Fabrication of a polyethersulfone/polyethyleneimine porous membrane for sustainable separation of proteins in water media
This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exp...
Saved in:
Published in | Environmental science water research & technology Vol. 9; no. 9; pp. 2323 - 2337 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
24.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives
via
immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and
Angelica gigas
Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications.
This paper aims to establish a new sustainable honeycomb-like structured porous membrane surface with antifouling properties fabricated using a thermally induced phase inversion method coupled with exposure time to vapor. |
---|---|
AbstractList | This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives
via
immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and
Angelica gigas
Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications.
This paper aims to establish a new sustainable honeycomb-like structured porous membrane surface with antifouling properties fabricated using a thermally induced phase inversion method coupled with exposure time to vapor. This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and Angelica gigas Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications. This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface fabricated by blending polymers and additives via immersion precipitation and using a thermally induced phase inversion method coupled with exposure time to vapor. The hydrophilic properties, surface charge, and pore size of the membrane were dependent on controlling the blending ratio of polyethersulfone (PES), polyethyleneimine (PEI), and polyvinylpyrrolidone (PVP). The properties of the membranes were characterized, including physical properties, morphology, contact angle, mechanical properties, porosity, and pore size distribution. The membrane filtration performance was evaluated by examining the water permeation, antifouling, and hydrophilic properties of the membranes. The hydrophilic nature of the PES/PEI membrane increased the filtration performance and created a smooth surface that exhibited excellent antifouling ability. Finally, the separation capability of the membranes was evaluated using bovine serum albumin (BSA) and Angelica gigas Nakai (AGN) root solutions. An almost 99.9% rejection rate was achieved for BSA and AGN at 1 bar pressure. The optimized membrane outperforms the commercial membrane with analogous characteristics on both the water flux and molecular weight cut-off (MWCO) of polyethylene glycol (PEG). Due to the controlled pore size (0.0032 to 0.0041 μm) of the honeycomb-like surface, it may be possible to separate pharmacodynamic macromolecules (such as berberine, baicalin, geniposide, and palmatine) for future applications. |
Author | Song, Hongchen Pervez, Md. Nahid Russo, Francesca Talukder, Md Eman Talukder, Md. Romon Jiabao, Lan Naddeo, Vincenzo Mishu, Mst. Monira Rahman Alam, Fariya Galiaono, Francesco Stylios, George K Figoli, Alberto |
AuthorAffiliation | Heriot-Watt University Chinese Academy of Sciences Department of Fashion Design & Technology (FDT) Patuakhali Science and Technology University University of Salerno Sanitary Environmental Engineering Division (SEED) Guangdong Key Lab of Membrane Material and Membrane Separation Shenzhen Institute of Advanced Technology Research Institute for Flexible Materials Guangzhou Institute of Advanced Technology Department of Chemistry Faculty of Nutrition and Food Science BGMEA University of Fashion & Technology Department of Civil Engineering Institute on Membrane Technology (CNR-ITM) School of Textiles and Design Government Saadat College |
AuthorAffiliation_xml | – sequence: 0 name: Institute on Membrane Technology (CNR-ITM) – sequence: 0 name: Sanitary Environmental Engineering Division (SEED) – sequence: 0 name: Guangdong Key Lab of Membrane Material and Membrane Separation – sequence: 0 name: Government Saadat College – sequence: 0 name: School of Textiles and Design – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: Department of Fashion Design & Technology (FDT) – sequence: 0 name: Shenzhen Institute of Advanced Technology – sequence: 0 name: Patuakhali Science and Technology University – sequence: 0 name: Guangzhou Institute of Advanced Technology – sequence: 0 name: Department of Chemistry – sequence: 0 name: Research Institute for Flexible Materials – sequence: 0 name: Faculty of Nutrition and Food Science – sequence: 0 name: BGMEA University of Fashion & Technology – sequence: 0 name: Heriot-Watt University – sequence: 0 name: Department of Civil Engineering – sequence: 0 name: University of Salerno |
Author_xml | – sequence: 1 givenname: Md Eman surname: Talukder fullname: Talukder, Md Eman – sequence: 2 givenname: Fariya surname: Alam fullname: Alam, Fariya – sequence: 3 givenname: Md. Romon surname: Talukder fullname: Talukder, Md. Romon – sequence: 4 givenname: Mst. Monira Rahman surname: Mishu fullname: Mishu, Mst. Monira Rahman – sequence: 5 givenname: Md. Nahid surname: Pervez fullname: Pervez, Md. Nahid – sequence: 6 givenname: Hongchen surname: Song fullname: Song, Hongchen – sequence: 7 givenname: Francesca surname: Russo fullname: Russo, Francesca – sequence: 8 givenname: Francesco surname: Galiaono fullname: Galiaono, Francesco – sequence: 9 givenname: Lan surname: Jiabao fullname: Jiabao, Lan – sequence: 10 givenname: George K surname: Stylios fullname: Stylios, George K – sequence: 11 givenname: Alberto surname: Figoli fullname: Figoli, Alberto – sequence: 12 givenname: Vincenzo surname: Naddeo fullname: Naddeo, Vincenzo |
BookMark | eNptkUtLAzEUhYNUsNZu3AsBd8LYPJzXUmqrQsFNweVwJ5NgykwyJhnK_HtjKxXEVZKb75ybe3KJJsYaidA1JfeU8HLRcLknhJJCnKEpIylP6AMtJ6c9IRdo7v2ORCjj8YpP0biG2mkBQVuDrcKAe9uOMnxI54dWxQaLn8LYSiN1p42MiLODx53sagfxrKzDfvABtIG6ldjLHtzJsnc2SG081gbvIUgXhY2GK3SuoPVy_rPO0Ha92i5fks3b8-vycZMIVtCQZCmhVBRQM5E2da7ykpA8YynNaEMU53mcg1JgTZ6LLC8oVRADAOCiyepG8Bm6PdrGZ3wO0odqZwdnYseKFWnGWFryPFJ3R0o4672Tquqd7sCNFSXVd7jVE1-9H8JdRpj8gYUOh3GDA93-L7k5SpwXJ-vf_-JfgQ-KJg |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_3c03439 crossref_primary_10_3390_membranes14060120 crossref_primary_10_1021_acsestwater_3c00585 |
Cites_doi | 10.1016/j.amjmed.2006.03.011 10.1021/acsapm.1c00457 10.1016/j.memsci.2010.08.046 10.1021/acssuschemeng.9b06496 10.1016/j.scitotenv.2022.152993 10.1016/j.jwpe.2022.102838 10.1080/01694243.2016.1237278 10.1016/j.chemosphere.2021.131756 10.1016/j.memsci.2014.11.021 10.3390/membranes12010009 10.1016/j.memsci.2012.05.028 10.1038/s41598-022-09802-9 10.1038/s41545-020-00090-2 10.1016/j.memsci.2020.118074 10.1016/j.jallcom.2020.154512 10.1016/j.heliyon.2021.e07961 10.1021/acssuschemeng.1c05059 10.1016/j.jeurceramsoc.2020.06.060 10.1016/0376-7388(94)00191-Z 10.1016/j.cis.2008.07.004 10.1016/j.memsci.2008.11.025 10.1007/s13233-020-8156-3 10.1186/s42834-021-00091-x 10.3390/membranes13020241 10.1016/j.apsusc.2022.155468 10.1016/j.carbpol.2018.01.106 10.1007/s10924-016-0889-x 10.1016/j.desal.2007.09.077 10.3390/w13233450 10.1016/j.eti.2022.102719 10.3390/membranes12040413 10.1021/acsami.7b03176 10.1021/acs.est.6b03660 10.1039/D1RA06354E 10.1016/j.desal.2011.12.006 10.1080/20550324.2021.2008209 10.1016/j.desal.2010.11.010 10.1016/j.cjche.2016.11.017 10.1080/09593330.2017.1301570 10.1007/s10853-021-06857-3 10.3390/w14244072 10.3390/polym12122765 10.1016/j.pmatsci.2012.07.002 10.1016/j.envres.2022.114696 10.1080/00914037.2017.1405348 10.1016/j.memsci.2022.121197 10.1016/j.memsci.2011.04.036 10.1007/s10853-021-06123-6 10.3390/membranes12020129 10.1186/s40201-015-0201-3 10.1016/j.jece.2021.106693 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/d3ew00108c |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2053-1419 |
EndPage | 2337 |
ExternalDocumentID | 10_1039_D3EW00108C d3ew00108c |
GroupedDBID | 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACLDK ADMRA ADSRN AEFDR AENGV AETIL AFLYV AFOGI AFRAH AGEGJ AGRSR AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT BLAPV BSQNT C6K EBS ECGLT GGIMP H13 HZ~ J3G J3H O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c281t-65011c8ab2c5db7f79007625161d0f33741911a2d77c67811fa08caa3cd6bdc3 |
ISSN | 2053-1400 |
IngestDate | Mon Jun 30 12:03:27 EDT 2025 Tue Jul 01 02:50:08 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Dec 17 20:58:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-65011c8ab2c5db7f79007625161d0f33741911a2d77c67811fa08caa3cd6bdc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3121-8390 0000-0001-5718-4929 0000-0002-3395-3276 0000-0001-6187-5351 0000-0003-0536-552X |
PQID | 2856225937 |
PQPubID | 2047516 |
PageCount | 15 |
ParticipantIDs | rsc_primary_d3ew00108c crossref_primary_10_1039_D3EW00108C crossref_citationtrail_10_1039_D3EW00108C proquest_journals_2856225937 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-24 |
PublicationDateYYYYMMDD | 2023-08-24 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science water research & technology |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Pervez (D3EW00108C/cit18/1) 2020; 3 Li (D3EW00108C/cit42/1) 2022; 57 Baig (D3EW00108C/cit53/1) 2021; 3 Alvaredo-Atienza (D3EW00108C/cit36/1) 2020; 12 Wang (D3EW00108C/cit7/1) 2011; 376 Baig (D3EW00108C/cit43/1) 2021; 3 Saxena (D3EW00108C/cit44/1) 2009; 14 Marques (D3EW00108C/cit26/1) 2020; 28 Wang (D3EW00108C/cit37/1) 1995; 98 Mustafa (D3EW00108C/cit35/1) 2022; 8 Qiang (D3EW00108C/cit1/1) 2020; 829 Fan (D3EW00108C/cit12/1) 2022; 286 Jin (D3EW00108C/cit2/1) 2023; 610 Wang (D3EW00108C/cit38/1) 2022; 12 Zoka (D3EW00108C/cit61/1) 2022; 12 Pervez (D3EW00108C/cit8/1) 2022; 47 Fang (D3EW00108C/cit25/1) 2015; 476 Pervez (D3EW00108C/cit23/1) 2022; 12 Basri (D3EW00108C/cit27/1) 2011; 273 Tenover (D3EW00108C/cit46/1) 2006; 119 Jianming (D3EW00108C/cit34/1) 2020; 48 Talukder (D3EW00108C/cit30/1) 2022; 12 Pervez (D3EW00108C/cit4/1) 2022; 817 Sadare (D3EW00108C/cit19/1) 2021; 9 Al Malek (D3EW00108C/cit28/1) 2012; 288 Koloti (D3EW00108C/cit45/1) 2018; 39 Wu (D3EW00108C/cit54/1) 2023; 13 Pervez (D3EW00108C/cit10/1) 2021; 13 Boulkrinat (D3EW00108C/cit51/1) 2020; 40 Talukder (D3EW00108C/cit13/1) 2022; 14 Zaaeri (D3EW00108C/cit47/1) 2018; 67 Pervez (D3EW00108C/cit16/1) 2022; 47 Susanto (D3EW00108C/cit32/1) 2019; 327 He (D3EW00108C/cit49/1) 2017; 9 Hoseinpour (D3EW00108C/cit22/1) 2018; 188 Mizan (D3EW00108C/cit41/1) 2023; 668 Okoro (D3EW00108C/cit21/1) 2021; 7 Vnučec (D3EW00108C/cit39/1) 2017; 31 Russo (D3EW00108C/cit48/1) 2019; 8 Anvari (D3EW00108C/cit57/1) 2017; 25 Purushothaman (D3EW00108C/cit6/1) 2023; 216 Rahimpour (D3EW00108C/cit11/1) 2010; 364 Talukder (D3EW00108C/cit9/1) 2021; 56 Lin (D3EW00108C/cit55/1) 2008; 234 Gebru (D3EW00108C/cit29/1) 2017; 25 Zhao (D3EW00108C/cit58/1) 2017; 3 Pervez (D3EW00108C/cit17/1) 2022; 12 He (D3EW00108C/cit50/1) 2017; 9 Mallya (D3EW00108C/cit31/1) 2022 Chao (D3EW00108C/cit33/1) 2018; 2 Omidvar (D3EW00108C/cit40/1) 2015; 13 Wang (D3EW00108C/cit5/1) 2020; 604 Wu (D3EW00108C/cit14/1) 2019; 5 Talukder (D3EW00108C/cit15/1) 2022; 8 YunFei (D3EW00108C/cit20/1) 2009; 3 Kusumocahyo (D3EW00108C/cit52/1) 2021; 31 Miao (D3EW00108C/cit3/1) 2017; 51 Wen (D3EW00108C/cit60/1) 2022; 12 Talukder (D3EW00108C/cit24/1) 2021; 9 Mahlicli (D3EW00108C/cit56/1) 2012; 415 Zhao (D3EW00108C/cit59/1) 2017; 58 |
References_xml | – volume: 119 start-page: S3 year: 2006 ident: D3EW00108C/cit46/1 publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2006.03.011 – volume: 3 start-page: 3560 year: 2021 ident: D3EW00108C/cit53/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c00457 – volume: 364 start-page: 380 year: 2010 ident: D3EW00108C/cit11/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.08.046 – volume: 2 start-page: 1001 year: 2018 ident: D3EW00108C/cit33/1 publication-title: Funct. Mater. – volume: 8 start-page: 659 year: 2019 ident: D3EW00108C/cit48/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b06496 – volume: 817 start-page: 152993 year: 2022 ident: D3EW00108C/cit4/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.152993 – volume: 47 start-page: 102838 year: 2022 ident: D3EW00108C/cit8/1 publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2022.102838 – volume: 31 start-page: 910 year: 2017 ident: D3EW00108C/cit39/1 publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2016.1237278 – volume: 5 start-page: 2162 year: 2019 ident: D3EW00108C/cit14/1 publication-title: Environ. Sci.: Water Res. Technol. – volume: 286 start-page: 131756 year: 2022 ident: D3EW00108C/cit12/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131756 – volume: 476 start-page: 216 year: 2015 ident: D3EW00108C/cit25/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.11.021 – volume: 48 start-page: 100 year: 2020 ident: D3EW00108C/cit34/1 publication-title: New J. Chem. – volume: 12 start-page: 9 year: 2022 ident: D3EW00108C/cit38/1 publication-title: Membranes doi: 10.3390/membranes12010009 – volume: 415 start-page: 383 year: 2012 ident: D3EW00108C/cit56/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.05.028 – volume: 12 start-page: 5814 year: 2022 ident: D3EW00108C/cit30/1 publication-title: Sci. Rep. doi: 10.1038/s41598-022-09802-9 – volume: 3 start-page: 43 year: 2020 ident: D3EW00108C/cit18/1 publication-title: npj Clean Water doi: 10.1038/s41545-020-00090-2 – volume: 604 start-page: 118074 year: 2020 ident: D3EW00108C/cit5/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118074 – volume: 829 start-page: 154512 year: 2020 ident: D3EW00108C/cit1/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154512 – volume: 7 start-page: e07961 year: 2021 ident: D3EW00108C/cit21/1 publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e07961 – volume: 9 start-page: 13068 year: 2021 ident: D3EW00108C/cit19/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.1c05059 – volume: 40 start-page: 5967 year: 2020 ident: D3EW00108C/cit51/1 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2020.06.060 – volume: 98 start-page: 233 year: 1995 ident: D3EW00108C/cit37/1 publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(94)00191-Z – volume: 14 start-page: 1 year: 2009 ident: D3EW00108C/cit44/1 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2008.07.004 – volume: 327 start-page: 125 year: 2019 ident: D3EW00108C/cit32/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.11.025 – volume: 28 start-page: 1091 year: 2020 ident: D3EW00108C/cit26/1 publication-title: Macromol. Res. doi: 10.1007/s13233-020-8156-3 – volume: 31 start-page: 1 year: 2021 ident: D3EW00108C/cit52/1 publication-title: Sustainable Environ. Res. doi: 10.1186/s42834-021-00091-x – volume: 13 start-page: 241 year: 2023 ident: D3EW00108C/cit54/1 publication-title: Membranes doi: 10.3390/membranes13020241 – volume: 610 start-page: 155468 year: 2023 ident: D3EW00108C/cit2/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.155468 – volume: 188 start-page: 37 year: 2018 ident: D3EW00108C/cit22/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.01.106 – volume: 25 start-page: 1348 year: 2017 ident: D3EW00108C/cit57/1 publication-title: J. Polym. Environ. doi: 10.1007/s10924-016-0889-x – volume: 3 start-page: 3560 year: 2021 ident: D3EW00108C/cit43/1 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.1c00457 – volume: 234 start-page: 116 year: 2008 ident: D3EW00108C/cit55/1 publication-title: Desalination doi: 10.1016/j.desal.2007.09.077 – volume: 13 start-page: 3450 year: 2021 ident: D3EW00108C/cit10/1 publication-title: Water doi: 10.3390/w13233450 – start-page: 102719 year: 2022 ident: D3EW00108C/cit31/1 publication-title: Environ. Technol. Innovation doi: 10.1016/j.eti.2022.102719 – volume: 8 start-page: 343 year: 2022 ident: D3EW00108C/cit35/1 publication-title: Environ. Sci.: Water Res. Technol. – volume: 12 start-page: 413 year: 2022 ident: D3EW00108C/cit17/1 publication-title: Membranes doi: 10.3390/membranes12040413 – volume: 9 start-page: 15962 year: 2017 ident: D3EW00108C/cit50/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03176 – volume: 51 start-page: 167 year: 2017 ident: D3EW00108C/cit3/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03660 – volume: 47 start-page: 102838 year: 2022 ident: D3EW00108C/cit16/1 publication-title: J. Water Process. Eng. doi: 10.1016/j.jwpe.2022.102838 – volume: 3 start-page: 65 year: 2009 ident: D3EW00108C/cit20/1 publication-title: Beijing Huagong Daxue Xuebao, Ziran Kexueban – volume: 12 start-page: 1460 year: 2022 ident: D3EW00108C/cit60/1 publication-title: RSC Adv. doi: 10.1039/D1RA06354E – volume: 288 start-page: 31 year: 2012 ident: D3EW00108C/cit28/1 publication-title: Desalination doi: 10.1016/j.desal.2011.12.006 – volume: 8 start-page: 12 year: 2022 ident: D3EW00108C/cit15/1 publication-title: Nanocomposites doi: 10.1080/20550324.2021.2008209 – volume: 273 start-page: 72 year: 2011 ident: D3EW00108C/cit27/1 publication-title: Desalination doi: 10.1016/j.desal.2010.11.010 – volume: 25 start-page: 911 year: 2017 ident: D3EW00108C/cit29/1 publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2016.11.017 – volume: 39 start-page: 392 year: 2018 ident: D3EW00108C/cit45/1 publication-title: Environ. Technol. doi: 10.1080/09593330.2017.1301570 – volume: 57 start-page: 3067 year: 2022 ident: D3EW00108C/cit42/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06857-3 – volume: 14 start-page: 4072 year: 2022 ident: D3EW00108C/cit13/1 publication-title: Water doi: 10.3390/w14244072 – volume: 12 start-page: 2765 year: 2020 ident: D3EW00108C/cit36/1 publication-title: Polymers doi: 10.3390/polym12122765 – volume: 58 start-page: 76 year: 2017 ident: D3EW00108C/cit59/1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2012.07.002 – volume: 216 start-page: 114696 year: 2023 ident: D3EW00108C/cit6/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2022.114696 – volume: 12 start-page: 413 year: 2022 ident: D3EW00108C/cit23/1 publication-title: Membranes doi: 10.3390/membranes12040413 – volume: 67 start-page: 967 year: 2018 ident: D3EW00108C/cit47/1 publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2017.1405348 – volume: 9 start-page: 15962 issue: 19 year: 2017 ident: D3EW00108C/cit49/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03176 – volume: 668 start-page: 121197 year: 2023 ident: D3EW00108C/cit41/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2022.121197 – volume: 376 start-page: 275 year: 2011 ident: D3EW00108C/cit7/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.04.036 – volume: 56 start-page: 12814 year: 2021 ident: D3EW00108C/cit9/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06123-6 – volume: 3 start-page: 710 year: 2017 ident: D3EW00108C/cit58/1 publication-title: Environ. Sci.: Water Res. Technol. – volume: 12 start-page: 129 year: 2022 ident: D3EW00108C/cit61/1 publication-title: Membranes doi: 10.3390/membranes12020129 – volume: 13 start-page: 1 year: 2015 ident: D3EW00108C/cit40/1 publication-title: J. Environ. Health Sci. Eng. doi: 10.1186/s40201-015-0201-3 – volume: 9 start-page: 106693 year: 2021 ident: D3EW00108C/cit24/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.106693 |
SSID | ssj0001634193 |
Score | 2.2975774 |
Snippet | This paper aims to establish a new sustainable membrane with antifouling properties by developing a structured porous membrane with a honeycomb-like surface... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2323 |
SubjectTerms | Additives Albumins Antifouling Antifouling substances Baicalin Berberine Blending Bovine serum albumin Contact angle Fabrication Filtration Hydrophilicity Macromolecules Mechanical properties Membrane filtration Membranes Molecular weight Performance evaluation Pharmacodynamics Physical properties Polyethersulfones Polyethylene glycol Polyethyleneimine Polymers Polyvinylpyrrolidone Pore size Pore size distribution Porosity Rejection rate Separation Serum Serum albumin Size distribution Surface charge Sustainability |
Title | Fabrication of a polyethersulfone/polyethyleneimine porous membrane for sustainable separation of proteins in water media |
URI | https://www.proquest.com/docview/2856225937 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLY6MxcuiK2iMCBLcEFVOkmc9VgNrQbEcBgFMbfIsRO1mi6jLBqVH8Vv5HlJnNIiAZeochwr8vf1bXnvGaH3dhQymznUosyn4KCE3KJRUICXkpOIsdgLC5lt8TW4-uZ9vvVvB4Ofvaylps4m7MfRupL_QRXGAFdRJfsPyHaLwgD8BnzhCgjD9a8wntOs1DE3Ved4v13tZAVv1ayKrQhWzvXQDrRLLk7wymFSKfJe1_kaPOWNavpd9eqoqlz1A1eLykYOS5Vu_kBFS0VZbLIX0TfFcm2JJUgLNVk3E1pIitUHcfyErpo7rmhzzceztSHrVHN1Dt78jh5_YDK-2a5NIsH1slo08k5VT6S4Kun4hi7aVXV0wyUiXKuKqpUQdEFIWOAEqm83eX9Mi1otxeMeWeO-RCaqnllrd5eoHjMHmsMmovEqJ_mDcJMjZvRjl7Vobp6gMxfcEpCrZ9NZ8umLieoFoj-eSGvoXrztiUviC7PAvhVkXJuTsj13Rto3yRP0WDsmeKpY9hQN8s0zNNyDFmtFUD1Hux718LbAFP9OvYsD4mFFPNwSDwPxcI942BBPLNkSDy83WHIJS-K9QMl8llxeWfoUD4u5kVNb4AI4Doto5jKfZ2ERxuLrL5jVgcPtAuCADXMc6vIwZIGoey4obBClhPEg44wM0ekG3volwjyOeMYczrMg8BjxIrCNPU5tH3QOK4pshD60m5oy3eFeHLSySmWmBYnTj2T2XQJwOULvurn3qq_L0VnnLTap_t9XqRuBz-D6YNeP0BDw6p438L76043X6JFh-Tk6rcsmfwNWbZ291VT6BWFqq-A |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+a+polyethersulfone%2Fpolyethyleneimine+porous+membrane+for+sustainable+separation+of+proteins+in+water+media&rft.jtitle=Environmental+science+water+research+%26+technology&rft.au=Talukder%2C+Md+Eman&rft.au=Alam%2C+Fariya&rft.au=Talukder%2C+Md.+Romon&rft.au=Mishu%2C+Mst.+Monira+Rahman&rft.date=2023-08-24&rft.issn=2053-1400&rft.eissn=2053-1419&rft.volume=9&rft.issue=9&rft.spage=2323&rft.epage=2337&rft_id=info:doi/10.1039%2Fd3ew00108c&rft.externalDocID=d3ew00108c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2053-1400&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2053-1400&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2053-1400&client=summon |