108C/cit7/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.04.036
– volume: 56
  start-page: 12814
  year: 2021
  ident: D3EW00108C/cit9/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06123-6
– volume: 3
  start-page: 710
  year: 2017
  ident: D3EW00108C/cit58/1
  publication-title: Environ. Sci.: Water Res. Technol.
– volume: 12
  start-page: 129
  year: 2022
  ident: D3EW00108C/cit61/1
  publication-title: Membranes
  doi: 10.3390/membranes12020129
– volume: 13
  start-page: 1
  year: 2015
  ident: D3EW00108C/cit40/1
  publication-title: J. Environ. Health Sci. Eng.
  doi: 10.1186/s40201-015-0201-3
– volume: 9
  start-page: 106693
  year: 2021
  ident: D3EW00108C/cit24/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.106693
SSID ssj0001634193
Score 2.2975774
Snippet This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2323
SubjectTerms Additives
Albumins
Antifouling
Antifouling substances
Baicalin
Berberine
Blending
Bovine serum albumin
Contact angle
Fabrication
Filtration
Hydrophilicity
Macromolecules
Mechanical properties
Membrane filtration
Membranes
Molecular weight
Performance evaluation
Pharmacodynamics
Physical properties
Polyethersulfones
Polyethylene glycol
Polyethyleneimine
Polymers
Polyvinylpyrrolidone
Pore size
Pore size distribution
Porosity
Rejection rate
Separation
Serum
Serum albumin
Size distribution
Surface charge
Sustainability
Title Fabrication of a polyethersulfone/polyethyleneimine porous membrane for sustainable separation of proteins in water media
URI https://www.proquest.com/docview/2856225937
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLY6MxcuiK2iMCBLcEFVOkmc9VgNrQbEcBgFMbfIsRO1mi6jLBqVH8Vv5HlJnNIiAZeochwr8vf1bXnvGaH3dhQymznUosyn4KCE3KJRUICXkpOIsdgLC5lt8TW4-uZ9vvVvB4Ofvaylps4m7MfRupL_QRXGAFdRJfsPyHaLwgD8BnzhCgjD9a8wntOs1DE3Ved4v13tZAVv1ayKrQhWzvXQDrRLLk7wymFSKfJe1_kaPOWNavpd9eqoqlz1A1eLykYOS5Vu_kBFS0VZbLIX0TfFcm2JJUgLNVk3E1pIitUHcfyErpo7rmhzzceztSHrVHN1Dt78jh5_YDK-2a5NIsH1slo08k5VT6S4Kun4hi7aVXV0wyUiXKuKqpUQdEFIWOAEqm83eX9Mi1otxeMeWeO-RCaqnllrd5eoHjMHmsMmovEqJ_mDcJMjZvRjl7Vobp6gMxfcEpCrZ9NZ8umLieoFoj-eSGvoXrztiUviC7PAvhVkXJuTsj13Rto3yRP0WDsmeKpY9hQN8s0zNNyDFmtFUD1Hux718LbAFP9OvYsD4mFFPNwSDwPxcI942BBPLNkSDy83WHIJS-K9QMl8llxeWfoUD4u5kVNb4AI4Doto5jKfZ2ERxuLrL5jVgcPtAuCADXMc6vIwZIGoey4obBClhPEg44wM0ekG3volwjyOeMYczrMg8BjxIrCNPU5tH3QOK4pshD60m5oy3eFeHLSySmWmBYnTj2T2XQJwOULvurn3qq_L0VnnLTap_t9XqRuBz-D6YNeP0BDw6p438L76043X6JFh-Tk6rcsmfwNWbZ291VT6BWFqq-A
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+a+polyethersulfone%2Fpolyethyleneimine+porous+membrane+for+sustainable+separation+of+proteins+in+water+media&rft.jtitle=Environmental+science+water+research+%26+technology&rft.au=Talukder%2C+Md+Eman&rft.au=Alam%2C+Fariya&rft.au=Talukder%2C+Md.+Romon&rft.au=Mishu%2C+Mst.+Monira+Rahman&rft.date=2023-08-24&rft.issn=2053-1400&rft.eissn=2053-1419&rft.volume=9&rft.issue=9&rft.spage=2323&rft.epage=2337&rft_id=info:doi/10.1039%2Fd3ew00108c&rft.externalDocID=d3ew00108c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-1400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-1400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-1400&client=summon